blob: e8604e70195f6eae846b06dcc9ab97c5da0782ad [file] [log] [blame]
/*
* Copyright © 2012 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "main/teximage.h"
#include "main/fbobject.h"
#include "glsl/ralloc.h"
#include "intel_fbo.h"
#include "brw_blorp.h"
#include "brw_context.h"
#include "brw_eu.h"
#include "brw_state.h"
/**
* Helper function for handling mirror image blits.
*
* If coord0 > coord1, swap them and invert the "mirror" boolean.
*/
static inline void
fixup_mirroring(bool &mirror, GLint &coord0, GLint &coord1)
{
if (coord0 > coord1) {
mirror = !mirror;
GLint tmp = coord0;
coord0 = coord1;
coord1 = tmp;
}
}
/**
* Adjust {src,dst}_x{0,1} to account for clipping and scissoring of
* destination coordinates.
*
* Return true if there is still blitting to do, false if all pixels got
* rejected by the clip and/or scissor.
*
* For clarity, the nomenclature of this function assumes we are clipping and
* scissoring the X coordinate; the exact same logic applies for Y
* coordinates.
*
* Note: this function may also be used to account for clipping of source
* coordinates, by swapping the roles of src and dst.
*/
static inline bool
clip_or_scissor(bool mirror, GLint &src_x0, GLint &src_x1, GLint &dst_x0,
GLint &dst_x1, GLint fb_xmin, GLint fb_xmax)
{
/* If we are going to scissor everything away, stop. */
if (!(fb_xmin < fb_xmax &&
dst_x0 < fb_xmax &&
fb_xmin < dst_x1 &&
dst_x0 < dst_x1)) {
return false;
}
/* Clip the destination rectangle, and keep track of how many pixels we
* clipped off of the left and right sides of it.
*/
GLint pixels_clipped_left = 0;
GLint pixels_clipped_right = 0;
if (dst_x0 < fb_xmin) {
pixels_clipped_left = fb_xmin - dst_x0;
dst_x0 = fb_xmin;
}
if (fb_xmax < dst_x1) {
pixels_clipped_right = dst_x1 - fb_xmax;
dst_x1 = fb_xmax;
}
/* If we are mirrored, then before applying pixels_clipped_{left,right} to
* the source coordinates, we need to flip them to account for the
* mirroring.
*/
if (mirror) {
GLint tmp = pixels_clipped_left;
pixels_clipped_left = pixels_clipped_right;
pixels_clipped_right = tmp;
}
/* Adjust the source rectangle to remove the pixels corresponding to those
* that were clipped/scissored out of the destination rectangle.
*/
src_x0 += pixels_clipped_left;
src_x1 -= pixels_clipped_right;
return true;
}
static struct intel_mipmap_tree *
find_miptree(GLbitfield buffer_bit, struct intel_renderbuffer *irb)
{
struct intel_mipmap_tree *mt = irb->mt;
if (buffer_bit == GL_STENCIL_BUFFER_BIT && mt->stencil_mt)
mt = mt->stencil_mt;
return mt;
}
void
brw_blorp_blit_miptrees(struct intel_context *intel,
struct intel_mipmap_tree *src_mt,
unsigned src_level, unsigned src_layer,
struct intel_mipmap_tree *dst_mt,
unsigned dst_level, unsigned dst_layer,
int src_x0, int src_y0,
int dst_x0, int dst_y0,
int dst_x1, int dst_y1,
bool mirror_x, bool mirror_y)
{
brw_blorp_blit_params params(brw_context(&intel->ctx),
src_mt, src_level, src_layer,
dst_mt, dst_level, dst_layer,
src_x0, src_y0,
dst_x0, dst_y0,
dst_x1, dst_y1,
mirror_x, mirror_y);
brw_blorp_exec(intel, &params);
}
static void
do_blorp_blit(struct intel_context *intel, GLbitfield buffer_bit,
struct intel_renderbuffer *src_irb,
struct intel_renderbuffer *dst_irb,
GLint srcX0, GLint srcY0,
GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1,
bool mirror_x, bool mirror_y)
{
/* Find source/dst miptrees */
struct intel_mipmap_tree *src_mt = find_miptree(buffer_bit, src_irb);
struct intel_mipmap_tree *dst_mt = find_miptree(buffer_bit, dst_irb);
/* Get ready to blit. This includes depth resolving the src and dst
* buffers if necessary.
*/
intel_renderbuffer_resolve_depth(intel, src_irb);
intel_renderbuffer_resolve_depth(intel, dst_irb);
/* Do the blit */
brw_blorp_blit_miptrees(intel,
src_mt, src_irb->mt_level, src_irb->mt_layer,
dst_mt, dst_irb->mt_level, dst_irb->mt_layer,
srcX0, srcY0, dstX0, dstY0, dstX1, dstY1,
mirror_x, mirror_y);
intel_renderbuffer_set_needs_hiz_resolve(dst_irb);
intel_renderbuffer_set_needs_downsample(dst_irb);
}
static bool
formats_match(GLbitfield buffer_bit, struct intel_renderbuffer *src_irb,
struct intel_renderbuffer *dst_irb)
{
/* Note: don't just check gl_renderbuffer::Format, because in some cases
* multiple gl_formats resolve to the same native type in the miptree (for
* example MESA_FORMAT_X8_Z24 and MESA_FORMAT_S8_Z24), and we can blit
* between those formats.
*/
gl_format src_format = find_miptree(buffer_bit, src_irb)->format;
gl_format dst_format = find_miptree(buffer_bit, dst_irb)->format;
return _mesa_get_srgb_format_linear(src_format) ==
_mesa_get_srgb_format_linear(dst_format);
}
static bool
try_blorp_blit(struct intel_context *intel,
GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1,
GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1,
GLenum filter, GLbitfield buffer_bit)
{
struct gl_context *ctx = &intel->ctx;
/* Sync up the state of window system buffers. We need to do this before
* we go looking for the buffers.
*/
intel_prepare_render(intel);
const struct gl_framebuffer *read_fb = ctx->ReadBuffer;
const struct gl_framebuffer *draw_fb = ctx->DrawBuffer;
/* Detect if the blit needs to be mirrored */
bool mirror_x = false, mirror_y = false;
fixup_mirroring(mirror_x, srcX0, srcX1);
fixup_mirroring(mirror_x, dstX0, dstX1);
fixup_mirroring(mirror_y, srcY0, srcY1);
fixup_mirroring(mirror_y, dstY0, dstY1);
/* Make sure width and height match */
if (srcX1 - srcX0 != dstX1 - dstX0) return false;
if (srcY1 - srcY0 != dstY1 - dstY0) return false;
/* If the destination rectangle needs to be clipped or scissored, do so.
*/
if (!(clip_or_scissor(mirror_x, srcX0, srcX1, dstX0, dstX1,
draw_fb->_Xmin, draw_fb->_Xmax) &&
clip_or_scissor(mirror_y, srcY0, srcY1, dstY0, dstY1,
draw_fb->_Ymin, draw_fb->_Ymax))) {
/* Everything got clipped/scissored away, so the blit was successful. */
return true;
}
/* If the source rectangle needs to be clipped or scissored, do so. */
if (!(clip_or_scissor(mirror_x, dstX0, dstX1, srcX0, srcX1,
0, read_fb->Width) &&
clip_or_scissor(mirror_y, dstY0, dstY1, srcY0, srcY1,
0, read_fb->Height))) {
/* Everything got clipped/scissored away, so the blit was successful. */
return true;
}
/* Account for the fact that in the system framebuffer, the origin is at
* the lower left.
