blob: 8a87aa876ed534f8ced491c6b8b7991bc0fb86d7 [file] [log] [blame]
/*
* Copyright 2008 Corbin Simpson <MostAwesomeDude@gmail.com>
* Copyright 2009 Marek Olšák <maraeo@gmail.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* on the rights to use, copy, modify, merge, publish, distribute, sub
* license, and/or sell copies of the Software, and to permit persons to whom
* the Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE. */
#include "draw/draw_context.h"
#include "util/u_framebuffer.h"
#include "util/u_half.h"
#include "util/u_math.h"
#include "util/u_mm.h"
#include "util/u_memory.h"
#include "util/u_pack_color.h"
#include "util/u_transfer.h"
#include "tgsi/tgsi_parse.h"
#include "pipe/p_config.h"
#include "r300_cb.h"
#include "r300_context.h"
#include "r300_emit.h"
#include "r300_reg.h"
#include "r300_screen.h"
#include "r300_screen_buffer.h"
#include "r300_state_inlines.h"
#include "r300_fs.h"
#include "r300_texture.h"
#include "r300_vs.h"
/* r300_state: Functions used to intialize state context by translating
* Gallium state objects into semi-native r300 state objects. */
#define UPDATE_STATE(cso, atom) \
if (cso != atom.state) { \
atom.state = cso; \
r300_mark_atom_dirty(r300, &(atom)); \
}
static boolean blend_discard_if_src_alpha_0(unsigned srcRGB, unsigned srcA,
unsigned dstRGB, unsigned dstA)
{
/* If the blend equation is ADD or REVERSE_SUBTRACT,
* SRC_ALPHA == 0, and the following state is set, the colorbuffer
* will not be changed.
* Notice that the dst factors are the src factors inverted. */
return (srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA ||
srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE ||
srcRGB == PIPE_BLENDFACTOR_ZERO) &&
(srcA == PIPE_BLENDFACTOR_SRC_COLOR ||
srcA == PIPE_BLENDFACTOR_SRC_ALPHA ||
srcA == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE ||
srcA == PIPE_BLENDFACTOR_ZERO) &&
(dstRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
dstRGB == PIPE_BLENDFACTOR_ONE) &&
(dstA == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
dstA == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
dstA == PIPE_BLENDFACTOR_ONE);
}
static boolean blend_discard_if_src_alpha_1(unsigned srcRGB, unsigned srcA,
unsigned dstRGB, unsigned dstA)
{
/* If the blend equation is ADD or REVERSE_SUBTRACT,
* SRC_ALPHA == 1, and the following state is set, the colorbuffer
* will not be changed.
* Notice that the dst factors are the src factors inverted. */
return (srcRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
srcRGB == PIPE_BLENDFACTOR_ZERO) &&
(srcA == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
srcA == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
srcA == PIPE_BLENDFACTOR_ZERO) &&
(dstRGB == PIPE_BLENDFACTOR_SRC_ALPHA ||
dstRGB == PIPE_BLENDFACTOR_ONE) &&
(dstA == PIPE_BLENDFACTOR_SRC_COLOR ||
dstA == PIPE_BLENDFACTOR_SRC_ALPHA ||
dstA == PIPE_BLENDFACTOR_ONE);
}
static boolean blend_discard_if_src_color_0(unsigned srcRGB, unsigned srcA,
unsigned dstRGB, unsigned dstA)
{
/* If the blend equation is ADD or REVERSE_SUBTRACT,
* SRC_COLOR == (0,0,0), and the following state is set, the colorbuffer
* will not be changed.
* Notice that the dst factors are the src factors inverted. */
return (srcRGB == PIPE_BLENDFACTOR_SRC_COLOR ||
srcRGB == PIPE_BLENDFACTOR_ZERO) &&
(srcA == PIPE_BLENDFACTOR_ZERO) &&
(dstRGB == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
dstRGB == PIPE_BLENDFACTOR_ONE) &&
(dstA == PIPE_BLENDFACTOR_ONE);
}
static boolean blend_discard_if_src_color_1(unsigned srcRGB, unsigned srcA,
unsigned dstRGB, unsigned dstA)
{
/* If the blend equation is ADD or REVERSE_SUBTRACT,
* SRC_COLOR == (1,1,1), and the following state is set, the colorbuffer
* will not be changed.
* Notice that the dst factors are the src factors inverted. */
return (srcRGB == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
srcRGB == PIPE_BLENDFACTOR_ZERO) &&
(srcA == PIPE_BLENDFACTOR_ZERO) &&
(dstRGB == PIPE_BLENDFACTOR_SRC_COLOR ||
dstRGB == PIPE_BLENDFACTOR_ONE) &&
(dstA == PIPE_BLENDFACTOR_ONE);
}
static boolean blend_discard_if_src_alpha_color_0(unsigned srcRGB, unsigned srcA,
unsigned dstRGB, unsigned dstA)
{
/* If the blend equation is ADD or REVERSE_SUBTRACT,
* SRC_ALPHA_COLOR == (0,0,0,0), and the following state is set,
* the colorbuffer will not be changed.
* Notice that the dst factors are the src factors inverted. */
return (srcRGB == PIPE_BLENDFACTOR_SRC_COLOR ||
srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA ||
srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE ||
srcRGB == PIPE_BLENDFACTOR_ZERO) &&
(srcA == PIPE_BLENDFACTOR_SRC_COLOR ||
srcA == PIPE_BLENDFACTOR_SRC_ALPHA ||
srcA == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE ||
srcA == PIPE_BLENDFACTOR_ZERO) &&
(dstRGB == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
dstRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
dstRGB == PIPE_BLENDFACTOR_ONE) &&
(dstA == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
dstA == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
dstA == PIPE_BLENDFACTOR_ONE);
}
static boolean blend_discard_if_src_alpha_color_1(unsigned srcRGB, unsigned srcA,
unsigned dstRGB, unsigned dstA)
{
/* If the blend equation is ADD or REVERSE_SUBTRACT,
* SRC_ALPHA_COLOR == (1,1,1,1), and the following state is set,
* the colorbuffer will not be changed.
* Notice that the dst factors are the src factors inverted. */
return (srcRGB == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
srcRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
srcRGB == PIPE_BLENDFACTOR_ZERO) &&
(srcA == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
srcA == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
srcA == PIPE_BLENDFACTOR_ZERO) &&
(dstRGB == PIPE_BLENDFACTOR_SRC_COLOR ||
dstRGB == PIPE_BLENDFACTOR_SRC_ALPHA ||
dstRGB == PIPE_BLENDFACTOR_ONE) &&
(dstA == PIPE_BLENDFACTOR_SRC_COLOR ||
dstA == PIPE_BLENDFACTOR_SRC_ALPHA ||
dstA == PIPE_BLENDFACTOR_ONE);
}
/* The hardware colormask is clunky a must be swizzled depending on the format.
