blob: ea3282c5f9428e84a7630cf2f2f5575d8b07705d [file] [log] [blame]
/*
* Copyright © 2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include "glsl_symbol_table.h"
#include "ast.h"
#include "glsl_types.h"
#include "ir.h"
#include "main/core.h" /* for MIN2 */
static ir_rvalue *
convert_component(ir_rvalue *src, const glsl_type *desired_type);
bool
apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
struct _mesa_glsl_parse_state *state);
static unsigned
process_parameters(exec_list *instructions, exec_list *actual_parameters,
exec_list *parameters,
struct _mesa_glsl_parse_state *state)
{
unsigned count = 0;
foreach_list (n, parameters) {
ast_node *const ast = exec_node_data(ast_node, n, link);
ir_rvalue *result = ast->hir(instructions, state);
ir_constant *const constant = result->constant_expression_value();
if (constant != NULL)
result = constant;
actual_parameters->push_tail(result);
count++;
}
return count;
}
/**
* Generate a source prototype for a function signature
*
* \param return_type Return type of the function. May be \c NULL.
* \param name Name of the function.
* \param parameters List of \c ir_instruction nodes representing the
* parameter list for the function. This may be either a
* formal (\c ir_variable) or actual (\c ir_rvalue)
* parameter list. Only the type is used.
*
* \return
* A ralloced string representing the prototype of the function.
*/
char *
prototype_string(const glsl_type *return_type, const char *name,
exec_list *parameters)
{
char *str = NULL;
if (return_type != NULL)
str = ralloc_asprintf(NULL, "%s ", return_type->name);
ralloc_asprintf_append(&str, "%s(", name);
const char *comma = "";
foreach_list(node, parameters) {
const ir_variable *const param = (ir_variable *) node;
ralloc_asprintf_append(&str, "%s%s", comma, param->type->name);
comma = ", ";
}
ralloc_strcat(&str, ")");
return str;
}
/**
* Verify that 'out' and 'inout' actual parameters are lvalues. Also, verify
* that 'const_in' formal parameters (an extension in our IR) correspond to
* ir_constant actual parameters.
*/
static bool
verify_parameter_modes(_mesa_glsl_parse_state *state,
ir_function_signature *sig,
exec_list &actual_ir_parameters,
exec_list &actual_ast_parameters)
{
exec_node *actual_ir_node = actual_ir_parameters.head;
exec_node *actual_ast_node = actual_ast_parameters.head;
foreach_list(formal_node, &sig->parameters) {
/* The lists must be the same length. */
assert(!actual_ir_node->is_tail_sentinel());
assert(!actual_ast_node->is_tail_sentinel());
const ir_variable *const formal = (ir_variable *) formal_node;
const ir_rvalue *const actual = (ir_rvalue *) actual_ir_node;
const ast_expression *const actual_ast =
exec_node_data(ast_expression, actual_ast_node, link);
/* FIXME: 'loc' is incorrect (as of 2011-01-21). It is always
* FIXME: 0:0(0).
*/
YYLTYPE loc = actual_ast->get_location();
/* Verify that 'const_in' parameters are ir_constants. */
if (formal->mode == ir_var_const_in &&
actual->ir_type != ir_type_constant) {
_mesa_glsl_error(&loc, state,
"parameter `in %s' must be a constant expression",
formal->name);
return false;
}
/* Verify that 'out' and 'inout' actual parameters are lvalues. */
if (formal->mode == ir_var_out || formal->mode == ir_var_inout) {
const char *mode = NULL;
switch (formal->mode) {
case ir_var_out: mode = "out"; break;
case ir_var_inout: mode = "inout"; break;
default: assert(false); break;
}
/* This AST-based check catches errors like f(i++). The IR-based
* is_lvalue() is insufficient because the actual parameter at the
* IR-level is just a temporary value, which is an l-value.
*/
if (actual_ast->non_lvalue_description != NULL) {
_mesa_glsl_error(&loc, state,
"function parameter '%s %s' references a %s",
mode, formal->name,
actual_ast->non_lvalue_description);
return false;
}
ir_variable *var = actual->variable_referenced();
if (var)
var->assigned = true;
if (var && var->read_only) {
_mesa_glsl_error(&loc, state,
"function parameter '%s %s' references the "
"read-only variable '%s'",
mode, formal->name,
actual->variable_referenced()->name);
return false;
} else if (!actual->is_lvalue()) {
_mesa_glsl_error(&loc, state,
"function parameter '%s %s' is not an lvalue",
mode, formal->name);
return false;
}
}
actual_ir_node = actual_ir_node->next;
actual_ast_node = actual_ast_node->next;
}
return true;
}
/**
* If a function call is generated, \c call_ir will point to it on exit.
* Otherwise \c call_ir will be set to \c NULL.
*/
static ir_rvalue *
generate_call(exec_list *instructions, ir_function_signature *sig,
YYLTYPE *loc, exec_list *actual_parameters,
ir_call **call_ir,
struct _mesa_glsl_parse_state *state)
{
void *ctx = state;
exec_list post_call_conversions;
*call_ir = NULL;
/* Perform implicit conversion of arguments. For out parameters, we need
* to place them in a temporary variable and do the conversion after the
* call takes place. Since we haven't emitted the call yet, we'll place
* the post-call conversions in a temporary exec_list, and emit them later.
