blob: c9c6db1c73aca01268c5c2b25371b437852e524c [file] [log] [blame]
/*
* Copyright (C) 2005-2007 Brian Paul All Rights Reserved.
* Copyright (C) 2008 VMware, Inc. All Rights Reserved.
* Copyright © 2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
/**
* \file ir_to_mesa.cpp
*
* Translate GLSL IR to Mesa's gl_program representation.
*/
#include <stdio.h>
#include "main/compiler.h"
#include "ir.h"
#include "ir_visitor.h"
#include "ir_print_visitor.h"
#include "ir_expression_flattening.h"
#include "ir_uniform.h"
#include "glsl_types.h"
#include "glsl_parser_extras.h"
#include "../glsl/program.h"
#include "ir_optimization.h"
#include "ast.h"
#include "linker.h"
#include "main/mtypes.h"
#include "main/shaderobj.h"
#include "program/hash_table.h"
extern "C" {
#include "main/shaderapi.h"
#include "main/uniforms.h"
#include "program/prog_instruction.h"
#include "program/prog_optimize.h"
#include "program/prog_print.h"
#include "program/program.h"
#include "program/prog_parameter.h"
#include "program/sampler.h"
}
class src_reg;
class dst_reg;
static int swizzle_for_size(int size);
/**
* This struct is a corresponding struct to Mesa prog_src_register, with
* wider fields.
*/
class src_reg {
public:
src_reg(gl_register_file file, int index, const glsl_type *type)
{
this->file = file;
this->index = index;
if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
this->swizzle = swizzle_for_size(type->vector_elements);
else
this->swizzle = SWIZZLE_XYZW;
this->negate = 0;
this->reladdr = NULL;
}
src_reg()
{
this->file = PROGRAM_UNDEFINED;
this->index = 0;
this->swizzle = 0;
this->negate = 0;
this->reladdr = NULL;
}
explicit src_reg(dst_reg reg);
gl_register_file file; /**< PROGRAM_* from Mesa */
int index; /**< temporary index, VERT_ATTRIB_*, FRAG_ATTRIB_*, etc. */
GLuint swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
int negate; /**< NEGATE_XYZW mask from mesa */
/** Register index should be offset by the integer in this reg. */
src_reg *reladdr;
};
class dst_reg {
public:
dst_reg(gl_register_file file, int writemask)
{
this->file = file;
this->index = 0;
this->writemask = writemask;
this->cond_mask = COND_TR;
this->reladdr = NULL;
}
dst_reg()
{
this->file = PROGRAM_UNDEFINED;
this->index = 0;
this->writemask = 0;
this->cond_mask = COND_TR;
this->reladdr = NULL;
}
explicit dst_reg(src_reg reg);
gl_register_file file; /**< PROGRAM_* from Mesa */
int index; /**< temporary index, VERT_ATTRIB_*, FRAG_ATTRIB_*, etc. */
int writemask; /**< Bitfield of WRITEMASK_[XYZW] */
GLuint cond_mask:4;
/** Register index should be offset by the integer in this reg. */
src_reg *reladdr;
};
src_reg::src_reg(dst_reg reg)
{
this->file = reg.file;
this->index = reg.index;
this->swizzle = SWIZZLE_XYZW;
this->negate = 0;
this->reladdr = reg.reladdr;
}
dst_reg::dst_reg(src_reg reg)
{
this->file = reg.file;
this->index = reg.index;
this->writemask = WRITEMASK_XYZW;
this->cond_mask = COND_TR;
this->reladdr = reg.reladdr;
}
class ir_to_mesa_instruction : public exec_node {
public:
/* Callers of this ralloc-based new need not call delete. It's
* easier to just ralloc_free 'ctx' (or any of its ancestors). */
static void* operator new(size_t size, void *ctx)
{
void *node;
node = rzalloc_size(ctx, size);
assert(node != NULL);
return node;
}
enum prog_opcode op;
dst_reg dst;
src_reg src[3];
/** Pointer to the ir source this tree came from for debugging */
ir_instruction *ir;
GLboolean cond_update;
bool saturate;
int sampler; /**< sampler index */
int tex_target; /**< One of TEXTURE_*_INDEX */
GLboolean tex_shadow;
};
class variable_storage : public exec_node {
public:
variable_storage(ir_variable *var, gl_register_file file, int index)
: file(file), index(index), var(var)
{
/* empty */
}
gl_register_file file;
int index;
ir_variable *var; /* variable that maps to this, if any */
};
class function_entry : public exec_node {
public:
ir_function_signature *sig;
/**
* identifier of this function signature used by the program.
*
* At the point that Mesa instructions for function calls are
* generated, we don't know the address of the first instruction of
* the function body. So we make the BranchTarget that is called a
* small integer and rewrite them during set_branchtargets().
*/
int sig_id;
/**
* Pointer to first instruction of the function body.
*
* Set during function body emits after main() is processed.
*/
ir_to_mesa_instruction *bgn_inst;
/**
* Index of the first instruction of the function body in actual
* Mesa IR.
*
* Set after convertion from ir_to_mesa_instruction to prog_instruction.
*/
int inst;
/** Storage for the return value. */
src_reg return_reg;
};
class ir_to_mesa_visitor : public ir_visitor {
public:
ir_to_mesa_visitor();
~ir_to_mesa_visitor();
function_entry *current_function;
struct gl_context *ctx;
struct gl_program *prog;
struct gl_shader_program *shader_program;
struct gl_shader_compiler_options *options;
int next_temp;
variable_storage *find_variable_storage(ir_variable *var);
src_reg get_temp(const glsl_type *type);
void reladdr_to_temp(ir_instruction *ir, src_reg *reg, int *num_reladdr);
src_reg src_reg_for_float(float val);
/**
* \name Visit methods
*
* As typical for the visitor pattern, there must be one \c visit method for
* each concrete subclass of \c ir_instruction. Virtual base classes within
* the hierarchy should not have \c visit methods.
*/
/*@{*/
virtual void visit(ir_variable *);
virtual void visit(ir_loop *);
virtual void visit(ir_loop_jump *);
virtual void visit(ir_function_signature *);
virtual void visit(ir_function *);
virtual void visit(ir_expression *);
virtual void visit(ir_swizzle *);
virtual void visit(ir_dereference_variable *);
virtual void visit(ir_dereference_array *);
virtual void visit(ir_dereference_record *);
virtual void visit(ir_assignment *);
virtual void visit(ir_constant *);
virtual void visit(ir_call *);
virtual void visit(ir_return *);
virtual void visit(ir_discard *);
virtual void visit(ir_texture *);
virtual void visit(ir_if *);
/*@}*/
src_reg result;
/** List of variable_storage */
exec_list variables;
/** List of function_entry */
exec_list function_signatures;
int next_signature_id;
/** List of ir_to_mesa_instruction */
exec_list instructions;
ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op);
ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
dst_reg dst, src_reg src0);
ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
dst_reg dst, src_reg src0, src_reg src1);
ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
dst_reg dst,
src_reg src0, src_reg src1, src_reg src2);
/**
* Emit the correct dot-product instruction for the type of arguments
*/
ir_to_mesa_instruction * emit_dp(ir_instruction *ir,
dst_reg dst,
src_reg src0,
src_reg src1,
unsigned elements);
void emit_scalar(ir_instruction *ir, enum prog_opcode op,
dst_reg dst, src_reg src0);
void emit_scalar(ir_instruction *ir, enum prog_opcode op,
dst_reg dst, src_reg src0, src_reg src1);
void emit_scs(ir_instruction *ir, enum prog_opcode op,
dst_reg dst, const src_reg &src);
bool try_emit_mad(ir_expression *ir,
int mul_operand);
bool try_emit_mad_for_and_not(ir_expression *ir,
int mul_operand);
bool try_emit_sat(ir_expression *ir);
void emit_swz(ir_expression *ir);
bool process_move_condition(ir_rvalue *ir);
void copy_propagate(void);
void *mem_ctx;
};
src_reg undef_src = src_reg(PROGRAM_UNDEFINED, 0, NULL);
dst_reg undef_dst = dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP);
dst_reg address_reg = dst_reg(PROGRAM_ADDRESS, WRITEMASK_X);
static int
swizzle_for_size(int size)
{
static const int size_swizzles[4] = {
MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
};
assert((size >= 1) && (size <= 4));
return size_swizzles[size - 1];
}
ir_to_mesa_instruction *
ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
dst_reg dst,
src_reg src0, src_reg src1, src_reg src2)
{
ir_to_mesa_instruction *inst = new(mem_ctx) ir_to_mesa_instruction();
int num_reladdr = 0;
/* If we have to do relative addressing, we want to load the ARL
* reg directly for one of the regs, and preload the other reladdr
* sources into temps.
*/
num_reladdr += dst.reladdr != NULL;
num_reladdr += src0.reladdr != NULL;
num_reladdr += src1.reladdr != NULL;
num_reladdr += src2.reladdr != NULL;
reladdr_to_temp(ir, &src2, &num_reladdr);
reladdr_to_temp(ir, &src1, &num_reladdr);
reladdr_to_temp(ir, &src0, &num_reladdr);
if (dst.reladdr) {
emit(ir, OPCODE_ARL, address_reg, *dst.reladdr);
num_reladdr--;
}
assert(num_reladdr == 0);
inst->op = op;
inst->dst = dst;
inst->src[0] = src0;
inst->src[1] = src1;
inst->src[2] = src2;
inst->ir = ir;
this->instructions.push_tail(inst);
return inst;
}
ir_to_mesa_instruction *
ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
dst_reg dst, src_reg src0, src_reg src1)
{
return emit(ir, op, dst, src0, src1, undef_src);
}
ir_to_mesa_instruction *
ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
dst_reg dst, src_reg src0)
{
assert(dst.writemask != 0);
return emit(ir, op, dst, src0, undef_src, undef_src);
}
ir_to_mesa_instruction *
ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op)
{
return emit(ir, op, undef_dst, undef_src, undef_src, undef_src);
}
ir_to_mesa_instruction *
ir_to_mesa_visitor::emit_dp(ir_instruction *ir,
dst_reg dst, src_reg src0, src_reg src1,
unsigned elements)
{
static const gl_inst_opcode dot_opcodes[] = {
OPCODE_DP2, OPCODE_DP3, OPCODE_DP4
};
return emit(ir, dot_opcodes[elements - 2], dst, src0, src1);
}
/**
* Emits Mesa scalar opcodes to produce unique answers across channels.
*
* Some Mesa opcodes are scalar-only, like ARB_fp/vp. The src X
* channel determines the result across all channels. So to do a vec4
* of this operation, we want to emit a scalar per source channel used
* to produce dest channels.
*/
void
ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
dst_reg dst,
src_reg orig_src0, src_reg orig_src1)
{
int i, j;
int done_mask = ~dst.writemask;
/* Mesa RCP is a scalar operation splatting results to all channels,
* like ARB_fp/vp. So emit as many RCPs as necessary to cover our
* dst channels.