* This was figured out by trial-and-error. */
static unsigned bgra_cmask(unsigned mask)
{
return ((mask & PIPE_MASK_R) << 2) |
((mask & PIPE_MASK_B) >> 2) |
(mask & (PIPE_MASK_G | PIPE_MASK_A));
}
static unsigned rgba_cmask(unsigned mask)
{
return mask & PIPE_MASK_RGBA;
}
static unsigned rrrr_cmask(unsigned mask)
{
return (mask & PIPE_MASK_R) |
((mask & PIPE_MASK_R) << 1) |
((mask & PIPE_MASK_R) << 2) |
((mask & PIPE_MASK_R) << 3);
}
static unsigned aaaa_cmask(unsigned mask)
{
return ((mask & PIPE_MASK_A) >> 3) |
((mask & PIPE_MASK_A) >> 2) |
((mask & PIPE_MASK_A) >> 1) |
(mask & PIPE_MASK_A);
}
static unsigned grrg_cmask(unsigned mask)
{
return ((mask & PIPE_MASK_R) << 1) |
((mask & PIPE_MASK_R) << 2) |
((mask & PIPE_MASK_G) >> 1) |
((mask & PIPE_MASK_G) << 2);
}
static unsigned arra_cmask(unsigned mask)
{
return ((mask & PIPE_MASK_R) << 1) |
((mask & PIPE_MASK_R) << 2) |
((mask & PIPE_MASK_A) >> 3) |
(mask & PIPE_MASK_A);
}
/* Create a new blend state based on the CSO blend state.
*
* This encompasses alpha blending, logic/raster ops, and blend dithering. */
static void* r300_create_blend_state(struct pipe_context* pipe,
const struct pipe_blend_state* state)
{
struct r300_screen* r300screen = r300_screen(pipe->screen);
struct r300_blend_state* blend = CALLOC_STRUCT(r300_blend_state);
uint32_t blend_control = 0; /* R300_RB3D_CBLEND: 0x4e04 */
uint32_t blend_control_noclamp = 0; /* R300_RB3D_CBLEND: 0x4e04 */
uint32_t alpha_blend_control = 0; /* R300_RB3D_ABLEND: 0x4e08 */
uint32_t alpha_blend_control_noclamp = 0; /* R300_RB3D_ABLEND: 0x4e08 */
uint32_t rop = 0; /* R300_RB3D_ROPCNTL: 0x4e18 */
uint32_t dither = 0; /* R300_RB3D_DITHER_CTL: 0x4e50 */
int i;
CB_LOCALS;
blend->state = *state;
if (state->rt[0].blend_enable)
{
unsigned eqRGB = state->rt[0].rgb_func;
unsigned srcRGB = state->rt[0].rgb_src_factor;
unsigned dstRGB = state->rt[0].rgb_dst_factor;
unsigned eqA = state->rt[0].alpha_func;
unsigned srcA = state->rt[0].alpha_src_factor;
unsigned dstA = state->rt[0].alpha_dst_factor;
/* despite the name, ALPHA_BLEND_ENABLE has nothing to do with alpha,
* this is just the crappy D3D naming */
blend_control = blend_control_noclamp =
R300_ALPHA_BLEND_ENABLE |
( r300_translate_blend_factor(srcRGB) << R300_SRC_BLEND_SHIFT) |
( r300_translate_blend_factor(dstRGB) << R300_DST_BLEND_SHIFT);
blend_control |=
r300_translate_blend_function(eqRGB, TRUE);
blend_control_noclamp |=
r300_translate_blend_function(eqRGB, FALSE);
/* Optimization: some operations do not require the destination color.
*
* When SRC_ALPHA_SATURATE is used, colorbuffer reads must be enabled,
* otherwise blending gives incorrect results. It seems to be
* a hardware bug. */
if (eqRGB == PIPE_BLEND_MIN || eqA == PIPE_BLEND_MIN ||
eqRGB == PIPE_BLEND_MAX || eqA == PIPE_BLEND_MAX ||
dstRGB != PIPE_BLENDFACTOR_ZERO ||
dstA != PIPE_BLENDFACTOR_ZERO ||
srcRGB == PIPE_BLENDFACTOR_DST_COLOR ||
srcRGB == PIPE_BLENDFACTOR_DST_ALPHA ||
srcRGB == PIPE_BLENDFACTOR_INV_DST_COLOR ||
srcRGB == PIPE_BLENDFACTOR_INV_DST_ALPHA ||
srcA == PIPE_BLENDFACTOR_DST_COLOR ||
srcA == PIPE_BLENDFACTOR_DST_ALPHA ||
srcA == PIPE_BLENDFACTOR_INV_DST_COLOR ||
srcA == PIPE_BLENDFACTOR_INV_DST_ALPHA ||
srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE) {
/* Enable reading from the colorbuffer. */
blend_control |= R300_READ_ENABLE;
blend_control_noclamp |= R300_READ_ENABLE;
if (r300screen->caps.is_r500) {
/* Optimization: Depending on incoming pixels, we can
* conditionally disable the reading in hardware... */
if (eqRGB != PIPE_BLEND_MIN && eqA != PIPE_BLEND_MIN &&
eqRGB != PIPE_BLEND_MAX && eqA != PIPE_BLEND_MAX) {
/* Disable reading if SRC_ALPHA == 0. */
if ((dstRGB == PIPE_BLENDFACTOR_SRC_ALPHA ||
dstRGB == PIPE_BLENDFACTOR_ZERO) &&
(dstA == PIPE_BLENDFACTOR_SRC_COLOR ||
dstA == PIPE_BLENDFACTOR_SRC_ALPHA ||
dstA == PIPE_BLENDFACTOR_ZERO) &&
(srcRGB != PIPE_BLENDFACTOR_DST_COLOR &&
srcRGB != PIPE_BLENDFACTOR_DST_ALPHA &&
srcRGB != PIPE_BLENDFACTOR_INV_DST_COLOR &&
srcRGB != PIPE_BLENDFACTOR_INV_DST_ALPHA)) {
blend_control |= R500_SRC_ALPHA_0_NO_READ;
}
/* Disable reading if SRC_ALPHA == 1. */
if ((dstRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
dstRGB == PIPE_BLENDFACTOR_ZERO) &&
(dstA == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
dstA == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
dstA == PIPE_BLENDFACTOR_ZERO) &&
(srcRGB != PIPE_BLENDFACTOR_DST_COLOR &&
srcRGB != PIPE_BLENDFACTOR_DST_ALPHA &&
srcRGB != PIPE_BLENDFACTOR_INV_DST_COLOR &&
srcRGB != PIPE_BLENDFACTOR_INV_DST_ALPHA)) {
blend_control |= R500_SRC_ALPHA_1_NO_READ;
}
}
}
}
/* Optimization: discard pixels which don't change the colorbuffer.
*
* The code below is non-trivial and some math is involved.
*
* Discarding pixels must be disabled when FP16 AA is enabled.
* This is a hardware bug. Also, this implementation wouldn't work
* with FP blending enabled and equation clamping disabled.
*
* Equations other than ADD are rarely used and therefore won't be
* optimized. */
if ((eqRGB == PIPE_BLEND_ADD || eqRGB == PIPE_BLEND_REVERSE_SUBTRACT) &&
(eqA == PIPE_BLEND_ADD || eqA == PIPE_BLEND_REVERSE_SUBTRACT)) {
/* ADD: X+Y
* REVERSE_SUBTRACT: Y-X
*
* The idea is:
* If X = src*srcFactor = 0 and Y = dst*dstFactor = 1,
* then CB will not be changed.
*
* Given the srcFactor and dstFactor variables, we can derive
* what src and dst should be equal to and discard appropriate
* pixels.