*/
if (_mesa_is_winsys_fbo(read_fb)) {
GLint tmp = read_fb->Height - srcY0;
srcY0 = read_fb->Height - srcY1;
srcY1 = tmp;
mirror_y = !mirror_y;
}
if (_mesa_is_winsys_fbo(draw_fb)) {
GLint tmp = draw_fb->Height - dstY0;
dstY0 = draw_fb->Height - dstY1;
dstY1 = tmp;
mirror_y = !mirror_y;
}
/* Find buffers */
struct intel_renderbuffer *src_irb;
struct intel_renderbuffer *dst_irb;
switch (buffer_bit) {
case GL_COLOR_BUFFER_BIT:
src_irb = intel_renderbuffer(read_fb->_ColorReadBuffer);
for (unsigned i = 0; i < ctx->DrawBuffer->_NumColorDrawBuffers; ++i) {
dst_irb = intel_renderbuffer(ctx->DrawBuffer->_ColorDrawBuffers[i]);
if (dst_irb && !formats_match(buffer_bit, src_irb, dst_irb))
return false;
}
for (unsigned i = 0; i < ctx->DrawBuffer->_NumColorDrawBuffers; ++i) {
dst_irb = intel_renderbuffer(ctx->DrawBuffer->_ColorDrawBuffers[i]);
do_blorp_blit(intel, buffer_bit, src_irb, dst_irb, srcX0, srcY0,
dstX0, dstY0, dstX1, dstY1, mirror_x, mirror_y);
}
break;
case GL_DEPTH_BUFFER_BIT:
src_irb =
intel_renderbuffer(read_fb->Attachment[BUFFER_DEPTH].Renderbuffer);
dst_irb =
intel_renderbuffer(draw_fb->Attachment[BUFFER_DEPTH].Renderbuffer);
if (!formats_match(buffer_bit, src_irb, dst_irb))
return false;
do_blorp_blit(intel, buffer_bit, src_irb, dst_irb, srcX0, srcY0,
dstX0, dstY0, dstX1, dstY1, mirror_x, mirror_y);
break;
case GL_STENCIL_BUFFER_BIT:
src_irb =
intel_renderbuffer(read_fb->Attachment[BUFFER_STENCIL].Renderbuffer);
dst_irb =
intel_renderbuffer(draw_fb->Attachment[BUFFER_STENCIL].Renderbuffer);
if (!formats_match(buffer_bit, src_irb, dst_irb))
return false;
do_blorp_blit(intel, buffer_bit, src_irb, dst_irb, srcX0, srcY0,
dstX0, dstY0, dstX1, dstY1, mirror_x, mirror_y);
break;
default:
assert(false);
}
return true;
}
GLbitfield
brw_blorp_framebuffer(struct intel_context *intel,
GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1,
GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1,
GLbitfield mask, GLenum filter)
{
/* BLORP is not supported before Gen6. */
if (intel->gen < 6)
return mask;
static GLbitfield buffer_bits[] = {
GL_COLOR_BUFFER_BIT,
GL_DEPTH_BUFFER_BIT,
GL_STENCIL_BUFFER_BIT,
};
for (unsigned int i = 0; i < ARRAY_SIZE(buffer_bits); ++i) {
if ((mask & buffer_bits[i]) &&
try_blorp_blit(intel,
srcX0, srcY0, srcX1, srcY1,
dstX0, dstY0, dstX1, dstY1,
filter, buffer_bits[i])) {
mask &= ~buffer_bits[i];
}
}
return mask;
}
/**
* Enum to specify the order of arguments in a sampler message
*/
enum sampler_message_arg
{
SAMPLER_MESSAGE_ARG_U_FLOAT,
SAMPLER_MESSAGE_ARG_V_FLOAT,
SAMPLER_MESSAGE_ARG_U_INT,
SAMPLER_MESSAGE_ARG_V_INT,
SAMPLER_MESSAGE_ARG_SI_INT,
SAMPLER_MESSAGE_ARG_MCS_INT,
SAMPLER_MESSAGE_ARG_ZERO_INT,
};
/**
* Generator for WM programs used in BLORP blits.
*
* The bulk of the work done by the WM program is to wrap and unwrap the
* coordinate transformations used by the hardware to store surfaces in
* memory. The hardware transforms a pixel location (X, Y, S) (where S is the
* sample index for a multisampled surface) to a memory offset by the
* following formulas:
*
* offset = tile(tiling_format, encode_msaa(num_samples, layout, X, Y, S))
* (X, Y, S) = decode_msaa(num_samples, layout, detile(tiling_format, offset))
*
* For a single-sampled surface, or for a multisampled surface using
* INTEL_MSAA_LAYOUT_UMS, encode_msaa() and decode_msaa are the identity
* function:
*
* encode_msaa(1, NONE, X, Y, 0) = (X, Y, 0)
* decode_msaa(1, NONE, X, Y, 0) = (X, Y, 0)
* encode_msaa(n, UMS, X, Y, S) = (X, Y, S)
* decode_msaa(n, UMS, X, Y, S) = (X, Y, S)
*
* For a 4x multisampled surface using INTEL_MSAA_LAYOUT_IMS, encode_msaa()
* embeds the sample number into bit 1 of the X and Y coordinates:
*
* encode_msaa(4, IMS, X, Y, S) = (X', Y', 0)
* where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
* Y' = (Y & ~0b1 ) << 1 | (S & 0b10) | (Y & 0b1)
* decode_msaa(4, IMS, X, Y, 0) = (X', Y', S)
* where X' = (X & ~0b11) >> 1 | (X & 0b1)
* Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
* S = (Y & 0b10) | (X & 0b10) >> 1
*
* For an 8x multisampled surface using INTEL_MSAA_LAYOUT_IMS, encode_msaa()
* embeds the sample number into bits 1 and 2 of the X coordinate and bit 1 of
* the Y coordinate:
*
* encode_msaa(8, IMS, X, Y, S) = (X', Y', 0)
* where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1 | (X & 0b1)
* Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
* decode_msaa(8, IMS, X, Y, 0) = (X', Y', S)
* where X' = (X & ~0b111) >> 2 | (X & 0b1)
* Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
* S = (X & 0b100) | (Y & 0b10) | (X & 0b10) >> 1
*
* For X tiling, tile() combines together the low-order bits of the X and Y
* coordinates in the pattern 0byyyxxxxxxxxx, creating 4k tiles that are 512
* bytes wide and 8 rows high:
*
* tile(x_tiled, X, Y, S) = A
* where A = tile_num << 12 | offset
* tile_num = (Y' >> 3) * tile_pitch + (X' >> 9)
* offset = (Y' & 0b111) << 9
* | (X & 0b111111111)
* X' = X * cpp
* Y' = Y + S * qpitch
* detile(x_tiled, A) = (X, Y, S)
* where X = X' / cpp
* Y = Y' % qpitch
* S = Y' / qpitch
* Y' = (tile_num / tile_pitch) << 3
* | (A & 0b111000000000) >> 9
* X' = (tile_num % tile_pitch) << 9
* | (A & 0b111111111)
*
* (In all tiling formulas, cpp is the number of bytes occupied by a single
* sample ("chars per pixel"), tile_pitch is the number of 4k tiles required
* to fill the width of the surface, and qpitch is the spacing (in rows)
* between array slices).
*
* For Y tiling, tile() combines together the low-order bits of the X and Y
* coordinates in the pattern 0bxxxyyyyyxxxx, creating 4k tiles that are 128
* bytes wide and 32 rows high:
*
* tile(y_tiled, X, Y, S) = A
* where A = tile_num << 12 | offset
* tile_num = (Y' >> 5) * tile_pitch + (X' >> 7)
* offset = (X' & 0b1110000) << 5
* | (Y' & 0b11111) << 4
* | (X' & 0b1111)
* X' = X * cpp
* Y' = Y + S * qpitch
* detile(y_tiled, A) = (X, Y, S)
* where X = X' / cpp
* Y = Y' % qpitch
* S = Y' / qpitch
* Y' = (tile_num / tile_pitch) << 5
* | (A & 0b111110000) >> 4
* X' = (tile_num % tile_pitch) << 7
* | (A & 0b111000000000) >> 5
* | (A & 0b1111)
*
* For W tiling, tile() combines together the low-order bits of the X and Y
* coordinates in the pattern 0bxxxyyyyxyxyx, creating 4k tiles that are 64
* bytes wide and 64 rows high (note that W tiling is only used for stencil
* buffers, which always have cpp = 1 and S=0):
*
* tile(w_tiled, X, Y, S) = A
* where A = tile_num << 12 | offset
* tile_num = (Y' >> 6) * tile_pitch + (X' >> 6)
* offset = (X' & 0b111000) << 6
* | (Y' & 0b111100) << 3
* | (X' & 0b100) << 2
* | (Y' & 0b10) << 2
* | (X' & 0b10) << 1
* | (Y' & 0b1) << 1
* | (X' & 0b1)
* X' = X * cpp = X
* Y' = Y + S * qpitch
* detile(w_tiled, A) = (X, Y, S)
* where X = X' / cpp = X'
* Y = Y' % qpitch = Y'
* S = Y / qpitch = 0
* Y' = (tile_num / tile_pitch) << 6
* | (A & 0b111100000) >> 3
* | (A & 0b1000) >> 2
* | (A & 0b10) >> 1
* X' = (tile_num % tile_pitch) << 6
* | (A & 0b111000000000) >> 6
* | (A & 0b10000) >> 2
* | (A & 0b100) >> 1
* | (A & 0b1)
*
* Finally, for a non-tiled surface, tile() simply combines together the X and
* Y coordinates in the natural way:
*
* tile(untiled, X, Y, S) = A
* where A = Y * pitch + X'
* X' = X * cpp
* Y' = Y + S * qpitch
* detile(untiled, A) = (X, Y, S)
* where X = X' / cpp
* Y = Y' % qpitch
* S = Y' / qpitch
* X' = A % pitch
* Y' = A / pitch
*
* (In these formulas, pitch is the number of bytes occupied by a single row
* of samples).
*/
class brw_blorp_blit_program
{
public:
brw_blorp_blit_program(struct brw_context *brw,
const brw_blorp_blit_prog_key *key);
~brw_blorp_blit_program();
const GLuint *compile(struct brw_context *brw, GLuint *program_size);
brw_blorp_prog_data prog_data;
private:
void alloc_regs();
void alloc_push_const_regs(int base_reg);
void compute_frag_coords();
void translate_tiling(bool old_tiled_w, bool new_tiled_w);
void encode_msaa(unsigned num_samples, intel_msaa_layout layout);
void decode_msaa(unsigned num_samples, intel_msaa_layout layout);
void kill_if_outside_dst_rect();
void translate_dst_to_src();
void single_to_blend();
void manual_blend(unsigned num_samples);
void sample(struct brw_reg dst);
void texel_fetch(struct brw_reg dst);
void mcs_fetch();
void expand_to_32_bits(struct brw_reg src, struct brw_reg dst);
void texture_lookup(struct brw_reg dst, GLuint msg_type,
const sampler_message_arg *args, int num_args);
void render_target_write();
/**
* Base-2 logarithm of the maximum number of samples that can be blended.
