blob: cdc971392e40c35d27563387c916ab3de71a082a [file] [log] [blame]
/*
* Copyright © 2011 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "brw_vec4.h"
extern "C" {
#include "main/macros.h"
#include "program/prog_parameter.h"
}
#define MAX_INSTRUCTION (1 << 30)
namespace brw {
/**
* Common helper for constructing swizzles. When only a subset of
* channels of a vec4 are used, we don't want to reference the other
* channels, as that will tell optimization passes that those other
* channels are used.
*/
unsigned
swizzle_for_size(int size)
{
static const unsigned size_swizzles[4] = {
BRW_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
BRW_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
BRW_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
BRW_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
};
assert((size >= 1) && (size <= 4));
return size_swizzles[size - 1];
}
void
src_reg::init()
{
memset(this, 0, sizeof(*this));
this->file = BAD_FILE;
}
src_reg::src_reg(register_file file, int reg, const glsl_type *type)
{
init();
this->file = file;
this->reg = reg;
if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
this->swizzle = swizzle_for_size(type->vector_elements);
else
this->swizzle = SWIZZLE_XYZW;
}
/** Generic unset register constructor. */
src_reg::src_reg()
{
init();
}
src_reg::src_reg(float f)
{
init();
this->file = IMM;
this->type = BRW_REGISTER_TYPE_F;
this->imm.f = f;
}
src_reg::src_reg(uint32_t u)
{
init();
this->file = IMM;
this->type = BRW_REGISTER_TYPE_UD;
this->imm.u = u;
}
src_reg::src_reg(int32_t i)
{
init();
this->file = IMM;
this->type = BRW_REGISTER_TYPE_D;
this->imm.i = i;
}
src_reg::src_reg(dst_reg reg)
{
init();
this->file = reg.file;
this->reg = reg.reg;
this->reg_offset = reg.reg_offset;
this->type = reg.type;
this->reladdr = reg.reladdr;
this->fixed_hw_reg = reg.fixed_hw_reg;
int swizzles[4];
int next_chan = 0;
int last = 0;
for (int i = 0; i < 4; i++) {
if (!(reg.writemask & (1 << i)))
continue;
swizzles[next_chan++] = last = i;
}
for (; next_chan < 4; next_chan++) {
swizzles[next_chan] = last;
}
this->swizzle = BRW_SWIZZLE4(swizzles[0], swizzles[1],
swizzles[2], swizzles[3]);
}
bool
vec4_instruction::is_tex()
{
return (opcode == SHADER_OPCODE_TEX ||
opcode == SHADER_OPCODE_TXD ||
opcode == SHADER_OPCODE_TXF ||
opcode == SHADER_OPCODE_TXL ||
opcode == SHADER_OPCODE_TXS);
}
void
dst_reg::init()
{
memset(this, 0, sizeof(*this));
this->file = BAD_FILE;
this->writemask = WRITEMASK_XYZW;
}
dst_reg::dst_reg()
{
init();
}
dst_reg::dst_reg(register_file file, int reg)
{
init();
this->file = file;
this->reg = reg;
}
dst_reg::dst_reg(register_file file, int reg, const glsl_type *type,
int writemask)
{
init();
this->file = file;
this->reg = reg;
this->type = brw_type_for_base_type(type);
this->writemask = writemask;
}
dst_reg::dst_reg(struct brw_reg reg)
{
init();
this->file = HW_REG;
this->fixed_hw_reg = reg;
}
dst_reg::dst_reg(src_reg reg)
{
init();
this->file = reg.file;
this->reg = reg.reg;
this->reg_offset = reg.reg_offset;
this->type = reg.type;
this->writemask = WRITEMASK_XYZW;
this->reladdr = reg.reladdr;
this->fixed_hw_reg = reg.fixed_hw_reg;
}
bool
vec4_instruction::is_math()
{
return (opcode == SHADER_OPCODE_RCP ||
opcode == SHADER_OPCODE_RSQ ||
opcode == SHADER_OPCODE_SQRT ||
opcode == SHADER_OPCODE_EXP2 ||
opcode == SHADER_OPCODE_LOG2 ||
opcode == SHADER_OPCODE_SIN ||
opcode == SHADER_OPCODE_COS ||
opcode == SHADER_OPCODE_INT_QUOTIENT ||
opcode == SHADER_OPCODE_INT_REMAINDER ||
opcode == SHADER_OPCODE_POW);
}
/**
* Returns how many MRFs an opcode will write over.
*
* Note that this is not the 0 or 1 implied writes in an actual gen
* instruction -- the generate_* functions generate additional MOVs
* for setup.