*/
if (blend_discard_if_src_alpha_0(srcRGB, srcA, dstRGB, dstA)) {
blend_control |= R300_DISCARD_SRC_PIXELS_SRC_ALPHA_0;
} else if (blend_discard_if_src_alpha_1(srcRGB, srcA,
dstRGB, dstA)) {
blend_control |= R300_DISCARD_SRC_PIXELS_SRC_ALPHA_1;
} else if (blend_discard_if_src_color_0(srcRGB, srcA,
dstRGB, dstA)) {
blend_control |= R300_DISCARD_SRC_PIXELS_SRC_COLOR_0;
} else if (blend_discard_if_src_color_1(srcRGB, srcA,
dstRGB, dstA)) {
blend_control |= R300_DISCARD_SRC_PIXELS_SRC_COLOR_1;
} else if (blend_discard_if_src_alpha_color_0(srcRGB, srcA,
dstRGB, dstA)) {
blend_control |=
R300_DISCARD_SRC_PIXELS_SRC_ALPHA_COLOR_0;
} else if (blend_discard_if_src_alpha_color_1(srcRGB, srcA,
dstRGB, dstA)) {
blend_control |=
R300_DISCARD_SRC_PIXELS_SRC_ALPHA_COLOR_1;
}
}
/* separate alpha */
if (srcA != srcRGB || dstA != dstRGB || eqA != eqRGB) {
blend_control |= R300_SEPARATE_ALPHA_ENABLE;
blend_control_noclamp |= R300_SEPARATE_ALPHA_ENABLE;
alpha_blend_control = alpha_blend_control_noclamp =
(r300_translate_blend_factor(srcA) << R300_SRC_BLEND_SHIFT) |
(r300_translate_blend_factor(dstA) << R300_DST_BLEND_SHIFT);
alpha_blend_control |=
r300_translate_blend_function(eqA, TRUE);
alpha_blend_control_noclamp |=
r300_translate_blend_function(eqA, FALSE);
}
}
/* PIPE_LOGICOP_* don't need to be translated, fortunately. */
if (state->logicop_enable) {
rop = R300_RB3D_ROPCNTL_ROP_ENABLE |
(state->logicop_func) << R300_RB3D_ROPCNTL_ROP_SHIFT;
}
/* Neither fglrx nor classic r300 ever set this, regardless of dithering
* state. Since it's an optional implementation detail, we can leave it
* out and never dither.
*
* This could be revisited if we ever get quality or conformance hints.
*
if (state->dither) {
dither = R300_RB3D_DITHER_CTL_DITHER_MODE_LUT |
R300_RB3D_DITHER_CTL_ALPHA_DITHER_MODE_LUT;
}
*/
/* Build a command buffer. */
{
unsigned (*func[COLORMASK_NUM_SWIZZLES])(unsigned) = {
bgra_cmask,
rgba_cmask,
rrrr_cmask,
aaaa_cmask,
grrg_cmask,
arra_cmask
};
for (i = 0; i < COLORMASK_NUM_SWIZZLES; i++) {
BEGIN_CB(blend->cb_clamp[i], 8);
OUT_CB_REG(R300_RB3D_ROPCNTL, rop);
OUT_CB_REG_SEQ(R300_RB3D_CBLEND, 3);
OUT_CB(blend_control);
OUT_CB(alpha_blend_control);
OUT_CB(func[i](state->rt[0].colormask));
OUT_CB_REG(R300_RB3D_DITHER_CTL, dither);
END_CB;
}
}
/* Build a command buffer. */
BEGIN_CB(blend->cb_noclamp, 8);
OUT_CB_REG(R300_RB3D_ROPCNTL, rop);
OUT_CB_REG_SEQ(R300_RB3D_CBLEND, 3);
OUT_CB(blend_control_noclamp);
OUT_CB(alpha_blend_control_noclamp);
OUT_CB(rgba_cmask(state->rt[0].colormask));
OUT_CB_REG(R300_RB3D_DITHER_CTL, dither);
END_CB;
/* The same as above, but with no colorbuffer reads and writes. */
BEGIN_CB(blend->cb_no_readwrite, 8);
OUT_CB_REG(R300_RB3D_ROPCNTL, rop);
OUT_CB_REG_SEQ(R300_RB3D_CBLEND, 3);
OUT_CB(0);
OUT_CB(0);
OUT_CB(0);
OUT_CB_REG(R300_RB3D_DITHER_CTL, dither);
END_CB;
return (void*)blend;
}
/* Bind blend state. */
static void r300_bind_blend_state(struct pipe_context* pipe,
void* state)
{
struct r300_context* r300 = r300_context(pipe);
UPDATE_STATE(state, r300->blend_state);
}
/* Free blend state. */
static void r300_delete_blend_state(struct pipe_context* pipe,
void* state)
{
FREE(state);
}
/* Convert float to 10bit integer */
static unsigned float_to_fixed10(float f)
{
return CLAMP((unsigned)(f * 1023.9f), 0, 1023);
}
/* Set blend color.
* Setup both R300 and R500 registers, figure out later which one to write. */
static void r300_set_blend_color(struct pipe_context* pipe,
const struct pipe_blend_color* color)
{
struct r300_context* r300 = r300_context(pipe);
struct pipe_framebuffer_state *fb = r300->fb_state.state;
struct r300_blend_color_state *state =
(struct r300_blend_color_state*)r300->blend_color_state.state;
struct pipe_blend_color c;
enum pipe_format format = fb->nr_cbufs ? fb->cbufs[0]->format : 0;
float tmp;
CB_LOCALS;
state->state = *color; /* Save it, so that we can reuse it in set_fb_state */
c = *color;
/* The blend color is dependent on the colorbuffer format. */
if (fb->nr_cbufs) {
switch (format) {
case PIPE_FORMAT_R8_UNORM:
case PIPE_FORMAT_L8_UNORM:
case PIPE_FORMAT_I8_UNORM:
c.color[1] = c.color[0];
break;
case PIPE_FORMAT_A8_UNORM:
c.color[1] = c.color[3];
break;
case PIPE_FORMAT_R8G8_UNORM:
c.color[2] = c.color[1];
break;
case PIPE_FORMAT_L8A8_UNORM:
c.color[2] = c.color[3];
break;
case PIPE_FORMAT_R8G8B8A8_UNORM:
case PIPE_FORMAT_R8G8B8X8_UNORM:
tmp = c.color[0];
c.color[0] = c.color[2];
c.color[2] = tmp;
break;
default:;
}
}
if (r300->screen->caps.is_r500) {
BEGIN_CB(state->cb, 3);
OUT_CB_REG_SEQ(R500_RB3D_CONSTANT_COLOR_AR, 2);
switch (format) {
case PIPE_FORMAT_R16G16B16A16_FLOAT:
OUT_CB(util_float_to_half(c.color[2]) |
(util_float_to_half(c.color[3]) << 16));
OUT_CB(util_float_to_half(c.color[0]) |
(util_float_to_half(c.color[1]) << 16));
break;
default:
OUT_CB(float_to_fixed10(c.color[0]) |
(float_to_fixed10(c.color[3]) << 16));
OUT_CB(float_to_fixed10(c.color[2]) |
(float_to_fixed10(c.color[1]) << 16));
}
END_CB;
} else {
union util_color uc;
util_pack_color(c.color, PIPE_FORMAT_B8G8R8A8_UNORM, &uc);
BEGIN_CB(state->cb, 2);
OUT_CB_REG(R300_RB3D_BLEND_COLOR, uc.ui);
END_CB;
}
r300_mark_atom_dirty(r300, &r300->blend_color_state);
}
static void r300_set_clip_state(struct pipe_context* pipe,
const struct pipe_clip_state* state)
{
struct r300_context* r300 = r300_context(pipe);
struct r300_clip_state *clip =
(struct r300_clip_state*)r300->clip_state.state;
CB_LOCALS;
if (r300->screen->caps.has_tcl) {
BEGIN_CB(clip->cb, r300->clip_state.size);
OUT_CB_REG(R300_VAP_PVS_VECTOR_INDX_REG,
(r300->screen->caps.is_r500 ?
