blob: a790de3ca397118b28569d070fd4642ead1f46bd [file] [log] [blame]
/*
* Copyright © 2018 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
*/
#include "main/mtypes.h"
#include "glsl_types.h"
#include "linker_util.h"
#include "util/bitscan.h"
#include "util/set.h"
#include "ir_uniform.h" /* for gl_uniform_storage */
/* Utility methods shared between the GLSL IR and the NIR */
/* From the OpenGL 4.6 specification, 7.3.1.1 Naming Active Resources:
*
* "For an active shader storage block member declared as an array of an
* aggregate type, an entry will be generated only for the first array
* element, regardless of its type. Such block members are referred to as
* top-level arrays. If the block member is an aggregate type, the
* enumeration rules are then applied recursively."
*/
bool
link_util_should_add_buffer_variable(struct gl_shader_program *prog,
struct gl_uniform_storage *uniform,
int top_level_array_base_offset,
int top_level_array_size_in_bytes,
int second_element_offset,
int block_index)
{
/* If the uniform is not a shader storage buffer or is not an array return
* true.
*/
if (!uniform->is_shader_storage || top_level_array_size_in_bytes == 0)
return true;
int after_top_level_array = top_level_array_base_offset +
top_level_array_size_in_bytes;
/* Check for a new block, or that we are not dealing with array elements of
* a top member array other than the first element.
*/
if (block_index != uniform->block_index ||
uniform->offset >= after_top_level_array ||
uniform->offset < second_element_offset) {
return true;
}
return false;
}
bool
link_util_add_program_resource(struct gl_shader_program *prog,
struct set *resource_set,
GLenum type, const void *data, uint8_t stages)
{
assert(data);
/* If resource already exists, do not add it again. */
if (_mesa_set_search(resource_set, data))
return true;
prog->data->ProgramResourceList =
reralloc(prog->data,
prog->data->ProgramResourceList,
gl_program_resource,
prog->data->NumProgramResourceList + 1);
if (!prog->data->ProgramResourceList) {
linker_error(prog, "Out of memory during linking.\n");
return false;
}
struct gl_program_resource *res =
&prog->data->ProgramResourceList[prog->data->NumProgramResourceList];
res->Type = type;
res->Data = data;
res->StageReferences = stages;
prog->data->NumProgramResourceList++;
_mesa_set_add(resource_set, data);
return true;
}
/**
* Search through the list of empty blocks to find one that fits the current
* uniform.
*/
int
link_util_find_empty_block(struct gl_shader_program *prog,
struct gl_uniform_storage *uniform)
{
const unsigned entries = MAX2(1, uniform->array_elements);
foreach_list_typed(struct empty_uniform_block, block, link,
&prog->EmptyUniformLocations) {
/* Found a block with enough slots to fit the uniform */
if (block->slots == entries) {
unsigned start = block->start;
exec_node_remove(&block->link);
ralloc_free(block);
return start;
/* Found a block with more slots than needed. It can still be used. */
} else if (block->slots > entries) {
unsigned start = block->start;
block->start += entries;
block->slots -= entries;
return start;
}
}
return -1;
}
void
link_util_update_empty_uniform_locations(struct gl_shader_program *prog)
{
struct empty_uniform_block *current_block = NULL;
for (unsigned i = 0; i < prog->NumUniformRemapTable; i++) {
/* We found empty space in UniformRemapTable. */
if (prog->UniformRemapTable[i] == NULL) {
/* We've found the beginning of a new continous block of empty slots */
if (!current_block || current_block->start + current_block->slots != i) {
current_block = rzalloc(prog, struct empty_uniform_block);
current_block->start = i;
exec_list_push_tail(&prog->EmptyUniformLocations,
&current_block->link);
}
/* The current block continues, so we simply increment its slots */
current_block->slots++;
}
}
}
void
link_util_check_subroutine_resources(struct gl_shader_program *prog)
{
unsigned mask = prog->data->linked_stages;
while (mask) {
const int i = u_bit_scan(&mask);
struct gl_program *p = prog->_LinkedShaders[i]->Program;
if (p->sh.NumSubroutineUniformRemapTable > MAX_SUBROUTINE_UNIFORM_LOCATIONS) {
linker_error(prog, "Too many %s shader subroutine uniforms\n",
_mesa_shader_stage_to_string(i));
}
}
}
/**
* Validate uniform resources used by a program versus the implementation limits
*/
void
link_util_check_uniform_resources(struct gl_context *ctx,
struct gl_shader_program *prog)
{
unsigned total_uniform_blocks = 0;
unsigned total_shader_storage_blocks = 0;
for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
struct gl_linked_shader *sh = prog->_LinkedShaders[i];
if (sh == NULL)
continue;
if (sh->num_uniform_components >
ctx->Const.Program[i].MaxUniformComponents) {
if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
linker_warning(prog, "Too many %s shader default uniform block "
"components, but the driver will try to optimize "
"them out; this is non-portable out-of-spec "
"behavior\n",
_mesa_shader_stage_to_string(i));
} else {
linker_error(prog, "Too many %s shader default uniform block "
"components\n",
_mesa_shader_stage_to_string(i));
}
}
if (sh->num_combined_uniform_components >