*/
int
vec4_visitor::implied_mrf_writes(vec4_instruction *inst)
{
if (inst->mlen == 0)
return 0;
switch (inst->opcode) {
case SHADER_OPCODE_RCP:
case SHADER_OPCODE_RSQ:
case SHADER_OPCODE_SQRT:
case SHADER_OPCODE_EXP2:
case SHADER_OPCODE_LOG2:
case SHADER_OPCODE_SIN:
case SHADER_OPCODE_COS:
return 1;
case SHADER_OPCODE_POW:
return 2;
case VS_OPCODE_URB_WRITE:
return 1;
case VS_OPCODE_PULL_CONSTANT_LOAD:
return 2;
case VS_OPCODE_SCRATCH_READ:
return 2;
case VS_OPCODE_SCRATCH_WRITE:
return 3;
default:
assert(!"not reached");
return inst->mlen;
}
}
bool
src_reg::equals(src_reg *r)
{
return (file == r->file &&
reg == r->reg &&
reg_offset == r->reg_offset &&
type == r->type &&
negate == r->negate &&
abs == r->abs &&
swizzle == r->swizzle &&
!reladdr && !r->reladdr &&
memcmp(&fixed_hw_reg, &r->fixed_hw_reg,
sizeof(fixed_hw_reg)) == 0 &&
imm.u == r->imm.u);
}
void
vec4_visitor::calculate_live_intervals()
{
int *def = ralloc_array(mem_ctx, int, virtual_grf_count);
int *use = ralloc_array(mem_ctx, int, virtual_grf_count);
int loop_depth = 0;
int loop_start = 0;
if (this->live_intervals_valid)
return;
for (int i = 0; i < virtual_grf_count; i++) {
def[i] = MAX_INSTRUCTION;
use[i] = -1;
}
int ip = 0;
foreach_list(node, &this->instructions) {
vec4_instruction *inst = (vec4_instruction *)node;
if (inst->opcode == BRW_OPCODE_DO) {
if (loop_depth++ == 0)
loop_start = ip;
} else if (inst->opcode == BRW_OPCODE_WHILE) {
loop_depth--;
if (loop_depth == 0) {
/* Patches up the use of vars marked for being live across
* the whole loop.
*/
for (int i = 0; i < virtual_grf_count; i++) {
if (use[i] == loop_start) {
use[i] = ip;
}
}
}
} else {
for (unsigned int i = 0; i < 3; i++) {
if (inst->src[i].file == GRF) {
int reg = inst->src[i].reg;
if (!loop_depth) {
use[reg] = ip;
} else {
def[reg] = MIN2(loop_start, def[reg]);
use[reg] = loop_start;
/* Nobody else is going to go smash our start to
* later in the loop now, because def[reg] now
* points before the bb header.
*/
}
}
}
if (inst->dst.file == GRF) {
int reg = inst->dst.reg;
if (!loop_depth) {
def[reg] = MIN2(def[reg], ip);
} else {
def[reg] = MIN2(def[reg], loop_start);
}
}
}
ip++;
}
ralloc_free(this->virtual_grf_def);
ralloc_free(this->virtual_grf_use);
this->virtual_grf_def = def;
this->virtual_grf_use = use;
this->live_intervals_valid = true;
}
bool
vec4_visitor::virtual_grf_interferes(int a, int b)
{
int start = MAX2(this->virtual_grf_def[a], this->virtual_grf_def[b]);
int end = MIN2(this->virtual_grf_use[a], this->virtual_grf_use[b]);
/* We can't handle dead register writes here, without iterating
* over the whole instruction stream to find every single dead
* write to that register to compare to the live interval of the
* other register. Just assert that dead_code_eliminate() has been
* called.
*/
assert((this->virtual_grf_use[a] != -1 ||
this->virtual_grf_def[a] == MAX_INSTRUCTION) &&
(this->virtual_grf_use[b] != -1 ||
this->virtual_grf_def[b] == MAX_INSTRUCTION));
return start < end;
}
/**
* Must be called after calculate_live_intervales() to remove unused
* writes to registers -- register allocation will fail otherwise
* because something deffed but not used won't be considered to
* interfere with other regs.