R500_PVS_UCP_START : R300_PVS_UCP_START));
OUT_CB_ONE_REG(R300_VAP_PVS_UPLOAD_DATA, 6 * 4);
OUT_CB_TABLE(state->ucp, 6 * 4);
END_CB;
r300_mark_atom_dirty(r300, &r300->clip_state);
} else {
draw_set_clip_state(r300->draw, state);
}
}
static void
r300_set_sample_mask(struct pipe_context *pipe,
unsigned sample_mask)
{
}
/* Create a new depth, stencil, and alpha state based on the CSO dsa state.
*
* This contains the depth buffer, stencil buffer, alpha test, and such.
* On the Radeon, depth and stencil buffer setup are intertwined, which is
* the reason for some of the strange-looking assignments across registers. */
static void*
r300_create_dsa_state(struct pipe_context* pipe,
const struct pipe_depth_stencil_alpha_state* state)
{
struct r300_capabilities *caps = &r300_screen(pipe->screen)->caps;
struct r300_dsa_state* dsa = CALLOC_STRUCT(r300_dsa_state);
CB_LOCALS;
dsa->dsa = *state;
/* Depth test setup. - separate write mask depth for decomp flush */
if (state->depth.writemask) {
dsa->z_buffer_control |= R300_Z_WRITE_ENABLE;
}
if (state->depth.enabled) {
dsa->z_buffer_control |= R300_Z_ENABLE;
dsa->z_stencil_control |=
(r300_translate_depth_stencil_function(state->depth.func) <<
R300_Z_FUNC_SHIFT);
} else {
/* We must enable depth test, otherwise occlusion queries won't work. */
dsa->z_buffer_control |= R300_Z_ENABLE;
dsa->z_stencil_control |= R300_ZS_ALWAYS;
}
/* Stencil buffer setup. */
if (state->stencil[0].enabled) {
dsa->z_buffer_control |= R300_STENCIL_ENABLE;
dsa->z_stencil_control |=
(r300_translate_depth_stencil_function(state->stencil[0].func) <<
R300_S_FRONT_FUNC_SHIFT) |
(r300_translate_stencil_op(state->stencil[0].fail_op) <<
R300_S_FRONT_SFAIL_OP_SHIFT) |
(r300_translate_stencil_op(state->stencil[0].zpass_op) <<
R300_S_FRONT_ZPASS_OP_SHIFT) |
(r300_translate_stencil_op(state->stencil[0].zfail_op) <<
R300_S_FRONT_ZFAIL_OP_SHIFT);
dsa->stencil_ref_mask =
(state->stencil[0].valuemask << R300_STENCILMASK_SHIFT) |
(state->stencil[0].writemask << R300_STENCILWRITEMASK_SHIFT);
if (state->stencil[1].enabled) {
dsa->two_sided = TRUE;
dsa->z_buffer_control |= R300_STENCIL_FRONT_BACK;
dsa->z_stencil_control |=
(r300_translate_depth_stencil_function(state->stencil[1].func) <<
R300_S_BACK_FUNC_SHIFT) |
(r300_translate_stencil_op(state->stencil[1].fail_op) <<
R300_S_BACK_SFAIL_OP_SHIFT) |
(r300_translate_stencil_op(state->stencil[1].zpass_op) <<
R300_S_BACK_ZPASS_OP_SHIFT) |
(r300_translate_stencil_op(state->stencil[1].zfail_op) <<
R300_S_BACK_ZFAIL_OP_SHIFT);
dsa->stencil_ref_bf =
(state->stencil[1].valuemask << R300_STENCILMASK_SHIFT) |
(state->stencil[1].writemask << R300_STENCILWRITEMASK_SHIFT);
if (caps->is_r500) {
dsa->z_buffer_control |= R500_STENCIL_REFMASK_FRONT_BACK;
} else {
dsa->two_sided_stencil_ref =
(state->stencil[0].valuemask != state->stencil[1].valuemask ||
state->stencil[0].writemask != state->stencil[1].writemask);
}
}
}
/* Alpha test setup. */
if (state->alpha.enabled) {
dsa->alpha_function =
r300_translate_alpha_function(state->alpha.func) |
R300_FG_ALPHA_FUNC_ENABLE;
dsa->alpha_function |= float_to_ubyte(state->alpha.ref_value);
dsa->alpha_value = util_float_to_half(state->alpha.ref_value);
if (caps->is_r500) {
dsa->alpha_function_fp16 = dsa->alpha_function |
R500_FG_ALPHA_FUNC_FP16_ENABLE;
dsa->alpha_function |= R500_FG_ALPHA_FUNC_8BIT;
}
}
BEGIN_CB(&dsa->cb_begin, 10);
OUT_CB_REG(R300_FG_ALPHA_FUNC, dsa->alpha_function);
OUT_CB_REG_SEQ(R300_ZB_CNTL, 3);
OUT_CB(dsa->z_buffer_control);
OUT_CB(dsa->z_stencil_control);
OUT_CB(dsa->stencil_ref_mask);
OUT_CB_REG(R500_ZB_STENCILREFMASK_BF, dsa->stencil_ref_bf);
OUT_CB_REG(R500_FG_ALPHA_VALUE, dsa->alpha_value);
END_CB;
BEGIN_CB(&dsa->cb_begin_fp16, 10);
OUT_CB_REG(R300_FG_ALPHA_FUNC, dsa->alpha_function_fp16);
OUT_CB_REG_SEQ(R300_ZB_CNTL, 3);
OUT_CB(dsa->z_buffer_control);
OUT_CB(dsa->z_stencil_control);
OUT_CB(dsa->stencil_ref_mask);
OUT_CB_REG(R500_ZB_STENCILREFMASK_BF, dsa->stencil_ref_bf);
OUT_CB_REG(R500_FG_ALPHA_VALUE, dsa->alpha_value);
END_CB;
/* We must enable depth test, otherwise occlusion queries won't work.