*/
for (i = 0; i < 4; i++) {
GLuint this_mask = (1 << i);
ir_to_mesa_instruction *inst;
src_reg src0 = orig_src0;
src_reg src1 = orig_src1;
if (done_mask & this_mask)
continue;
GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
for (j = i + 1; j < 4; j++) {
/* If there is another enabled component in the destination that is
* derived from the same inputs, generate its value on this pass as
* well.
*/
if (!(done_mask & (1 << j)) &&
GET_SWZ(src0.swizzle, j) == src0_swiz &&
GET_SWZ(src1.swizzle, j) == src1_swiz) {
this_mask |= (1 << j);
}
}
src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
src0_swiz, src0_swiz);
src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
src1_swiz, src1_swiz);
inst = emit(ir, op, dst, src0, src1);
inst->dst.writemask = this_mask;
done_mask |= this_mask;
}
}
void
ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
dst_reg dst, src_reg src0)
{
src_reg undef = undef_src;
undef.swizzle = SWIZZLE_XXXX;
emit_scalar(ir, op, dst, src0, undef);
}
/**
* Emit an OPCODE_SCS instruction
*
* The \c SCS opcode functions a bit differently than the other Mesa (or
* ARB_fragment_program) opcodes. Instead of splatting its result across all
* four components of the destination, it writes one value to the \c x
* component and another value to the \c y component.
*
* \param ir IR instruction being processed
* \param op Either \c OPCODE_SIN or \c OPCODE_COS depending on which
* value is desired.
* \param dst Destination register
* \param src Source register
*/
void
ir_to_mesa_visitor::emit_scs(ir_instruction *ir, enum prog_opcode op,
dst_reg dst,
const src_reg &src)
{
/* Vertex programs cannot use the SCS opcode.
*/
if (this->prog->Target == GL_VERTEX_PROGRAM_ARB) {
emit_scalar(ir, op, dst, src);
return;
}
const unsigned component = (op == OPCODE_SIN) ? 0 : 1;
const unsigned scs_mask = (1U << component);
int done_mask = ~dst.writemask;
src_reg tmp;
assert(op == OPCODE_SIN || op == OPCODE_COS);
/* If there are compnents in the destination that differ from the component
* that will be written by the SCS instrution, we'll need a temporary.
*/
if (scs_mask != unsigned(dst.writemask)) {
tmp = get_temp(glsl_type::vec4_type);
}
for (unsigned i = 0; i < 4; i++) {
unsigned this_mask = (1U << i);
src_reg src0 = src;
if ((done_mask & this_mask) != 0)
continue;
/* The source swizzle specified which component of the source generates
* sine / cosine for the current component in the destination. The SCS
* instruction requires that this value be swizzle to the X component.
* Replace the current swizzle with a swizzle that puts the source in
* the X component.
*/
unsigned src0_swiz = GET_SWZ(src.swizzle, i);
src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
src0_swiz, src0_swiz);
for (unsigned j = i + 1; j < 4; j++) {
/* If there is another enabled component in the destination that is
* derived from the same inputs, generate its value on this pass as
* well.
*/
if (!(done_mask & (1 << j)) &&
GET_SWZ(src0.swizzle, j) == src0_swiz) {
this_mask |= (1 << j);
}
}
if (this_mask != scs_mask) {
ir_to_mesa_instruction *inst;
dst_reg tmp_dst = dst_reg(tmp);
/* Emit the SCS instruction.
*/
inst = emit(ir, OPCODE_SCS, tmp_dst, src0);
inst->dst.writemask = scs_mask;
/* Move the result of the SCS instruction to the desired location in
* the destination.
*/
tmp.swizzle = MAKE_SWIZZLE4(component, component,
component, component);
inst = emit(ir, OPCODE_SCS, dst, tmp);
inst->dst.writemask = this_mask;
} else {
/* Emit the SCS instruction to write directly to the destination.
*/
ir_to_mesa_instruction *inst = emit(ir, OPCODE_SCS, dst, src0);
inst->dst.writemask = scs_mask;
}
done_mask |= this_mask;
}
}
src_reg
ir_to_mesa_visitor::src_reg_for_float(float val)
{
src_reg src(PROGRAM_CONSTANT, -1, NULL);
src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
(const gl_constant_value *)&val, 1, &src.swizzle);
return src;
}
static int
type_size(const struct glsl_type *type)
{
unsigned int i;
int size;
switch (type->base_type) {
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT:
case GLSL_TYPE_FLOAT:
case GLSL_TYPE_BOOL:
if (type->is_matrix()) {
return type->matrix_columns;
} else {
/* Regardless of size of vector, it gets a vec4. This is bad
* packing for things like floats, but otherwise arrays become a
* mess. Hopefully a later pass over the code can pack scalars
* down if appropriate.
*/
return 1;
}
case GLSL_TYPE_ARRAY:
assert(type->length > 0);
return type_size(type->fields.array) * type->length;
case GLSL_TYPE_STRUCT:
size = 0;
for (i = 0; i < type->length; i++) {
size += type_size(type->fields.structure[i].type);
}
return size;
case GLSL_TYPE_SAMPLER:
/* Samplers take up one slot in UNIFORMS[], but they're baked in
* at link time.
*/
return 1;
default:
assert(0);
return 0;
}
}
/**
* In the initial pass of codegen, we assign temporary numbers to
* intermediate results. (not SSA -- variable assignments will reuse
* storage). Actual register allocation for the Mesa VM occurs in a
* pass over the Mesa IR later.
*/
src_reg
ir_to_mesa_visitor::get_temp(const glsl_type *type)
{
src_reg src;
src.file = PROGRAM_TEMPORARY;
src.index = next_temp;
src.reladdr = NULL;
next_temp += type_size(type);
if (type->is_array() || type->is_record()) {
src.swizzle = SWIZZLE_NOOP;
} else {
src.swizzle = swizzle_for_size(type->vector_elements);
}
src.negate = 0;
return src;
}
variable_storage *
ir_to_mesa_visitor::find_variable_storage(ir_variable *var)
{
variable_storage *entry;
foreach_iter(exec_list_iterator, iter, this->variables) {
entry = (variable_storage *)iter.get();
if (entry->var == var)
return entry;
}
return NULL;
}
void
ir_to_mesa_visitor::visit(ir_variable *ir)
{
if (strcmp(ir->name, "gl_FragCoord") == 0) {
struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
fp->OriginUpperLeft = ir->origin_upper_left;
fp->PixelCenterInteger = ir->pixel_center_integer;
}
if (ir->mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
unsigned int i;
const ir_state_slot *const slots = ir->state_slots;
assert(ir->state_slots != NULL);
/* Check if this statevar's setup in the STATE file exactly
* matches how we'll want to reference it as a
* struct/array/whatever. If not, then we need to move it into
* temporary storage and hope that it'll get copy-propagated
* out.
*/
for (i = 0; i < ir->num_state_slots; i++) {
if (slots[i].swizzle != SWIZZLE_XYZW) {
break;
}
}
variable_storage *storage;
dst_reg dst;
if (i == ir->num_state_slots) {
/* We'll set the index later. */
storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
this->variables.push_tail(storage);
dst = undef_dst;
} else {
/* The variable_storage constructor allocates slots based on the size
* of the type. However, this had better match the number of state
* elements that we're going to copy into the new temporary.
*/
assert((int) ir->num_state_slots == type_size(ir->type));
storage = new(mem_ctx) variable_storage(ir, PROGRAM_TEMPORARY,
this->next_temp);
this->variables.push_tail(storage);
this->next_temp += type_size(ir->type);
dst = dst_reg(src_reg(PROGRAM_TEMPORARY, storage->index, NULL));
}
for (unsigned int i = 0; i < ir->num_state_slots; i++) {
int index = _mesa_add_state_reference(this->prog->Parameters,
(gl_state_index *)slots[i].tokens);
if (storage->file == PROGRAM_STATE_VAR) {
if (storage->index == -1) {
storage->index = index;
} else {
assert(index == storage->index + (int)i);
}
} else {
src_reg src(PROGRAM_STATE_VAR, index, NULL);
src.swizzle = slots[i].swizzle;
emit(ir, OPCODE_MOV, dst, src);
/* even a float takes up a whole vec4 reg in a struct/array. */
dst.index++;
}
}
if (storage->file == PROGRAM_TEMPORARY &&
dst.index != storage->index + (int) ir->num_state_slots) {
linker_error(this->shader_program,
"failed to load builtin uniform `%s' "
"(%d/%d regs loaded)\n",
ir->name, dst.index - storage->index,
type_size(ir->type));
}
}
}
void
ir_to_mesa_visitor::visit(ir_loop *ir)
{
ir_dereference_variable *counter = NULL;
if (ir->counter != NULL)
counter = new(mem_ctx) ir_dereference_variable(ir->counter);
if (ir->from != NULL) {
assert(ir->counter != NULL);
ir_assignment *a =
new(mem_ctx) ir_assignment(counter, ir->from, NULL);
a->accept(this);
}
emit(NULL, OPCODE_BGNLOOP);
if (ir->to) {
ir_expression *e =
new(mem_ctx) ir_expression(ir->cmp, glsl_type::bool_type,
counter, ir->to);
ir_if *if_stmt = new(mem_ctx) ir_if(e);
ir_loop_jump *brk =
new(mem_ctx) ir_loop_jump(ir_loop_jump::jump_break);
if_stmt->then_instructions.push_tail(brk);
if_stmt->accept(this);
}
visit_exec_list(&ir->body_instructions, this);
if (ir->increment) {
ir_expression *e =
new(mem_ctx) ir_expression(ir_binop_add, counter->type,
counter, ir->increment);
ir_assignment *a =
new(mem_ctx) ir_assignment(counter, e, NULL);
a->accept(this);
}
emit(NULL, OPCODE_ENDLOOP);
}
void
ir_to_mesa_visitor::visit(ir_loop_jump *ir)
{
switch (ir->mode) {
case ir_loop_jump::jump_break:
emit(NULL, OPCODE_BRK);
break;
case ir_loop_jump::jump_continue:
emit(NULL, OPCODE_CONT);
break;
}
}
void
ir_to_mesa_visitor::visit(ir_function_signature *ir)
{
assert(0);
(void)ir;
}
void
ir_to_mesa_visitor::visit(ir_function *ir)
{
/* Ignore function bodies other than main() -- we shouldn't see calls to
* them since they should all be inlined before we get to ir_to_mesa.
*/
if (strcmp(ir->name, "main") == 0) {
const ir_function_signature *sig;
exec_list empty;
sig = ir->matching_signature(&empty);
assert(sig);
foreach_iter(exec_list_iterator, iter, sig->body) {
ir_instruction *ir = (ir_instruction *)iter.get();
ir->accept(this);
}
}
}
bool
ir_to_mesa_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
{
int nonmul_operand = 1 - mul_operand;
src_reg a, b, c;
ir_expression *expr = ir->operands[mul_operand]->as_expression();
if (!expr || expr->operation != ir_binop_mul)
return false;
expr->operands[0]->accept(this);
a = this->result;
expr->operands[1]->accept(this);
b = this->result;
ir->operands[nonmul_operand]->accept(this);
c = this->result;
this->result = get_temp(ir->type);
emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, c);
return true;
}
/**
* Emit OPCODE_MAD(a, -b, a) instead of AND(a, NOT(b))
*
* The logic values are 1.0 for true and 0.0 for false. Logical-and is
* implemented using multiplication, and logical-or is implemented using
* addition. Logical-not can be implemented as (true - x), or (1.0 - x).