*/
bool
vec4_visitor::dead_code_eliminate()
{
bool progress = false;
int pc = 0;
calculate_live_intervals();
foreach_list_safe(node, &this->instructions) {
vec4_instruction *inst = (vec4_instruction *)node;
if (inst->dst.file == GRF && this->virtual_grf_use[inst->dst.reg] <= pc) {
inst->remove();
progress = true;
}
pc++;
}
if (progress)
live_intervals_valid = false;
return progress;
}
void
vec4_visitor::split_uniform_registers()
{
/* Prior to this, uniforms have been in an array sized according to
* the number of vector uniforms present, sparsely filled (so an
* aggregate results in reg indices being skipped over). Now we're
* going to cut those aggregates up so each .reg index is one
* vector. The goal is to make elimination of unused uniform
* components easier later.
*/
foreach_list(node, &this->instructions) {
vec4_instruction *inst = (vec4_instruction *)node;
for (int i = 0 ; i < 3; i++) {
if (inst->src[i].file != UNIFORM)
continue;
assert(!inst->src[i].reladdr);
inst->src[i].reg += inst->src[i].reg_offset;
inst->src[i].reg_offset = 0;
}
}
/* Update that everything is now vector-sized. */
for (int i = 0; i < this->uniforms; i++) {
this->uniform_size[i] = 1;
}
}
void
vec4_visitor::pack_uniform_registers()
{
bool uniform_used[this->uniforms];
int new_loc[this->uniforms];
int new_chan[this->uniforms];
memset(uniform_used, 0, sizeof(uniform_used));
memset(new_loc, 0, sizeof(new_loc));
memset(new_chan, 0, sizeof(new_chan));
/* Find which uniform vectors are actually used by the program. We
* expect unused vector elements when we've moved array access out
* to pull constants, and from some GLSL code generators like wine.
*/
foreach_list(node, &this->instructions) {
vec4_instruction *inst = (vec4_instruction *)node;
for (int i = 0 ; i < 3; i++) {
if (inst->src[i].file != UNIFORM)
continue;
uniform_used[inst->src[i].reg] = true;
}
}
int new_uniform_count = 0;
/* Now, figure out a packing of the live uniform vectors into our
* push constants.
*/
for (int src = 0; src < uniforms; src++) {
int size = this->uniform_vector_size[src];
if (!uniform_used[src]) {
this->uniform_vector_size[src] = 0;
continue;
}
int dst;
/* Find the lowest place we can slot this uniform in. */
for (dst = 0; dst < src; dst++) {
if (this->uniform_vector_size[dst] + size <= 4)
break;
}
if (src == dst) {
new_loc[src] = dst;
new_chan[src] = 0;
} else {
new_loc[src] = dst;
new_chan[src] = this->uniform_vector_size[dst];
/* Move the references to the data */
for (int j = 0; j < size; j++) {
c->prog_data.param[dst * 4 + new_chan[src] + j] =
c->prog_data.param[src * 4 + j];
}
this->uniform_vector_size[dst] += size;
this->uniform_vector_size[src] = 0;
}
new_uniform_count = MAX2(new_uniform_count, dst + 1);
}
this->uniforms = new_uniform_count;
/* Now, update the instructions for our repacked uniforms. */
foreach_list(node, &this->instructions) {
vec4_instruction *inst = (vec4_instruction *)node;
for (int i = 0 ; i < 3; i++) {
int src = inst->src[i].reg;
if (inst->src[i].file != UNIFORM)
continue;
inst->src[i].reg = new_loc[src];
int sx = BRW_GET_SWZ(inst->src[i].swizzle, 0) + new_chan[src];
int sy = BRW_GET_SWZ(inst->src[i].swizzle, 1) + new_chan[src];
int sz = BRW_GET_SWZ(inst->src[i].swizzle, 2) + new_chan[src];
int sw = BRW_GET_SWZ(inst->src[i].swizzle, 3) + new_chan[src];
inst->src[i].swizzle = BRW_SWIZZLE4(sx, sy, sz, sw);
}
}
}
bool
src_reg::is_zero() const
{
if (file != IMM)
return false;
if (type == BRW_REGISTER_TYPE_F) {
return imm.f == 0.0;
} else {
return imm.i == 0;
}
}
bool
src_reg::is_one() const
{
if (file != IMM)
return false;
if (type == BRW_REGISTER_TYPE_F) {
return imm.f == 1.0;
} else {
return imm.i == 1;
}
}
/**
* Does algebraic optimizations (0 * a = 0, 1 * a = a, a + 0 = a).
*
* While GLSL IR also performs this optimization, we end up with it in
* our instruction stream for a couple of reasons. One is that we
* sometimes generate silly instructions, for example in array access
* where we'll generate "ADD offset, index, base" even if base is 0.