*/
exec_list_iterator actual_iter = actual_parameters->iterator();
exec_list_iterator formal_iter = sig->parameters.iterator();
while (actual_iter.has_next()) {
ir_rvalue *actual = (ir_rvalue *) actual_iter.get();
ir_variable *formal = (ir_variable *) formal_iter.get();
assert(actual != NULL);
assert(formal != NULL);
if (formal->type->is_numeric() || formal->type->is_boolean()) {
switch (formal->mode) {
case ir_var_const_in:
case ir_var_in: {
ir_rvalue *converted
= convert_component(actual, formal->type);
actual->replace_with(converted);
break;
}
case ir_var_out:
if (actual->type != formal->type) {
/* To convert an out parameter, we need to create a
* temporary variable to hold the value before conversion,
* and then perform the conversion after the function call
* returns.
*
* This has the effect of transforming code like this:
*
* void f(out int x);
* float value;
* f(value);
*
* Into IR that's equivalent to this:
*
* void f(out int x);
* float value;
* int out_parameter_conversion;
* f(out_parameter_conversion);
* value = float(out_parameter_conversion);
*/
ir_variable *tmp =
new(ctx) ir_variable(formal->type,
"out_parameter_conversion",
ir_var_temporary);
instructions->push_tail(tmp);
ir_dereference_variable *deref_tmp_1
= new(ctx) ir_dereference_variable(tmp);
ir_dereference_variable *deref_tmp_2
= new(ctx) ir_dereference_variable(tmp);
ir_rvalue *converted_tmp
= convert_component(deref_tmp_1, actual->type);
ir_assignment *assignment
= new(ctx) ir_assignment(actual, converted_tmp);
post_call_conversions.push_tail(assignment);
actual->replace_with(deref_tmp_2);
}
break;
case ir_var_inout:
/* Inout parameters should never require conversion, since that
* would require an implicit conversion to exist both to and
* from the formal parameter type, and there are no
* bidirectional implicit conversions.
*/
assert (actual->type == formal->type);
break;
default:
assert (!"Illegal formal parameter mode");
break;
}
}
actual_iter.next();
formal_iter.next();
}
/* If the function call is a constant expression, don't generate any
* instructions; just generate an ir_constant.
*
* Function calls were first allowed to be constant expressions in GLSL 1.20.
*/
if (state->language_version >= 120) {
ir_constant *value = sig->constant_expression_value(actual_parameters, NULL);
if (value != NULL) {
return value;
}
}
ir_dereference_variable *deref = NULL;
if (!sig->return_type->is_void()) {
/* Create a new temporary to hold the return value. */
ir_variable *var;
var = new(ctx) ir_variable(sig->return_type,
ralloc_asprintf(ctx, "%s_retval",
sig->function_name()),
ir_var_temporary);
instructions->push_tail(var);
deref = new(ctx) ir_dereference_variable(var);
}
ir_call *call = new(ctx) ir_call(sig, deref, actual_parameters);
instructions->push_tail(call);
/* Also emit any necessary out-parameter conversions. */
instructions->append_list(&post_call_conversions);
return deref ? deref->clone(ctx, NULL) : NULL;
}
/**
* Given a function name and parameter list, find the matching signature.
*/
static ir_function_signature *
match_function_by_name(const char *name,
exec_list *actual_parameters,
struct _mesa_glsl_parse_state *state)
{
void *ctx = state;
ir_function *f = state->symbols->get_function(name);
ir_function_signature *local_sig = NULL;
ir_function_signature *sig = NULL;
/* Is the function hidden by a record type constructor? */
if (state->symbols->get_type(name))
goto done; /* no match */
/* Is the function hidden by a variable (impossible in 1.10)? */
if (state->language_version != 110 && state->symbols->get_variable(name))
goto done; /* no match */
if (f != NULL) {
/* Look for a match in the local shader. If exact, we're done. */
bool is_exact = false;
sig = local_sig = f->matching_signature(actual_parameters, &is_exact);
if (is_exact)
goto done;
if (!state->es_shader && f->has_user_signature()) {
/* In desktop GL, the presence of a user-defined signature hides any
* built-in signatures, so we must ignore them. In contrast, in ES2
* user-defined signatures add new overloads, so we must proceed.
*/
goto done;
}
}
/* Local shader has no exact candidates; check the built-ins. */
_mesa_glsl_initialize_functions(state);
for (unsigned i = 0; i < state->num_builtins_to_link; i++) {
ir_function *builtin =
state->builtins_to_link[i]->symbols->get_function(name);
if (builtin == NULL)
continue;
bool is_exact = false;
ir_function_signature *builtin_sig =
builtin->matching_signature(actual_parameters, &is_exact);
if (builtin_sig == NULL)
continue;
/* If the built-in signature is exact, we can stop. */
if (is_exact) {
sig = builtin_sig;
goto done;
}
if (sig == NULL) {
/* We found an inexact match, which is better than nothing. However,
* we should keep searching for an exact match.
*/
sig = builtin_sig;
}
}
done:
if (sig != NULL) {
/* If the match is from a linked built-in shader, import the prototype. */
if (sig != local_sig) {
if (f == NULL) {
f = new(ctx) ir_function(name);
state->symbols->add_global_function(f);
emit_function(state, f);
}
f->add_signature(sig->clone_prototype(f, NULL));
}
}
return sig;
}
/**
* Raise a "no matching function" error, listing all possible overloads the
* compiler considered so developers can figure out what went wrong.
