blob: 5bee83021f661dd61f117f3b3fe9c278adc34b84 [file] [log] [blame]
/*
* Copyright © 2016 Red Hat.
* Copyright © 2016 Bas Nieuwenhuizen
*
* based in part on anv driver which is:
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <stdlib.h>
#include <stdio.h>
#include <sys/utsname.h>
#include "util/mesa-sha1.h"
#include "sid.h"
#include "ac_debug.h"
#include "radv_debug.h"
#include "radv_shader.h"
#define TRACE_BO_SIZE 4096
#define TMA_BO_SIZE 4096
#define COLOR_RESET "\033[0m"
#define COLOR_RED "\033[31m"
#define COLOR_GREEN "\033[1;32m"
#define COLOR_YELLOW "\033[1;33m"
#define COLOR_CYAN "\033[1;36m"
/* Trace BO layout (offsets are 4 bytes):
*
* [0]: primary trace ID
* [1]: secondary trace ID
* [2-3]: 64-bit GFX ring pipeline pointer
* [4-5]: 64-bit COMPUTE ring pipeline pointer
* [6-7]: 64-bit descriptor set #0 pointer
* ...
* [68-69]: 64-bit descriptor set #31 pointer
*/
bool
radv_init_trace(struct radv_device *device)
{
struct radeon_winsys *ws = device->ws;
device->trace_bo = ws->buffer_create(ws, TRACE_BO_SIZE, 8,
RADEON_DOMAIN_VRAM,
RADEON_FLAG_CPU_ACCESS|
RADEON_FLAG_NO_INTERPROCESS_SHARING |
RADEON_FLAG_ZERO_VRAM,
RADV_BO_PRIORITY_UPLOAD_BUFFER);
if (!device->trace_bo)
return false;
device->trace_id_ptr = ws->buffer_map(device->trace_bo);
if (!device->trace_id_ptr)
return false;
ac_vm_fault_occured(device->physical_device->rad_info.chip_class,
&device->dmesg_timestamp, NULL);
return true;
}
static void
radv_dump_trace(struct radv_device *device, struct radeon_cmdbuf *cs)
{
const char *filename = getenv("RADV_TRACE_FILE");
FILE *f = fopen(filename, "w");
if (!f) {
fprintf(stderr, "Failed to write trace dump to %s\n", filename);
return;
}
fprintf(f, "Trace ID: %x\n", *device->trace_id_ptr);
device->ws->cs_dump(cs, f, (const int*)device->trace_id_ptr, 2);
fclose(f);
}
static void
radv_dump_mmapped_reg(struct radv_device *device, FILE *f, unsigned offset)
{
struct radeon_winsys *ws = device->ws;
uint32_t value;
if (ws->read_registers(ws, offset, 1, &value))
ac_dump_reg(f, device->physical_device->rad_info.chip_class,
offset, value, ~0);
}
static void
radv_dump_debug_registers(struct radv_device *device, FILE *f)
{
struct radeon_info *info = &device->physical_device->rad_info;
fprintf(f, "Memory-mapped registers:\n");
radv_dump_mmapped_reg(device, f, R_008010_GRBM_STATUS);
/* No other registers can be read on DRM < 3.1.0. */
if (info->drm_minor < 1) {
fprintf(f, "\n");
return;
}
radv_dump_mmapped_reg(device, f, R_008008_GRBM_STATUS2);
radv_dump_mmapped_reg(device, f, R_008014_GRBM_STATUS_SE0);
radv_dump_mmapped_reg(device, f, R_008018_GRBM_STATUS_SE1);
radv_dump_mmapped_reg(device, f, R_008038_GRBM_STATUS_SE2);
radv_dump_mmapped_reg(device, f, R_00803C_GRBM_STATUS_SE3);
radv_dump_mmapped_reg(device, f, R_00D034_SDMA0_STATUS_REG);