* The other is that GLSL IR's constant propagation doesn't track the
* components of aggregates, so some VS patterns (initialize matrix to
* 0, accumulate in vertex blending factors) end up breaking down to
* instructions involving 0.
*/
bool
vec4_visitor::opt_algebraic()
{
bool progress = false;
foreach_list(node, &this->instructions) {
vec4_instruction *inst = (vec4_instruction *)node;
switch (inst->opcode) {
case BRW_OPCODE_ADD:
if (inst->src[1].is_zero()) {
inst->opcode = BRW_OPCODE_MOV;
inst->src[1] = src_reg();
progress = true;
}
break;
case BRW_OPCODE_MUL:
if (inst->src[1].is_zero()) {
inst->opcode = BRW_OPCODE_MOV;
switch (inst->src[0].type) {
case BRW_REGISTER_TYPE_F:
inst->src[0] = src_reg(0.0f);
break;
case BRW_REGISTER_TYPE_D:
inst->src[0] = src_reg(0);
break;
case BRW_REGISTER_TYPE_UD:
inst->src[0] = src_reg(0u);
break;
default:
assert(!"not reached");
inst->src[0] = src_reg(0.0f);
break;
}
inst->src[1] = src_reg();
progress = true;
} else if (inst->src[1].is_one()) {
inst->opcode = BRW_OPCODE_MOV;
inst->src[1] = src_reg();
progress = true;
}
break;
default:
break;
}
}
if (progress)
this->live_intervals_valid = false;
return progress;
}
/**
* Only a limited number of hardware registers may be used for push
* constants, so this turns access to the overflowed constants into
* pull constants.
*/
void
vec4_visitor::move_push_constants_to_pull_constants()
{
int pull_constant_loc[this->uniforms];
/* Only allow 32 registers (256 uniform components) as push constants,
* which is the limit on gen6.
*/
int max_uniform_components = 32 * 8;
if (this->uniforms * 4 <= max_uniform_components)
return;
/* Make some sort of choice as to which uniforms get sent to pull
* constants. We could potentially do something clever here like
* look for the most infrequently used uniform vec4s, but leave
* that for later.
*/
for (int i = 0; i < this->uniforms * 4; i += 4) {
pull_constant_loc[i / 4] = -1;
if (i >= max_uniform_components) {
const float **values = &prog_data->param[i];
/* Try to find an existing copy of this uniform in the pull
* constants if it was part of an array access already.
*/
for (unsigned int j = 0; j < prog_data->nr_pull_params; j += 4) {
int matches;
for (matches = 0; matches < 4; matches++) {
if (prog_data->pull_param[j + matches] != values[matches])
break;
}
if (matches == 4) {
pull_constant_loc[i / 4] = j / 4;
break;
}
}
if (pull_constant_loc[i / 4] == -1) {
assert(prog_data->nr_pull_params % 4 == 0);
pull_constant_loc[i / 4] = prog_data->nr_pull_params / 4;
for (int j = 0; j < 4; j++) {
prog_data->pull_param[prog_data->nr_pull_params++] = values[j];
}
}
}
}
/* Now actually rewrite usage of the things we've moved to pull
* constants.
*/
foreach_list_safe(node, &this->instructions) {
vec4_instruction *inst = (vec4_instruction *)node;
for (int i = 0 ; i < 3; i++) {
if (inst->src[i].file != UNIFORM ||
pull_constant_loc[inst->src[i].reg] == -1)
continue;
int uniform = inst->src[i].reg;
dst_reg temp = dst_reg(this, glsl_type::vec4_type);
emit_pull_constant_load(inst, temp, inst->src[i],
pull_constant_loc[uniform]);
inst->src[i].file = temp.file;
inst->src[i].reg = temp.reg;
inst->src[i].reg_offset = temp.reg_offset;
inst->src[i].reladdr = NULL;
}
}
/* Repack push constants to remove the now-unused ones. */
pack_uniform_registers();
}
/*
* Tries to reduce extra MOV instructions by taking GRFs that get just
* written and then MOVed into an MRF and making the original write of
* the GRF write directly to the MRF instead.
*/
bool
vec4_visitor::opt_compute_to_mrf()
{
bool progress = false;
int next_ip = 0;
calculate_live_intervals();
foreach_list_safe(node, &this->instructions) {
vec4_instruction *inst = (vec4_instruction *)node;
int ip = next_ip;
next_ip++;
if (inst->opcode != BRW_OPCODE_MOV ||
inst->predicate ||
inst->dst.file != MRF || inst->src[0].file != GRF ||
inst->dst.type != inst->src[0].type ||
inst->src[0].abs || inst->src[0].negate || inst->src[0].reladdr)
continue;
int mrf = inst->dst.reg;
/* Can't compute-to-MRF this GRF if someone else was going to
* read it later.