*/
static const unsigned LOG2_MAX_BLEND_SAMPLES = 3;
void *mem_ctx;
struct brw_context *brw;
const brw_blorp_blit_prog_key *key;
struct brw_compile func;
/* Thread dispatch header */
struct brw_reg R0;
/* Pixel X/Y coordinates (always in R1). */
struct brw_reg R1;
/* Push constants */
struct brw_reg dst_x0;
struct brw_reg dst_x1;
struct brw_reg dst_y0;
struct brw_reg dst_y1;
struct {
struct brw_reg multiplier;
struct brw_reg offset;
} x_transform, y_transform;
/* Data read from texture (4 vec16's per array element) */
struct brw_reg texture_data[LOG2_MAX_BLEND_SAMPLES + 1];
/* Auxiliary storage for the contents of the MCS surface.
*
* Since the sampler always returns 8 registers worth of data, this is 8
* registers wide, even though we only use the first 2 registers of it.
*/
struct brw_reg mcs_data;
/* X coordinates. We have two of them so that we can perform coordinate
* transformations easily.
*/
struct brw_reg x_coords[2];
/* Y coordinates. We have two of them so that we can perform coordinate
* transformations easily.
*/
struct brw_reg y_coords[2];
/* Which element of x_coords and y_coords is currently in use.
*/
int xy_coord_index;
/* True if, at the point in the program currently being compiled, the
* sample index is known to be zero.
*/
bool s_is_zero;
/* Register storing the sample index when s_is_zero is false. */
struct brw_reg sample_index;
/* Temporaries */
struct brw_reg t1;
struct brw_reg t2;
/* MRF used for sampling and render target writes */
GLuint base_mrf;
};
brw_blorp_blit_program::brw_blorp_blit_program(
struct brw_context *brw,
const brw_blorp_blit_prog_key *key)
: mem_ctx(ralloc_context(NULL)),
brw(brw),
key(key)
{
brw_init_compile(brw, &func, mem_ctx);
}
brw_blorp_blit_program::~brw_blorp_blit_program()
{
ralloc_free(mem_ctx);
}
const GLuint *
brw_blorp_blit_program::compile(struct brw_context *brw,
GLuint *program_size)
{
/* Sanity checks */
if (key->dst_tiled_w && key->rt_samples > 0) {
/* If the destination image is W tiled and multisampled, then the thread
* must be dispatched once per sample, not once per pixel. This is
* necessary because after conversion between W and Y tiling, there's no
* guarantee that all samples corresponding to a single pixel will still
* be together.
*/
assert(key->persample_msaa_dispatch);
}
if (key->blend) {
/* We are blending, which means we won't have an opportunity to
* translate the tiling and sample count for the texture surface. So
* the surface state for the texture must be configured with the correct
* tiling and sample count.
*/
assert(!key->src_tiled_w);
assert(key->tex_samples == key->src_samples);
assert(key->tex_layout == key->src_layout);
assert(key->tex_samples > 0);
}
if (key->persample_msaa_dispatch) {
/* It only makes sense to do persample dispatch if the render target is
* configured as multisampled.
*/
assert(key->rt_samples > 0);
}
/* Make sure layout is consistent with sample count */
assert((key->tex_layout == INTEL_MSAA_LAYOUT_NONE) ==
(key->tex_samples == 0));
assert((key->rt_layout == INTEL_MSAA_LAYOUT_NONE) ==
(key->rt_samples == 0));
assert((key->src_layout == INTEL_MSAA_LAYOUT_NONE) ==
(key->src_samples == 0));
assert((key->dst_layout == INTEL_MSAA_LAYOUT_NONE) ==
(key->dst_samples == 0));
/* Set up prog_data */
memset(&prog_data, 0, sizeof(prog_data));
prog_data.persample_msaa_dispatch = key->persample_msaa_dispatch;
brw_set_compression_control(&func, BRW_COMPRESSION_NONE);
alloc_regs();
compute_frag_coords();
/* Render target and texture hardware don't support W tiling. */
const bool rt_tiled_w = false;
const bool tex_tiled_w = false;
/* The address that data will be written to is determined by the
* coordinates supplied to the WM thread and the tiling and sample count of
* the render target, according to the formula:
*
* (X, Y, S) = decode_msaa(rt_samples, detile(rt_tiling, offset))
*
* If the actual tiling and sample count of the destination surface are not
* the same as the configuration of the render target, then these
* coordinates are wrong and we have to adjust them to compensate for the
* difference.
*/
if (rt_tiled_w != key->dst_tiled_w ||
key->rt_samples != key->dst_samples ||
key->rt_layout != key->dst_layout) {
encode_msaa(key->rt_samples, key->rt_layout);
/* Now (X, Y, S) = detile(rt_tiling, offset) */
translate_tiling(rt_tiled_w, key->dst_tiled_w);
/* Now (X, Y, S) = detile(dst_tiling, offset) */
decode_msaa(key->dst_samples, key->dst_layout);
}
/* Now (X, Y, S) = decode_msaa(dst_samples, detile(dst_tiling, offset)).
*
* That is: X, Y and S now contain the true coordinates and sample index of
* the data that the WM thread should output.
*
* If we need to kill pixels that are outside the destination rectangle,
* now is the time to do it.
*/
if (key->use_kill)
kill_if_outside_dst_rect();
/* Next, apply a translation to obtain coordinates in the source image. */
translate_dst_to_src();
/* If the source image is not multisampled, then we want to fetch sample
* number 0, because that's the only sample there is.
*/
if (key->src_samples == 0)
s_is_zero = true;
/* X, Y, and S are now the coordinates of the pixel in the source image
* that we want to texture from. Exception: if we are blending, then S is
* irrelevant, because we are going to fetch all samples.
*/
if (key->blend) {
if (brw->intel.gen == 6) {
/* Gen6 hardware an automatically blend using the SAMPLE message */
single_to_blend();
sample(texture_data[0]);
} else {
/* Gen7+ hardware doesn't automaticaly blend. */
manual_blend(key->src_samples);
}
} else {
/* We aren't blending, which means we just want to fetch a single sample
* from the source surface. The address that we want to fetch from is
* related to the X, Y and S values according to the formula:
*
* (X, Y, S) = decode_msaa(src_samples, detile(src_tiling, offset)).
*
* If the actual tiling and sample count of the source surface are not
* the same as the configuration of the texture, then we need to adjust
* the coordinates to compensate for the difference.
*/
if (tex_tiled_w != key->src_tiled_w ||
key->tex_samples != key->src_samples ||
key->tex_layout != key->src_layout) {
encode_msaa(key->src_samples, key->src_layout);
/* Now (X, Y, S) = detile(src_tiling, offset) */
translate_tiling(key->src_tiled_w, tex_tiled_w);
/* Now (X, Y, S) = detile(tex_tiling, offset) */
decode_msaa(key->tex_samples, key->tex_layout);
}
/* Now (X, Y, S) = decode_msaa(tex_samples, detile(tex_tiling, offset)).
*
* In other words: X, Y, and S now contain values which, when passed to
* the texturing unit, will cause data to be read from the correct
* memory location. So we can fetch the texel now.
*/
if (key->tex_layout == INTEL_MSAA_LAYOUT_CMS)
mcs_fetch();
texel_fetch(texture_data[0]);
}
/* Finally, write the fetched (or blended) value to the render target and
* terminate the thread.
*/
render_target_write();
return brw_get_program(&func, program_size);
}
void
brw_blorp_blit_program::alloc_push_const_regs(int base_reg)
{
#define CONST_LOC(name) offsetof(brw_blorp_wm_push_constants, name)
#define ALLOC_REG(name) \
this->name = \
brw_uw1_reg(BRW_GENERAL_REGISTER_FILE, base_reg, CONST_LOC(name) / 2)
ALLOC_REG(dst_x0);
ALLOC_REG(dst_x1);
ALLOC_REG(dst_y0);
ALLOC_REG(dst_y1);
ALLOC_REG(x_transform.multiplier);
ALLOC_REG(x_transform.offset);
ALLOC_REG(y_transform.multiplier);
ALLOC_REG(y_transform.offset);
#undef CONST_LOC
#undef ALLOC_REG
}
void
brw_blorp_blit_program::alloc_regs()
{
int reg = 0;
this->R0 = retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW);
this->R1 = retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW);
prog_data.first_curbe_grf = reg;
alloc_push_const_regs(reg);
reg += BRW_BLORP_NUM_PUSH_CONST_REGS;
for (unsigned i = 0; i < ARRAY_SIZE(texture_data); ++i) {
this->texture_data[i] =
retype(vec16(brw_vec8_grf(reg, 0)), key->texture_data_type);
reg += 8;
}
this->mcs_data =
retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD); reg += 8;
for (int i = 0; i < 2; ++i) {
this->x_coords[i]
= vec16(retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW));
this->y_coords[i]
= vec16(retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW));
}
this->xy_coord_index = 0;
this->sample_index
= vec16(retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW));
this->t1 = vec16(retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW));
this->t2 = vec16(retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW));
/* Make sure we didn't run out of registers */
assert(reg <= GEN7_MRF_HACK_START);
int mrf = 2;
this->base_mrf = mrf;
}
/* In the code that follows, X and Y can be used to quickly refer to the
* active elements of x_coords and y_coords, and Xp and Yp ("X prime" and "Y
* prime") to the inactive elements.