* As result, the logical expression (a & !b) can be rewritten as:
*
* - a * !b
* - a * (1 - b)
* - (a * 1) - (a * b)
* - a + -(a * b)
* - a + (a * -b)
*
* This final expression can be implemented as a single MAD(a, -b, a)
* instruction.
*/
bool
ir_to_mesa_visitor::try_emit_mad_for_and_not(ir_expression *ir, int try_operand)
{
const int other_operand = 1 - try_operand;
src_reg a, b;
ir_expression *expr = ir->operands[try_operand]->as_expression();
if (!expr || expr->operation != ir_unop_logic_not)
return false;
ir->operands[other_operand]->accept(this);
a = this->result;
expr->operands[0]->accept(this);
b = this->result;
b.negate = ~b.negate;
this->result = get_temp(ir->type);
emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, a);
return true;
}
bool
ir_to_mesa_visitor::try_emit_sat(ir_expression *ir)
{
/* Saturates were only introduced to vertex programs in
* NV_vertex_program3, so don't give them to drivers in the VP.
*/
if (this->prog->Target == GL_VERTEX_PROGRAM_ARB)
return false;
ir_rvalue *sat_src = ir->as_rvalue_to_saturate();
if (!sat_src)
return false;
sat_src->accept(this);
src_reg src = this->result;
/* If we generated an expression instruction into a temporary in
* processing the saturate's operand, apply the saturate to that
* instruction. Otherwise, generate a MOV to do the saturate.
*
* Note that we have to be careful to only do this optimization if
* the instruction in question was what generated src->result. For
* example, ir_dereference_array might generate a MUL instruction
* to create the reladdr, and return us a src reg using that
* reladdr. That MUL result is not the value we're trying to
* saturate.
*/
ir_expression *sat_src_expr = sat_src->as_expression();
ir_to_mesa_instruction *new_inst;
new_inst = (ir_to_mesa_instruction *)this->instructions.get_tail();
if (sat_src_expr && (sat_src_expr->operation == ir_binop_mul ||
sat_src_expr->operation == ir_binop_add ||
sat_src_expr->operation == ir_binop_dot)) {
new_inst->saturate = true;
} else {
this->result = get_temp(ir->type);
ir_to_mesa_instruction *inst;
inst = emit(ir, OPCODE_MOV, dst_reg(this->result), src);
inst->saturate = true;
}
return true;
}
void
ir_to_mesa_visitor::reladdr_to_temp(ir_instruction *ir,
src_reg *reg, int *num_reladdr)
{
if (!reg->reladdr)
return;
emit(ir, OPCODE_ARL, address_reg, *reg->reladdr);
if (*num_reladdr != 1) {
src_reg temp = get_temp(glsl_type::vec4_type);
emit(ir, OPCODE_MOV, dst_reg(temp), *reg);
*reg = temp;
}
(*num_reladdr)--;
}
void
ir_to_mesa_visitor::emit_swz(ir_expression *ir)
{
/* Assume that the vector operator is in a form compatible with OPCODE_SWZ.
* This means that each of the operands is either an immediate value of -1,
* 0, or 1, or is a component from one source register (possibly with
* negation).
*/
uint8_t components[4] = { 0 };
bool negate[4] = { false };
ir_variable *var = NULL;
for (unsigned i = 0; i < ir->type->vector_elements; i++) {
ir_rvalue *op = ir->operands[i];
assert(op->type->is_scalar());
while (op != NULL) {
switch (op->ir_type) {
case ir_type_constant: {
assert(op->type->is_scalar());
const ir_constant *const c = op->as_constant();
if (c->is_one()) {
components[i] = SWIZZLE_ONE;
} else if (c->is_zero()) {
components[i] = SWIZZLE_ZERO;
} else if (c->is_negative_one()) {
components[i] = SWIZZLE_ONE;
negate[i] = true;
} else {
assert(!"SWZ constant must be 0.0 or 1.0.");
}
op = NULL;
break;
}
case ir_type_dereference_variable: {
ir_dereference_variable *const deref =
(ir_dereference_variable *) op;
assert((var == NULL) || (deref->var == var));
components[i] = SWIZZLE_X;
var = deref->var;
op = NULL;
break;
}
case ir_type_expression: {
ir_expression *const expr = (ir_expression *) op;
assert(expr->operation == ir_unop_neg);
negate[i] = true;
op = expr->operands[0];
break;
}
case ir_type_swizzle: {
ir_swizzle *const swiz = (ir_swizzle *) op;
components[i] = swiz->mask.x;
op = swiz->val;
break;
}
default:
assert(!"Should not get here.");
return;
}
}
}
assert(var != NULL);
ir_dereference_variable *const deref =
new(mem_ctx) ir_dereference_variable(var);
this->result.file = PROGRAM_UNDEFINED;
deref->accept(this);
if (this->result.file == PROGRAM_UNDEFINED) {
ir_print_visitor v;
printf("Failed to get tree for expression operand:\n");
deref->accept(&v);
exit(1);
}
src_reg src;
src = this->result;
src.swizzle = MAKE_SWIZZLE4(components[0],
components[1],
components[2],
components[3]);
src.negate = ((unsigned(negate[0]) << 0)
| (unsigned(negate[1]) << 1)
| (unsigned(negate[2]) << 2)
| (unsigned(negate[3]) << 3));
/* Storage for our result. Ideally for an assignment we'd be using the
* actual storage for the result here, instead.
*/
const src_reg result_src = get_temp(ir->type);
dst_reg result_dst = dst_reg(result_src);
/* Limit writes to the channels that will be used by result_src later.
* This does limit this temp's use as a temporary for multi-instruction
* sequences.
*/
result_dst.writemask = (1 << ir->type->vector_elements) - 1;
emit(ir, OPCODE_SWZ, result_dst, src);
this->result = result_src;
}
void
ir_to_mesa_visitor::visit(ir_expression *ir)
{
unsigned int operand;
src_reg op[Elements(ir->operands)];
src_reg result_src;
dst_reg result_dst;
/* Quick peephole: Emit OPCODE_MAD(a, b, c) instead of ADD(MUL(a, b), c)
*/
if (ir->operation == ir_binop_add) {
if (try_emit_mad(ir, 1))
return;
if (try_emit_mad(ir, 0))
return;
}
/* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b))
*/
if (ir->operation == ir_binop_logic_and) {
if (try_emit_mad_for_and_not(ir, 1))
return;
if (try_emit_mad_for_and_not(ir, 0))
return;
}
if (try_emit_sat(ir))
return;
if (ir->operation == ir_quadop_vector) {
this->emit_swz(ir);
return;
}
for (operand = 0; operand < ir->get_num_operands(); operand++) {
this->result.file = PROGRAM_UNDEFINED;
ir->operands[operand]->accept(this);
if (this->result.file == PROGRAM_UNDEFINED) {
ir_print_visitor v;
printf("Failed to get tree for expression operand:\n");
ir->operands[operand]->accept(&v);
exit(1);
}
op[operand] = this->result;
/* Matrix expression operands should have been broken down to vector
* operations already.
*/
assert(!ir->operands[operand]->type->is_matrix());
}
int vector_elements = ir->operands[0]->type->vector_elements;
if (ir->operands[1]) {
vector_elements = MAX2(vector_elements,
ir->operands[1]->type->vector_elements);
}
this->result.file = PROGRAM_UNDEFINED;
/* Storage for our result. Ideally for an assignment we'd be using
* the actual storage for the result here, instead.
*/
result_src = get_temp(ir->type);
/* convenience for the emit functions below. */
result_dst = dst_reg(result_src);
/* Limit writes to the channels that will be used by result_src later.
* This does limit this temp's use as a temporary for multi-instruction
* sequences.
*/
result_dst.writemask = (1 << ir->type->vector_elements) - 1;
switch (ir->operation) {
case ir_unop_logic_not:
/* Previously 'SEQ dst, src, 0.0' was used for this. However, many
* older GPUs implement SEQ using multiple instructions (i915 uses two
* SGE instructions and a MUL instruction). Since our logic values are
* 0.0 and 1.0, 1-x also implements !x.
*/
op[0].negate = ~op[0].negate;
emit(ir, OPCODE_ADD, result_dst, op[0], src_reg_for_float(1.0));
break;
case ir_unop_neg:
op[0].negate = ~op[0].negate;
result_src = op[0];
break;
case ir_unop_abs:
emit(ir, OPCODE_ABS, result_dst, op[0]);
break;
case ir_unop_sign:
emit(ir, OPCODE_SSG, result_dst, op[0]);
break;
case ir_unop_rcp:
emit_scalar(ir, OPCODE_RCP, result_dst, op[0]);
break;
case ir_unop_exp2:
emit_scalar(ir, OPCODE_EX2, result_dst, op[0]);
break;
case ir_unop_exp:
case ir_unop_log:
assert(!"not reached: should be handled by ir_explog_to_explog2");
break;
case ir_unop_log2:
emit_scalar(ir, OPCODE_LG2, result_dst, op[0]);
break;
case ir_unop_sin:
emit_scalar(ir, OPCODE_SIN, result_dst, op[0]);
break;
case ir_unop_cos:
emit_scalar(ir, OPCODE_COS, result_dst, op[0]);
break;
case ir_unop_sin_reduced:
emit_scs(ir, OPCODE_SIN, result_dst, op[0]);
break;
case ir_unop_cos_reduced:
emit_scs(ir, OPCODE_COS, result_dst, op[0]);
break;
case ir_unop_dFdx:
emit(ir, OPCODE_DDX, result_dst, op[0]);
break;
case ir_unop_dFdy:
emit(ir, OPCODE_DDY, result_dst, op[0]);
break;
case ir_unop_noise: {
const enum prog_opcode opcode =
prog_opcode(OPCODE_NOISE1
+ (ir->operands[0]->type->vector_elements) - 1);
assert((opcode >= OPCODE_NOISE1) && (opcode <= OPCODE_NOISE4));
emit(ir, opcode, result_dst, op[0]);
break;
}
case ir_binop_add:
emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
break;
case ir_binop_sub:
emit(ir, OPCODE_SUB, result_dst, op[0], op[1]);
break;
case ir_binop_mul:
emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
break;
case ir_binop_div:
assert(!"not reached: should be handled by ir_div_to_mul_rcp");
break;
case ir_binop_mod:
/* Floating point should be lowered by MOD_TO_FRACT in the compiler. */
assert(ir->type->is_integer());
emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
break;
case ir_binop_less:
emit(ir, OPCODE_SLT, result_dst, op[0], op[1]);
break;
case ir_binop_greater:
emit(ir, OPCODE_SGT, result_dst, op[0], op[1]);
break;
case ir_binop_lequal:
emit(ir, OPCODE_SLE, result_dst, op[0], op[1]);
break;
case ir_binop_gequal:
emit(ir, OPCODE_SGE, result_dst, op[0], op[1]);
break;
case ir_binop_equal:
emit(ir, OPCODE_SEQ, result_dst, op[0], op[1]);
break;
case ir_binop_nequal:
emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
break;
case ir_binop_all_equal:
/* "==" operator producing a scalar boolean. */
if (ir->operands[0]->type->is_vector() ||
ir->operands[1]->type->is_vector()) {
src_reg temp = get_temp(glsl_type::vec4_type);
emit(ir, OPCODE_SNE, dst_reg(temp), op[0], op[1]);
/* After the dot-product, the value will be an integer on the
* range [0,4]. Zero becomes 1.0, and positive values become zero.
