blob: 1505022f4515d9d6e6a768b54c46de5c335c3077 [file] [log] [blame]
/*
* Copyright (C) 2018-2019 Alyssa Rosenzweig <alyssa@rosenzweig.io>
* Copyright (C) 2019 Collabora, Ltd.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "compiler.h"
#include "midgard_ops.h"
#include "util/register_allocate.h"
#include "util/u_math.h"
/* For work registers, we can subdivide in various ways. So we create
* classes for the various sizes and conflict accordingly, keeping in
* mind that physical registers are divided along 128-bit boundaries.
* The important part is that 128-bit boundaries are not crossed.
*
* For each 128-bit register, we can subdivide to 32-bits 10 ways
*
* vec4: xyzw
* vec3: xyz, yzw
* vec2: xy, yz, zw,
* vec1: x, y, z, w
*
* For each 64-bit register, we can subdivide similarly to 16-bit
* (TODO: half-float RA, not that we support fp16 yet)
*/
#define WORK_STRIDE 10
/* Prepacked masks/swizzles for virtual register types */
static unsigned reg_type_to_mask[WORK_STRIDE] = {
0xF, /* xyzw */
0x7, 0x7 << 1, /* xyz */
0x3, 0x3 << 1, 0x3 << 2, /* xy */
0x1, 0x1 << 1, 0x1 << 2, 0x1 << 3 /* x */
};
static unsigned reg_type_to_swizzle[WORK_STRIDE] = {
SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
SWIZZLE(COMPONENT_Y, COMPONENT_Z, COMPONENT_W, COMPONENT_W),
SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
SWIZZLE(COMPONENT_Y, COMPONENT_Z, COMPONENT_Z, COMPONENT_W),
SWIZZLE(COMPONENT_Z, COMPONENT_W, COMPONENT_Z, COMPONENT_W),
SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
SWIZZLE(COMPONENT_Y, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
SWIZZLE(COMPONENT_Z, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
SWIZZLE(COMPONENT_W, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
};
struct phys_reg {
unsigned reg;
unsigned mask;
unsigned swizzle;
};
/* Given the mask/swizzle of both the register and the original source,
* compose to find the actual mask/swizzle to give the hardware */
static unsigned
compose_writemask(unsigned mask, struct phys_reg reg)
{
/* Note: the reg mask is guaranteed to be contiguous. So we shift
* into the X place, compose via a simple AND, and shift back */
unsigned shift = __builtin_ctz(reg.mask);
return ((reg.mask >> shift) & mask) << shift;
}
static unsigned
compose_swizzle(unsigned swizzle, unsigned mask,
struct phys_reg reg, struct phys_reg dst)
{
unsigned out = pan_compose_swizzle(swizzle, reg.swizzle);
/* Based on the register mask, we need to adjust over. E.g if we're
* writing to yz, a base swizzle of xy__ becomes _xy_. Save the
* original first component (x). But to prevent duplicate shifting
* (only applies to ALU -- mask param is set to xyzw out on L/S to
* prevent changes), we have to account for the shift inherent to the
* original writemask */
unsigned rep = out & 0x3;
unsigned shift = __builtin_ctz(dst.mask) - __builtin_ctz(mask);
unsigned shifted = out << (2*shift);
/* ..but we fill in the gaps so it appears to replicate */
for (unsigned s = 0; s < shift; ++s)
shifted |= rep << (2*s);
return shifted;
}
/* When we're 'squeezing down' the values in the IR, we maintain a hash
* as such */
static unsigned
find_or_allocate_temp(compiler_context *ctx, unsigned hash)
{
if ((hash < 0) || (hash >= SSA_FIXED_MINIMUM))
return hash;
unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(
ctx->hash_to_temp, hash + 1);
if (temp)
return temp - 1;
/* If no temp is find, allocate one */
temp = ctx->temp_count++;
ctx->max_hash = MAX2(ctx->max_hash, hash);
_mesa_hash_table_u64_insert(ctx->hash_to_temp,
hash + 1, (void *) ((uintptr_t) temp + 1));
return temp;
}
/* Helper to return the default phys_reg for a given register */
static struct phys_reg
default_phys_reg(int reg)
{
struct phys_reg r = {
.reg = reg,
.mask = 0xF, /* xyzw */
.swizzle = 0xE4 /* xyzw */
};
return r;
}
/* Determine which physical register, swizzle, and mask a virtual
* register corresponds to */
static struct phys_reg
index_to_reg(compiler_context *ctx, struct ra_graph *g, int reg)
