blob: 8045d51033db21a6e036126adf9d3591795301f4 [file] [log] [blame]
/*
* Copyright © 2014 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
/**
* \file opt_rebalance_tree.cpp
*
* Rebalances a reduction expression tree.
*
* For reduction operations (e.g., x + y + z + w) we generate an expression
* tree like
*
* +
* / \
* + w
* / \
* + z
* / \
* x y
*
* which we can rebalance into
*
* +
* / \
* / \
* + +
* / \ / \
* x y z w
*
* to get a better instruction scheduling.
*
* See "Tree Rebalancing in Optimal Editor Time and Space" by Quentin F. Stout
* and Bette L. Warren.
*
* Also see http://penguin.ewu.edu/~trolfe/DSWpaper/ for a very readable
* explanation of the of the tree_to_vine() (rightward rotation) and
* vine_to_tree() (leftward rotation) algorithms.
*/
#include "ir.h"
#include "ir_visitor.h"
#include "ir_rvalue_visitor.h"
#include "ir_optimization.h"
#include "main/macros.h" /* for MAX2 */
/* The DSW algorithm generates a degenerate tree (really, a linked list) in
* tree_to_vine(). We'd rather not leave a binary expression with only one
* operand, so trivial modifications (the ternary operators below) are needed
* to ensure that we only rotate around the ir_expression nodes of the tree.
*/
static unsigned
tree_to_vine(ir_expression *root)
{
unsigned size = 0;
ir_rvalue *vine_tail = root;
ir_rvalue *remainder = root->operands[1];
while (remainder != NULL) {
ir_expression *remainder_temp = remainder->as_expression();
ir_expression *remainder_left = remainder_temp ?
remainder_temp->operands[0]->as_expression() : NULL;
if (remainder_left == NULL) {
/* move vine_tail down one */
vine_tail = remainder;
remainder = remainder->as_expression() ?
((ir_expression *)remainder)->operands[1] : NULL;
size++;
} else {
/* rotate */
ir_expression *tempptr = remainder_left;
((ir_expression *)remainder)->operands[0] = tempptr->operands[1];
tempptr->operands[1] = remainder;
remainder = tempptr;
((ir_expression *)vine_tail)->operands[1] = tempptr;
}
}
return size;
}
static void
compression(ir_expression *root, unsigned count)
{
ir_expression *scanner = root;
for (unsigned i = 0; i < count; i++) {
ir_expression *child = (ir_expression *)scanner->operands[1];
scanner->operands[1] = child->operands[1];
scanner = (ir_expression *)scanner->operands[1];
child->operands[1] = scanner->operands[0];
scanner->operands[0] = child;
}
}
static void
vine_to_tree(ir_expression *root, unsigned size)
{
int n = size - 1;
for (int m = n / 2; m > 0; m = n / 2) {
compression(root, m);
n -= m + 1;
}
}
namespace {
class ir_rebalance_visitor : public ir_rvalue_enter_visitor {
public:
ir_rebalance_visitor()
{
progress = false;
}
virtual ir_visitor_status visit_enter(ir_assignment *ir);
void handle_rvalue(ir_rvalue **rvalue);
bool progress;
};
struct is_reduction_data {
ir_expression_operation operation;
const glsl_type *type;
unsigned num_expr;
bool is_reduction;
bool contains_constant;
};
} /* anonymous namespace */
ir_visitor_status
ir_rebalance_visitor::visit_enter(ir_assignment *ir)
{
ir_variable *var = ir->lhs->variable_referenced();
if (var->data.invariant || var->data.precise) {
/* If we're assigning to an invariant variable, just bail. Tree
* rebalancing (reassociation) isn't precision-safe.
*/
return visit_continue_with_parent;
} else {
return visit_continue;
}
}
static bool
is_reduction_operation(ir_expression_operation operation)
{
switch (operation) {
case ir_binop_add:
case ir_binop_mul:
case ir_binop_bit_and:
case ir_binop_bit_xor:
case ir_binop_bit_or:
case ir_binop_logic_and:
case ir_binop_logic_xor:
case ir_binop_logic_or:
case ir_binop_min:
case ir_binop_max:
return true;
default:
return false;
}
}
/* Note that this function does not attempt to recognize that reduction trees
* are already balanced.