*/
emit_dp(ir, result_dst, temp, temp, vector_elements);
/* Negating the result of the dot-product gives values on the range
* [-4, 0]. Zero becomes 1.0, and negative values become zero. This
* achieved using SGE.
*/
src_reg sge_src = result_src;
sge_src.negate = ~sge_src.negate;
emit(ir, OPCODE_SGE, result_dst, sge_src, src_reg_for_float(0.0));
} else {
emit(ir, OPCODE_SEQ, result_dst, op[0], op[1]);
}
break;
case ir_binop_any_nequal:
/* "!=" operator producing a scalar boolean. */
if (ir->operands[0]->type->is_vector() ||
ir->operands[1]->type->is_vector()) {
src_reg temp = get_temp(glsl_type::vec4_type);
emit(ir, OPCODE_SNE, dst_reg(temp), op[0], op[1]);
/* After the dot-product, the value will be an integer on the
* range [0,4]. Zero stays zero, and positive values become 1.0.
*/
ir_to_mesa_instruction *const dp =
emit_dp(ir, result_dst, temp, temp, vector_elements);
if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
/* The clamping to [0,1] can be done for free in the fragment
* shader with a saturate.
*/
dp->saturate = true;
} else {
/* Negating the result of the dot-product gives values on the range
* [-4, 0]. Zero stays zero, and negative values become 1.0. This
* achieved using SLT.
*/
src_reg slt_src = result_src;
slt_src.negate = ~slt_src.negate;
emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
}
} else {
emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
}
break;
case ir_unop_any: {
assert(ir->operands[0]->type->is_vector());
/* After the dot-product, the value will be an integer on the
* range [0,4]. Zero stays zero, and positive values become 1.0.
*/
ir_to_mesa_instruction *const dp =
emit_dp(ir, result_dst, op[0], op[0],
ir->operands[0]->type->vector_elements);
if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
/* The clamping to [0,1] can be done for free in the fragment
* shader with a saturate.
*/
dp->saturate = true;
} else {
/* Negating the result of the dot-product gives values on the range
* [-4, 0]. Zero stays zero, and negative values become 1.0. This
* is achieved using SLT.
*/
src_reg slt_src = result_src;
slt_src.negate = ~slt_src.negate;
emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
}
break;
}
case ir_binop_logic_xor:
emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
break;
case ir_binop_logic_or: {
/* After the addition, the value will be an integer on the
* range [0,2]. Zero stays zero, and positive values become 1.0.
*/
ir_to_mesa_instruction *add =
emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
/* The clamping to [0,1] can be done for free in the fragment
* shader with a saturate.
*/
add->saturate = true;
} else {
/* Negating the result of the addition gives values on the range
* [-2, 0]. Zero stays zero, and negative values become 1.0. This
* is achieved using SLT.
*/
src_reg slt_src = result_src;
slt_src.negate = ~slt_src.negate;
emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
}
break;
}
case ir_binop_logic_and:
/* the bool args are stored as float 0.0 or 1.0, so "mul" gives us "and". */
emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
break;
case ir_binop_dot:
assert(ir->operands[0]->type->is_vector());
assert(ir->operands[0]->type == ir->operands[1]->type);
emit_dp(ir, result_dst, op[0], op[1],
ir->operands[0]->type->vector_elements);
break;
case ir_unop_sqrt:
/* sqrt(x) = x * rsq(x). */
emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
emit(ir, OPCODE_MUL, result_dst, result_src, op[0]);
/* For incoming channels <= 0, set the result to 0. */
op[0].negate = ~op[0].negate;
emit(ir, OPCODE_CMP, result_dst,
op[0], result_src, src_reg_for_float(0.0));
break;
case ir_unop_rsq:
emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
break;
case ir_unop_i2f:
case ir_unop_u2f:
case ir_unop_b2f:
case ir_unop_b2i:
case ir_unop_i2u:
case ir_unop_u2i:
/* Mesa IR lacks types, ints are stored as truncated floats. */
result_src = op[0];
break;
case ir_unop_f2i:
case ir_unop_f2u:
emit(ir, OPCODE_TRUNC, result_dst, op[0]);
break;
case ir_unop_f2b:
case ir_unop_i2b:
emit(ir, OPCODE_SNE, result_dst,
op[0], src_reg_for_float(0.0));
break;
case ir_unop_bitcast_f2i: // Ignore these 4, they can't happen here anyway
case ir_unop_bitcast_f2u:
case ir_unop_bitcast_i2f:
case ir_unop_bitcast_u2f:
break;
case ir_unop_trunc:
emit(ir, OPCODE_TRUNC, result_dst, op[0]);
break;
case ir_unop_ceil:
op[0].negate = ~op[0].negate;
emit(ir, OPCODE_FLR, result_dst, op[0]);
result_src.negate = ~result_src.negate;
break;
case ir_unop_floor:
emit(ir, OPCODE_FLR, result_dst, op[0]);
break;
case ir_unop_fract:
emit(ir, OPCODE_FRC, result_dst, op[0]);
break;
case ir_binop_min:
emit(ir, OPCODE_MIN, result_dst, op[0], op[1]);
break;
case ir_binop_max:
emit(ir, OPCODE_MAX, result_dst, op[0], op[1]);
break;
case ir_binop_pow:
emit_scalar(ir, OPCODE_POW, result_dst, op[0], op[1]);
break;
/* GLSL 1.30 integer ops are unsupported in Mesa IR, but since
* hardware backends have no way to avoid Mesa IR generation
* even if they don't use it, we need to emit "something" and
* continue.
*/
case ir_binop_lshift:
case ir_binop_rshift:
case ir_binop_bit_and:
case ir_binop_bit_xor:
case ir_binop_bit_or:
emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
break;
case ir_unop_bit_not:
case ir_unop_round_even:
emit(ir, OPCODE_MOV, result_dst, op[0]);
break;
case ir_binop_ubo_load:
assert(!"not supported");
break;
case ir_quadop_vector:
/* This operation should have already been handled.
*/
assert(!"Should not get here.");
break;
}
this->result = result_src;
}
void
ir_to_mesa_visitor::visit(ir_swizzle *ir)
{
src_reg src;
int i;
int swizzle[4];
/* Note that this is only swizzles in expressions, not those on the left
* hand side of an assignment, which do write masking. See ir_assignment
* for that.
*/
ir->val->accept(this);
src = this->result;
assert(src.file != PROGRAM_UNDEFINED);
for (i = 0; i < 4; i++) {
if (i < ir->type->vector_elements) {
switch (i) {
case 0:
swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
break;
case 1:
swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
break;
case 2:
swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
break;
case 3:
swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
break;
}
} else {
/* If the type is smaller than a vec4, replicate the last
* channel out.
*/
swizzle[i] = swizzle[ir->type->vector_elements - 1];
}
}
src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
this->result = src;
}
void
ir_to_mesa_visitor::visit(ir_dereference_variable *ir)
{
variable_storage *entry = find_variable_storage(ir->var);
ir_variable *var = ir->var;
if (!entry) {
switch (var->mode) {
case ir_var_uniform:
entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
var->location);
this->variables.push_tail(entry);
break;
case ir_var_in:
case ir_var_inout:
/* The linker assigns locations for varyings and attributes,
* including deprecated builtins (like gl_Color),
* user-assigned generic attributes (glBindVertexLocation),
* and user-defined varyings.
*
* FINISHME: We would hit this path for function arguments. Fix!
*/
assert(var->location != -1);
entry = new(mem_ctx) variable_storage(var,
PROGRAM_INPUT,
var->location);
break;
case ir_var_out:
assert(var->location != -1);
entry = new(mem_ctx) variable_storage(var,
PROGRAM_OUTPUT,
var->location);
break;
case ir_var_system_value:
entry = new(mem_ctx) variable_storage(var,
PROGRAM_SYSTEM_VALUE,
var->location);
break;
case ir_var_auto:
case ir_var_temporary:
entry = new(mem_ctx) variable_storage(var, PROGRAM_TEMPORARY,
this->next_temp);
this->variables.push_tail(entry);
next_temp += type_size(var->type);
break;
}
if (!entry) {
printf("Failed to make storage for %s\n", var->name);
exit(1);
}
}
this->result = src_reg(entry->file, entry->index, var->type);
}
void
ir_to_mesa_visitor::visit(ir_dereference_array *ir)
{
ir_constant *index;
src_reg src;
int element_size = type_size(ir->type);
index = ir->array_index->constant_expression_value();
ir->array->accept(this);
src = this->result;
if (index) {
src.index += index->value.i[0] * element_size;
} else {
/* Variable index array dereference. It eats the "vec4" of the
* base of the array and an index that offsets the Mesa register
* index.
*/
ir->array_index->accept(this);
src_reg index_reg;
if (element_size == 1) {
index_reg = this->result;
} else {
index_reg = get_temp(glsl_type::float_type);
emit(ir, OPCODE_MUL, dst_reg(index_reg),
this->result, src_reg_for_float(element_size));
}
/* If there was already a relative address register involved, add the
* new and the old together to get the new offset.
*/
if (src.reladdr != NULL) {
src_reg accum_reg = get_temp(glsl_type::float_type);
emit(ir, OPCODE_ADD, dst_reg(accum_reg),
index_reg, *src.reladdr);
index_reg = accum_reg;
}
src.reladdr = ralloc(mem_ctx, src_reg);
memcpy(src.reladdr, &index_reg, sizeof(index_reg));
}
/* If the type is smaller than a vec4, replicate the last channel out. */
if (ir->type->is_scalar() || ir->type->is_vector())
src.swizzle = swizzle_for_size(ir->type->vector_elements);
else
src.swizzle = SWIZZLE_NOOP;
this->result = src;
}
void
ir_to_mesa_visitor::visit(ir_dereference_record *ir)
{
unsigned int i;
const glsl_type *struct_type = ir->record->type;
int offset = 0;
ir->record->accept(this);
for (i = 0; i < struct_type->length; i++) {
if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
break;
offset += type_size(struct_type->fields.structure[i].type);
}
/* If the type is smaller than a vec4, replicate the last channel out. */
if (ir->type->is_scalar() || ir->type->is_vector())
this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
else
this->result.swizzle = SWIZZLE_NOOP;
this->result.index += offset;
}
/**
* We want to be careful in assignment setup to hit the actual storage
* instead of potentially using a temporary like we might with the
* ir_dereference handler.