radv_dump_mmapped_reg(device, f, R_00D834_SDMA1_STATUS_REG);
if (info->chip_class <= GFX8) {
radv_dump_mmapped_reg(device, f, R_000E50_SRBM_STATUS);
radv_dump_mmapped_reg(device, f, R_000E4C_SRBM_STATUS2);
radv_dump_mmapped_reg(device, f, R_000E54_SRBM_STATUS3);
}
radv_dump_mmapped_reg(device, f, R_008680_CP_STAT);
radv_dump_mmapped_reg(device, f, R_008674_CP_STALLED_STAT1);
radv_dump_mmapped_reg(device, f, R_008678_CP_STALLED_STAT2);
radv_dump_mmapped_reg(device, f, R_008670_CP_STALLED_STAT3);
radv_dump_mmapped_reg(device, f, R_008210_CP_CPC_STATUS);
radv_dump_mmapped_reg(device, f, R_008214_CP_CPC_BUSY_STAT);
radv_dump_mmapped_reg(device, f, R_008218_CP_CPC_STALLED_STAT1);
radv_dump_mmapped_reg(device, f, R_00821C_CP_CPF_STATUS);
radv_dump_mmapped_reg(device, f, R_008220_CP_CPF_BUSY_STAT);
radv_dump_mmapped_reg(device, f, R_008224_CP_CPF_STALLED_STAT1);
fprintf(f, "\n");
}
static void
radv_dump_buffer_descriptor(enum chip_class chip_class, const uint32_t *desc,
FILE *f)
{
fprintf(f, COLOR_CYAN " Buffer:" COLOR_RESET "\n");
for (unsigned j = 0; j < 4; j++)
ac_dump_reg(f, chip_class, R_008F00_SQ_BUF_RSRC_WORD0 + j * 4,
desc[j], 0xffffffff);
}
static void
radv_dump_image_descriptor(enum chip_class chip_class, const uint32_t *desc,
FILE *f)
{
unsigned sq_img_rsrc_word0 = chip_class >= GFX10 ? R_00A000_SQ_IMG_RSRC_WORD0
: R_008F10_SQ_IMG_RSRC_WORD0;
fprintf(f, COLOR_CYAN " Image:" COLOR_RESET "\n");
for (unsigned j = 0; j < 8; j++)
ac_dump_reg(f, chip_class, sq_img_rsrc_word0 + j * 4,
desc[j], 0xffffffff);
fprintf(f, COLOR_CYAN " FMASK:" COLOR_RESET "\n");
for (unsigned j = 0; j < 8; j++)
ac_dump_reg(f, chip_class, sq_img_rsrc_word0 + j * 4,
desc[8 + j], 0xffffffff);
}
static void
radv_dump_sampler_descriptor(enum chip_class chip_class, const uint32_t *desc,
FILE *f)
{
fprintf(f, COLOR_CYAN " Sampler state:" COLOR_RESET "\n");
for (unsigned j = 0; j < 4; j++) {
ac_dump_reg(f, chip_class, R_008F30_SQ_IMG_SAMP_WORD0 + j * 4,
desc[j], 0xffffffff);
}
}
static void
radv_dump_combined_image_sampler_descriptor(enum chip_class chip_class,
const uint32_t *desc, FILE *f)
{
radv_dump_image_descriptor(chip_class, desc, f);
radv_dump_sampler_descriptor(chip_class, desc + 16, f);
}
static void
radv_dump_descriptor_set(struct radv_device *device,
struct radv_descriptor_set *set, unsigned id, FILE *f)
{
enum chip_class chip_class = device->physical_device->rad_info.chip_class;
const struct radv_descriptor_set_layout *layout;
int i;
if (!set)
return;
layout = set->layout;
for (i = 0; i < set->layout->binding_count; i++) {
uint32_t *desc =
set->mapped_ptr + layout->binding[i].offset / 4;
switch (layout->binding[i].type) {
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
radv_dump_buffer_descriptor(chip_class, desc, f);
break;
case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