*/
static void
no_matching_function_error(const char *name,
YYLTYPE *loc,
exec_list *actual_parameters,
_mesa_glsl_parse_state *state)
{
char *str = prototype_string(NULL, name, actual_parameters);
_mesa_glsl_error(loc, state, "no matching function for call to `%s'", str);
ralloc_free(str);
const char *prefix = "candidates are: ";
for (int i = -1; i < (int) state->num_builtins_to_link; i++) {
glsl_symbol_table *syms = i >= 0 ? state->builtins_to_link[i]->symbols
: state->symbols;
ir_function *f = syms->get_function(name);
if (f == NULL)
continue;
foreach_list (node, &f->signatures) {
ir_function_signature *sig = (ir_function_signature *) node;
str = prototype_string(sig->return_type, f->name, &sig->parameters);
_mesa_glsl_error(loc, state, "%s%s", prefix, str);
ralloc_free(str);
prefix = " ";
}
}
}
/**
* Perform automatic type conversion of constructor parameters
*
* This implements the rules in the "Conversion and Scalar Constructors"
* section (GLSL 1.10 section 5.4.1), not the "Implicit Conversions" rules.
*/
static ir_rvalue *
convert_component(ir_rvalue *src, const glsl_type *desired_type)
{
void *ctx = ralloc_parent(src);
const unsigned a = desired_type->base_type;
const unsigned b = src->type->base_type;
ir_expression *result = NULL;
if (src->type->is_error())
return src;
assert(a <= GLSL_TYPE_BOOL);
assert(b <= GLSL_TYPE_BOOL);
if (a == b)
return src;
switch (a) {
case GLSL_TYPE_UINT:
switch (b) {
case GLSL_TYPE_INT:
result = new(ctx) ir_expression(ir_unop_i2u, src);
break;
case GLSL_TYPE_FLOAT:
result = new(ctx) ir_expression(ir_unop_f2u, src);
break;
case GLSL_TYPE_BOOL:
result = new(ctx) ir_expression(ir_unop_i2u,
new(ctx) ir_expression(ir_unop_b2i, src));
break;
}
break;
case GLSL_TYPE_INT:
switch (b) {
case GLSL_TYPE_UINT:
result = new(ctx) ir_expression(ir_unop_u2i, src);
break;
case GLSL_TYPE_FLOAT:
result = new(ctx) ir_expression(ir_unop_f2i, src);
break;
case GLSL_TYPE_BOOL:
result = new(ctx) ir_expression(ir_unop_b2i, src);
break;
}
break;
case GLSL_TYPE_FLOAT:
switch (b) {
case GLSL_TYPE_UINT:
result = new(ctx) ir_expression(ir_unop_u2f, desired_type, src, NULL);
break;
case GLSL_TYPE_INT:
result = new(ctx) ir_expression(ir_unop_i2f, desired_type, src, NULL);
break;
case GLSL_TYPE_BOOL:
result = new(ctx) ir_expression(ir_unop_b2f, desired_type, src, NULL);
break;
}
break;
case GLSL_TYPE_BOOL:
switch (b) {
case GLSL_TYPE_UINT:
result = new(ctx) ir_expression(ir_unop_i2b,
new(ctx) ir_expression(ir_unop_u2i, src));
break;
case GLSL_TYPE_INT:
result = new(ctx) ir_expression(ir_unop_i2b, desired_type, src, NULL);
break;
case GLSL_TYPE_FLOAT:
result = new(ctx) ir_expression(ir_unop_f2b, desired_type, src, NULL);
break;
}
break;
}
assert(result != NULL);
assert(result->type == desired_type);
/* Try constant folding; it may fold in the conversion we just added. */
ir_constant *const constant = result->constant_expression_value();
return (constant != NULL) ? (ir_rvalue *) constant : (ir_rvalue *) result;
}
/**
* Dereference a specific component from a scalar, vector, or matrix
*/
static ir_rvalue *
dereference_component(ir_rvalue *src, unsigned component)
{
void *ctx = ralloc_parent(src);
assert(component < src->type->components());
/* If the source is a constant, just create a new constant instead of a
* dereference of the existing constant.
*/
ir_constant *constant = src->as_constant();
if (constant)
return new(ctx) ir_constant(constant, component);
if (src->type->is_scalar()) {
return src;
} else if (src->type->is_vector()) {
return new(ctx) ir_swizzle(src, component, 0, 0, 0, 1);
} else {
assert(src->type->is_matrix());
/* Dereference a row of the matrix, then call this function again to get
* a specific element from that row.
*/
const int c = component / src->type->column_type()->vector_elements;
const int r = component % src->type->column_type()->vector_elements;
ir_constant *const col_index = new(ctx) ir_constant(c);
ir_dereference *const col = new(ctx) ir_dereference_array(src, col_index);
col->type = src->type->column_type();
return dereference_component(col, r);
}
assert(!"Should not get here.");
return NULL;
}
static ir_rvalue *
process_array_constructor(exec_list *instructions,
const glsl_type *constructor_type,
YYLTYPE *loc, exec_list *parameters,
struct _mesa_glsl_parse_state *state)
{
void *ctx = state;
/* Array constructors come in two forms: sized and unsized. Sized array
* constructors look like 'vec4[2](a, b)', where 'a' and 'b' are vec4
* variables. In this case the number of parameters must exactly match the
* specified size of the array.
*
* Unsized array constructors look like 'vec4[](a, b)', where 'a' and 'b'
* are vec4 variables. In this case the size of the array being constructed
* is determined by the number of parameters.
*
* From page 52 (page 58 of the PDF) of the GLSL 1.50 spec:
*
* "There must be exactly the same number of arguments as the size of
* the array being constructed. If no size is present in the
* constructor, then the array is explicitly sized to the number of
* arguments provided. The arguments are assigned in order, starting at
* element 0, to the elements of the constructed array. Each argument
* must be the same type as the element type of the array, or be a type
* that can be converted to the element type of the array according to
* Section 4.1.10 "Implicit Conversions.""