*/
static dst_reg
get_assignment_lhs(ir_dereference *ir, ir_to_mesa_visitor *v)
{
/* The LHS must be a dereference. If the LHS is a variable indexed array
* access of a vector, it must be separated into a series conditional moves
* before reaching this point (see ir_vec_index_to_cond_assign).
*/
assert(ir->as_dereference());
ir_dereference_array *deref_array = ir->as_dereference_array();
if (deref_array) {
assert(!deref_array->array->type->is_vector());
}
/* Use the rvalue deref handler for the most part. We'll ignore
* swizzles in it and write swizzles using writemask, though.
*/
ir->accept(v);
return dst_reg(v->result);
}
/**
* Process the condition of a conditional assignment
*
* Examines the condition of a conditional assignment to generate the optimal
* first operand of a \c CMP instruction. If the condition is a relational
* operator with 0 (e.g., \c ir_binop_less), the value being compared will be
* used as the source for the \c CMP instruction. Otherwise the comparison
* is processed to a boolean result, and the boolean result is used as the
* operand to the CMP instruction.
*/
bool
ir_to_mesa_visitor::process_move_condition(ir_rvalue *ir)
{
ir_rvalue *src_ir = ir;
bool negate = true;
bool switch_order = false;
ir_expression *const expr = ir->as_expression();
if ((expr != NULL) && (expr->get_num_operands() == 2)) {
bool zero_on_left = false;
if (expr->operands[0]->is_zero()) {
src_ir = expr->operands[1];
zero_on_left = true;
} else if (expr->operands[1]->is_zero()) {
src_ir = expr->operands[0];
zero_on_left = false;
}
/* a is - 0 + - 0 +
* (a < 0) T F F ( a < 0) T F F
* (0 < a) F F T (-a < 0) F F T
* (a <= 0) T T F (-a < 0) F F T (swap order of other operands)
* (0 <= a) F T T ( a < 0) T F F (swap order of other operands)
* (a > 0) F F T (-a < 0) F F T
* (0 > a) T F F ( a < 0) T F F
* (a >= 0) F T T ( a < 0) T F F (swap order of other operands)
* (0 >= a) T T F (-a < 0) F F T (swap order of other operands)
*
* Note that exchanging the order of 0 and 'a' in the comparison simply
* means that the value of 'a' should be negated.
*/
if (src_ir != ir) {
switch (expr->operation) {
case ir_binop_less:
switch_order = false;
negate = zero_on_left;
break;
case ir_binop_greater:
switch_order = false;
negate = !zero_on_left;
break;
case ir_binop_lequal:
switch_order = true;
negate = !zero_on_left;
break;
case ir_binop_gequal:
switch_order = true;
negate = zero_on_left;
break;
default:
/* This isn't the right kind of comparison afterall, so make sure
* the whole condition is visited.
*/
src_ir = ir;
break;
}
}
}
src_ir->accept(this);
/* We use the OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
* condition we produced is 0.0 or 1.0. By flipping the sign, we can
* choose which value OPCODE_CMP produces without an extra instruction
* computing the condition.
*/
if (negate)
this->result.negate = ~this->result.negate;
return switch_order;
}
void
ir_to_mesa_visitor::visit(ir_assignment *ir)
{
dst_reg l;
src_reg r;
int i;
ir->rhs->accept(this);
r = this->result;
l = get_assignment_lhs(ir->lhs, this);
/* FINISHME: This should really set to the correct maximal writemask for each
* FINISHME: component written (in the loops below). This case can only
* FINISHME: occur for matrices, arrays, and structures.
*/
if (ir->write_mask == 0) {
assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
l.writemask = WRITEMASK_XYZW;
} else if (ir->lhs->type->is_scalar()) {
/* FINISHME: This hack makes writing to gl_FragDepth, which lives in the
* FINISHME: W component of fragment shader output zero, work correctly.
*/
l.writemask = WRITEMASK_XYZW;
} else {
int swizzles[4];
int first_enabled_chan = 0;
int rhs_chan = 0;
assert(ir->lhs->type->is_vector());
l.writemask = ir->write_mask;
for (int i = 0; i < 4; i++) {
if (l.writemask & (1 << i)) {
first_enabled_chan = GET_SWZ(r.swizzle, i);
break;
}
}
/* Swizzle a small RHS vector into the channels being written.
*
* glsl ir treats write_mask as dictating how many channels are
* present on the RHS while Mesa IR treats write_mask as just
* showing which channels of the vec4 RHS get written.
*/
for (int i = 0; i < 4; i++) {
if (l.writemask & (1 << i))
swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
else
swizzles[i] = first_enabled_chan;
}
r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
swizzles[2], swizzles[3]);
}
assert(l.file != PROGRAM_UNDEFINED);
assert(r.file != PROGRAM_UNDEFINED);
if (ir->condition) {
const bool switch_order = this->process_move_condition(ir->condition);
src_reg condition = this->result;
for (i = 0; i < type_size(ir->lhs->type); i++) {
if (switch_order) {
emit(ir, OPCODE_CMP, l, condition, src_reg(l), r);
} else {
emit(ir, OPCODE_CMP, l, condition, r, src_reg(l));
}
l.index++;
r.index++;
}
} else {
for (i = 0; i < type_size(ir->lhs->type); i++) {
emit(ir, OPCODE_MOV, l, r);
l.index++;
r.index++;
}
}
}
void
ir_to_mesa_visitor::visit(ir_constant *ir)
{
src_reg src;
GLfloat stack_vals[4] = { 0 };
GLfloat *values = stack_vals;
unsigned int i;
/* Unfortunately, 4 floats is all we can get into
* _mesa_add_unnamed_constant. So, make a temp to store an
* aggregate constant and move each constant value into it. If we
* get lucky, copy propagation will eliminate the extra moves.
*/
if (ir->type->base_type == GLSL_TYPE_STRUCT) {
src_reg temp_base = get_temp(ir->type);
dst_reg temp = dst_reg(temp_base);
foreach_iter(exec_list_iterator, iter, ir->components) {
ir_constant *field_value = (ir_constant *)iter.get();
int size = type_size(field_value->type);
assert(size > 0);
field_value->accept(this);
src = this->result;
for (i = 0; i < (unsigned int)size; i++) {
emit(ir, OPCODE_MOV, temp, src);
src.index++;
temp.index++;
}
}
this->result = temp_base;
return;
}
if (ir->type->is_array()) {
src_reg temp_base = get_temp(ir->type);
dst_reg temp = dst_reg(temp_base);
int size = type_size(ir->type->fields.array);
assert(size > 0);
for (i = 0; i < ir->type->length; i++) {
ir->array_elements[i]->accept(this);
src = this->result;
for (int j = 0; j < size; j++) {
emit(ir, OPCODE_MOV, temp, src);
src.index++;
temp.index++;
}
}
this->result = temp_base;
return;
}
if (ir->type->is_matrix()) {
src_reg mat = get_temp(ir->type);
dst_reg mat_column = dst_reg(mat);
for (i = 0; i < ir->type->matrix_columns; i++) {
assert(ir->type->base_type == GLSL_TYPE_FLOAT);
values = &ir->value.f[i * ir->type->vector_elements];
src = src_reg(PROGRAM_CONSTANT, -1, NULL);
src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
(gl_constant_value *) values,
ir->type->vector_elements,
&src.swizzle);
emit(ir, OPCODE_MOV, mat_column, src);
mat_column.index++;
}
this->result = mat;
return;
}
src.file = PROGRAM_CONSTANT;
switch (ir->type->base_type) {
case GLSL_TYPE_FLOAT:
values = &ir->value.f[0];
break;
case GLSL_TYPE_UINT:
for (i = 0; i < ir->type->vector_elements; i++) {
values[i] = ir->value.u[i];
}
break;
case GLSL_TYPE_INT:
for (i = 0; i < ir->type->vector_elements; i++) {
values[i] = ir->value.i[i];
}
break;
case GLSL_TYPE_BOOL:
for (i = 0; i < ir->type->vector_elements; i++) {
values[i] = ir->value.b[i];
}
break;
default:
assert(!"Non-float/uint/int/bool constant");
}
this->result = src_reg(PROGRAM_CONSTANT, -1, ir->type);
this->result.index = _mesa_add_unnamed_constant(this->prog->Parameters,
(gl_constant_value *) values,
ir->type->vector_elements,
&this->result.swizzle);
}
void
ir_to_mesa_visitor::visit(ir_call *ir)
{
assert(!"ir_to_mesa: All function calls should have been inlined by now.");
}
void
ir_to_mesa_visitor::visit(ir_texture *ir)
{
src_reg result_src, coord, lod_info, projector, dx, dy;
dst_reg result_dst, coord_dst;
ir_to_mesa_instruction *inst = NULL;
prog_opcode opcode = OPCODE_NOP;
if (ir->op == ir_txs)
this->result = src_reg_for_float(0.0);
else
ir->coordinate->accept(this);
/* Put our coords in a temp. We'll need to modify them for shadow,
* projection, or LOD, so the only case we'd use it as is is if
* we're doing plain old texturing. Mesa IR optimization should
* handle cleaning up our mess in that case.
*/
coord = get_temp(glsl_type::vec4_type);
coord_dst = dst_reg(coord);
emit(ir, OPCODE_MOV, coord_dst, this->result);
if (ir->projector) {
ir->projector->accept(this);
projector = this->result;
}
/* Storage for our result. Ideally for an assignment we'd be using
* the actual storage for the result here, instead.
*/
result_src = get_temp(glsl_type::vec4_type);
result_dst = dst_reg(result_src);
switch (ir->op) {
case ir_tex:
case ir_txs:
opcode = OPCODE_TEX;
break;
case ir_txb:
opcode = OPCODE_TXB;
ir->lod_info.bias->accept(this);
lod_info = this->result;
break;
case ir_txf:
/* Pretend to be TXL so the sampler, coordinate, lod are available */
case ir_txl:
opcode = OPCODE_TXL;
ir->lod_info.lod->accept(this);
lod_info = this->result;
break;
case ir_txd:
opcode = OPCODE_TXD;
ir->lod_info.grad.dPdx->accept(this);
dx = this->result;
ir->lod_info.grad.dPdy->accept(this);
dy = this->result;
break;
}
const glsl_type *sampler_type = ir->sampler->type;
if (ir->projector) {
if (opcode == OPCODE_TEX) {
/* Slot the projector in as the last component of the coord. */
coord_dst.writemask = WRITEMASK_W;
emit(ir, OPCODE_MOV, coord_dst, projector);
coord_dst.writemask = WRITEMASK_XYZW;
opcode = OPCODE_TXP;
} else {
src_reg coord_w = coord;
coord_w.swizzle = SWIZZLE_WWWW;
/* For the other TEX opcodes there's no projective version
* since the last slot is taken up by lod info. Do the
* projective divide now.