*
* S can be used to quickly refer to sample_index.
*/
#define X x_coords[xy_coord_index]
#define Y y_coords[xy_coord_index]
#define Xp x_coords[!xy_coord_index]
#define Yp y_coords[!xy_coord_index]
#define S sample_index
/* Quickly swap the roles of (X, Y) and (Xp, Yp). Saves us from having to do
* MOVs to transfor (Xp, Yp) to (X, Y) after a coordinate transformation.
*/
#define SWAP_XY_AND_XPYP() xy_coord_index = !xy_coord_index;
/**
* Emit code to compute the X and Y coordinates of the pixels being rendered
* by this WM invocation.
*
* Assuming the render target is set up for Y tiling, these (X, Y) values are
* related to the address offset where outputs will be written by the formula:
*
* (X, Y, S) = decode_msaa(detile(offset)).
*
* (See brw_blorp_blit_program).
*/
void
brw_blorp_blit_program::compute_frag_coords()
{
/* R1.2[15:0] = X coordinate of upper left pixel of subspan 0 (pixel 0)
* R1.3[15:0] = X coordinate of upper left pixel of subspan 1 (pixel 4)
* R1.4[15:0] = X coordinate of upper left pixel of subspan 2 (pixel 8)
* R1.5[15:0] = X coordinate of upper left pixel of subspan 3 (pixel 12)
*
* Pixels within a subspan are laid out in this arrangement:
* 0 1
* 2 3
*
* So, to compute the coordinates of each pixel, we need to read every 2nd
* 16-bit value (vstride=2) from R1, starting at the 4th 16-bit value
* (suboffset=4), and duplicate each value 4 times (hstride=0, width=4).
* In other words, the data we want to access is R1.4<2;4,0>UW.
*
* Then, we need to add the repeating sequence (0, 1, 0, 1, ...) to the
* result, since pixels n+1 and n+3 are in the right half of the subspan.
*/
brw_ADD(&func, X, stride(suboffset(R1, 4), 2, 4, 0), brw_imm_v(0x10101010));
/* Similarly, Y coordinates for subspans come from R1.2[31:16] through
* R1.5[31:16], so to get pixel Y coordinates we need to start at the 5th
* 16-bit value instead of the 4th (R1.5<2;4,0>UW instead of
* R1.4<2;4,0>UW).
*
* And we need to add the repeating sequence (0, 0, 1, 1, ...), since
* pixels n+2 and n+3 are in the bottom half of the subspan.
*/
brw_ADD(&func, Y, stride(suboffset(R1, 5), 2, 4, 0), brw_imm_v(0x11001100));
if (key->persample_msaa_dispatch) {
switch (key->rt_samples) {
case 4:
/* The WM will be run in MSDISPMODE_PERSAMPLE with num_samples == 4.
* Therefore, subspan 0 will represent sample 0, subspan 1 will
* represent sample 1, and so on.
*
* So we need to populate S with the sequence (0, 0, 0, 0, 1, 1, 1,
* 1, 2, 2, 2, 2, 3, 3, 3, 3). The easiest way to do this is to
* populate a temporary variable with the sequence (0, 1, 2, 3), and
* then copy from it using vstride=1, width=4, hstride=0.
*/
brw_MOV(&func, t1, brw_imm_v(0x3210));
brw_MOV(&func, S, stride(t1, 1, 4, 0));
break;
case 8: {
/* The WM will be run in MSDISPMODE_PERSAMPLE with num_samples == 8.
* Therefore, subspan 0 will represent sample N (where N is 0 or 4),
* subspan 1 will represent sample 1, and so on. We can find the
* value of N by looking at R0.0 bits 7:6 ("Starting Sample Pair
* Index") and multiplying by two (since samples are always delivered
* in pairs). That is, we compute 2*((R0.0 & 0xc0) >> 6) == (R0.0 &
* 0xc0) >> 5.
*
* Then we need to add N to the sequence (0, 0, 0, 0, 1, 1, 1, 1, 2,
* 2, 2, 2, 3, 3, 3, 3), which we compute by populating a temporary
* variable with the sequence (0, 1, 2, 3), and then reading from it
* using vstride=1, width=4, hstride=0.
*/
struct brw_reg t1_ud1 = vec1(retype(t1, BRW_REGISTER_TYPE_UD));
struct brw_reg r0_ud1 = vec1(retype(R0, BRW_REGISTER_TYPE_UD));
brw_AND(&func, t1_ud1, r0_ud1, brw_imm_ud(0xc0));
brw_SHR(&func, t1_ud1, t1_ud1, brw_imm_ud(5));
brw_MOV(&func, t2, brw_imm_v(0x3210));
brw_ADD(&func, S, retype(t1_ud1, BRW_REGISTER_TYPE_UW),
stride(t2, 1, 4, 0));
break;
}
default:
assert(!"Unrecognized sample count in "
"brw_blorp_blit_program::compute_frag_coords()");
break;
}
s_is_zero = false;
} else {
/* Either the destination surface is single-sampled, or the WM will be
* run in MSDISPMODE_PERPIXEL (which causes a single fragment dispatch
* per pixel). In either case, it's not meaningful to compute a sample
* value. Just set it to 0.
*/
s_is_zero = true;
}
}
/**
* Emit code to compensate for the difference between Y and W tiling.
*
* This code modifies the X and Y coordinates according to the formula:
*
* (X', Y', S') = detile(new_tiling, tile(old_tiling, X, Y, S))
*
* (See brw_blorp_blit_program).
*
* It can only translate between W and Y tiling, so new_tiling and old_tiling
* are booleans where true represents W tiling and false represents Y tiling.
*/
void
brw_blorp_blit_program::translate_tiling(bool old_tiled_w, bool new_tiled_w)
{
if (old_tiled_w == new_tiled_w)
return;
/* In the code that follows, we can safely assume that S = 0, because W
* tiling formats always use IMS layout.
*/
assert(s_is_zero);
if (new_tiled_w) {
/* Given X and Y coordinates that describe an address using Y tiling,
* translate to the X and Y coordinates that describe the same address
* using W tiling.
*
* If we break down the low order bits of X and Y, using a
* single letter to represent each low-order bit:
*
* X = A << 7 | 0bBCDEFGH
* Y = J << 5 | 0bKLMNP (1)
*
* Then we can apply the Y tiling formula to see the memory offset being
* addressed:
*
* offset = (J * tile_pitch + A) << 12 | 0bBCDKLMNPEFGH (2)
*
* If we apply the W detiling formula to this memory location, that the
* corresponding X' and Y' coordinates are:
*
* X' = A << 6 | 0bBCDPFH (3)
* Y' = J << 6 | 0bKLMNEG
*
* Combining (1) and (3), we see that to transform (X, Y) to (X', Y'),
* we need to make the following computation:
*
* X' = (X & ~0b1011) >> 1 | (Y & 0b1) << 2 | X & 0b1 (4)
* Y' = (Y & ~0b1) << 1 | (X & 0b1000) >> 2 | (X & 0b10) >> 1
*/
brw_AND(&func, t1, X, brw_imm_uw(0xfff4)); /* X & ~0b1011 */
brw_SHR(&func, t1, t1, brw_imm_uw(1)); /* (X & ~0b1011) >> 1 */
brw_AND(&func, t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
brw_SHL(&func, t2, t2, brw_imm_uw(2)); /* (Y & 0b1) << 2 */
brw_OR(&func, t1, t1, t2); /* (X & ~0b1011) >> 1 | (Y & 0b1) << 2 */
brw_AND(&func, t2, X, brw_imm_uw(1)); /* X & 0b1 */
brw_OR(&func, Xp, t1, t2);
brw_AND(&func, t1, Y, brw_imm_uw(0xfffe)); /* Y & ~0b1 */
brw_SHL(&func, t1, t1, brw_imm_uw(1)); /* (Y & ~0b1) << 1 */
brw_AND(&func, t2, X, brw_imm_uw(8)); /* X & 0b1000 */
brw_SHR(&func, t2, t2, brw_imm_uw(2)); /* (X & 0b1000) >> 2 */
brw_OR(&func, t1, t1, t2); /* (Y & ~0b1) << 1 | (X & 0b1000) >> 2 */
brw_AND(&func, t2, X, brw_imm_uw(2)); /* X & 0b10 */
brw_SHR(&func, t2, t2, brw_imm_uw(1)); /* (X & 0b10) >> 1 */
brw_OR(&func, Yp, t1, t2);
SWAP_XY_AND_XPYP();
} else {
/* Applying the same logic as above, but in reverse, we obtain the
* formulas:
*
* X' = (X & ~0b101) << 1 | (Y & 0b10) << 2 | (Y & 0b1) << 1 | X & 0b1
* Y' = (Y & ~0b11) >> 1 | (X & 0b100) >> 2
*/
brw_AND(&func, t1, X, brw_imm_uw(0xfffa)); /* X & ~0b101 */
brw_SHL(&func, t1, t1, brw_imm_uw(1)); /* (X & ~0b101) << 1 */
brw_AND(&func, t2, Y, brw_imm_uw(2)); /* Y & 0b10 */
brw_SHL(&func, t2, t2, brw_imm_uw(2)); /* (Y & 0b10) << 2 */
brw_OR(&func, t1, t1, t2); /* (X & ~0b101) << 1 | (Y & 0b10) << 2 */
brw_AND(&func, t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
brw_SHL(&func, t2, t2, brw_imm_uw(1)); /* (Y & 0b1) << 1 */
brw_OR(&func, t1, t1, t2); /* (X & ~0b101) << 1 | (Y & 0b10) << 2
| (Y & 0b1) << 1 */
brw_AND(&func, t2, X, brw_imm_uw(1)); /* X & 0b1 */
brw_OR(&func, Xp, t1, t2);
brw_AND(&func, t1, Y, brw_imm_uw(0xfffc)); /* Y & ~0b11 */
brw_SHR(&func, t1, t1, brw_imm_uw(1)); /* (Y & ~0b11) >> 1 */
brw_AND(&func, t2, X, brw_imm_uw(4)); /* X & 0b100 */
brw_SHR(&func, t2, t2, brw_imm_uw(2)); /* (X & 0b100) >> 2 */
brw_OR(&func, Yp, t1, t2);
SWAP_XY_AND_XPYP();
}
}
/**
* Emit code to compensate for the difference between MSAA and non-MSAA
* surfaces.