{
/* Check for special cases */
if (reg >= SSA_FIXED_MINIMUM)
return default_phys_reg(SSA_REG_FROM_FIXED(reg));
else if ((reg < 0) || !g)
return default_phys_reg(REGISTER_UNUSED);
/* Special cases aside, we pick the underlying register */
int virt = ra_get_node_reg(g, reg);
/* Divide out the register and classification */
int phys = virt / WORK_STRIDE;
int type = virt % WORK_STRIDE;
struct phys_reg r = {
.reg = phys,
.mask = reg_type_to_mask[type],
.swizzle = reg_type_to_swizzle[type]
};
/* Report that we actually use this register, and return it */
ctx->work_registers = MAX2(ctx->work_registers, phys);
return r;
}
/* This routine performs the actual register allocation. It should be succeeded
* by install_registers */
struct ra_graph *
allocate_registers(compiler_context *ctx, bool *spilled)
{
/* The number of vec4 work registers available depends on when the
* uniforms start, so compute that first */
int work_count = 16 - MAX2((ctx->uniform_cutoff - 8), 0);
int virtual_count = work_count * WORK_STRIDE;
/* First, initialize the RA */
struct ra_regs *regs = ra_alloc_reg_set(NULL, virtual_count, true);
int work_vec4 = ra_alloc_reg_class(regs);
int work_vec3 = ra_alloc_reg_class(regs);
int work_vec2 = ra_alloc_reg_class(regs);
int work_vec1 = ra_alloc_reg_class(regs);
unsigned classes[4] = {
work_vec1,
work_vec2,
work_vec3,
work_vec4
};
/* Add the full set of work registers */
for (unsigned i = 0; i < work_count; ++i) {
int base = WORK_STRIDE * i;
/* Build a full set of subdivisions */
ra_class_add_reg(regs, work_vec4, base);
ra_class_add_reg(regs, work_vec3, base + 1);
ra_class_add_reg(regs, work_vec3, base + 2);
ra_class_add_reg(regs, work_vec2, base + 3);
ra_class_add_reg(regs, work_vec2, base + 4);
ra_class_add_reg(regs, work_vec2, base + 5);
ra_class_add_reg(regs, work_vec1, base + 6);
ra_class_add_reg(regs, work_vec1, base + 7);
ra_class_add_reg(regs, work_vec1, base + 8);
ra_class_add_reg(regs, work_vec1, base + 9);
for (unsigned a = 0; a < 10; ++a) {
unsigned mask1 = reg_type_to_mask[a];
for (unsigned b = 0; b < 10; ++b) {
unsigned mask2 = reg_type_to_mask[b];
if (mask1 & mask2)
ra_add_reg_conflict(regs,
base + a, base + b);
}
}
}
/* We're done setting up */
ra_set_finalize(regs, NULL);
/* Transform the MIR into squeezed index form */
mir_foreach_block(ctx, block) {
mir_foreach_instr_in_block(block, ins) {
if (ins->compact_branch) continue;
ins->ssa_args.dest = find_or_allocate_temp(ctx, ins->ssa_args.dest);
ins->ssa_args.src0 = find_or_allocate_temp(ctx, ins->ssa_args.src0);
if (!ins->ssa_args.inline_constant)
ins->ssa_args.src1 = find_or_allocate_temp(ctx, ins->ssa_args.src1);
}
}
/* No register allocation to do with no SSA */
if (!ctx->temp_count)
return NULL;
/* Let's actually do register allocation */
int nodes = ctx->temp_count;
struct ra_graph *g = ra_alloc_interference_graph(regs, nodes);
/* Determine minimum size needed to hold values, to indirectly
* determine class */
unsigned *found_class = calloc(sizeof(unsigned), ctx->temp_count);
mir_foreach_block(ctx, block) {
mir_foreach_instr_in_block(block, ins) {
if (ins->compact_branch) continue;
if (ins->ssa_args.dest < 0) continue;
if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
int class = util_logbase2(ins->mask) + 1;
/* Use the largest class if there's ambiguity, this
* handles partial writes */
int dest = ins->ssa_args.dest;
found_class[dest] = MAX2(found_class[dest], class);
}
}
for (unsigned i = 0; i < ctx->temp_count; ++i) {
unsigned class = found_class[i];
if (!class) continue;
ra_set_node_class(g, i, classes[class - 1]);
}
/* Determine liveness */
int *live_start = malloc(nodes * sizeof(int));
int *live_end = malloc(nodes * sizeof(int));
/* Initialize as non-existent */
for (int i = 0; i < nodes; ++i) {
live_start[i] = live_end[i] = -1;
}
int d = 0;
mir_foreach_block(ctx, block) {
mir_foreach_instr_in_block(block, ins) {
if (ins->compact_branch) continue;