*/
coord_dst.writemask = WRITEMASK_W;
emit(ir, OPCODE_RCP, coord_dst, projector);
/* In the case where we have to project the coordinates "by hand,"
* the shadow comparitor value must also be projected.
*/
src_reg tmp_src = coord;
if (ir->shadow_comparitor) {
/* Slot the shadow value in as the second to last component of the
* coord.
*/
ir->shadow_comparitor->accept(this);
tmp_src = get_temp(glsl_type::vec4_type);
dst_reg tmp_dst = dst_reg(tmp_src);
/* Projective division not allowed for array samplers. */
assert(!sampler_type->sampler_array);
tmp_dst.writemask = WRITEMASK_Z;
emit(ir, OPCODE_MOV, tmp_dst, this->result);
tmp_dst.writemask = WRITEMASK_XY;
emit(ir, OPCODE_MOV, tmp_dst, coord);
}
coord_dst.writemask = WRITEMASK_XYZ;
emit(ir, OPCODE_MUL, coord_dst, tmp_src, coord_w);
coord_dst.writemask = WRITEMASK_XYZW;
coord.swizzle = SWIZZLE_XYZW;
}
}
/* If projection is done and the opcode is not OPCODE_TXP, then the shadow
* comparitor was put in the correct place (and projected) by the code,
* above, that handles by-hand projection.
*/
if (ir->shadow_comparitor && (!ir->projector || opcode == OPCODE_TXP)) {
/* Slot the shadow value in as the second to last component of the
* coord.
*/
ir->shadow_comparitor->accept(this);
/* XXX This will need to be updated for cubemap array samplers. */
if (sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_2D &&
sampler_type->sampler_array) {
coord_dst.writemask = WRITEMASK_W;
} else {
coord_dst.writemask = WRITEMASK_Z;
}
emit(ir, OPCODE_MOV, coord_dst, this->result);
coord_dst.writemask = WRITEMASK_XYZW;
}
if (opcode == OPCODE_TXL || opcode == OPCODE_TXB) {
/* Mesa IR stores lod or lod bias in the last channel of the coords. */
coord_dst.writemask = WRITEMASK_W;
emit(ir, OPCODE_MOV, coord_dst, lod_info);
coord_dst.writemask = WRITEMASK_XYZW;
}
if (opcode == OPCODE_TXD)
inst = emit(ir, opcode, result_dst, coord, dx, dy);
else
inst = emit(ir, opcode, result_dst, coord);
if (ir->shadow_comparitor)
inst->tex_shadow = GL_TRUE;
inst->sampler = _mesa_get_sampler_uniform_value(ir->sampler,
this->shader_program,
this->prog);
switch (sampler_type->sampler_dimensionality) {
case GLSL_SAMPLER_DIM_1D:
inst->tex_target = (sampler_type->sampler_array)
? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
break;
case GLSL_SAMPLER_DIM_2D:
inst->tex_target = (sampler_type->sampler_array)
? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
break;
case GLSL_SAMPLER_DIM_3D:
inst->tex_target = TEXTURE_3D_INDEX;
break;
case GLSL_SAMPLER_DIM_CUBE:
inst->tex_target = TEXTURE_CUBE_INDEX;
break;
case GLSL_SAMPLER_DIM_RECT:
inst->tex_target = TEXTURE_RECT_INDEX;
break;
case GLSL_SAMPLER_DIM_BUF:
assert(!"FINISHME: Implement ARB_texture_buffer_object");
break;
case GLSL_SAMPLER_DIM_EXTERNAL:
inst->tex_target = TEXTURE_EXTERNAL_INDEX;
break;
default:
assert(!"Should not get here.");
}
this->result = result_src;
}
void
ir_to_mesa_visitor::visit(ir_return *ir)
{
/* Non-void functions should have been inlined. We may still emit RETs
* from main() unless the EmitNoMainReturn option is set.
*/
assert(!ir->get_value());
emit(ir, OPCODE_RET);
}
void
ir_to_mesa_visitor::visit(ir_discard *ir)
{
if (ir->condition) {
ir->condition->accept(this);
this->result.negate = ~this->result.negate;
emit(ir, OPCODE_KIL, undef_dst, this->result);
} else {
emit(ir, OPCODE_KIL_NV);
}
}
void
ir_to_mesa_visitor::visit(ir_if *ir)
{
ir_to_mesa_instruction *cond_inst, *if_inst;
ir_to_mesa_instruction *prev_inst;
prev_inst = (ir_to_mesa_instruction *)this->instructions.get_tail();
ir->condition->accept(this);
assert(this->result.file != PROGRAM_UNDEFINED);
if (this->options->EmitCondCodes) {
cond_inst = (ir_to_mesa_instruction *)this->instructions.get_tail();
/* See if we actually generated any instruction for generating
* the condition. If not, then cook up a move to a temp so we
* have something to set cond_update on.
*/
if (cond_inst == prev_inst) {
src_reg temp = get_temp(glsl_type::bool_type);
cond_inst = emit(ir->condition, OPCODE_MOV, dst_reg(temp), result);
}
cond_inst->cond_update = GL_TRUE;
if_inst = emit(ir->condition, OPCODE_IF);
if_inst->dst.cond_mask = COND_NE;
} else {
if_inst = emit(ir->condition, OPCODE_IF, undef_dst, this->result);
}
this->instructions.push_tail(if_inst);
visit_exec_list(&ir->then_instructions, this);
if (!ir->else_instructions.is_empty()) {
emit(ir->condition, OPCODE_ELSE);
visit_exec_list(&ir->else_instructions, this);
}
if_inst = emit(ir->condition, OPCODE_ENDIF);
}
ir_to_mesa_visitor::ir_to_mesa_visitor()
{
result.file = PROGRAM_UNDEFINED;
next_temp = 1;
next_signature_id = 1;
current_function = NULL;
mem_ctx = ralloc_context(NULL);
}
ir_to_mesa_visitor::~ir_to_mesa_visitor()
{
ralloc_free(mem_ctx);
}
static struct prog_src_register
mesa_src_reg_from_ir_src_reg(src_reg reg)
{
struct prog_src_register mesa_reg;
mesa_reg.File = reg.file;
assert(reg.index < (1 << INST_INDEX_BITS));
mesa_reg.Index = reg.index;
mesa_reg.Swizzle = reg.swizzle;
mesa_reg.RelAddr = reg.reladdr != NULL;
mesa_reg.Negate = reg.negate;
mesa_reg.Abs = 0;
mesa_reg.HasIndex2 = GL_FALSE;
mesa_reg.RelAddr2 = 0;
mesa_reg.Index2 = 0;
return mesa_reg;
}
static void
set_branchtargets(ir_to_mesa_visitor *v,
struct prog_instruction *mesa_instructions,
int num_instructions)
{
int if_count = 0, loop_count = 0;
int *if_stack, *loop_stack;
int if_stack_pos = 0, loop_stack_pos = 0;
int i, j;
for (i = 0; i < num_instructions; i++) {
switch (mesa_instructions[i].Opcode) {
case OPCODE_IF:
if_count++;
break;
case OPCODE_BGNLOOP:
loop_count++;
break;
case OPCODE_BRK:
case OPCODE_CONT:
mesa_instructions[i].BranchTarget = -1;
break;
default:
break;
}
}
if_stack = rzalloc_array(v->mem_ctx, int, if_count);
loop_stack = rzalloc_array(v->mem_ctx, int, loop_count);
for (i = 0; i < num_instructions; i++) {
switch (mesa_instructions[i].Opcode) {
case OPCODE_IF:
if_stack[if_stack_pos] = i;
if_stack_pos++;
break;
case OPCODE_ELSE:
mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
if_stack[if_stack_pos - 1] = i;
break;
case OPCODE_ENDIF:
mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
if_stack_pos--;
break;
case OPCODE_BGNLOOP:
loop_stack[loop_stack_pos] = i;
loop_stack_pos++;
break;
case OPCODE_ENDLOOP:
loop_stack_pos--;
/* Rewrite any breaks/conts at this nesting level (haven't
* already had a BranchTarget assigned) to point to the end
* of the loop.
*/
for (j = loop_stack[loop_stack_pos]; j < i; j++) {
if (mesa_instructions[j].Opcode == OPCODE_BRK ||
mesa_instructions[j].Opcode == OPCODE_CONT) {
if (mesa_instructions[j].BranchTarget == -1) {
mesa_instructions[j].BranchTarget = i;
}
}
}
/* The loop ends point at each other. */
mesa_instructions[i].BranchTarget = loop_stack[loop_stack_pos];
mesa_instructions[loop_stack[loop_stack_pos]].BranchTarget = i;
break;
case OPCODE_CAL:
foreach_iter(exec_list_iterator, iter, v->function_signatures) {
function_entry *entry = (function_entry *)iter.get();
if (entry->sig_id == mesa_instructions[i].BranchTarget) {
mesa_instructions[i].BranchTarget = entry->inst;
break;
}
}
break;
default:
break;
}
}
}
static void
print_program(struct prog_instruction *mesa_instructions,
ir_instruction **mesa_instruction_annotation,
int num_instructions)
{
ir_instruction *last_ir = NULL;
int i;
int indent = 0;
for (i = 0; i < num_instructions; i++) {
struct prog_instruction *mesa_inst = mesa_instructions + i;
ir_instruction *ir = mesa_instruction_annotation[i];
fprintf(stdout, "%3d: ", i);
if (last_ir != ir && ir) {
int j;
for (j = 0; j < indent; j++) {
fprintf(stdout, " ");
}
ir->print();
printf("\n");
last_ir = ir;
fprintf(stdout, " "); /* line number spacing. */
}
indent = _mesa_fprint_instruction_opt(stdout, mesa_inst, indent,
PROG_PRINT_DEBUG, NULL);
}
}
class add_uniform_to_shader : public uniform_field_visitor {
public:
add_uniform_to_shader(struct gl_shader_program *shader_program,
struct gl_program_parameter_list *params)
: shader_program(shader_program), params(params), idx(-1)
{
/* empty */
}
void process(ir_variable *var)
{
this->idx = -1;
this->uniform_field_visitor::process(var);
var->location = this->idx;
}
private:
virtual void visit_field(const glsl_type *type, const char *name);
struct gl_shader_program *shader_program;
struct gl_program_parameter_list *params;
int idx;
};
void
add_uniform_to_shader::visit_field(const glsl_type *type, const char *name)
{
unsigned int size;
if (type->is_vector() || type->is_scalar()) {
size = type->vector_elements;
} else {
size = type_size(type) * 4;
}
gl_register_file file;
if (type->is_sampler() ||
(type->is_array() && type->fields.array->is_sampler())) {
file = PROGRAM_SAMPLER;
} else {
file = PROGRAM_UNIFORM;
}
int index = _mesa_lookup_parameter_index(params, -1, name);
if (index < 0) {
index = _mesa_add_parameter(params, file, name, size, type->gl_type,
NULL, NULL, 0x0);
/* Sampler uniform values are stored in prog->SamplerUnits,
* and the entry in that array is selected by this index we
* store in ParameterValues[].