*/
exec_list actual_parameters;
const unsigned parameter_count =
process_parameters(instructions, &actual_parameters, parameters, state);
if ((parameter_count == 0)
|| ((constructor_type->length != 0)
&& (constructor_type->length != parameter_count))) {
const unsigned min_param = (constructor_type->length == 0)
? 1 : constructor_type->length;
_mesa_glsl_error(loc, state, "array constructor must have %s %u "
"parameter%s",
(constructor_type->length != 0) ? "at least" : "exactly",
min_param, (min_param <= 1) ? "" : "s");
return ir_rvalue::error_value(ctx);
}
if (constructor_type->length == 0) {
constructor_type =
glsl_type::get_array_instance(constructor_type->element_type(),
parameter_count);
assert(constructor_type != NULL);
assert(constructor_type->length == parameter_count);
}
bool all_parameters_are_constant = true;
/* Type cast each parameter and, if possible, fold constants. */
foreach_list_safe(n, &actual_parameters) {
ir_rvalue *ir = (ir_rvalue *) n;
ir_rvalue *result = ir;
/* Apply implicit conversions (not the scalar constructor rules!). See
* the spec quote above. */
if (constructor_type->element_type()->is_float()) {
const glsl_type *desired_type =
glsl_type::get_instance(GLSL_TYPE_FLOAT,
ir->type->vector_elements,
ir->type->matrix_columns);
if (result->type->can_implicitly_convert_to(desired_type)) {
/* Even though convert_component() implements the constructor
* conversion rules (not the implicit conversion rules), its safe
* to use it here because we already checked that the implicit
* conversion is legal.
*/
result = convert_component(ir, desired_type);
}
}
if (result->type != constructor_type->element_type()) {
_mesa_glsl_error(loc, state, "type error in array constructor: "
"expected: %s, found %s",
constructor_type->element_type()->name,
result->type->name);
}
/* Attempt to convert the parameter to a constant valued expression.
* After doing so, track whether or not all the parameters to the
* constructor are trivially constant valued expressions.
*/
ir_rvalue *const constant = result->constant_expression_value();
if (constant != NULL)
result = constant;
else
all_parameters_are_constant = false;
ir->replace_with(result);
}
if (all_parameters_are_constant)
return new(ctx) ir_constant(constructor_type, &actual_parameters);
ir_variable *var = new(ctx) ir_variable(constructor_type, "array_ctor",
ir_var_temporary);
instructions->push_tail(var);
int i = 0;
foreach_list(node, &actual_parameters) {
ir_rvalue *rhs = (ir_rvalue *) node;
ir_rvalue *lhs = new(ctx) ir_dereference_array(var,
new(ctx) ir_constant(i));
ir_instruction *assignment = new(ctx) ir_assignment(lhs, rhs, NULL);
instructions->push_tail(assignment);
i++;
}
return new(ctx) ir_dereference_variable(var);
}
/**
* Try to convert a record constructor to a constant expression
*/
static ir_constant *
constant_record_constructor(const glsl_type *constructor_type,
exec_list *parameters, void *mem_ctx)
{
foreach_list(node, parameters) {
ir_constant *constant = ((ir_instruction *) node)->as_constant();
if (constant == NULL)
return NULL;
node->replace_with(constant);
}
return new(mem_ctx) ir_constant(constructor_type, parameters);
}
/**
* Determine if a list consists of a single scalar r-value
*/
bool
single_scalar_parameter(exec_list *parameters)
{
const ir_rvalue *const p = (ir_rvalue *) parameters->head;
assert(((ir_rvalue *)p)->as_rvalue() != NULL);
return (p->type->is_scalar() && p->next->is_tail_sentinel());
}
/**
* Generate inline code for a vector constructor
*
* The generated constructor code will consist of a temporary variable
* declaration of the same type as the constructor. A sequence of assignments
* from constructor parameters to the temporary will follow.
*
* \return
* An \c ir_dereference_variable of the temprorary generated in the constructor
* body.
*/
ir_rvalue *
emit_inline_vector_constructor(const glsl_type *type,
exec_list *instructions,
exec_list *parameters,
void *ctx)
{
assert(!parameters->is_empty());
ir_variable *var = new(ctx) ir_variable(type, "vec_ctor", ir_var_temporary);
instructions->push_tail(var);
/* There are two kinds of vector constructors.
*
* - Construct a vector from a single scalar by replicating that scalar to
* all components of the vector.
*
* - Construct a vector from an arbirary combination of vectors and
* scalars. The components of the constructor parameters are assigned
* to the vector in order until the vector is full.
*/
const unsigned lhs_components = type->components();
if (single_scalar_parameter(parameters)) {
ir_rvalue *first_param = (ir_rvalue *)parameters->head;
ir_rvalue *rhs = new(ctx) ir_swizzle(first_param, 0, 0, 0, 0,
lhs_components);
ir_dereference_variable *lhs = new(ctx) ir_dereference_variable(var);
const unsigned mask = (1U << lhs_components) - 1;
assert(rhs->type == lhs->type);
ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL, mask);
instructions->push_tail(inst);
} else {
unsigned base_component = 0;
unsigned base_lhs_component = 0;
ir_constant_data data;
unsigned constant_mask = 0, constant_components = 0;
memset(&data, 0, sizeof(data));
foreach_list(node, parameters) {
ir_rvalue *param = (ir_rvalue *) node;
unsigned rhs_components = param->type->components();
/* Do not try to assign more components to the vector than it has!