*
* This code modifies the X and Y coordinates according to the formula:
*
* (X', Y', S') = encode_msaa(num_samples, IMS, X, Y, S)
*
* (See brw_blorp_blit_program).
*/
void
brw_blorp_blit_program::encode_msaa(unsigned num_samples,
intel_msaa_layout layout)
{
switch (layout) {
case INTEL_MSAA_LAYOUT_NONE:
/* No translation necessary, and S should already be zero. */
assert(s_is_zero);
break;
case INTEL_MSAA_LAYOUT_CMS:
/* We can't compensate for compressed layout since at this point in the
* program we haven't read from the MCS buffer.
*/
assert(!"Bad layout in encode_msaa");
break;
case INTEL_MSAA_LAYOUT_UMS:
/* No translation necessary. */
break;
case INTEL_MSAA_LAYOUT_IMS:
switch (num_samples) {
case 4:
/* encode_msaa(4, IMS, X, Y, S) = (X', Y', 0)
* where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
* Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
*/
brw_AND(&func, t1, X, brw_imm_uw(0xfffe)); /* X & ~0b1 */
if (!s_is_zero) {
brw_AND(&func, t2, S, brw_imm_uw(1)); /* S & 0b1 */
brw_OR(&func, t1, t1, t2); /* (X & ~0b1) | (S & 0b1) */
}
brw_SHL(&func, t1, t1, brw_imm_uw(1)); /* (X & ~0b1) << 1
| (S & 0b1) << 1 */
brw_AND(&func, t2, X, brw_imm_uw(1)); /* X & 0b1 */
brw_OR(&func, Xp, t1, t2);
brw_AND(&func, t1, Y, brw_imm_uw(0xfffe)); /* Y & ~0b1 */
brw_SHL(&func, t1, t1, brw_imm_uw(1)); /* (Y & ~0b1) << 1 */
if (!s_is_zero) {
brw_AND(&func, t2, S, brw_imm_uw(2)); /* S & 0b10 */
brw_OR(&func, t1, t1, t2); /* (Y & ~0b1) << 1 | (S & 0b10) */
}
brw_AND(&func, t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
brw_OR(&func, Yp, t1, t2);
break;
case 8:
/* encode_msaa(8, IMS, X, Y, S) = (X', Y', 0)
* where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1
* | (X & 0b1)
* Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
*/
brw_AND(&func, t1, X, brw_imm_uw(0xfffe)); /* X & ~0b1 */
brw_SHL(&func, t1, t1, brw_imm_uw(2)); /* (X & ~0b1) << 2 */
if (!s_is_zero) {
brw_AND(&func, t2, S, brw_imm_uw(4)); /* S & 0b100 */
brw_OR(&func, t1, t1, t2); /* (X & ~0b1) << 2 | (S & 0b100) */
brw_AND(&func, t2, S, brw_imm_uw(1)); /* S & 0b1 */
brw_SHL(&func, t2, t2, brw_imm_uw(1)); /* (S & 0b1) << 1 */
brw_OR(&func, t1, t1, t2); /* (X & ~0b1) << 2 | (S & 0b100)
| (S & 0b1) << 1 */
}
brw_AND(&func, t2, X, brw_imm_uw(1)); /* X & 0b1 */
brw_OR(&func, Xp, t1, t2);
brw_AND(&func, t1, Y, brw_imm_uw(0xfffe)); /* Y & ~0b1 */
brw_SHL(&func, t1, t1, brw_imm_uw(1)); /* (Y & ~0b1) << 1 */
if (!s_is_zero) {
brw_AND(&func, t2, S, brw_imm_uw(2)); /* S & 0b10 */
brw_OR(&func, t1, t1, t2); /* (Y & ~0b1) << 1 | (S & 0b10) */
}
brw_AND(&func, t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
brw_OR(&func, Yp, t1, t2);
break;
}
SWAP_XY_AND_XPYP();
s_is_zero = true;
break;
}
}
/**
* Emit code to compensate for the difference between MSAA and non-MSAA
* surfaces.
*
* This code modifies the X and Y coordinates according to the formula:
*
* (X', Y', S) = decode_msaa(num_samples, IMS, X, Y, S)
*
* (See brw_blorp_blit_program).
*/
void
brw_blorp_blit_program::decode_msaa(unsigned num_samples,
intel_msaa_layout layout)
{
switch (layout) {
case INTEL_MSAA_LAYOUT_NONE:
/* No translation necessary, and S should already be zero. */
assert(s_is_zero);
break;
case INTEL_MSAA_LAYOUT_CMS:
/* We can't compensate for compressed layout since at this point in the
* program we don't have access to the MCS buffer.
*/
assert(!"Bad layout in encode_msaa");
break;
case INTEL_MSAA_LAYOUT_UMS:
/* No translation necessary. */
break;
case INTEL_MSAA_LAYOUT_IMS:
assert(s_is_zero);
switch (num_samples) {
case 4:
/* decode_msaa(4, IMS, X, Y, 0) = (X', Y', S)
* where X' = (X & ~0b11) >> 1 | (X & 0b1)
* Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
* S = (Y & 0b10) | (X & 0b10) >> 1
*/
brw_AND(&func, t1, X, brw_imm_uw(0xfffc)); /* X & ~0b11 */
brw_SHR(&func, t1, t1, brw_imm_uw(1)); /* (X & ~0b11) >> 1 */
brw_AND(&func, t2, X, brw_imm_uw(1)); /* X & 0b1 */
brw_OR(&func, Xp, t1, t2);
brw_AND(&func, t1, Y, brw_imm_uw(0xfffc)); /* Y & ~0b11 */
brw_SHR(&func, t1, t1, brw_imm_uw(1)); /* (Y & ~0b11) >> 1 */
brw_AND(&func, t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
brw_OR(&func, Yp, t1, t2);
brw_AND(&func, t1, Y, brw_imm_uw(2)); /* Y & 0b10 */
brw_AND(&func, t2, X, brw_imm_uw(2)); /* X & 0b10 */
brw_SHR(&func, t2, t2, brw_imm_uw(1)); /* (X & 0b10) >> 1 */
brw_OR(&func, S, t1, t2);
break;
case 8:
/* decode_msaa(8, IMS, X, Y, 0) = (X', Y', S)
* where X' = (X & ~0b111) >> 2 | (X & 0b1)
* Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
* S = (X & 0b100) | (Y & 0b10) | (X & 0b10) >> 1
*/
brw_AND(&func, t1, X, brw_imm_uw(0xfff8)); /* X & ~0b111 */
brw_SHR(&func, t1, t1, brw_imm_uw(2)); /* (X & ~0b111) >> 2 */
brw_AND(&func, t2, X, brw_imm_uw(1)); /* X & 0b1 */
brw_OR(&func, Xp, t1, t2);
brw_AND(&func, t1, Y, brw_imm_uw(0xfffc)); /* Y & ~0b11 */
brw_SHR(&func, t1, t1, brw_imm_uw(1)); /* (Y & ~0b11) >> 1 */
brw_AND(&func, t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
brw_OR(&func, Yp, t1, t2);
brw_AND(&func, t1, X, brw_imm_uw(4)); /* X & 0b100 */
brw_AND(&func, t2, Y, brw_imm_uw(2)); /* Y & 0b10 */
brw_OR(&func, t1, t1, t2); /* (X & 0b100) | (Y & 0b10) */
brw_AND(&func, t2, X, brw_imm_uw(2)); /* X & 0b10 */
brw_SHR(&func, t2, t2, brw_imm_uw(1)); /* (X & 0b10) >> 1 */
brw_OR(&func, S, t1, t2);
break;
}
s_is_zero = false;
SWAP_XY_AND_XPYP();
break;
}
}
/**
* Emit code that kills pixels whose X and Y coordinates are outside the
* boundary of the rectangle defined by the push constants (dst_x0, dst_y0,
* dst_x1, dst_y1).