*/
if (file == PROGRAM_SAMPLER) {
unsigned location;
const bool found =
this->shader_program->UniformHash->get(location,
params->Parameters[index].Name);
assert(found);
if (!found)
return;
struct gl_uniform_storage *storage =
&this->shader_program->UniformStorage[location];
for (unsigned int j = 0; j < size / 4; j++)
params->ParameterValues[index + j][0].f = storage->sampler + j;
}
}
/* The first part of the uniform that's processed determines the base
* location of the whole uniform (for structures).
*/
if (this->idx < 0)
this->idx = index;
}
/**
* Generate the program parameters list for the user uniforms in a shader
*
* \param shader_program Linked shader program. This is only used to
* emit possible link errors to the info log.
* \param sh Shader whose uniforms are to be processed.
* \param params Parameter list to be filled in.
*/
void
_mesa_generate_parameters_list_for_uniforms(struct gl_shader_program
*shader_program,
struct gl_shader *sh,
struct gl_program_parameter_list
*params)
{
add_uniform_to_shader add(shader_program, params);
foreach_list(node, sh->ir) {
ir_variable *var = ((ir_instruction *) node)->as_variable();
if ((var == NULL) || (var->mode != ir_var_uniform)
|| var->uniform_block != -1 || (strncmp(var->name, "gl_", 3) == 0))
continue;
add.process(var);
}
}
void
_mesa_associate_uniform_storage(struct gl_context *ctx,
struct gl_shader_program *shader_program,
struct gl_program_parameter_list *params)
{
/* After adding each uniform to the parameter list, connect the storage for
* the parameter with the tracking structure used by the API for the
* uniform.
*/
unsigned last_location = unsigned(~0);
for (unsigned i = 0; i < params->NumParameters; i++) {
if (params->Parameters[i].Type != PROGRAM_UNIFORM)
continue;
unsigned location;
const bool found =
shader_program->UniformHash->get(location, params->Parameters[i].Name);
assert(found);
if (!found)
continue;
if (location != last_location) {
struct gl_uniform_storage *storage =
&shader_program->UniformStorage[location];
enum gl_uniform_driver_format format = uniform_native;
unsigned columns = 0;
switch (storage->type->base_type) {
case GLSL_TYPE_UINT:
assert(ctx->Const.NativeIntegers);
format = uniform_native;
columns = 1;
break;
case GLSL_TYPE_INT:
format =
(ctx->Const.NativeIntegers) ? uniform_native : uniform_int_float;
columns = 1;
break;
case GLSL_TYPE_FLOAT:
format = uniform_native;
columns = storage->type->matrix_columns;
break;
case GLSL_TYPE_BOOL:
if (ctx->Const.NativeIntegers) {
format = (ctx->Const.UniformBooleanTrue == 1)
? uniform_bool_int_0_1 : uniform_bool_int_0_not0;
} else {
format = uniform_bool_float;
}
columns = 1;
break;
case GLSL_TYPE_SAMPLER:
format = uniform_native;
columns = 1;
break;
default:
assert(!"Should not get here.");
break;
}
_mesa_uniform_attach_driver_storage(storage,
4 * sizeof(float) * columns,
4 * sizeof(float),
format,
&params->ParameterValues[i]);
/* After attaching the driver's storage to the uniform, propagate any
* data from the linker's backing store. This will cause values from
* initializers in the source code to be copied over.
*/
_mesa_propagate_uniforms_to_driver_storage(storage,
0,
MAX2(1, storage->array_elements));
last_location = location;
}
}
}
/*
* On a basic block basis, tracks available PROGRAM_TEMPORARY register
* channels for copy propagation and updates following instructions to
* use the original versions.
*
* The ir_to_mesa_visitor lazily produces code assuming that this pass
* will occur. As an example, a TXP production before this pass:
*
* 0: MOV TEMP[1], INPUT[4].xyyy;
* 1: MOV TEMP[1].w, INPUT[4].wwww;
* 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
*
* and after:
*
* 0: MOV TEMP[1], INPUT[4].xyyy;
* 1: MOV TEMP[1].w, INPUT[4].wwww;
* 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
*
* which allows for dead code elimination on TEMP[1]'s writes.
*/
void
ir_to_mesa_visitor::copy_propagate(void)
{
ir_to_mesa_instruction **acp = rzalloc_array(mem_ctx,
ir_to_mesa_instruction *,
this->next_temp * 4);
int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
int level = 0;
foreach_iter(exec_list_iterator, iter, this->instructions) {
ir_to_mesa_instruction *inst = (ir_to_mesa_instruction *)iter.get();
assert(inst->dst.file != PROGRAM_TEMPORARY
|| inst->dst.index < this->next_temp);
/* First, do any copy propagation possible into the src regs. */
for (int r = 0; r < 3; r++) {
ir_to_mesa_instruction *first = NULL;
bool good = true;
int acp_base = inst->src[r].index * 4;
if (inst->src[r].file != PROGRAM_TEMPORARY ||
inst->src[r].reladdr)
continue;
/* See if we can find entries in the ACP consisting of MOVs
* from the same src register for all the swizzled channels
* of this src register reference.
*/
for (int i = 0; i < 4; i++) {
int src_chan = GET_SWZ(inst->src[r].swizzle, i);
ir_to_mesa_instruction *copy_chan = acp[acp_base + src_chan];
if (!copy_chan) {
good = false;
break;
}
assert(acp_level[acp_base + src_chan] <= level);
if (!first) {
first = copy_chan;
} else {
if (first->src[0].file != copy_chan->src[0].file ||
first->src[0].index != copy_chan->src[0].index) {
good = false;
break;
}
}
}
if (good) {
/* We've now validated that we can copy-propagate to
* replace this src register reference. Do it.
*/
inst->src[r].file = first->src[0].file;
inst->src[r].index = first->src[0].index;
int swizzle = 0;
for (int i = 0; i < 4; i++) {
int src_chan = GET_SWZ(inst->src[r].swizzle, i);
ir_to_mesa_instruction *copy_inst = acp[acp_base + src_chan];
swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) <<
(3 * i));
}
inst->src[r].swizzle = swizzle;
}
}
switch (inst->op) {
case OPCODE_BGNLOOP:
case OPCODE_ENDLOOP:
/* End of a basic block, clear the ACP entirely. */
memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
break;
case OPCODE_IF:
++level;
break;
case OPCODE_ENDIF:
case OPCODE_ELSE:
/* Clear all channels written inside the block from the ACP, but
* leaving those that were not touched.
*/
for (int r = 0; r < this->next_temp; r++) {
for (int c = 0; c < 4; c++) {
if (!acp[4 * r + c])
continue;
if (acp_level[4 * r + c] >= level)
acp[4 * r + c] = NULL;
}
}
if (inst->op == OPCODE_ENDIF)
--level;
break;
default:
/* Continuing the block, clear any written channels from
* the ACP.
*/
if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.reladdr) {
/* Any temporary might be written, so no copy propagation
* across this instruction.
*/
memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
} else if (inst->dst.file == PROGRAM_OUTPUT &&
inst->dst.reladdr) {
/* Any output might be written, so no copy propagation
* from outputs across this instruction.
*/
for (int r = 0; r < this->next_temp; r++) {
for (int c = 0; c < 4; c++) {
if (!acp[4 * r + c])
continue;
if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
acp[4 * r + c] = NULL;
}
}
} else if (inst->dst.file == PROGRAM_TEMPORARY ||
inst->dst.file == PROGRAM_OUTPUT) {
/* Clear where it's used as dst. */
if (inst->dst.file == PROGRAM_TEMPORARY) {
for (int c = 0; c < 4; c++) {
if (inst->dst.writemask & (1 << c)) {
acp[4 * inst->dst.index + c] = NULL;
}
}
}
/* Clear where it's used as src. */
for (int r = 0; r < this->next_temp; r++) {
for (int c = 0; c < 4; c++) {
if (!acp[4 * r + c])
continue;
int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
if (acp[4 * r + c]->src[0].file == inst->dst.file &&
acp[4 * r + c]->src[0].index == inst->dst.index &&
inst->dst.writemask & (1 << src_chan))
{
acp[4 * r + c] = NULL;
}
}
}
}
break;
}
/* If this is a copy, add it to the ACP. */
if (inst->op == OPCODE_MOV &&
inst->dst.file == PROGRAM_TEMPORARY &&
!inst->dst.reladdr &&
!inst->saturate &&
!inst->src[0].reladdr &&
!inst->src[0].negate) {
for (int i = 0; i < 4; i++) {
if (inst->dst.writemask & (1 << i)) {
acp[4 * inst->dst.index + i] = inst;
acp_level[4 * inst->dst.index + i] = level;
}
}
}
}
ralloc_free(acp_level);
ralloc_free(acp);
}
/**
* Convert a shader's GLSL IR into a Mesa gl_program.
*/
static struct gl_program *
get_mesa_program(struct gl_context *ctx,
struct gl_shader_program *shader_program,
struct gl_shader *shader)
{
ir_to_mesa_visitor v;
struct prog_instruction *mesa_instructions, *mesa_inst;
ir_instruction **mesa_instruction_annotation;
int i;
struct gl_program *prog;
GLenum target;
const char *target_string;
struct gl_shader_compiler_options *options =
&ctx->ShaderCompilerOptions[_mesa_shader_type_to_index(shader->Type)];
switch (shader->Type) {
case GL_VERTEX_SHADER:
target = GL_VERTEX_PROGRAM_ARB;
target_string = "vertex";
break;
case GL_FRAGMENT_SHADER:
target = GL_FRAGMENT_PROGRAM_ARB;
target_string = "fragment";
break;
case GL_GEOMETRY_SHADER:
target = GL_GEOMETRY_PROGRAM_NV;
target_string = "geometry";
break;
default:
assert(!"should not be reached");
return NULL;
}
validate_ir_tree(shader->ir);
prog = ctx->Driver.NewProgram(ctx, target, shader_program->Name);
if (!prog)
return NULL;
prog->Parameters = _mesa_new_parameter_list();
v.ctx = ctx;
v.prog = prog;
v.shader_program = shader_program;
v.options = options;
_mesa_generate_parameters_list_for_uniforms(shader_program, shader,
prog->Parameters);
/* Emit Mesa IR for main(). */
visit_exec_list(shader->ir, &v);
v.emit(NULL, OPCODE_END);
prog->NumTemporaries = v.next_temp;
int num_instructions = 0;
foreach_iter(exec_list_iterator, iter, v.instructions) {
num_instructions++;
}
mesa_instructions =
(struct prog_instruction *)calloc(num_instructions,
sizeof(*mesa_instructions));
mesa_instruction_annotation = ralloc_array(v.mem_ctx, ir_instruction *,
num_instructions);
v.copy_propagate();
/* Convert ir_mesa_instructions into prog_instructions.