*/
if ((rhs_components + base_lhs_component) > lhs_components) {
rhs_components = lhs_components - base_lhs_component;
}
const ir_constant *const c = param->as_constant();
if (c != NULL) {
for (unsigned i = 0; i < rhs_components; i++) {
switch (c->type->base_type) {
case GLSL_TYPE_UINT:
data.u[i + base_component] = c->get_uint_component(i);
break;
case GLSL_TYPE_INT:
data.i[i + base_component] = c->get_int_component(i);
break;
case GLSL_TYPE_FLOAT:
data.f[i + base_component] = c->get_float_component(i);
break;
case GLSL_TYPE_BOOL:
data.b[i + base_component] = c->get_bool_component(i);
break;
default:
assert(!"Should not get here.");
break;
}
}
/* Mask of fields to be written in the assignment.
*/
constant_mask |= ((1U << rhs_components) - 1) << base_lhs_component;
constant_components += rhs_components;
base_component += rhs_components;
}
/* Advance the component index by the number of components
* that were just assigned.
*/
base_lhs_component += rhs_components;
}
if (constant_mask != 0) {
ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
const glsl_type *rhs_type = glsl_type::get_instance(var->type->base_type,
constant_components,
1);
ir_rvalue *rhs = new(ctx) ir_constant(rhs_type, &data);
ir_instruction *inst =
new(ctx) ir_assignment(lhs, rhs, NULL, constant_mask);
instructions->push_tail(inst);
}
base_component = 0;
foreach_list(node, parameters) {
ir_rvalue *param = (ir_rvalue *) node;
unsigned rhs_components = param->type->components();
/* Do not try to assign more components to the vector than it has!
*/
if ((rhs_components + base_component) > lhs_components) {
rhs_components = lhs_components - base_component;
}
const ir_constant *const c = param->as_constant();
if (c == NULL) {
/* Mask of fields to be written in the assignment.
*/
const unsigned write_mask = ((1U << rhs_components) - 1)
<< base_component;
ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
/* Generate a swizzle so that LHS and RHS sizes match.
*/
ir_rvalue *rhs =
new(ctx) ir_swizzle(param, 0, 1, 2, 3, rhs_components);
ir_instruction *inst =
new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
instructions->push_tail(inst);
}
/* Advance the component index by the number of components that were
* just assigned.
*/
base_component += rhs_components;
}
}
return new(ctx) ir_dereference_variable(var);
}
/**
* Generate assignment of a portion of a vector to a portion of a matrix column
*
* \param src_base First component of the source to be used in assignment
* \param column Column of destination to be assiged
* \param row_base First component of the destination column to be assigned
* \param count Number of components to be assigned
*
* \note
* \c src_base + \c count must be less than or equal to the number of components
* in the source vector.
*/
ir_instruction *
assign_to_matrix_column(ir_variable *var, unsigned column, unsigned row_base,
ir_rvalue *src, unsigned src_base, unsigned count,
void *mem_ctx)
{
ir_constant *col_idx = new(mem_ctx) ir_constant(column);
ir_dereference *column_ref = new(mem_ctx) ir_dereference_array(var, col_idx);
assert(column_ref->type->components() >= (row_base + count));
assert(src->type->components() >= (src_base + count));
/* Generate a swizzle that extracts the number of components from the source
* that are to be assigned to the column of the matrix.
*/
if (count < src->type->vector_elements) {
src = new(mem_ctx) ir_swizzle(src,
src_base + 0, src_base + 1,
src_base + 2, src_base + 3,
count);
}
/* Mask of fields to be written in the assignment.
*/
const unsigned write_mask = ((1U << count) - 1) << row_base;
return new(mem_ctx) ir_assignment(column_ref, src, NULL, write_mask);
}
/**
* Generate inline code for a matrix constructor
*
* The generated constructor code will consist of a temporary variable
* declaration of the same type as the constructor. A sequence of assignments
* from constructor parameters to the temporary will follow.
*
* \return
* An \c ir_dereference_variable of the temprorary generated in the constructor
* body.
*/
ir_rvalue *
emit_inline_matrix_constructor(const glsl_type *type,
exec_list *instructions,
exec_list *parameters,
void *ctx)
{
assert(!parameters->is_empty());
ir_variable *var = new(ctx) ir_variable(type, "mat_ctor", ir_var_temporary);
instructions->push_tail(var);
/* There are three kinds of matrix constructors.
*
* - Construct a matrix from a single scalar by replicating that scalar to
* along the diagonal of the matrix and setting all other components to
* zero.
*
* - Construct a matrix from an arbirary combination of vectors and
* scalars. The components of the constructor parameters are assigned
* to the matrix in colum-major order until the matrix is full.
*
* - Construct a matrix from a single matrix. The source matrix is copied
* to the upper left portion of the constructed matrix, and the remaining
* elements take values from the identity matrix.
*/
ir_rvalue *const first_param = (ir_rvalue *) parameters->head;
if (single_scalar_parameter(parameters)) {
/* Assign the scalar to the X component of a vec4, and fill the remaining
* components with zero.
*/
ir_variable *rhs_var =
new(ctx) ir_variable(glsl_type::vec4_type, "mat_ctor_vec",
ir_var_temporary);
instructions->push_tail(rhs_var);
ir_constant_data zero;
zero.f[0] = 0.0;
zero.f[1] = 0.0;
zero.f[2] = 0.0;
zero.f[3] = 0.0;
ir_instruction *inst =
new(ctx) ir_assignment(new(ctx) ir_dereference_variable(rhs_var),
new(ctx) ir_constant(rhs_var->type, &zero),
NULL);
instructions->push_tail(inst);
ir_dereference *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
inst = new(ctx) ir_assignment(rhs_ref, first_param, NULL, 0x01);
instructions->push_tail(inst);
/* Assign the temporary vector to each column of the destination matrix
* with a swizzle that puts the X component on the diagonal of the
* matrix. In some cases this may mean that the X component does not
* get assigned into the column at all (i.e., when the matrix has more
* columns than rows).