radv_dump_image_descriptor(chip_class, desc, f);
break;
case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
radv_dump_combined_image_sampler_descriptor(chip_class, desc, f);
break;
case VK_DESCRIPTOR_TYPE_SAMPLER:
radv_dump_sampler_descriptor(chip_class, desc, f);
break;
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
/* todo */
break;
default:
assert(!"unknown descriptor type");
break;
}
fprintf(f, "\n");
}
fprintf(f, "\n\n");
}
static void
radv_dump_descriptors(struct radv_device *device, FILE *f)
{
uint64_t *ptr = (uint64_t *)device->trace_id_ptr;
int i;
fprintf(f, "Descriptors:\n");
for (i = 0; i < MAX_SETS; i++) {
struct radv_descriptor_set *set =
*(struct radv_descriptor_set **)(ptr + i + 3);
radv_dump_descriptor_set(device, set, i, f);
}
}
struct radv_shader_inst {
char text[160]; /* one disasm line */
unsigned offset; /* instruction offset */
unsigned size; /* instruction size = 4 or 8 */
};
/* Split a disassembly string into lines and add them to the array pointed
* to by "instructions". */
static void si_add_split_disasm(const char *disasm,
uint64_t start_addr,
unsigned *num,
struct radv_shader_inst *instructions)
{
struct radv_shader_inst *last_inst = *num ? &instructions[*num - 1] : NULL;
char *next;
while ((next = strchr(disasm, '\n'))) {
struct radv_shader_inst *inst = &instructions[*num];
unsigned len = next - disasm;
if (!memchr(disasm, ';', len)) {
/* Ignore everything that is not an instruction. */
disasm = next + 1;
continue;
}
assert(len < ARRAY_SIZE(inst->text));
memcpy(inst->text, disasm, len);
inst->text[len] = 0;
inst->offset = last_inst ? last_inst->offset + last_inst->size : 0;
const char *semicolon = strchr(disasm, ';');
assert(semicolon);
/* More than 16 chars after ";" means the instruction is 8 bytes long. */
inst->size = next - semicolon > 16 ? 8 : 4;
snprintf(inst->text + len, ARRAY_SIZE(inst->text) - len,
" [PC=0x%"PRIx64", off=%u, size=%u]",
start_addr + inst->offset, inst->offset, inst->size);
last_inst = inst;
(*num)++;
disasm = next + 1;
}
}
static void
radv_dump_annotated_shader(struct radv_shader_variant *shader,
gl_shader_stage stage, struct ac_wave_info *waves,
unsigned num_waves, FILE *f)
{
uint64_t start_addr, end_addr;
unsigned i;
if (!shader)
return;
start_addr = radv_buffer_get_va(shader->bo) + shader->bo_offset;
end_addr = start_addr + shader->code_size;
/* See if any wave executes the shader. */
for (i = 0; i < num_waves; i++) {
if (start_addr <= waves[i].pc && waves[i].pc <= end_addr)
break;
}
if (i == num_waves)
return; /* the shader is not being executed */
/* Remember the first found wave. The waves are sorted according to PC. */
waves = &waves[i];
num_waves -= i;
/* Get the list of instructions.
* Buffer size / 4 is the upper bound of the instruction count.