ctx->Const.Program[i].MaxCombinedUniformComponents) {
if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
linker_warning(prog, "Too many %s shader uniform components, "
"but the driver will try to optimize them out; "
"this is non-portable out-of-spec behavior\n",
_mesa_shader_stage_to_string(i));
} else {
linker_error(prog, "Too many %s shader uniform components\n",
_mesa_shader_stage_to_string(i));
}
}
total_shader_storage_blocks += sh->Program->info.num_ssbos;
total_uniform_blocks += sh->Program->info.num_ubos;
}
if (total_uniform_blocks > ctx->Const.MaxCombinedUniformBlocks) {
linker_error(prog, "Too many combined uniform blocks (%d/%d)\n",
total_uniform_blocks, ctx->Const.MaxCombinedUniformBlocks);
}
if (total_shader_storage_blocks > ctx->Const.MaxCombinedShaderStorageBlocks) {
linker_error(prog, "Too many combined shader storage blocks (%d/%d)\n",
total_shader_storage_blocks,
ctx->Const.MaxCombinedShaderStorageBlocks);
}
for (unsigned i = 0; i < prog->data->NumUniformBlocks; i++) {
if (prog->data->UniformBlocks[i].UniformBufferSize >
ctx->Const.MaxUniformBlockSize) {
linker_error(prog, "Uniform block %s too big (%d/%d)\n",
prog->data->UniformBlocks[i].Name,
prog->data->UniformBlocks[i].UniformBufferSize,
ctx->Const.MaxUniformBlockSize);
}
}
for (unsigned i = 0; i < prog->data->NumShaderStorageBlocks; i++) {
if (prog->data->ShaderStorageBlocks[i].UniformBufferSize >
ctx->Const.MaxShaderStorageBlockSize) {
linker_error(prog, "Shader storage block %s too big (%d/%d)\n",
prog->data->ShaderStorageBlocks[i].Name,
prog->data->ShaderStorageBlocks[i].UniformBufferSize,
ctx->Const.MaxShaderStorageBlockSize);
}
}
}
void
link_util_calculate_subroutine_compat(struct gl_shader_program *prog)
{
unsigned mask = prog->data->linked_stages;
while (mask) {
const int i = u_bit_scan(&mask);
struct gl_program *p = prog->_LinkedShaders[i]->Program;
for (unsigned j = 0; j < p->sh.NumSubroutineUniformRemapTable; j++) {
if (p->sh.SubroutineUniformRemapTable[j] == INACTIVE_UNIFORM_EXPLICIT_LOCATION)
continue;
struct gl_uniform_storage *uni = p->sh.SubroutineUniformRemapTable[j];
if (!uni)
continue;
int count = 0;
if (p->sh.NumSubroutineFunctions == 0) {
linker_error(prog, "subroutine uniform %s defined but no valid functions found\n", uni->type->name);
continue;
}
for (unsigned f = 0; f < p->sh.NumSubroutineFunctions; f++) {
struct gl_subroutine_function *fn = &p->sh.SubroutineFunctions[f];
for (int k = 0; k < fn->num_compat_types; k++) {
if (fn->types[k] == uni->type) {
count++;
break;
}
}
}
uni->num_compatible_subroutines = count;
}
}
}
/**
* Recursive part of the public mark_array_elements_referenced function.
*
* The recursion occurs when an entire array-of- is accessed. See the
* implementation for more details.
*
* \param dr List of array_deref_range elements to be
* processed.
* \param count Number of array_deref_range elements to be
* processed.
* \param scale Current offset scale.
* \param linearized_index Current accumulated linearized array index.
*/
void
_mark_array_elements_referenced(const struct array_deref_range *dr,
unsigned count, unsigned scale,
unsigned linearized_index,
BITSET_WORD *bits)
{
/* Walk through the list of array dereferences in least- to
* most-significant order. Along the way, accumulate the current
* linearized offset and the scale factor for each array-of-.
*/
for (unsigned i = 0; i < count; i++) {
if (dr[i].index < dr[i].size) {
linearized_index += dr[i].index * scale;
scale *= dr[i].size;
} else {
/* For each element in the current array, update the count and
* offset, then recurse to process the remaining arrays.
*
* There is some inefficency here if the last eBITSET_WORD *bitslement in the
* array_deref_range list specifies the entire array. In that case,
* the loop will make recursive calls with count == 0. In the call,
* all that will happen is the bit will be set.
*/
for (unsigned j = 0; j < dr[i].size; j++) {
_mark_array_elements_referenced(&dr[i + 1],
count - (i + 1),
scale * dr[i].size,
linearized_index + (j * scale),
bits);
}
return;
}
}
BITSET_SET(bits, linearized_index);
}
/**
* Mark a set of array elements as accessed.
*
* If every \c array_deref_range is for a single index, only a single
* element will be marked. If any \c array_deref_range is for an entire
* array-of-, then multiple elements will be marked.
*
* Items in the \c array_deref_range list appear in least- to
* most-significant order. This is the \b opposite order the indices
* appear in the GLSL shader text. An array access like
*
* x = y[1][i][3];
*
* would appear as
*
* { { 3, n }, { m, m }, { 1, p } }
*
* where n, m, and p are the sizes of the arrays-of-arrays.
*
* The set of marked array elements can later be queried by
* \c ::is_linearized_index_referenced.
*
* \param dr List of array_deref_range elements to be processed.
* \param count Number of array_deref_range elements to be processed.
*/
void
link_util_mark_array_elements_referenced(const struct array_deref_range *dr,
unsigned count, unsigned array_depth,
BITSET_WORD *bits)
{
if (count != array_depth)
return;
_mark_array_elements_referenced(dr, count, 1, 0, bits);
}