*/
static const unsigned rhs_swiz[4][4] = {
{ 0, 1, 1, 1 },
{ 1, 0, 1, 1 },
{ 1, 1, 0, 1 },
{ 1, 1, 1, 0 }
};
const unsigned cols_to_init = MIN2(type->matrix_columns,
type->vector_elements);
for (unsigned i = 0; i < cols_to_init; i++) {
ir_constant *const col_idx = new(ctx) ir_constant(i);
ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, rhs_swiz[i],
type->vector_elements);
inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
instructions->push_tail(inst);
}
for (unsigned i = cols_to_init; i < type->matrix_columns; i++) {
ir_constant *const col_idx = new(ctx) ir_constant(i);
ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, 1, 1, 1, 1,
type->vector_elements);
inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
instructions->push_tail(inst);
}
} else if (first_param->type->is_matrix()) {
/* From page 50 (56 of the PDF) of the GLSL 1.50 spec:
*
* "If a matrix is constructed from a matrix, then each component
* (column i, row j) in the result that has a corresponding
* component (column i, row j) in the argument will be initialized
* from there. All other components will be initialized to the
* identity matrix. If a matrix argument is given to a matrix
* constructor, it is an error to have any other arguments."
*/
assert(first_param->next->is_tail_sentinel());
ir_rvalue *const src_matrix = first_param;
/* If the source matrix is smaller, pre-initialize the relavent parts of
* the destination matrix to the identity matrix.
*/
if ((src_matrix->type->matrix_columns < var->type->matrix_columns)
|| (src_matrix->type->vector_elements < var->type->vector_elements)) {
/* If the source matrix has fewer rows, every column of the destination
* must be initialized. Otherwise only the columns in the destination
* that do not exist in the source must be initialized.
*/
unsigned col =
(src_matrix->type->vector_elements < var->type->vector_elements)
? 0 : src_matrix->type->matrix_columns;
const glsl_type *const col_type = var->type->column_type();
for (/* empty */; col < var->type->matrix_columns; col++) {
ir_constant_data ident;
ident.f[0] = 0.0;
ident.f[1] = 0.0;
ident.f[2] = 0.0;
ident.f[3] = 0.0;
ident.f[col] = 1.0;
ir_rvalue *const rhs = new(ctx) ir_constant(col_type, &ident);
ir_rvalue *const lhs =
new(ctx) ir_dereference_array(var, new(ctx) ir_constant(col));
ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL);
instructions->push_tail(inst);
}
}
/* Assign columns from the source matrix to the destination matrix.
*
* Since the parameter will be used in the RHS of multiple assignments,
* generate a temporary and copy the paramter there.
*/
ir_variable *const rhs_var =
new(ctx) ir_variable(first_param->type, "mat_ctor_mat",
ir_var_temporary);
instructions->push_tail(rhs_var);
ir_dereference *const rhs_var_ref =
new(ctx) ir_dereference_variable(rhs_var);
ir_instruction *const inst =
new(ctx) ir_assignment(rhs_var_ref, first_param, NULL);
instructions->push_tail(inst);
const unsigned last_row = MIN2(src_matrix->type->vector_elements,
var->type->vector_elements);
const unsigned last_col = MIN2(src_matrix->type->matrix_columns,
var->type->matrix_columns);
unsigned swiz[4] = { 0, 0, 0, 0 };
for (unsigned i = 1; i < last_row; i++)
swiz[i] = i;
const unsigned write_mask = (1U << last_row) - 1;
for (unsigned i = 0; i < last_col; i++) {
ir_dereference *const lhs =
new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i));
ir_rvalue *const rhs_col =
new(ctx) ir_dereference_array(rhs_var, new(ctx) ir_constant(i));
/* If one matrix has columns that are smaller than the columns of the
* other matrix, wrap the column access of the larger with a swizzle
* so that the LHS and RHS of the assignment have the same size (and
* therefore have the same type).
*
* It would be perfectly valid to unconditionally generate the
* swizzles, this this will typically result in a more compact IR tree.
*/
ir_rvalue *rhs;
if (lhs->type->vector_elements != rhs_col->type->vector_elements) {
rhs = new(ctx) ir_swizzle(rhs_col, swiz, last_row);
} else {
rhs = rhs_col;
}
ir_instruction *inst =
new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
instructions->push_tail(inst);
}
} else {
const unsigned cols = type->matrix_columns;
const unsigned rows = type->vector_elements;
unsigned col_idx = 0;
unsigned row_idx = 0;
foreach_list (node, parameters) {
ir_rvalue *const rhs = (ir_rvalue *) node;
const unsigned components_remaining_this_column = rows - row_idx;
unsigned rhs_components = rhs->type->components();
unsigned rhs_base = 0;
/* Since the parameter might be used in the RHS of two assignments,
* generate a temporary and copy the paramter there.
*/
ir_variable *rhs_var =
new(ctx) ir_variable(rhs->type, "mat_ctor_vec", ir_var_temporary);
instructions->push_tail(rhs_var);
ir_dereference *rhs_var_ref =
new(ctx) ir_dereference_variable(rhs_var);
ir_instruction *inst = new(ctx) ir_assignment(rhs_var_ref, rhs, NULL);
instructions->push_tail(inst);
/* Assign the current parameter to as many components of the matrix
* as it will fill.