* We setup a dummy zbuffer to silent the CS checker, see emit_fb_state. */
BEGIN_CB(dsa->cb_zb_no_readwrite, 10);
OUT_CB_REG(R300_FG_ALPHA_FUNC, dsa->alpha_function);
OUT_CB_REG_SEQ(R300_ZB_CNTL, 3);
OUT_CB(R300_Z_ENABLE);
OUT_CB(R300_ZS_ALWAYS);
OUT_CB(0);
OUT_CB_REG(R500_ZB_STENCILREFMASK_BF, 0);
OUT_CB_REG(R500_FG_ALPHA_VALUE, dsa->alpha_value);
END_CB;
BEGIN_CB(dsa->cb_fp16_zb_no_readwrite, 10);
OUT_CB_REG(R300_FG_ALPHA_FUNC, dsa->alpha_function_fp16);
OUT_CB_REG_SEQ(R300_ZB_CNTL, 3);
OUT_CB(R300_Z_ENABLE);
OUT_CB(R300_ZS_ALWAYS);
OUT_CB(0);
OUT_CB_REG(R500_ZB_STENCILREFMASK_BF, 0);
OUT_CB_REG(R500_FG_ALPHA_VALUE, dsa->alpha_value);
END_CB;
return (void*)dsa;
}
static void r300_dsa_inject_stencilref(struct r300_context *r300)
{
struct r300_dsa_state *dsa =
(struct r300_dsa_state*)r300->dsa_state.state;
if (!dsa)
return;
dsa->stencil_ref_mask =
(dsa->stencil_ref_mask & ~R300_STENCILREF_MASK) |
r300->stencil_ref.ref_value[0];
dsa->stencil_ref_bf =
(dsa->stencil_ref_bf & ~R300_STENCILREF_MASK) |
r300->stencil_ref.ref_value[1];
}
/* Bind DSA state. */
static void r300_bind_dsa_state(struct pipe_context* pipe,
void* state)
{
struct r300_context* r300 = r300_context(pipe);
if (!state) {
return;
}
UPDATE_STATE(state, r300->dsa_state);
r300_mark_atom_dirty(r300, &r300->hyperz_state); /* Will be updated before the emission. */
r300_dsa_inject_stencilref(r300);
}
/* Free DSA state. */
static void r300_delete_dsa_state(struct pipe_context* pipe,
void* state)
{
FREE(state);
}
static void r300_set_stencil_ref(struct pipe_context* pipe,
const struct pipe_stencil_ref* sr)
{
struct r300_context* r300 = r300_context(pipe);
r300->stencil_ref = *sr;
r300_dsa_inject_stencilref(r300);
r300_mark_atom_dirty(r300, &r300->dsa_state);
}
static void r300_tex_set_tiling_flags(struct r300_context *r300,
struct r300_resource *tex,
unsigned level)
{
/* Check if the macrotile flag needs to be changed.
* Skip changing the flags otherwise. */
if (tex->tex.macrotile[tex->surface_level] !=
tex->tex.macrotile[level]) {
r300->rws->buffer_set_tiling(tex->buf, r300->cs,
tex->tex.microtile, tex->tex.macrotile[level],
0, 0, 0, 0, 0,
tex->tex.stride_in_bytes[0]);
tex->surface_level = level;
}
}
/* This switcheroo is needed just because of goddamned MACRO_SWITCH. */
static void r300_fb_set_tiling_flags(struct r300_context *r300,
const struct pipe_framebuffer_state *state)
{
unsigned i;
/* Set tiling flags for new surfaces. */
for (i = 0; i < state->nr_cbufs; i++) {
r300_tex_set_tiling_flags(r300,
r300_resource(state->cbufs[i]->texture),
state->cbufs[i]->u.tex.level);
}
if (state->zsbuf) {
r300_tex_set_tiling_flags(r300,
r300_resource(state->zsbuf->texture),
state->zsbuf->u.tex.level);
}
}
static void r300_print_fb_surf_info(struct pipe_surface *surf, unsigned index,
const char *binding)
{
struct pipe_resource *tex = surf->texture;
struct r300_resource *rtex = r300_resource(tex);
fprintf(stderr,
"r300: %s[%i] Dim: %ix%i, Firstlayer: %i, "
"Lastlayer: %i, Level: %i, Format: %s\n"
"r300: TEX: Macro: %s, Micro: %s, "
"Dim: %ix%ix%i, LastLevel: %i, Format: %s\n",
binding, index, surf->width, surf->height,
surf->u.tex.first_layer, surf->u.tex.last_layer, surf->u.tex.level,
util_format_short_name(surf->format),
rtex->tex.macrotile[0] ? "YES" : " NO",
rtex->tex.microtile ? "YES" : " NO",
tex->width0, tex->height0, tex->depth0,
tex->last_level, util_format_short_name(surf->format));
}
void r300_mark_fb_state_dirty(struct r300_context *r300,
enum r300_fb_state_change change)
{
struct pipe_framebuffer_state *state = r300->fb_state.state;
r300_mark_atom_dirty(r300, &r300->gpu_flush);
r300_mark_atom_dirty(r300, &r300->fb_state);
/* What is marked as dirty depends on the enum r300_fb_state_change. */
if (change == R300_CHANGED_FB_STATE) {
r300_mark_atom_dirty(r300, &r300->aa_state);
r300_mark_atom_dirty(r300, &r300->dsa_state); /* for AlphaRef */
r300_set_blend_color(&r300->context, r300->blend_color_state.state);
}
if (change == R300_CHANGED_FB_STATE ||
change == R300_CHANGED_HYPERZ_FLAG) {
r300_mark_atom_dirty(r300, &r300->hyperz_state);
}
if (change == R300_CHANGED_FB_STATE ||
change == R300_CHANGED_MULTIWRITE) {
r300_mark_atom_dirty(r300, &r300->fb_state_pipelined);
}
/* Now compute the fb_state atom size. */
r300->fb_state.size = 2 + (8 * state->nr_cbufs);
if (r300->cbzb_clear) {
r300->fb_state.size += 10;
} else if (state->zsbuf) {
r300->fb_state.size += 10;
if (r300->hyperz_enabled)
r300->fb_state.size += 8;
} else if (state->nr_cbufs) {
r300->fb_state.size += 10;
}
/* The size of the rest of atoms stays the same. */
}
static void
r300_set_framebuffer_state(struct pipe_context* pipe,
const struct pipe_framebuffer_state* state)
{
struct r300_context* r300 = r300_context(pipe);
struct r300_aa_state *aa = (struct r300_aa_state*)r300->aa_state.state;
struct pipe_framebuffer_state *old_state = r300->fb_state.state;
unsigned max_width, max_height, i;
uint32_t zbuffer_bpp = 0;
boolean unlock_zbuffer = FALSE;
if (r300->screen->caps.is_r500) {
max_width = max_height = 4096;
} else if (r300->screen->caps.is_r400) {
max_width = max_height = 4021;
} else {
max_width = max_height = 2560;
}
if (state->width > max_width || state->height > max_height) {
fprintf(stderr, "r300: Implementation error: Render targets are too "
"big in %s, refusing to bind framebuffer state!\n", __FUNCTION__);
return;
}
if (old_state->zsbuf && r300->zmask_in_use && !r300->locked_zbuffer) {
/* There is a zmask in use, what are we gonna do? */
if (state->zsbuf) {
if (!pipe_surface_equal(old_state->zsbuf, state->zsbuf)) {
/* Decompress the currently bound zbuffer before we bind another one. */
r300_decompress_zmask(r300);
r300->hiz_in_use = FALSE;
}
} else {
/* We don't bind another zbuffer, so lock the current one. */
pipe_surface_reference(&r300->locked_zbuffer, old_state->zsbuf);
}
} else if (r300->locked_zbuffer) {
/* We have a locked zbuffer now, what are we gonna do? */
if (state->zsbuf) {
if (!pipe_surface_equal(r300->locked_zbuffer, state->zsbuf)) {
/* We are binding some other zbuffer, so decompress the locked one,
* it gets unlocked automatically. */
r300_decompress_zmask_locked_unsafe(r300);
r300->hiz_in_use = FALSE;
} else {
/* We are binding the locked zbuffer again, so unlock it. */
unlock_zbuffer = TRUE;
}
}
}
assert(state->zsbuf || (r300->locked_zbuffer && !unlock_zbuffer) || !r300->zmask_in_use);
/* Need to reset clamping or colormask. */
r300_mark_atom_dirty(r300, &r300->blend_state);
/* Re-swizzle the blend color. */
r300_set_blend_color(pipe, &((struct r300_blend_color_state*)r300->blend_color_state.state)->state);
/* If zsbuf is set from NULL to non-NULL or vice versa.. */
if (!!old_state->zsbuf != !!state->zsbuf) {
r300_mark_atom_dirty(r300, &r300->dsa_state);
}
if (r300->screen->info.drm_minor < 12) {
/* The tiling flags are dependent on the surface miplevel, unfortunately.