*
* We return false from this function for a number of reasons other than an
* expression tree not being a mathematical reduction. Namely,
*
* - if the tree contains multiple constants that we may be able to combine.
* - if the tree contains matrices:
* - they might contain vec4's with many constant components that we can
* simplify after splitting.
* - applying the matrix chain ordering optimization is more than just
* balancing an expression tree.
* - if the tree contains operations on multiple types.
* - if the tree contains ir_dereference_{array,record}, since foo[a+b] + c
* would trick the visiting pass.
*/
static void
is_reduction(ir_instruction *ir, void *data)
{
struct is_reduction_data *ird = (struct is_reduction_data *)data;
if (!ird->is_reduction)
return;
/* We don't want to balance a tree that contains multiple constants, since
* we'll be able to constant fold them if they're not in separate subtrees.
*/
if (ir->as_constant()) {
if (ird->contains_constant) {
ird->is_reduction = false;
}
ird->contains_constant = true;
return;
}
/* Array/record dereferences have subtrees that are not part of the expr
* tree we're balancing. Skip trees containing them.
*/
if (ir->ir_type == ir_type_dereference_array ||
ir->ir_type == ir_type_dereference_record) {
ird->is_reduction = false;
return;
}
ir_expression *expr = ir->as_expression();
if (!expr)
return;
/* Non-constant matrices might still contain constant vec4 that we can
* constant fold once split up. Handling matrices will need some more
* work.
*/
if (expr->type->is_matrix() ||
expr->operands[0]->type->is_matrix() ||
(expr->operands[1] && expr->operands[1]->type->is_matrix())) {
ird->is_reduction = false;
return;
}
if (ird->type != NULL && ird->type != expr->type) {
ird->is_reduction = false;
return;
}
ird->type = expr->type;
ird->num_expr++;
if (is_reduction_operation(expr->operation)) {
if (ird->operation != 0 && ird->operation != expr->operation)
ird->is_reduction = false;
ird->operation = expr->operation;
} else {
ird->is_reduction = false;
}
}
static ir_rvalue *
handle_expression(ir_expression *expr)
{
struct is_reduction_data ird;
ird.operation = (ir_expression_operation)0;
ird.type = NULL;
ird.num_expr = 0;
ird.is_reduction = true;
ird.contains_constant = false;
visit_tree(expr, is_reduction, (void *)&ird);
if (ird.is_reduction && ird.num_expr > 2) {
ir_constant z = ir_constant(0.0f);
ir_expression pseudo_root = ir_expression(ir_binop_add, &z, expr);
unsigned size = tree_to_vine(&pseudo_root);
vine_to_tree(&pseudo_root, size);
expr = (ir_expression *)pseudo_root.operands[1];
}
return expr;
}
static void
update_types(ir_instruction *ir, void *)
{
ir_expression *expr = ir->as_expression();
if (!expr)
return;
const glsl_type *const new_type =
glsl_type::get_instance(expr->type->base_type,
MAX2(expr->operands[0]->type->vector_elements,
expr->operands[1]->type->vector_elements),
1);
assert(new_type != glsl_type::error_type);
expr->type = new_type;
}
void
ir_rebalance_visitor::handle_rvalue(ir_rvalue **rvalue)
{
if (!*rvalue)
return;
ir_expression *expr = (*rvalue)->as_expression();
if (!expr || !is_reduction_operation(expr->operation))
return;
ir_rvalue *new_rvalue = handle_expression(expr);
/* If we failed to rebalance the tree (e.g., because it wasn't a reduction,
* or some other set of cases) new_rvalue will point to the same root as
* before.
*
* Similarly, if the tree rooted at *rvalue was a reduction and was already
* balanced, the algorithm will rearrange the tree but will ultimately
* return an identical tree, so this check will handle that as well and
* will not set progress = true.
*/
if (new_rvalue == *rvalue)
return;
visit_tree(new_rvalue, NULL, NULL, update_types);
*rvalue = new_rvalue;
this->progress = true;
}
bool
do_rebalance_tree(exec_list *instructions)
{
ir_rebalance_visitor v;
v.run(instructions);
return v.progress;
}