*/
unsigned num_inst = 0;
struct radv_shader_inst *instructions =
calloc(shader->code_size / 4, sizeof(struct radv_shader_inst));
si_add_split_disasm(shader->disasm_string,
start_addr, &num_inst, instructions);
fprintf(f, COLOR_YELLOW "%s - annotated disassembly:" COLOR_RESET "\n",
radv_get_shader_name(&shader->info, stage));
/* Print instructions with annotations. */
for (i = 0; i < num_inst; i++) {
struct radv_shader_inst *inst = &instructions[i];
fprintf(f, "%s\n", inst->text);
/* Print which waves execute the instruction right now. */
while (num_waves && start_addr + inst->offset == waves->pc) {
fprintf(f,
" " COLOR_GREEN "^ SE%u SH%u CU%u "
"SIMD%u WAVE%u EXEC=%016"PRIx64 " ",
waves->se, waves->sh, waves->cu, waves->simd,
waves->wave, waves->exec);
if (inst->size == 4) {
fprintf(f, "INST32=%08X" COLOR_RESET "\n",
waves->inst_dw0);
} else {
fprintf(f, "INST64=%08X %08X" COLOR_RESET "\n",
waves->inst_dw0, waves->inst_dw1);
}
waves->matched = true;
waves = &waves[1];
num_waves--;
}
}
fprintf(f, "\n\n");
free(instructions);
}
static void
radv_dump_annotated_shaders(struct radv_pipeline *pipeline,
VkShaderStageFlagBits active_stages, FILE *f)
{
struct ac_wave_info waves[AC_MAX_WAVES_PER_CHIP];
enum chip_class chip_class = pipeline->device->physical_device->rad_info.chip_class;
unsigned num_waves = ac_get_wave_info(chip_class, waves);
fprintf(f, COLOR_CYAN "The number of active waves = %u" COLOR_RESET
"\n\n", num_waves);
/* Dump annotated active graphics shaders. */
while (active_stages) {
int stage = u_bit_scan(&active_stages);
radv_dump_annotated_shader(pipeline->shaders[stage],
stage, waves, num_waves, f);
}
/* Print waves executing shaders that are not currently bound. */
unsigned i;
bool found = false;
for (i = 0; i < num_waves; i++) {
if (waves[i].matched)
continue;
if (!found) {
fprintf(f, COLOR_CYAN
"Waves not executing currently-bound shaders:"
COLOR_RESET "\n");
found = true;
}
fprintf(f, " SE%u SH%u CU%u SIMD%u WAVE%u EXEC=%016"PRIx64
" INST=%08X %08X PC=%"PRIx64"\n",
waves[i].se, waves[i].sh, waves[i].cu, waves[i].simd,
waves[i].wave, waves[i].exec, waves[i].inst_dw0,
waves[i].inst_dw1, waves[i].pc);
}
if (found)
fprintf(f, "\n\n");
}
static void
radv_dump_shader(struct radv_pipeline *pipeline,
struct radv_shader_variant *shader, gl_shader_stage stage,
FILE *f)
{
if (!shader)
return;
fprintf(f, "%s:\n\n", radv_get_shader_name(&shader->info, stage));
if (shader->spirv) {
unsigned char sha1[21];
char sha1buf[41];
_mesa_sha1_compute(shader->spirv, shader->spirv_size, sha1);
_mesa_sha1_format(sha1buf, sha1);
fprintf(f, "SPIRV (sha1: %s):\n", sha1buf);
radv_print_spirv(shader->spirv, shader->spirv_size, f);
}
if (shader->nir_string) {
fprintf(f, "NIR:\n%s\n", shader->nir_string);
}
fprintf(f, "%s IR:\n%s\n",
pipeline->device->physical_device->use_llvm ? "LLVM" : "ACO",
shader->ir_string);
fprintf(f, "DISASM:\n%s\n", shader->disasm_string);
radv_dump_shader_stats(pipeline->device, pipeline, stage, f);
}
static void
radv_dump_shaders(struct radv_pipeline *pipeline,
VkShaderStageFlagBits active_stages, FILE *f)
{
/* Dump active graphics shaders. */
while (active_stages) {
int stage = u_bit_scan(&active_stages);