*/
if (this->virtual_grf_use[inst->src[0].reg] > ip)
continue;
/* We need to check interference with the MRF between this
* instruction and the earliest instruction involved in writing
* the GRF we're eliminating. To do that, keep track of which
* of our source channels we've seen initialized.
*/
bool chans_needed[4] = {false, false, false, false};
int chans_remaining = 0;
for (int i = 0; i < 4; i++) {
int chan = BRW_GET_SWZ(inst->src[0].swizzle, i);
if (!(inst->dst.writemask & (1 << i)))
continue;
/* We don't handle compute-to-MRF across a swizzle. We would
* need to be able to rewrite instructions above to output
* results to different channels.
*/
if (chan != i)
chans_remaining = 5;
if (!chans_needed[chan]) {
chans_needed[chan] = true;
chans_remaining++;
}
}
if (chans_remaining > 4)
continue;
/* Now walk up the instruction stream trying to see if we can
* rewrite everything writing to the GRF into the MRF instead.
*/
vec4_instruction *scan_inst;
for (scan_inst = (vec4_instruction *)inst->prev;
scan_inst->prev != NULL;
scan_inst = (vec4_instruction *)scan_inst->prev) {
if (scan_inst->dst.file == GRF &&
scan_inst->dst.reg == inst->src[0].reg &&
scan_inst->dst.reg_offset == inst->src[0].reg_offset) {
/* Found something writing to the reg we want to turn into
* a compute-to-MRF.
*/
/* SEND instructions can't have MRF as a destination. */
if (scan_inst->mlen)
break;
if (intel->gen >= 6) {
/* gen6 math instructions must have the destination be
* GRF, so no compute-to-MRF for them.
*/
if (scan_inst->is_math()) {
break;
}
}
/* Mark which channels we found unconditional writes for. */
if (!scan_inst->predicate) {
for (int i = 0; i < 4; i++) {
if (scan_inst->dst.writemask & (1 << i) &&
chans_needed[i]) {
chans_needed[i] = false;
chans_remaining--;
}
}
}
if (chans_remaining == 0)
break;
}
/* We don't handle flow control here. Most computation of
* values that end up in MRFs are shortly before the MRF
* write anyway.
*/
if (scan_inst->opcode == BRW_OPCODE_DO ||
scan_inst->opcode == BRW_OPCODE_WHILE ||
scan_inst->opcode == BRW_OPCODE_ELSE ||
scan_inst->opcode == BRW_OPCODE_ENDIF) {
break;
}
/* You can't read from an MRF, so if someone else reads our
* MRF's source GRF that we wanted to rewrite, that stops us.
*/
bool interfered = false;
for (int i = 0; i < 3; i++) {
if (scan_inst->src[i].file == GRF &&
scan_inst->src[i].reg == inst->src[0].reg &&
scan_inst->src[i].reg_offset == inst->src[0].reg_offset) {
interfered = true;
}
}
if (interfered)
break;
/* If somebody else writes our MRF here, we can't
* compute-to-MRF before that.
*/
if (scan_inst->dst.file == MRF && mrf == scan_inst->dst.reg)
break;
if (scan_inst->mlen > 0) {
/* Found a SEND instruction, which means that there are
* live values in MRFs from base_mrf to base_mrf +
* scan_inst->mlen - 1. Don't go pushing our MRF write up
* above it.
*/
if (mrf >= scan_inst->base_mrf &&
mrf < scan_inst->base_mrf + scan_inst->mlen) {
break;
}
}
}
if (chans_remaining == 0) {
/* If we've made it here, we have an inst we want to
* compute-to-MRF, and a scan_inst pointing to the earliest
* instruction involved in computing the value. Now go
* rewrite the instruction stream between the two.
*/
while (scan_inst != inst) {
if (scan_inst->dst.file == GRF &&
scan_inst->dst.reg == inst->src[0].reg &&
scan_inst->dst.reg_offset == inst->src[0].reg_offset) {
scan_inst->dst.file = MRF;
scan_inst->dst.reg = mrf;
scan_inst->dst.reg_offset = 0;
scan_inst->dst.writemask &= inst->dst.writemask;
scan_inst->saturate |= inst->saturate;
}
scan_inst = (vec4_instruction *)scan_inst->next;
}
inst->remove();
progress = true;
}
}
if (progress)
live_intervals_valid = false;
return progress;
}
} /* namespace brw */