*
* NOTE: A single vector parameter can span two matrix columns. A
* single vec4, for example, can completely fill a mat2.
*/
if (rhs_components >= components_remaining_this_column) {
const unsigned count = MIN2(rhs_components,
components_remaining_this_column);
rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
ir_instruction *inst = assign_to_matrix_column(var, col_idx,
row_idx,
rhs_var_ref, 0,
count, ctx);
instructions->push_tail(inst);
rhs_base = count;
col_idx++;
row_idx = 0;
}
/* If there is data left in the parameter and components left to be
* set in the destination, emit another assignment. It is possible
* that the assignment could be of a vec4 to the last element of the
* matrix. In this case col_idx==cols, but there is still data
* left in the source parameter. Obviously, don't emit an assignment
* to data outside the destination matrix.
*/
if ((col_idx < cols) && (rhs_base < rhs_components)) {
const unsigned count = rhs_components - rhs_base;
rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
ir_instruction *inst = assign_to_matrix_column(var, col_idx,
row_idx,
rhs_var_ref,
rhs_base,
count, ctx);
instructions->push_tail(inst);
row_idx += count;
}
}
}
return new(ctx) ir_dereference_variable(var);
}
ir_rvalue *
emit_inline_record_constructor(const glsl_type *type,
exec_list *instructions,
exec_list *parameters,
void *mem_ctx)
{
ir_variable *const var =
new(mem_ctx) ir_variable(type, "record_ctor", ir_var_temporary);
ir_dereference_variable *const d = new(mem_ctx) ir_dereference_variable(var);
instructions->push_tail(var);
exec_node *node = parameters->head;
for (unsigned i = 0; i < type->length; i++) {
assert(!node->is_tail_sentinel());
ir_dereference *const lhs =
new(mem_ctx) ir_dereference_record(d->clone(mem_ctx, NULL),
type->fields.structure[i].name);
ir_rvalue *const rhs = ((ir_instruction *) node)->as_rvalue();
assert(rhs != NULL);
ir_instruction *const assign = new(mem_ctx) ir_assignment(lhs, rhs, NULL);
instructions->push_tail(assign);
node = node->next;
}
return d;
}
ir_rvalue *
ast_function_expression::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
void *ctx = state;
/* There are three sorts of function calls.
*
* 1. constructors - The first subexpression is an ast_type_specifier.
* 2. methods - Only the .length() method of array types.
* 3. functions - Calls to regular old functions.
*
* Method calls are actually detected when the ast_field_selection
* expression is handled.
*/
if (is_constructor()) {
const ast_type_specifier *type = (ast_type_specifier *) subexpressions[0];
YYLTYPE loc = type->get_location();
const char *name;
const glsl_type *const constructor_type = type->glsl_type(& name, state);
/* constructor_type can be NULL if a variable with the same name as the
* structure has come into scope.
*/
if (constructor_type == NULL) {
_mesa_glsl_error(& loc, state, "unknown type `%s' (structure name "
"may be shadowed by a variable with the same name)",
type->type_name);
return ir_rvalue::error_value(ctx);
}
/* Constructors for samplers are illegal.
*/
if (constructor_type->is_sampler()) {
_mesa_glsl_error(& loc, state, "cannot construct sampler type `%s'",
constructor_type->name);
return ir_rvalue::error_value(ctx);
}
if (constructor_type->is_array()) {
if (state->language_version <= 110) {
_mesa_glsl_error(& loc, state,
"array constructors forbidden in GLSL 1.10");
return ir_rvalue::error_value(ctx);
}
return process_array_constructor(instructions, constructor_type,
& loc, &this->expressions, state);
}
/* There are two kinds of constructor call. Constructors for built-in
* language types, such as mat4 and vec2, are free form. The only
* requirement is that the parameters must provide enough values of the
* correct scalar type. Constructors for arrays and structures must
* have the exact number of parameters with matching types in the
* correct order. These constructors follow essentially the same type
* matching rules as functions.
*/
if (constructor_type->is_record()) {
exec_list actual_parameters;
process_parameters(instructions, &actual_parameters,
&this->expressions, state);
exec_node *node = actual_parameters.head;
for (unsigned i = 0; i < constructor_type->length; i++) {
ir_rvalue *ir = (ir_rvalue *) node;
if (node->is_tail_sentinel()) {
_mesa_glsl_error(&loc, state,
"insufficient parameters to constructor "
"for `%s'",
constructor_type->name);
return ir_rvalue::error_value(ctx);
}
if (apply_implicit_conversion(constructor_type->fields.structure[i].type,
ir, state)) {
node->replace_with(ir);
} else {
_mesa_glsl_error(&loc, state,
"parameter type mismatch in constructor "
"for `%s.%s' (%s vs %s)",
constructor_type->name,
constructor_type->fields.structure[i].name,
ir->type->name,
constructor_type->fields.structure[i].type->name);
return ir_rvalue::error_value(ctx);;
}
node = node->next;
}
if (!node->is_tail_sentinel()) {
_mesa_glsl_error(&loc, state, "too many parameters in constructor "
"for `%s'", constructor_type->name);
return ir_rvalue::error_value(ctx);
}
ir_rvalue *const constant =
constant_record_constructor(constructor_type, &actual_parameters,
state);
return (constant != NULL)
? constant
: emit_inline_record_constructor(constructor_type, instructions,
&actual_parameters, state);
}
if (!constructor_type->is_numeric() && !constructor_type->is_boolean())
return ir_rvalue::error_value(ctx);
/* Total number of components of the type being constructed. */
const unsigned type_components = constructor_type->components();
/* Number of components from parameters that have actually been
* consumed. This is used to perform several kinds of error checking.