radv_dump_shader(pipeline, pipeline->shaders[stage], stage, f);
}
}
static struct radv_pipeline *
radv_get_saved_pipeline(struct radv_device *device, enum ring_type ring)
{
uint64_t *ptr = (uint64_t *)device->trace_id_ptr;
int offset = ring == RING_GFX ? 1 : 2;
return *(struct radv_pipeline **)(ptr + offset);
}
static void
radv_dump_queue_state(struct radv_queue *queue, FILE *f)
{
enum ring_type ring = radv_queue_family_to_ring(queue->queue_family_index);
struct radv_pipeline *pipeline;
fprintf(f, "RING_%s:\n", ring == RING_GFX ? "GFX" : "COMPUTE");
pipeline = radv_get_saved_pipeline(queue->device, ring);
if (pipeline) {
radv_dump_shaders(pipeline, pipeline->active_stages, f);
radv_dump_annotated_shaders(pipeline, pipeline->active_stages, f);
radv_dump_descriptors(queue->device, f);
}
}
static void
radv_dump_dmesg(FILE *f)
{
char line[2000];
FILE *p;
p = popen("dmesg | tail -n60", "r");
if (!p)
return;
fprintf(f, "\nLast 60 lines of dmesg:\n\n");
while (fgets(line, sizeof(line), p))
fputs(line, f);
fprintf(f, "\n");
pclose(p);
}
void
radv_dump_enabled_options(struct radv_device *device, FILE *f)
{
uint64_t mask;
if (device->instance->debug_flags) {
fprintf(f, "Enabled debug options: ");
mask = device->instance->debug_flags;
while (mask) {
int i = u_bit_scan64(&mask);
fprintf(f, "%s, ", radv_get_debug_option_name(i));
}
fprintf(f, "\n");
}
if (device->instance->perftest_flags) {
fprintf(f, "Enabled perftest options: ");
mask = device->instance->perftest_flags;
while (mask) {
int i = u_bit_scan64(&mask);
fprintf(f, "%s, ", radv_get_perftest_option_name(i));
}
fprintf(f, "\n");
}
}
static void
radv_dump_device_name(struct radv_device *device, FILE *f)
{
struct radeon_info *info = &device->physical_device->rad_info;
char kernel_version[128] = {};
struct utsname uname_data;
const char *chip_name;
chip_name = device->ws->get_chip_name(device->ws);
if (uname(&uname_data) == 0)
snprintf(kernel_version, sizeof(kernel_version),
" / %s", uname_data.release);
fprintf(f, "Device name: %s (%s / DRM %i.%i.%i%s)\n\n",
chip_name, device->physical_device->name,
info->drm_major, info->drm_minor, info->drm_patchlevel,
kernel_version);
}
static bool
radv_gpu_hang_occured(struct radv_queue *queue, enum ring_type ring)
{
struct radeon_winsys *ws = queue->device->ws;
if (!ws->ctx_wait_idle(queue->hw_ctx, ring, queue->queue_idx))
return true;
return false;
}
void
radv_check_gpu_hangs(struct radv_queue *queue, struct radeon_cmdbuf *cs)
{
struct radv_device *device = queue->device;
enum ring_type ring;
uint64_t addr;
ring = radv_queue_family_to_ring(queue->queue_family_index);
bool hang_occurred = radv_gpu_hang_occured(queue, ring);
bool vm_fault_occurred = false;
if (queue->device->instance->debug_flags & RADV_DEBUG_VM_FAULTS)
vm_fault_occurred = ac_vm_fault_occured(device->physical_device->rad_info.chip_class,
&device->dmesg_timestamp, &addr);
if (!hang_occurred && !vm_fault_occurred)
return;
radv_dump_trace(queue->device, cs);
fprintf(stderr, "GPU hang report:\n\n");
radv_dump_device_name(device, stderr);
radv_dump_enabled_options(device, stderr);
radv_dump_dmesg(stderr);
if (vm_fault_occurred) {
fprintf(stderr, "VM fault report.\n\n");
fprintf(stderr, "Failing VM page: 0x%08"PRIx64"\n\n", addr);