*/
void
brw_blorp_blit_program::kill_if_outside_dst_rect()
{
struct brw_reg f0 = brw_flag_reg();
struct brw_reg g1 = retype(brw_vec1_grf(1, 7), BRW_REGISTER_TYPE_UW);
struct brw_reg null16 = vec16(retype(brw_null_reg(), BRW_REGISTER_TYPE_UW));
brw_CMP(&func, null16, BRW_CONDITIONAL_GE, X, dst_x0);
brw_CMP(&func, null16, BRW_CONDITIONAL_GE, Y, dst_y0);
brw_CMP(&func, null16, BRW_CONDITIONAL_L, X, dst_x1);
brw_CMP(&func, null16, BRW_CONDITIONAL_L, Y, dst_y1);
brw_set_predicate_control(&func, BRW_PREDICATE_NONE);
brw_push_insn_state(&func);
brw_set_mask_control(&func, BRW_MASK_DISABLE);
brw_AND(&func, g1, f0, g1);
brw_pop_insn_state(&func);
}
/**
* Emit code to translate from destination (X, Y) coordinates to source (X, Y)
* coordinates.
*/
void
brw_blorp_blit_program::translate_dst_to_src()
{
brw_MUL(&func, Xp, X, x_transform.multiplier);
brw_MUL(&func, Yp, Y, y_transform.multiplier);
brw_ADD(&func, Xp, Xp, x_transform.offset);
brw_ADD(&func, Yp, Yp, y_transform.offset);
SWAP_XY_AND_XPYP();
}
/**
* Emit code to transform the X and Y coordinates as needed for blending
* together the different samples in an MSAA texture.
*/
void
brw_blorp_blit_program::single_to_blend()
{
/* When looking up samples in an MSAA texture using the SAMPLE message,
* Gen6 requires the texture coordinates to be odd integers (so that they
* correspond to the center of a 2x2 block representing the four samples
* that maxe up a pixel). So we need to multiply our X and Y coordinates
* each by 2 and then add 1.
*/
brw_SHL(&func, t1, X, brw_imm_w(1));
brw_SHL(&func, t2, Y, brw_imm_w(1));
brw_ADD(&func, Xp, t1, brw_imm_w(1));
brw_ADD(&func, Yp, t2, brw_imm_w(1));
SWAP_XY_AND_XPYP();
}
/**
* Count the number of trailing 1 bits in the given value. For example:
*
* count_trailing_one_bits(0) == 0
* count_trailing_one_bits(7) == 3
* count_trailing_one_bits(11) == 2
*/
inline int count_trailing_one_bits(unsigned value)
{
#if defined(__GNUC__) && ((__GNUC__ * 100 + __GNUC_MINOR__) >= 304) /* gcc 3.4 or later */
return __builtin_ctz(~value);
#else
return _mesa_bitcount(value & ~(value + 1));
#endif
}
void
brw_blorp_blit_program::manual_blend(unsigned num_samples)
{
if (key->tex_layout == INTEL_MSAA_LAYOUT_CMS)
mcs_fetch();
/* We add together samples using a binary tree structure, e.g. for 4x MSAA:
*
* result = ((sample[0] + sample[1]) + (sample[2] + sample[3])) / 4
*
* This ensures that when all samples have the same value, no numerical
* precision is lost, since each addition operation always adds two equal
* values, and summing two equal floating point values does not lose
* precision.
*
* We perform this computation by treating the texture_data array as a
* stack and performing the following operations:
*
* - push sample 0 onto stack
* - push sample 1 onto stack
* - add top two stack entries
* - push sample 2 onto stack
* - push sample 3 onto stack
* - add top two stack entries
* - add top two stack entries
* - divide top stack entry by 4
*
* Note that after pushing sample i onto the stack, the number of add
* operations we do is equal to the number of trailing 1 bits in i. This
* works provided the total number of samples is a power of two, which it
* always is for i965.
*
* For integer formats, we replace the add operations with average
* operations and skip the final division.
*/
typedef struct brw_instruction *(*brw_op2_ptr)(struct brw_compile *,
struct brw_reg,
struct brw_reg,
struct brw_reg);
brw_op2_ptr combine_op =
key->texture_data_type == BRW_REGISTER_TYPE_F ? brw_ADD : brw_AVG;
unsigned stack_depth = 0;
for (unsigned i = 0; i < num_samples; ++i) {
assert(stack_depth == _mesa_bitcount(i)); /* Loop invariant */
/* Push sample i onto the stack */
assert(stack_depth < ARRAY_SIZE(texture_data));
if (i == 0) {
s_is_zero = true;
} else {
s_is_zero = false;
brw_MOV(&func, S, brw_imm_uw(i));
}
texel_fetch(texture_data[stack_depth++]);
if (i == 0 && key->tex_layout == INTEL_MSAA_LAYOUT_CMS) {
/* The Ivy Bridge PRM, Vol4 Part1 p27 (Multisample Control Surface)
* suggests an optimization:
*
* "A simple optimization with probable large return in
* performance is to compare the MCS value to zero (indicating
* all samples are on sample slice 0), and sample only from
* sample slice 0 using ld2dss if MCS is zero."
*
* Note that in the case where the MCS value is zero, sampling from
* sample slice 0 using ld2dss and sampling from sample 0 using
* ld2dms are equivalent (since all samples are on sample slice 0).
* Since we have already sampled from sample 0, all we need to do is
* skip the remaining fetches and averaging if MCS is zero.
*/
brw_CMP(&func, vec16(brw_null_reg()), BRW_CONDITIONAL_NZ,
mcs_data, brw_imm_ud(0));
brw_IF(&func, BRW_EXECUTE_16);
}
/* Do count_trailing_one_bits(i) times */
for (int j = count_trailing_one_bits(i); j-- > 0; ) {
assert(stack_depth >= 2);
--stack_depth;
/* TODO: should use a smaller loop bound for non_RGBA formats */
for (int k = 0; k < 4; ++k) {
combine_op(&func, offset(texture_data[stack_depth - 1], 2*k),
offset(vec8(texture_data[stack_depth - 1]), 2*k),
offset(vec8(texture_data[stack_depth]), 2*k));
}
}
}
/* We should have just 1 sample on the stack now. */
assert(stack_depth == 1);
if (key->texture_data_type == BRW_REGISTER_TYPE_F) {
/* Scale the result down by a factor of num_samples */
/* TODO: should use a smaller loop bound for non-RGBA formats */
for (int j = 0; j < 4; ++j) {
brw_MUL(&func, offset(texture_data[0], 2*j),
offset(vec8(texture_data[0]), 2*j),
brw_imm_f(1.0/num_samples));
}
}
if (key->tex_layout == INTEL_MSAA_LAYOUT_CMS)
brw_ENDIF(&func);
}
/**
* Emit code to look up a value in the texture using the SAMPLE message (which
* does blending of MSAA surfaces).
*/
void
brw_blorp_blit_program::sample(struct brw_reg dst)
{
static const sampler_message_arg args[2] = {
SAMPLER_MESSAGE_ARG_U_FLOAT,
SAMPLER_MESSAGE_ARG_V_FLOAT
};
texture_lookup(dst, GEN5_SAMPLER_MESSAGE_SAMPLE, args, ARRAY_SIZE(args));
}
/**
* Emit code to look up a value in the texture using the SAMPLE_LD message
* (which does a simple texel fetch).
*/
void
brw_blorp_blit_program::texel_fetch(struct brw_reg dst)
{
static const sampler_message_arg gen6_args[5] = {
SAMPLER_MESSAGE_ARG_U_INT,
SAMPLER_MESSAGE_ARG_V_INT,
SAMPLER_MESSAGE_ARG_ZERO_INT, /* R */
SAMPLER_MESSAGE_ARG_ZERO_INT, /* LOD */
SAMPLER_MESSAGE_ARG_SI_INT
};
static const sampler_message_arg gen7_ld_args[3] = {
SAMPLER_MESSAGE_ARG_U_INT,
SAMPLER_MESSAGE_ARG_ZERO_INT, /* LOD */
SAMPLER_MESSAGE_ARG_V_INT
};
static const sampler_message_arg gen7_ld2dss_args[3] = {
SAMPLER_MESSAGE_ARG_SI_INT,
SAMPLER_MESSAGE_ARG_U_INT,
SAMPLER_MESSAGE_ARG_V_INT
};
static const sampler_message_arg gen7_ld2dms_args[4] = {
SAMPLER_MESSAGE_ARG_SI_INT,
SAMPLER_MESSAGE_ARG_MCS_INT,
SAMPLER_MESSAGE_ARG_U_INT,
SAMPLER_MESSAGE_ARG_V_INT
};
switch (brw->intel.gen) {
case 6:
texture_lookup(dst, GEN5_SAMPLER_MESSAGE_SAMPLE_LD, gen6_args,
s_is_zero ? 2 : 5);
break;
case 7:
switch (key->tex_layout) {
case INTEL_MSAA_LAYOUT_IMS:
/* From the Ivy Bridge PRM, Vol4 Part1 p72 (Multisampled Surface Storage
* Format):
*
* If this field is MSFMT_DEPTH_STENCIL
* [a.k.a. INTEL_MSAA_LAYOUT_IMS], the only sampling engine
* messages allowed are "ld2dms", "resinfo", and "sampleinfo".
*
* So fall through to emit the same message as we use for
* INTEL_MSAA_LAYOUT_CMS.