*/
mesa_inst = mesa_instructions;
i = 0;
foreach_iter(exec_list_iterator, iter, v.instructions) {
const ir_to_mesa_instruction *inst = (ir_to_mesa_instruction *)iter.get();
mesa_inst->Opcode = inst->op;
mesa_inst->CondUpdate = inst->cond_update;
if (inst->saturate)
mesa_inst->SaturateMode = SATURATE_ZERO_ONE;
mesa_inst->DstReg.File = inst->dst.file;
mesa_inst->DstReg.Index = inst->dst.index;
mesa_inst->DstReg.CondMask = inst->dst.cond_mask;
mesa_inst->DstReg.WriteMask = inst->dst.writemask;
mesa_inst->DstReg.RelAddr = inst->dst.reladdr != NULL;
mesa_inst->SrcReg[0] = mesa_src_reg_from_ir_src_reg(inst->src[0]);
mesa_inst->SrcReg[1] = mesa_src_reg_from_ir_src_reg(inst->src[1]);
mesa_inst->SrcReg[2] = mesa_src_reg_from_ir_src_reg(inst->src[2]);
mesa_inst->TexSrcUnit = inst->sampler;
mesa_inst->TexSrcTarget = inst->tex_target;
mesa_inst->TexShadow = inst->tex_shadow;
mesa_instruction_annotation[i] = inst->ir;
/* Set IndirectRegisterFiles. */
if (mesa_inst->DstReg.RelAddr)
prog->IndirectRegisterFiles |= 1 << mesa_inst->DstReg.File;
/* Update program's bitmask of indirectly accessed register files */
for (unsigned src = 0; src < 3; src++)
if (mesa_inst->SrcReg[src].RelAddr)
prog->IndirectRegisterFiles |= 1 << mesa_inst->SrcReg[src].File;
switch (mesa_inst->Opcode) {
case OPCODE_IF:
if (options->MaxIfDepth == 0) {
linker_warning(shader_program,
"Couldn't flatten if-statement. "
"This will likely result in software "
"rasterization.\n");
}
break;
case OPCODE_BGNLOOP:
if (options->EmitNoLoops) {
linker_warning(shader_program,
"Couldn't unroll loop. "
"This will likely result in software "
"rasterization.\n");
}
break;
case OPCODE_CONT:
if (options->EmitNoCont) {
linker_warning(shader_program,
"Couldn't lower continue-statement. "
"This will likely result in software "
"rasterization.\n");
}
break;
case OPCODE_ARL:
prog->NumAddressRegs = 1;
break;
default:
break;
}
mesa_inst++;
i++;
if (!shader_program->LinkStatus)
break;
}
if (!shader_program->LinkStatus) {
goto fail_exit;
}
set_branchtargets(&v, mesa_instructions, num_instructions);
if (ctx->Shader.Flags & GLSL_DUMP) {
printf("\n");
printf("GLSL IR for linked %s program %d:\n", target_string,
shader_program->Name);
_mesa_print_ir(shader->ir, NULL);
printf("\n");
printf("\n");
printf("Mesa IR for linked %s program %d:\n", target_string,
shader_program->Name);
print_program(mesa_instructions, mesa_instruction_annotation,
num_instructions);
}
prog->Instructions = mesa_instructions;
prog->NumInstructions = num_instructions;
/* Setting this to NULL prevents a possible double free in the fail_exit
* path (far below).
*/
mesa_instructions = NULL;
do_set_program_inouts(shader->ir, prog, shader->Type == GL_FRAGMENT_SHADER);
prog->SamplersUsed = shader->active_samplers;
prog->ShadowSamplers = shader->shadow_samplers;
_mesa_update_shader_textures_used(shader_program, prog);
/* Set the gl_FragDepth layout. */
if (target == GL_FRAGMENT_PROGRAM_ARB) {
struct gl_fragment_program *fp = (struct gl_fragment_program *)prog;
fp->FragDepthLayout = shader_program->FragDepthLayout;
}
_mesa_reference_program(ctx, &shader->Program, prog);
if ((ctx->Shader.Flags & GLSL_NO_OPT) == 0) {
_mesa_optimize_program(ctx, prog);
}
/* This has to be done last. Any operation that can cause
* prog->ParameterValues to get reallocated (e.g., anything that adds a
* program constant) has to happen before creating this linkage.
*/
_mesa_associate_uniform_storage(ctx, shader_program, prog->Parameters);
if (!shader_program->LinkStatus) {
goto fail_exit;
}
return prog;
fail_exit:
free(mesa_instructions);
_mesa_reference_program(ctx, &shader->Program, NULL);
return NULL;
}
extern "C" {
/**
* Link a shader.
* Called via ctx->Driver.LinkShader()
* This actually involves converting GLSL IR into Mesa gl_programs with
* code lowering and other optimizations.
*/
GLboolean
_mesa_ir_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
{
assert(prog->LinkStatus);
for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
if (prog->_LinkedShaders[i] == NULL)
continue;
bool progress;
exec_list *ir = prog->_LinkedShaders[i]->ir;
const struct gl_shader_compiler_options *options =
&ctx->ShaderCompilerOptions[_mesa_shader_type_to_index(prog->_LinkedShaders[i]->Type)];
do {
progress = false;
/* Lowering */
do_mat_op_to_vec(ir);
lower_instructions(ir, (MOD_TO_FRACT | DIV_TO_MUL_RCP | EXP_TO_EXP2
| LOG_TO_LOG2 | INT_DIV_TO_MUL_RCP
| ((options->EmitNoPow) ? POW_TO_EXP2 : 0)));
progress = do_lower_jumps(ir, true, true, options->EmitNoMainReturn, options->EmitNoCont, options->EmitNoLoops) || progress;
progress = do_common_optimization(ir, true, true,
options->MaxUnrollIterations)
|| progress;
progress = lower_quadop_vector(ir, true) || progress;
if (options->MaxIfDepth == 0)
progress = lower_discard(ir) || progress;
progress = lower_if_to_cond_assign(ir, options->MaxIfDepth) || progress;
if (options->EmitNoNoise)
progress = lower_noise(ir) || progress;
/* If there are forms of indirect addressing that the driver
* cannot handle, perform the lowering pass.
*/
if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput
|| options->EmitNoIndirectTemp || options->EmitNoIndirectUniform)
progress =
lower_variable_index_to_cond_assign(ir,
options->EmitNoIndirectInput,
options->EmitNoIndirectOutput,
options->EmitNoIndirectTemp,
options->EmitNoIndirectUniform)
|| progress;
progress = do_vec_index_to_cond_assign(ir) || progress;
} while (progress);
validate_ir_tree(ir);
}
for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
struct gl_program *linked_prog;
if (prog->_LinkedShaders[i] == NULL)
continue;
linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i]);
if (linked_prog) {
static const GLenum targets[] = {
GL_VERTEX_PROGRAM_ARB,
GL_FRAGMENT_PROGRAM_ARB,
GL_GEOMETRY_PROGRAM_NV
};
if (i == MESA_SHADER_VERTEX) {
((struct gl_vertex_program *)linked_prog)->UsesClipDistance
= prog->Vert.UsesClipDistance;
}
_mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
linked_prog);
if (!ctx->Driver.ProgramStringNotify(ctx, targets[i], linked_prog)) {
return GL_FALSE;
}
}
_mesa_reference_program(ctx, &linked_prog, NULL);
}
return prog->LinkStatus;
}
/**
* Compile a GLSL shader. Called via glCompileShader().
*/
void
_mesa_glsl_compile_shader(struct gl_context *ctx, struct gl_shader *shader)
{
struct _mesa_glsl_parse_state *state =
new(shader) _mesa_glsl_parse_state(ctx, shader->Type, shader);
const char *source = shader->Source;
/* Check if the user called glCompileShader without first calling
* glShaderSource. This should fail to compile, but not raise a GL_ERROR.
*/
if (source == NULL) {
shader->CompileStatus = GL_FALSE;
return;
}
state->error = glcpp_preprocess(state, &source, &state->info_log,
&ctx->Extensions, ctx->API);
if (ctx->Shader.Flags & GLSL_DUMP) {
printf("GLSL source for %s shader %d:\n",
_mesa_glsl_shader_target_name(state->target), shader->Name);
printf("%s\n", shader->Source);
}
if (!state->error) {
_mesa_glsl_lexer_ctor(state, source);
_mesa_glsl_parse(state);
_mesa_glsl_lexer_dtor(state);
}
ralloc_free(shader->ir);
shader->ir = new(shader) exec_list;
if (!state->error && !state->translation_unit.is_empty())
_mesa_ast_to_hir(shader->ir, state);
if (!state->error && !shader->ir->is_empty()) {
validate_ir_tree(shader->ir);
/* Do some optimization at compile time to reduce shader IR size
* and reduce later work if the same shader is linked multiple times
*/
while (do_common_optimization(shader->ir, false, false, 32))
;
validate_ir_tree(shader->ir);
}
shader->symbols = state->symbols;
shader->CompileStatus = !state->error;
shader->InfoLog = state->info_log;
shader->Version = state->language_version;
memcpy(shader->builtins_to_link, state->builtins_to_link,
sizeof(shader->builtins_to_link[0]) * state->num_builtins_to_link);
shader->num_builtins_to_link = state->num_builtins_to_link;
if (ctx->Shader.Flags & GLSL_LOG) {
_mesa_write_shader_to_file(shader);
}
if (ctx->Shader.Flags & GLSL_DUMP) {
if (shader->CompileStatus) {
printf("GLSL IR for shader %d:\n", shader->Name);
_mesa_print_ir(shader->ir, NULL);
printf("\n\n");
} else {
printf("GLSL shader %d failed to compile.\n", shader->Name);
}
if (shader->InfoLog && shader->InfoLog[0] != 0) {
printf("GLSL shader %d info log:\n", shader->Name);
printf("%s\n", shader->InfoLog);
}
}
if (shader->UniformBlocks)
ralloc_free(shader->UniformBlocks);
shader->NumUniformBlocks = state->num_uniform_blocks;
shader->UniformBlocks = state->uniform_blocks;
ralloc_steal(shader, shader->UniformBlocks);
/* Retain any live IR, but trash the rest. */
reparent_ir(shader->ir, shader->ir);
ralloc_free(state);
}
/**
* Link a GLSL shader program. Called via glLinkProgram().
*/
void
_mesa_glsl_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
{
unsigned int i;
_mesa_clear_shader_program_data(ctx, prog);
prog->LinkStatus = GL_TRUE;
for (i = 0; i < prog->NumShaders; i++) {
if (!prog->Shaders[i]->CompileStatus) {
linker_error(prog, "linking with uncompiled shader");
prog->LinkStatus = GL_FALSE;
}
}
if (prog->LinkStatus) {
link_shaders(ctx, prog);
}
if (prog->LinkStatus) {
if (!ctx->Driver.LinkShader(ctx, prog)) {
prog->LinkStatus = GL_FALSE;
}
}
if (ctx->Shader.Flags & GLSL_DUMP) {
if (!prog->LinkStatus) {
printf("GLSL shader program %d failed to link\n", prog->Name);
}
if (prog->InfoLog && prog->InfoLog[0] != 0) {
printf("GLSL shader program %d info log:\n", prog->Name);
printf("%s\n", prog->InfoLog);
}
}
}
} /* extern "C" */