}
radv_dump_debug_registers(device, stderr);
radv_dump_queue_state(queue, stderr);
abort();
}
void
radv_print_spirv(const char *data, uint32_t size, FILE *fp)
{
char path[] = "/tmp/fileXXXXXX";
char line[2048], command[128];
FILE *p;
int fd;
/* Dump the binary into a temporary file. */
fd = mkstemp(path);
if (fd < 0)
return;
if (write(fd, data, size) == -1)
goto fail;
sprintf(command, "spirv-dis %s", path);
/* Disassemble using spirv-dis if installed. */
p = popen(command, "r");
if (p) {
while (fgets(line, sizeof(line), p))
fprintf(fp, "%s", line);
pclose(p);
}
fail:
close(fd);
unlink(path);
}
bool
radv_trap_handler_init(struct radv_device *device)
{
struct radeon_winsys *ws = device->ws;
/* Create the trap handler shader and upload it like other shaders. */
device->trap_handler_shader = radv_create_trap_handler_shader(device);
if (!device->trap_handler_shader) {
fprintf(stderr, "radv: failed to create the trap handler shader.\n");
return false;
}
device->tma_bo = ws->buffer_create(ws, TMA_BO_SIZE, 256,
RADEON_DOMAIN_VRAM,
RADEON_FLAG_CPU_ACCESS |
RADEON_FLAG_NO_INTERPROCESS_SHARING |
RADEON_FLAG_ZERO_VRAM |
RADEON_FLAG_32BIT,
RADV_BO_PRIORITY_SCRATCH);
if (!device->tma_bo)
return false;
device->tma_ptr = ws->buffer_map(device->tma_bo);
if (!device->tma_ptr)
return false;
/* Upload a buffer descriptor to store various info from the trap. */
uint64_t tma_va = radv_buffer_get_va(device->tma_bo) + 16;
uint32_t desc[4];
desc[0] = tma_va;
desc[1] = S_008F04_BASE_ADDRESS_HI(tma_va >> 32);
desc[2] = TMA_BO_SIZE;
desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) |
S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
memcpy(device->tma_ptr, desc, sizeof(desc));
return true;
}
void
radv_trap_handler_finish(struct radv_device *device)
{
struct radeon_winsys *ws = device->ws;
if (unlikely(device->trap_handler_shader))
radv_shader_variant_destroy(device, device->trap_handler_shader);
if (unlikely(device->tma_bo))
ws->buffer_destroy(device->tma_bo);
}
static struct radv_shader_variant *
radv_get_faulty_shader(struct radv_device *device, uint64_t faulty_pc)
{
struct radv_shader_variant *shader = NULL;
mtx_lock(&device->shader_slab_mutex);
list_for_each_entry(struct radv_shader_slab, slab, &device->shader_slabs, slabs) {
list_for_each_entry(struct radv_shader_variant, s, &slab->shaders, slab_list) {
uint64_t offset = align_u64(s->bo_offset + s->code_size, 256);
uint64_t va = radv_buffer_get_va(s->bo);
if (faulty_pc >= va + s->bo_offset && faulty_pc < va + offset) {
mtx_unlock(&device->shader_slab_mutex);
return s;
}
}
}
mtx_unlock(&device->shader_slab_mutex);
return shader;
}
static void
radv_dump_faulty_shader(struct radv_device *device, uint64_t faulty_pc)
{
struct radv_shader_variant *shader;
uint64_t start_addr, end_addr;
uint32_t instr_offset;
shader = radv_get_faulty_shader(device, faulty_pc);
if (!shader)
return;
start_addr = radv_buffer_get_va(shader->bo) + shader->bo_offset;
end_addr = start_addr + shader->code_size;
instr_offset = faulty_pc - start_addr;
fprintf(stderr, "Faulty shader found "
"VA=[0x%"PRIx64"-0x%"PRIx64"], instr_offset=%d\n",
start_addr, end_addr, instr_offset);
/* Get the list of instructions.