*/
case INTEL_MSAA_LAYOUT_CMS:
texture_lookup(dst, GEN7_SAMPLER_MESSAGE_SAMPLE_LD2DMS,
gen7_ld2dms_args, ARRAY_SIZE(gen7_ld2dms_args));
break;
case INTEL_MSAA_LAYOUT_UMS:
texture_lookup(dst, GEN7_SAMPLER_MESSAGE_SAMPLE_LD2DSS,
gen7_ld2dss_args, ARRAY_SIZE(gen7_ld2dss_args));
break;
case INTEL_MSAA_LAYOUT_NONE:
assert(s_is_zero);
texture_lookup(dst, GEN5_SAMPLER_MESSAGE_SAMPLE_LD, gen7_ld_args,
ARRAY_SIZE(gen7_ld_args));
break;
}
break;
default:
assert(!"Should not get here.");
break;
};
}
void
brw_blorp_blit_program::mcs_fetch()
{
static const sampler_message_arg gen7_ld_mcs_args[2] = {
SAMPLER_MESSAGE_ARG_U_INT,
SAMPLER_MESSAGE_ARG_V_INT
};
texture_lookup(vec16(mcs_data), GEN7_SAMPLER_MESSAGE_SAMPLE_LD_MCS,
gen7_ld_mcs_args, ARRAY_SIZE(gen7_ld_mcs_args));
}
void
brw_blorp_blit_program::expand_to_32_bits(struct brw_reg src,
struct brw_reg dst)
{
brw_MOV(&func, vec8(dst), vec8(src));
brw_set_compression_control(&func, BRW_COMPRESSION_2NDHALF);
brw_MOV(&func, offset(vec8(dst), 1), suboffset(vec8(src), 8));
brw_set_compression_control(&func, BRW_COMPRESSION_NONE);
}
void
brw_blorp_blit_program::texture_lookup(struct brw_reg dst,
GLuint msg_type,
const sampler_message_arg *args,
int num_args)
{
struct brw_reg mrf =
retype(vec16(brw_message_reg(base_mrf)), BRW_REGISTER_TYPE_UD);
for (int arg = 0; arg < num_args; ++arg) {
switch (args[arg]) {
case SAMPLER_MESSAGE_ARG_U_FLOAT:
expand_to_32_bits(X, retype(mrf, BRW_REGISTER_TYPE_F));
break;
case SAMPLER_MESSAGE_ARG_V_FLOAT:
expand_to_32_bits(Y, retype(mrf, BRW_REGISTER_TYPE_F));
break;
case SAMPLER_MESSAGE_ARG_U_INT:
expand_to_32_bits(X, mrf);
break;
case SAMPLER_MESSAGE_ARG_V_INT:
expand_to_32_bits(Y, mrf);
break;
case SAMPLER_MESSAGE_ARG_SI_INT:
/* Note: on Gen7, this code may be reached with s_is_zero==true
* because in Gen7's ld2dss message, the sample index is the first
* argument. When this happens, we need to move a 0 into the
* appropriate message register.
*/
if (s_is_zero)
brw_MOV(&func, mrf, brw_imm_ud(0));
else
expand_to_32_bits(S, mrf);
break;
case SAMPLER_MESSAGE_ARG_MCS_INT:
switch (key->tex_layout) {
case INTEL_MSAA_LAYOUT_CMS:
brw_MOV(&func, mrf, mcs_data);
break;
case INTEL_MSAA_LAYOUT_IMS:
/* When sampling from an IMS surface, MCS data is not relevant,
* and the hardware ignores it. So don't bother populating it.
*/
break;
default:
/* We shouldn't be trying to send MCS data with any other
* layouts.
*/
assert (!"Unsupported layout for MCS data");
break;
}
break;
case SAMPLER_MESSAGE_ARG_ZERO_INT:
brw_MOV(&func, mrf, brw_imm_ud(0));
break;
}
mrf.nr += 2;
}
brw_SAMPLE(&func,
retype(dst, BRW_REGISTER_TYPE_UW) /* dest */,
base_mrf /* msg_reg_nr */,
brw_message_reg(base_mrf) /* src0 */,
BRW_BLORP_TEXTURE_BINDING_TABLE_INDEX,
0 /* sampler */,
WRITEMASK_XYZW,
msg_type,
8 /* response_length. TODO: should be smaller for non-RGBA formats? */,
mrf.nr - base_mrf /* msg_length */,
0 /* header_present */,
BRW_SAMPLER_SIMD_MODE_SIMD16,
BRW_SAMPLER_RETURN_FORMAT_FLOAT32);
}
#undef X
#undef Y
#undef U
#undef V
#undef S
#undef SWAP_XY_AND_XPYP
void
brw_blorp_blit_program::render_target_write()
{
struct brw_reg mrf_rt_write =
retype(vec16(brw_message_reg(base_mrf)), key->texture_data_type);
int mrf_offset = 0;
/* If we may have killed pixels, then we need to send R0 and R1 in a header
* so that the render target knows which pixels we killed.
*/
bool use_header = key->use_kill;
if (use_header) {
/* Copy R0/1 to MRF */
brw_MOV(&func, retype(mrf_rt_write, BRW_REGISTER_TYPE_UD),
retype(R0, BRW_REGISTER_TYPE_UD));
mrf_offset += 2;
}
/* Copy texture data to MRFs */
for (int i = 0; i < 4; ++i) {
/* E.g. mov(16) m2.0<1>:f r2.0<8;8,1>:f { Align1, H1 } */
brw_MOV(&func, offset(mrf_rt_write, mrf_offset),
offset(vec8(texture_data[0]), 2*i));
mrf_offset += 2;
}
/* Now write to the render target and terminate the thread */
brw_fb_WRITE(&func,
16 /* dispatch_width */,
base_mrf /* msg_reg_nr */,
mrf_rt_write /* src0 */,
BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE,
BRW_BLORP_RENDERBUFFER_BINDING_TABLE_INDEX,
mrf_offset /* msg_length. TODO: Should be smaller for non-RGBA formats. */,
0 /* response_length */,
true /* eot */,
use_header);
}
void
brw_blorp_coord_transform_params::setup(GLuint src0, GLuint dst0, GLuint dst1,
bool mirror)
{
if (!mirror) {
/* When not mirroring a coordinate (say, X), we need:
* x' - src_x0 = x - dst_x0
* Therefore:
* x' = 1*x + (src_x0 - dst_x0)
*/
multiplier = 1;
offset = src0 - dst0;
} else {
/* When mirroring X we need:
* x' - src_x0 = dst_x1 - x - 1
* Therefore:
* x' = -1*x + (src_x0 + dst_x1 - 1)
*/
multiplier = -1;
offset = src0 + dst1 - 1;
}
}
/**
* Determine which MSAA layout the GPU pipeline should be configured for,
* based on the chip generation, the number of samples, and the true layout of
* the image in memory.
*/
inline intel_msaa_layout
compute_msaa_layout_for_pipeline(struct brw_context *brw, unsigned num_samples,
intel_msaa_layout true_layout)
{
if (num_samples <= 1) {
/* When configuring the GPU for non-MSAA, we can still accommodate IMS
* format buffers, by transforming coordinates appropriately.
*/
assert(true_layout == INTEL_MSAA_LAYOUT_NONE ||
true_layout == INTEL_MSAA_LAYOUT_IMS);
return INTEL_MSAA_LAYOUT_NONE;
} else {
assert(true_layout != INTEL_MSAA_LAYOUT_NONE);
}
/* Prior to Gen7, all MSAA surfaces use IMS layout. */
if (brw->intel.gen == 6) {
assert(true_layout == INTEL_MSAA_LAYOUT_IMS);
}
return true_layout;
}
brw_blorp_blit_params::brw_blorp_blit_params(struct brw_context *brw,
struct intel_mipmap_tree *src_mt,
unsigned src_level, unsigned src_layer,
struct intel_mipmap_tree *dst_mt,
unsigned dst_level, unsigned dst_layer,
GLuint src_x0, GLuint src_y0,
GLuint dst_x0, GLuint dst_y0,
GLuint dst_x1, GLuint dst_y1,
bool mirror_x, bool mirror_y)
{
src.set(brw, src_mt, src_level, src_layer);
dst.set(brw, dst_mt, dst_level, dst_layer);
/* If we are blitting from sRGB to linear or vice versa, we still want the
* blit to be a direct copy, so we need source and destination to use the
* same format. However, we want the destination sRGB/linear state to be
* correct (so that sRGB blending is used when doing an MSAA resolve to an
* sRGB surface, and linear blending is used when doing an MSAA resolve to
* a linear surface). Since blorp blits don't support any format
* conversion (except between sRGB and linear), we can accomplish this by
* simply setting up the source to use the same format as the destination.
*/
assert(_mesa_get_srgb_format_linear(src_mt->format) ==
_mesa_get_srgb_format_linear(dst_mt->format));
src.brw_surfaceformat = dst.brw_surfaceformat;
use_wm_prog = true;
memset(&wm_prog_key, 0, sizeof(wm_prog_key));
/* texture_data_type indicates the register type that should be used to
* manipulate texture data.