/* Dest is < 0 for st_vary instructions, which break
* the usual SSA conventions. Liveness analysis doesn't
* make sense on these instructions, so skip them to
* avoid memory corruption */
if (ins->ssa_args.dest < 0) continue;
if (ins->ssa_args.dest < SSA_FIXED_MINIMUM) {
/* If this destination is not yet live, it is
* now since we just wrote it */
int dest = ins->ssa_args.dest;
if (live_start[dest] == -1)
live_start[dest] = d;
}
/* Since we just used a source, the source might be
* dead now. Scan the rest of the block for
* invocations, and if there are none, the source dies
* */
int sources[2] = {
ins->ssa_args.src0, ins->ssa_args.src1
};
for (int src = 0; src < 2; ++src) {
int s = sources[src];
if (s < 0) continue;
if (s >= SSA_FIXED_MINIMUM) continue;
if (!mir_is_live_after(ctx, block, ins, s)) {
live_end[s] = d;
}
}
++d;
}
}
/* If a node still hasn't been killed, kill it now */
for (int i = 0; i < nodes; ++i) {
/* live_start == -1 most likely indicates a pinned output */
if (live_end[i] == -1)
live_end[i] = d;
}
/* Setup interference between nodes that are live at the same time */
for (int i = 0; i < nodes; ++i) {
for (int j = i + 1; j < nodes; ++j) {
bool j_overlaps_i = live_start[j] < live_end[i];
bool i_overlaps_j = live_end[j] < live_start[i];
if (i_overlaps_j || j_overlaps_i)
ra_add_node_interference(g, i, j);
}
}
/* Cleanup */
free(live_start);
free(live_end);
if (!ra_allocate(g)) {
*spilled = true;
return NULL;
}
return g;
}
/* Once registers have been decided via register allocation
* (allocate_registers), we need to rewrite the MIR to use registers instead of
* indices */
static void
install_registers_instr(
compiler_context *ctx,
struct ra_graph *g,
midgard_instruction *ins)
{
ssa_args args = ins->ssa_args;
switch (ins->type) {
case TAG_ALU_4: {
int adjusted_src = args.inline_constant ? -1 : args.src1;
struct phys_reg src1 = index_to_reg(ctx, g, args.src0);
struct phys_reg src2 = index_to_reg(ctx, g, adjusted_src);
struct phys_reg dest = index_to_reg(ctx, g, args.dest);
unsigned uncomposed_mask = ins->mask;
ins->mask = compose_writemask(uncomposed_mask, dest);
/* Adjust the dest mask if necessary. Mostly this is a no-op
* but it matters for dot products */
dest.mask = effective_writemask(&ins->alu, ins->mask);
midgard_vector_alu_src mod1 =
vector_alu_from_unsigned(ins->alu.src1);
mod1.swizzle = compose_swizzle(mod1.swizzle, uncomposed_mask, src1, dest);
ins->alu.src1 = vector_alu_srco_unsigned(mod1);
ins->registers.src1_reg = src1.reg;
ins->registers.src2_imm = args.inline_constant;
if (args.inline_constant) {
/* Encode inline 16-bit constant. See disassembler for
* where the algorithm is from */
ins->registers.src2_reg = ins->inline_constant >> 11;
int lower_11 = ins->inline_constant & ((1 << 12) - 1);
uint16_t imm = ((lower_11 >> 8) & 0x7) |
((lower_11 & 0xFF) << 3);
ins->alu.src2 = imm << 2;
} else {
midgard_vector_alu_src mod2 =
vector_alu_from_unsigned(ins->alu.src2);
mod2.swizzle = compose_swizzle(
mod2.swizzle, uncomposed_mask, src2, dest);
ins->alu.src2 = vector_alu_srco_unsigned(mod2);
ins->registers.src2_reg = src2.reg;
}
ins->registers.out_reg = dest.reg;
break;
}
case TAG_LOAD_STORE_4: {
if (OP_IS_STORE_VARY(ins->load_store.op)) {
/* TODO: use ssa_args for st_vary */
ins->load_store.reg = 0;
} else {
/* Which physical register we read off depends on
* whether we are loading or storing -- think about the
* logical dataflow */
unsigned r = OP_IS_STORE(ins->load_store.op) ?
args.src0 : args.dest;
struct phys_reg src = index_to_reg(ctx, g, r);
ins->load_store.reg = src.reg;
ins->load_store.swizzle = compose_swizzle(
ins->load_store.swizzle, 0xF,
default_phys_reg(0), src);
ins->mask = compose_writemask(
ins->mask, src);
}
break;
}
default:
break;
}
}
void
install_registers(compiler_context *ctx, struct ra_graph *g)
{
mir_foreach_block(ctx, block) {
mir_foreach_instr_in_block(block, ins) {
if (ins->compact_branch) continue;
install_registers_instr(ctx, g, ins);
}
}
}