* This workarounds a bad design decision in old kernels which were
* rewriting tile fields in registers. */
r300_fb_set_tiling_flags(r300, state);
}
util_copy_framebuffer_state(r300->fb_state.state, state);
if (unlock_zbuffer) {
pipe_surface_reference(&r300->locked_zbuffer, NULL);
}
r300_mark_fb_state_dirty(r300, R300_CHANGED_FB_STATE);
if (state->zsbuf) {
switch (util_format_get_blocksize(state->zsbuf->format)) {
case 2:
zbuffer_bpp = 16;
break;
case 4:
zbuffer_bpp = 24;
break;
}
/* Polygon offset depends on the zbuffer bit depth. */
if (r300->zbuffer_bpp != zbuffer_bpp) {
r300->zbuffer_bpp = zbuffer_bpp;
if (r300->polygon_offset_enabled)
r300_mark_atom_dirty(r300, &r300->rs_state);
}
}
/* Set up AA config. */
if (state->nr_cbufs && state->cbufs[0]->texture->nr_samples > 1) {
aa->aa_config = R300_GB_AA_CONFIG_AA_ENABLE;
switch (state->cbufs[0]->texture->nr_samples) {
case 2:
aa->aa_config |= R300_GB_AA_CONFIG_NUM_AA_SUBSAMPLES_2;
break;
case 3:
aa->aa_config |= R300_GB_AA_CONFIG_NUM_AA_SUBSAMPLES_3;
break;
case 4:
aa->aa_config |= R300_GB_AA_CONFIG_NUM_AA_SUBSAMPLES_4;
break;
case 6:
aa->aa_config |= R300_GB_AA_CONFIG_NUM_AA_SUBSAMPLES_6;
break;
}
} else {
aa->aa_config = 0;
}
if (DBG_ON(r300, DBG_FB)) {
fprintf(stderr, "r300: set_framebuffer_state:\n");
for (i = 0; i < state->nr_cbufs; i++) {
r300_print_fb_surf_info(state->cbufs[i], i, "CB");
}
if (state->zsbuf) {
r300_print_fb_surf_info(state->zsbuf, 0, "ZB");
}
}
}
/* Create fragment shader state. */
static void* r300_create_fs_state(struct pipe_context* pipe,
const struct pipe_shader_state* shader)
{
struct r300_fragment_shader* fs = NULL;
fs = (struct r300_fragment_shader*)CALLOC_STRUCT(r300_fragment_shader);
/* Copy state directly into shader. */
fs->state = *shader;
fs->state.tokens = tgsi_dup_tokens(shader->tokens);
return (void*)fs;
}
void r300_mark_fs_code_dirty(struct r300_context *r300)
{
struct r300_fragment_shader* fs = r300_fs(r300);
r300_mark_atom_dirty(r300, &r300->fs);
r300_mark_atom_dirty(r300, &r300->fs_rc_constant_state);
r300_mark_atom_dirty(r300, &r300->fs_constants);
r300->fs.size = fs->shader->cb_code_size;
if (r300->screen->caps.is_r500) {
r300->fs_rc_constant_state.size = fs->shader->rc_state_count * 7;
r300->fs_constants.size = fs->shader->externals_count * 4 + 3;
} else {
r300->fs_rc_constant_state.size = fs->shader->rc_state_count * 5;
r300->fs_constants.size = fs->shader->externals_count * 4 + 1;
}
((struct r300_constant_buffer*)r300->fs_constants.state)->remap_table =
fs->shader->code.constants_remap_table;
}
/* Bind fragment shader state. */
static void r300_bind_fs_state(struct pipe_context* pipe, void* shader)
{
struct r300_context* r300 = r300_context(pipe);
struct r300_fragment_shader* fs = (struct r300_fragment_shader*)shader;
if (fs == NULL) {
r300->fs.state = NULL;
return;
}
r300->fs.state = fs;
r300->fs_status = FRAGMENT_SHADER_DIRTY;
r300_mark_atom_dirty(r300, &r300->rs_block_state); /* Will be updated before the emission. */
}
/* Delete fragment shader state. */
static void r300_delete_fs_state(struct pipe_context* pipe, void* shader)
{
struct r300_fragment_shader* fs = (struct r300_fragment_shader*)shader;
struct r300_fragment_shader_code *tmp, *ptr = fs->first;
while (ptr) {
tmp = ptr;
ptr = ptr->next;
rc_constants_destroy(&tmp->code.constants);
FREE(tmp->cb_code);
FREE(tmp);
}
FREE((void*)fs->state.tokens);
FREE(shader);
}
static void r300_set_polygon_stipple(struct pipe_context* pipe,
const struct pipe_poly_stipple* state)
{
/* XXX no idea how to set this up, but not terribly important */
}
/* Create a new rasterizer state based on the CSO rasterizer state.
*
* This is a very large chunk of state, and covers most of the graphics
* backend (GB), geometry assembly (GA), and setup unit (SU) blocks.
*
* In a not entirely unironic sidenote, this state has nearly nothing to do
* with the actual block on the Radeon called the rasterizer (RS). */
static void* r300_create_rs_state(struct pipe_context* pipe,
const struct pipe_rasterizer_state* state)
{
struct r300_rs_state* rs = CALLOC_STRUCT(r300_rs_state);
uint32_t vap_control_status; /* R300_VAP_CNTL_STATUS: 0x2140 */
uint32_t vap_clip_cntl; /* R300_VAP_CLIP_CNTL: 0x221C */
uint32_t point_size; /* R300_GA_POINT_SIZE: 0x421c */
uint32_t point_minmax; /* R300_GA_POINT_MINMAX: 0x4230 */
uint32_t line_control; /* R300_GA_LINE_CNTL: 0x4234 */
uint32_t polygon_offset_enable; /* R300_SU_POLY_OFFSET_ENABLE: 0x42b4 */
uint32_t cull_mode; /* R300_SU_CULL_MODE: 0x42b8 */
uint32_t line_stipple_config; /* R300_GA_LINE_STIPPLE_CONFIG: 0x4328 */
uint32_t line_stipple_value; /* R300_GA_LINE_STIPPLE_VALUE: 0x4260 */
uint32_t polygon_mode; /* R300_GA_POLY_MODE: 0x4288 */
uint32_t clip_rule; /* R300_SC_CLIP_RULE: 0x43D0 */
uint32_t round_mode; /* R300_GA_ROUND_MODE: 0x428c */
/* Point sprites texture coordinates, 0: lower left, 1: upper right */
float point_texcoord_left = 0; /* R300_GA_POINT_S0: 0x4200 */
float point_texcoord_bottom = 0;/* R300_GA_POINT_T0: 0x4204 */
float point_texcoord_right = 1; /* R300_GA_POINT_S1: 0x4208 */
float point_texcoord_top = 0; /* R300_GA_POINT_T1: 0x420c */
boolean vclamp = state->clamp_vertex_color ||
!r300_context(pipe)->screen->caps.is_r500;
CB_LOCALS;
/* Copy rasterizer state. */
rs->rs = *state;
rs->rs_draw = *state;
rs->rs.sprite_coord_enable = state->point_quad_rasterization *
state->sprite_coord_enable;
/* Override some states for Draw. */
rs->rs_draw.sprite_coord_enable = 0; /* We can do this in HW. */
rs->rs_draw.offset_point = 0;
rs->rs_draw.offset_line = 0;
rs->rs_draw.offset_tri = 0;
rs->rs_draw.offset_clamp = 0;
#ifdef PIPE_ARCH_LITTLE_ENDIAN
vap_control_status = R300_VC_NO_SWAP;
#else
vap_control_status = R300_VC_32BIT_SWAP;
#endif
/* If no TCL engine is present, turn off the HW TCL. */
if (!r300_screen(pipe->screen)->caps.has_tcl) {
vap_control_status |= R300_VAP_TCL_BYPASS;
}
/* Point size width and height. */
point_size =
pack_float_16_6x(state->point_size) |
(pack_float_16_6x(state->point_size) << R300_POINTSIZE_X_SHIFT);
/* Point size clamping. */
if (state->point_size_per_vertex) {
/* Per-vertex point size.