* Buffer size / 4 is the upper bound of the instruction count.
*/
unsigned num_inst = 0;
struct radv_shader_inst *instructions =
calloc(shader->code_size / 4, sizeof(struct radv_shader_inst));
/* Split the disassembly string into instructions. */
si_add_split_disasm(shader->disasm_string, start_addr, &num_inst, instructions);
/* Print instructions with annotations. */
for (unsigned i = 0; i < num_inst; i++) {
struct radv_shader_inst *inst = &instructions[i];
if (start_addr + inst->offset == faulty_pc) {
fprintf(stderr, "\n!!! Faulty instruction below !!!\n");
fprintf(stderr, "%s\n", inst->text);
fprintf(stderr, "\n");
} else {
fprintf(stderr, "%s\n", inst->text);
}
}
free(instructions);
}
struct radv_sq_hw_reg {
uint32_t status;
uint32_t trap_sts;
uint32_t hw_id;
uint32_t ib_sts;
};
static void
radv_dump_sq_hw_regs(struct radv_device *device)
{
struct radv_sq_hw_reg *regs = (struct radv_sq_hw_reg *)&device->tma_ptr[6];
fprintf(stderr, "\nHardware registers:\n");
ac_dump_reg(stderr, device->physical_device->rad_info.chip_class,
R_000002_SQ_HW_REG_STATUS, regs->status, ~0);
ac_dump_reg(stderr, device->physical_device->rad_info.chip_class,
R_000003_SQ_HW_REG_TRAP_STS, regs->trap_sts, ~0);
ac_dump_reg(stderr, device->physical_device->rad_info.chip_class,
R_000004_SQ_HW_REG_HW_ID, regs->hw_id, ~0);
ac_dump_reg(stderr, device->physical_device->rad_info.chip_class,
R_000007_SQ_HW_REG_IB_STS, regs->ib_sts, ~0);
fprintf(stderr, "\n\n");
}
void
radv_check_trap_handler(struct radv_queue *queue)
{
enum ring_type ring = radv_queue_family_to_ring(queue->queue_family_index);
struct radv_device *device = queue->device;
struct radeon_winsys *ws = device->ws;
/* Wait for the context to be idle in a finite time. */
ws->ctx_wait_idle(queue->hw_ctx, ring, queue->queue_idx);
/* Try to detect if the trap handler has been reached by the hw by
* looking at ttmp0 which should be non-zero if a shader exception
* happened.
*/
if (!device->tma_ptr[4])
return;
#if 0
fprintf(stderr, "tma_ptr:\n");
for (unsigned i = 0; i < 10; i++)
fprintf(stderr, "tma_ptr[%d]=0x%x\n", i, device->tma_ptr[i]);
#endif
radv_dump_sq_hw_regs(device);
uint32_t ttmp0 = device->tma_ptr[4];
uint32_t ttmp1 = device->tma_ptr[5];
/* According to the ISA docs, 3.10 Trap and Exception Registers:
*
* "{ttmp1, ttmp0} = {3'h0, pc_rewind[3:0], HT[0], trapID[7:0], PC[47:0]}"
*
* "When the trap handler is entered, the PC of the faulting
* instruction is: (PC - PC_rewind * 4)."
* */
uint8_t trap_id = (ttmp1 >> 16) & 0xff;
uint8_t ht = (ttmp1 >> 24) & 0x1;
uint8_t pc_rewind = (ttmp1 >> 25) & 0xf;
uint64_t pc = (ttmp0 | ((ttmp1 & 0x0000ffffull) << 32)) - (pc_rewind * 4);
fprintf(stderr, "PC=0x%"PRIx64", trapID=%d, HT=%d, PC_rewind=%d\n",
pc, trap_id, ht, pc_rewind);
radv_dump_faulty_shader(device, pc);
abort();
}