*/
unsigned components_used = 0;
unsigned matrix_parameters = 0;
unsigned nonmatrix_parameters = 0;
exec_list actual_parameters;
foreach_list (n, &this->expressions) {
ast_node *ast = exec_node_data(ast_node, n, link);
ir_rvalue *result = ast->hir(instructions, state)->as_rvalue();
/* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
*
* "It is an error to provide extra arguments beyond this
* last used argument."
*/
if (components_used >= type_components) {
_mesa_glsl_error(& loc, state, "too many parameters to `%s' "
"constructor",
constructor_type->name);
return ir_rvalue::error_value(ctx);
}
if (!result->type->is_numeric() && !result->type->is_boolean()) {
_mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
"non-numeric data type",
constructor_type->name);
return ir_rvalue::error_value(ctx);
}
/* Count the number of matrix and nonmatrix parameters. This
* is used below to enforce some of the constructor rules.
*/
if (result->type->is_matrix())
matrix_parameters++;
else
nonmatrix_parameters++;
actual_parameters.push_tail(result);
components_used += result->type->components();
}
/* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
*
* "It is an error to construct matrices from other matrices. This
* is reserved for future use."
*/
if (state->language_version == 110 && matrix_parameters > 0
&& constructor_type->is_matrix()) {
_mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
"matrix in GLSL 1.10",
constructor_type->name);
return ir_rvalue::error_value(ctx);
}
/* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
*
* "If a matrix argument is given to a matrix constructor, it is
* an error to have any other arguments."
*/
if ((matrix_parameters > 0)
&& ((matrix_parameters + nonmatrix_parameters) > 1)
&& constructor_type->is_matrix()) {
_mesa_glsl_error(& loc, state, "for matrix `%s' constructor, "
"matrix must be only parameter",
constructor_type->name);
return ir_rvalue::error_value(ctx);
}
/* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
*
* "In these cases, there must be enough components provided in the
* arguments to provide an initializer for every component in the
* constructed value."
*/
if (components_used < type_components && components_used != 1
&& matrix_parameters == 0) {
_mesa_glsl_error(& loc, state, "too few components to construct "
"`%s'",
constructor_type->name);
return ir_rvalue::error_value(ctx);
}
/* Later, we cast each parameter to the same base type as the
* constructor. Since there are no non-floating point matrices, we
* need to break them up into a series of column vectors.
*/
if (constructor_type->base_type != GLSL_TYPE_FLOAT) {
foreach_list_safe(n, &actual_parameters) {
ir_rvalue *matrix = (ir_rvalue *) n;
if (!matrix->type->is_matrix())
continue;
/* Create a temporary containing the matrix. */
ir_variable *var = new(ctx) ir_variable(matrix->type, "matrix_tmp",
ir_var_temporary);
instructions->push_tail(var);
instructions->push_tail(new(ctx) ir_assignment(new(ctx)
ir_dereference_variable(var), matrix, NULL));
var->constant_value = matrix->constant_expression_value();
/* Replace the matrix with dereferences of its columns. */
for (int i = 0; i < matrix->type->matrix_columns; i++) {
matrix->insert_before(new (ctx) ir_dereference_array(var,
new(ctx) ir_constant(i)));
}
matrix->remove();
}
}
bool all_parameters_are_constant = true;
/* Type cast each parameter and, if possible, fold constants.*/
foreach_list_safe(n, &actual_parameters) {
ir_rvalue *ir = (ir_rvalue *) n;
const glsl_type *desired_type =
glsl_type::get_instance(constructor_type->base_type,
ir->type->vector_elements,
ir->type->matrix_columns);
ir_rvalue *result = convert_component(ir, desired_type);
/* Attempt to convert the parameter to a constant valued expression.
* After doing so, track whether or not all the parameters to the
* constructor are trivially constant valued expressions.
*/
ir_rvalue *const constant = result->constant_expression_value();
if (constant != NULL)
result = constant;
else
all_parameters_are_constant = false;
if (result != ir) {
ir->replace_with(result);
}
}
/* If all of the parameters are trivially constant, create a
* constant representing the complete collection of parameters.
*/
if (all_parameters_are_constant) {
return new(ctx) ir_constant(constructor_type, &actual_parameters);
} else if (constructor_type->is_scalar()) {
return dereference_component((ir_rvalue *) actual_parameters.head,
0);
} else if (constructor_type->is_vector()) {
return emit_inline_vector_constructor(constructor_type,
instructions,
&actual_parameters,
ctx);
} else {
assert(constructor_type->is_matrix());
return emit_inline_matrix_constructor(constructor_type,
instructions,
&actual_parameters,
ctx);
}
} else {
const ast_expression *id = subexpressions[0];
const char *func_name = id->primary_expression.identifier;
YYLTYPE loc = id->get_location();
exec_list actual_parameters;
process_parameters(instructions, &actual_parameters, &this->expressions,
state);
ir_function_signature *sig =
match_function_by_name(func_name, &actual_parameters, state);
ir_call *call = NULL;
ir_rvalue *value = NULL;
if (sig == NULL) {
no_matching_function_error(func_name, &loc, &actual_parameters, state);
value = ir_rvalue::error_value(ctx);
} else if (!verify_parameter_modes(state, sig, actual_parameters, this->expressions)) {
/* an error has already been emitted */
value = ir_rvalue::error_value(ctx);
} else {
value = generate_call(instructions, sig, &loc, &actual_parameters,
&call, state);
}
return value;
}
return ir_rvalue::error_value(ctx);
}