* Clamp to [0, max FB size] */
float min_psiz = util_get_min_point_size(state);
float max_psiz = pipe->screen->get_paramf(pipe->screen,
PIPE_CAPF_MAX_POINT_WIDTH);
point_minmax =
(pack_float_16_6x(min_psiz) << R300_GA_POINT_MINMAX_MIN_SHIFT) |
(pack_float_16_6x(max_psiz) << R300_GA_POINT_MINMAX_MAX_SHIFT);
} else {
/* We cannot disable the point-size vertex output,
* so clamp it. */
float psiz = state->point_size;
point_minmax =
(pack_float_16_6x(psiz) << R300_GA_POINT_MINMAX_MIN_SHIFT) |
(pack_float_16_6x(psiz) << R300_GA_POINT_MINMAX_MAX_SHIFT);
}
/* Line control. */
line_control = pack_float_16_6x(state->line_width) |
R300_GA_LINE_CNTL_END_TYPE_COMP;
/* Enable polygon mode */
polygon_mode = 0;
if (state->fill_front != PIPE_POLYGON_MODE_FILL ||
state->fill_back != PIPE_POLYGON_MODE_FILL) {
polygon_mode = R300_GA_POLY_MODE_DUAL;
}
/* Front face */
if (state->front_ccw)
cull_mode = R300_FRONT_FACE_CCW;
else
cull_mode = R300_FRONT_FACE_CW;
/* Polygon offset */
polygon_offset_enable = 0;
if (util_get_offset(state, state->fill_front)) {
polygon_offset_enable |= R300_FRONT_ENABLE;
}
if (util_get_offset(state, state->fill_back)) {
polygon_offset_enable |= R300_BACK_ENABLE;
}
rs->polygon_offset_enable = polygon_offset_enable != 0;
/* Polygon mode */
if (polygon_mode) {
polygon_mode |=
r300_translate_polygon_mode_front(state->fill_front);
polygon_mode |=
r300_translate_polygon_mode_back(state->fill_back);
}
if (state->cull_face & PIPE_FACE_FRONT) {
cull_mode |= R300_CULL_FRONT;
}
if (state->cull_face & PIPE_FACE_BACK) {
cull_mode |= R300_CULL_BACK;
}
if (state->line_stipple_enable) {
line_stipple_config =
R300_GA_LINE_STIPPLE_CONFIG_LINE_RESET_LINE |
(fui((float)state->line_stipple_factor) &
R300_GA_LINE_STIPPLE_CONFIG_STIPPLE_SCALE_MASK);
/* XXX this might need to be scaled up */
line_stipple_value = state->line_stipple_pattern;
} else {
line_stipple_config = 0;
line_stipple_value = 0;
}
if (state->flatshade) {
rs->color_control = R300_SHADE_MODEL_FLAT;
} else {
rs->color_control = R300_SHADE_MODEL_SMOOTH;
}
clip_rule = state->scissor ? 0xAAAA : 0xFFFF;
/* Point sprites coord mode */
if (rs->rs.sprite_coord_enable) {
switch (state->sprite_coord_mode) {
case PIPE_SPRITE_COORD_UPPER_LEFT:
point_texcoord_top = 0.0f;
point_texcoord_bottom = 1.0f;
break;
case PIPE_SPRITE_COORD_LOWER_LEFT:
point_texcoord_top = 1.0f;
point_texcoord_bottom = 0.0f;
break;
}
}
if (r300_screen(pipe->screen)->caps.has_tcl) {
vap_clip_cntl = (state->clip_plane_enable & 63) |
R300_PS_UCP_MODE_CLIP_AS_TRIFAN;
} else {
vap_clip_cntl = R300_CLIP_DISABLE;
}
/* Vertex color clamping. FP20 means no clamping. */
round_mode =
R300_GA_ROUND_MODE_GEOMETRY_ROUND_NEAREST |
(!vclamp ? (R300_GA_ROUND_MODE_RGB_CLAMP_FP20 |
R300_GA_ROUND_MODE_ALPHA_CLAMP_FP20) : 0);
/* Build the main command buffer. */
BEGIN_CB(rs->cb_main, RS_STATE_MAIN_SIZE);
OUT_CB_REG(R300_VAP_CNTL_STATUS, vap_control_status);
OUT_CB_REG(R300_VAP_CLIP_CNTL, vap_clip_cntl);
OUT_CB_REG(R300_GA_POINT_SIZE, point_size);
OUT_CB_REG_SEQ(R300_GA_POINT_MINMAX, 2);
OUT_CB(point_minmax);
OUT_CB(line_control);
OUT_CB_REG_SEQ(R300_SU_POLY_OFFSET_ENABLE, 2);
OUT_CB(polygon_offset_enable);
rs->cull_mode_index = 11;
OUT_CB(cull_mode);
OUT_CB_REG(R300_GA_LINE_STIPPLE_CONFIG, line_stipple_config);
OUT_CB_REG(R300_GA_LINE_STIPPLE_VALUE, line_stipple_value);
OUT_CB_REG(R300_GA_POLY_MODE, polygon_mode);
OUT_CB_REG(R300_GA_ROUND_MODE, round_mode);
OUT_CB_REG(R300_SC_CLIP_RULE, clip_rule);
OUT_CB_REG_SEQ(R300_GA_POINT_S0, 4);
OUT_CB_32F(point_texcoord_left);
OUT_CB_32F(point_texcoord_bottom);
OUT_CB_32F(point_texcoord_right);
OUT_CB_32F(point_texcoord_top);
END_CB;
/* Build the two command buffers for polygon offset setup. */
if (polygon_offset_enable) {
float scale = state->offset_scale * 12;
float offset = state->offset_units * 4;
BEGIN_CB(rs->cb_poly_offset_zb16, 5);
OUT_CB_REG_SEQ(R300_SU_POLY_OFFSET_FRONT_SCALE, 4);
OUT_CB_32F(scale);
OUT_CB_32F(offset);
OUT_CB_32F(scale);
OUT_CB_32F(offset);
END_CB;
offset = state->offset_units * 2;
BEGIN_CB(rs->cb_poly_offset_zb24, 5);
OUT_CB_REG_SEQ(R300_SU_POLY_OFFSET_FRONT_SCALE, 4);
OUT_CB_32F(scale);
OUT_CB_32F(offset);
OUT_CB_32F(scale);
OUT_CB_32F(offset);
END_CB;
}
return (void*)rs;
}
/* Bind rasterizer state. */
static void r300_bind_rs_state(struct pipe_context* pipe, void* state)
{
struct r300_context* r300 = r300_context(pipe);
struct r300_rs_state* rs = (struct r300_rs_state*)state;
int last_sprite_coord_enable = r300->sprite_coord_enable;
boolean last_two_sided_color = r300->two_sided_color;
if (r300->draw && rs) {
draw_set_rasterizer_state(r300->draw, &rs->rs_draw, state);
}
if (rs) {
r300->polygon_offset_enabled = rs->polygon_offset_enable;
r300->sprite_coord_enable = rs->rs.sprite_coord_enable;
r300->two_sided_color = rs->rs.light_twoside;
} else {
r300->polygon_offset_enabled = FALSE;
r300->sprite_coord_enable = 0;
r300->two_sided_color = FALSE;
}
UPDATE_STATE(state, r300->rs_state);
r300->rs_state.size = RS_STATE_MAIN_SIZE + (r300->polygon_offset_enabled ? 5 : 0);
if (last_sprite_coord_enable != r300->sprite_coord_enable ||
last_two_sided_color != r300->two_sided_color) {
r300_mark_atom_dirty(r300, &r300->rs_block_state);