*/
switch (_mesa_get_format_datatype(src_mt->format)) {
case GL_UNSIGNED_NORMALIZED:
case GL_SIGNED_NORMALIZED:
case GL_FLOAT:
wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_F;
break;
case GL_UNSIGNED_INT:
if (src_mt->format == MESA_FORMAT_S8) {
/* We process stencil as though it's an unsigned normalized color */
wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_F;
} else {
wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_UD;
}
break;
case GL_INT:
wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_D;
break;
default:
assert(!"Unrecognized blorp format");
break;
}
if (brw->intel.gen > 6) {
/* Gen7's rendering hardware only supports the IMS layout for depth and
* stencil render targets. Blorp always maps its destination surface as
* a color render target (even if it's actually a depth or stencil
* buffer). So if the destination is IMS, we'll have to map it as a
* single-sampled texture and interleave the samples ourselves.
*/
if (dst_mt->msaa_layout == INTEL_MSAA_LAYOUT_IMS)
dst.num_samples = 0;
}
if (dst.map_stencil_as_y_tiled && dst.num_samples > 1) {
/* If the destination surface is a W-tiled multisampled stencil buffer
* that we're mapping as Y tiled, then we need to arrange for the WM
* program to run once per sample rather than once per pixel, because
* the memory layout of related samples doesn't match between W and Y
* tiling.
*/
wm_prog_key.persample_msaa_dispatch = true;
}
if (src.num_samples > 0 && dst.num_samples > 1) {
/* We are blitting from a multisample buffer to a multisample buffer, so
* we must preserve samples within a pixel. This means we have to
* arrange for the WM program to run once per sample rather than once
* per pixel.
*/
wm_prog_key.persample_msaa_dispatch = true;
}
/* The render path must be configured to use the same number of samples as
* the destination buffer.
*/
num_samples = dst.num_samples;
GLenum base_format = _mesa_get_format_base_format(src_mt->format);
if (base_format != GL_DEPTH_COMPONENT && /* TODO: what about depth/stencil? */
base_format != GL_STENCIL_INDEX &&
src_mt->num_samples > 1 && dst_mt->num_samples <= 1) {
/* We are downsampling a color buffer, so blend. */
wm_prog_key.blend = true;
}
/* src_samples and dst_samples are the true sample counts */
wm_prog_key.src_samples = src_mt->num_samples;
wm_prog_key.dst_samples = dst_mt->num_samples;
/* tex_samples and rt_samples are the sample counts that are set up in
* SURFACE_STATE.
*/
wm_prog_key.tex_samples = src.num_samples;
wm_prog_key.rt_samples = dst.num_samples;
/* tex_layout and rt_layout indicate the MSAA layout the GPU pipeline will
* use to access the source and destination surfaces.
*/
wm_prog_key.tex_layout =
compute_msaa_layout_for_pipeline(brw, src.num_samples, src.msaa_layout);
wm_prog_key.rt_layout =
compute_msaa_layout_for_pipeline(brw, dst.num_samples, dst.msaa_layout);
/* src_layout and dst_layout indicate the true MSAA layout used by src and
* dst.
*/
wm_prog_key.src_layout = src_mt->msaa_layout;
wm_prog_key.dst_layout = dst_mt->msaa_layout;
wm_prog_key.src_tiled_w = src.map_stencil_as_y_tiled;
wm_prog_key.dst_tiled_w = dst.map_stencil_as_y_tiled;
x0 = wm_push_consts.dst_x0 = dst_x0;
y0 = wm_push_consts.dst_y0 = dst_y0;
x1 = wm_push_consts.dst_x1 = dst_x1;
y1 = wm_push_consts.dst_y1 = dst_y1;
wm_push_consts.x_transform.setup(src_x0, dst_x0, dst_x1, mirror_x);
wm_push_consts.y_transform.setup(src_y0, dst_y0, dst_y1, mirror_y);
if (dst.num_samples <= 1 && dst_mt->num_samples > 1) {
/* We must expand the rectangle we send through the rendering pipeline,
* to account for the fact that we are mapping the destination region as
* single-sampled when it is in fact multisampled. We must also align
* it to a multiple of the multisampling pattern, because the
* differences between multisampled and single-sampled surface formats
* will mean that pixels are scrambled within the multisampling pattern.
* TODO: what if this makes the coordinates too large?
*
* Note: this only works if the destination surface uses the IMS layout.
* If it's UMS, then we have no choice but to set up the rendering
* pipeline as multisampled.
*/
assert(dst_mt->msaa_layout == INTEL_MSAA_LAYOUT_IMS);
switch (dst_mt->num_samples) {
case 4:
x0 = ROUND_DOWN_TO(x0 * 2, 4);
y0 = ROUND_DOWN_TO(y0 * 2, 4);
x1 = ALIGN(x1 * 2, 4);
y1 = ALIGN(y1 * 2, 4);
break;
case 8:
x0 = ROUND_DOWN_TO(x0 * 4, 8);
y0 = ROUND_DOWN_TO(y0 * 2, 4);
x1 = ALIGN(x1 * 4, 8);
y1 = ALIGN(y1 * 2, 4);
break;
default:
assert(!"Unrecognized sample count in brw_blorp_blit_params ctor");
break;
}
wm_prog_key.use_kill = true;
}
if (dst.map_stencil_as_y_tiled) {
/* We must modify the rectangle we send through the rendering pipeline
* (and the size and x/y offset of the destination surface), to account
* for the fact that we are mapping it as Y-tiled when it is in fact
* W-tiled.
*
* Both Y tiling and W tiling can be understood as organizations of
* 32-byte sub-tiles; within each 32-byte sub-tile, the layout of pixels
* is different, but the layout of the 32-byte sub-tiles within the 4k
* tile is the same (8 sub-tiles across by 16 sub-tiles down, in
* column-major order). In Y tiling, the sub-tiles are 16 bytes wide
* and 2 rows high; in W tiling, they are 8 bytes wide and 4 rows high.
*
* Therefore, to account for the layout differences within the 32-byte
* sub-tiles, we must expand the rectangle so the X coordinates of its
* edges are multiples of 8 (the W sub-tile width), and its Y
* coordinates of its edges are multiples of 4 (the W sub-tile height).
* Then we need to scale the X and Y coordinates of the rectangle to
* account for the differences in aspect ratio between the Y and W
* sub-tiles. We need to modify the layer width and height similarly.
*
* A correction needs to be applied when MSAA is in use: since
* INTEL_MSAA_LAYOUT_IMS uses an interleaving pattern whose height is 4,
* we need to align the Y coordinates to multiples of 8, so that when
* they are divided by two they are still multiples of 4.
*
* Note: Since the x/y offset of the surface will be applied using the
* SURFACE_STATE command packet, it will be invisible to the swizzling
* code in the shader; therefore it needs to be in a multiple of the
* 32-byte sub-tile size. Fortunately it is, since the sub-tile is 8
* pixels wide and 4 pixels high (when viewed as a W-tiled stencil
* buffer), and the miplevel alignment used for stencil buffers is 8
* pixels horizontally and either 4 or 8 pixels vertically (see
* intel_horizontal_texture_alignment_unit() and
* intel_vertical_texture_alignment_unit()).
*
* Note: Also, since the SURFACE_STATE command packet can only apply
* offsets that are multiples of 4 pixels horizontally and 2 pixels
* vertically, it is important that the offsets will be multiples of
* these sizes after they are converted into Y-tiled coordinates.
* Fortunately they will be, since we know from above that the offsets
* are a multiple of the 32-byte sub-tile size, and in Y-tiled
* coordinates the sub-tile is 16 pixels wide and 2 pixels high.
*
* TODO: what if this makes the coordinates (or the texture size) too
* large?
*/
const unsigned x_align = 8, y_align = dst.num_samples != 0 ? 8 : 4;
x0 = ROUND_DOWN_TO(x0, x_align) * 2;
y0 = ROUND_DOWN_TO(y0, y_align) / 2;
x1 = ALIGN(x1, x_align) * 2;
y1 = ALIGN(y1, y_align) / 2;
dst.width = ALIGN(dst.width, x_align) * 2;
dst.height = ALIGN(dst.height, y_align) / 2;
dst.x_offset *= 2;
dst.y_offset /= 2;
wm_prog_key.use_kill = true;
}
if (src.map_stencil_as_y_tiled) {
/* We must modify the size and x/y offset of the source surface to
* account for the fact that we are mapping it as Y-tiled when it is in
* fact W tiled.
*
* See the comments above concerning x/y offset alignment for the
* destination surface.
*
* TODO: what if this makes the texture size too large?
*/
const unsigned x_align = 8, y_align = src.num_samples != 0 ? 8 : 4;
src.width = ALIGN(src.width, x_align) * 2;
src.height = ALIGN(src.height, y_align) / 2;
src.x_offset *= 2;
src.y_offset /= 2;
}
}
uint32_t
brw_blorp_blit_params::get_wm_prog(struct brw_context *brw,
brw_blorp_prog_data **prog_data) const
{
uint32_t prog_offset;
if (!brw_search_cache(&brw->cache, BRW_BLORP_BLIT_PROG,
&this->wm_prog_key, sizeof(this->wm_prog_key),
&prog_offset, prog_data)) {
brw_blorp_blit_program prog(brw, &this->wm_prog_key);
GLuint program_size;
const GLuint *program = prog.compile(brw, &program_size);
brw_upload_cache(&brw->cache, BRW_BLORP_BLIT_PROG,
&this->wm_prog_key, sizeof(this->wm_prog_key),
program, program_size,
&prog.prog_data, sizeof(prog.prog_data),
&prog_offset, prog_data);
}
return prog_offset;
}