}
}
/* Free rasterizer state. */
static void r300_delete_rs_state(struct pipe_context* pipe, void* state)
{
FREE(state);
}
static void*
r300_create_sampler_state(struct pipe_context* pipe,
const struct pipe_sampler_state* state)
{
struct r300_context* r300 = r300_context(pipe);
struct r300_sampler_state* sampler = CALLOC_STRUCT(r300_sampler_state);
boolean is_r500 = r300->screen->caps.is_r500;
int lod_bias;
sampler->state = *state;
/* r300 doesn't handle CLAMP and MIRROR_CLAMP correctly when either MAG
* or MIN filter is NEAREST. Since texwrap produces same results
* for CLAMP and CLAMP_TO_EDGE, we use them instead. */
if (sampler->state.min_img_filter == PIPE_TEX_FILTER_NEAREST ||
sampler->state.mag_img_filter == PIPE_TEX_FILTER_NEAREST) {
/* Wrap S. */
if (sampler->state.wrap_s == PIPE_TEX_WRAP_CLAMP)
sampler->state.wrap_s = PIPE_TEX_WRAP_CLAMP_TO_EDGE;
else if (sampler->state.wrap_s == PIPE_TEX_WRAP_MIRROR_CLAMP)
sampler->state.wrap_s = PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE;
/* Wrap T. */
if (sampler->state.wrap_t == PIPE_TEX_WRAP_CLAMP)
sampler->state.wrap_t = PIPE_TEX_WRAP_CLAMP_TO_EDGE;
else if (sampler->state.wrap_t == PIPE_TEX_WRAP_MIRROR_CLAMP)
sampler->state.wrap_t = PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE;
/* Wrap R. */
if (sampler->state.wrap_r == PIPE_TEX_WRAP_CLAMP)
sampler->state.wrap_r = PIPE_TEX_WRAP_CLAMP_TO_EDGE;
else if (sampler->state.wrap_r == PIPE_TEX_WRAP_MIRROR_CLAMP)
sampler->state.wrap_r = PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE;
}
sampler->filter0 |=
(r300_translate_wrap(sampler->state.wrap_s) << R300_TX_WRAP_S_SHIFT) |
(r300_translate_wrap(sampler->state.wrap_t) << R300_TX_WRAP_T_SHIFT) |
(r300_translate_wrap(sampler->state.wrap_r) << R300_TX_WRAP_R_SHIFT);
sampler->filter0 |= r300_translate_tex_filters(state->min_img_filter,
state->mag_img_filter,
state->min_mip_filter,
state->max_anisotropy > 1);
sampler->filter0 |= r300_anisotropy(state->max_anisotropy);
/* Unfortunately, r300-r500 don't support floating-point mipmap lods. */
/* We must pass these to the merge function to clamp them properly. */
sampler->min_lod = (unsigned)MAX2(state->min_lod, 0);
sampler->max_lod = (unsigned)MAX2(ceilf(state->max_lod), 0);
lod_bias = CLAMP((int)(state->lod_bias * 32 + 1), -(1 << 9), (1 << 9) - 1);
sampler->filter1 |= (lod_bias << R300_LOD_BIAS_SHIFT) & R300_LOD_BIAS_MASK;
/* This is very high quality anisotropic filtering for R5xx.
* It's good for benchmarking the performance of texturing but
* in practice we don't want to slow down the driver because it's
* a pretty good performance killer. Feel free to play with it. */
if (DBG_ON(r300, DBG_ANISOHQ) && is_r500) {
sampler->filter1 |= r500_anisotropy(state->max_anisotropy);
}
/* R500-specific fixups and optimizations */
if (r300->screen->caps.is_r500) {
sampler->filter1 |= R500_BORDER_FIX;
}
return (void*)sampler;
}
static void r300_bind_sampler_states(struct pipe_context* pipe,
unsigned count,
void** states)
{
struct r300_context* r300 = r300_context(pipe);
struct r300_textures_state* state =
(struct r300_textures_state*)r300->textures_state.state;
unsigned tex_units = r300->screen->caps.num_tex_units;
if (count > tex_units) {
return;
}
memcpy(state->sampler_states, states, sizeof(void*) * count);
state->sampler_state_count = count;
r300_mark_atom_dirty(r300, &r300->textures_state);
}
static void r300_lacks_vertex_textures(struct pipe_context* pipe,
unsigned count,
void** states)
{
}
static void r300_delete_sampler_state(struct pipe_context* pipe, void* state)
{
FREE(state);
}
static uint32_t r300_assign_texture_cache_region(unsigned index, unsigned num)
{
/* This looks like a hack, but I believe it's suppose to work like
* that. To illustrate how this works, let's assume you have 5 textures.
* From docs, 5 and the successive numbers are:
*
* FOURTH_1 = 5
* FOURTH_2 = 6
* FOURTH_3 = 7
* EIGHTH_0 = 8
* EIGHTH_1 = 9
*
* First 3 textures will get 3/4 of size of the cache, divived evenly
* between them. The last 1/4 of the cache must be divided between
* the last 2 textures, each will therefore get 1/8 of the cache.
* Why not just to use "5 + texture_index" ?
*
* This simple trick works for all "num" <= 16.
*/
if (num <= 1)
return R300_TX_CACHE(R300_TX_CACHE_WHOLE);
else
return R300_TX_CACHE(num + index);
}
static void r300_set_fragment_sampler_views(struct pipe_context* pipe,
unsigned count,
struct pipe_sampler_view** views)
{
struct r300_context* r300 = r300_context(pipe);
struct r300_textures_state* state =
(struct r300_textures_state*)r300->textures_state.state;
struct r300_resource *texture;
unsigned i, real_num_views = 0, view_index = 0;
unsigned tex_units = r300->screen->caps.num_tex_units;
boolean dirty_tex = FALSE;
if (count > tex_units) {
return;
}
/* Calculate the real number of views. */
for (i = 0; i < count; i++) {
if (views[i])
real_num_views++;
}
for (i = 0; i < count; i++) {
pipe_sampler_view_reference(
(struct pipe_sampler_view**)&state->sampler_views[i],
views[i]);
if (!views[i]) {
continue;
}
/* A new sampler view (= texture)... */
dirty_tex = TRUE;
/* Set the texrect factor in the fragment shader.
* Needed for RECT and NPOT fallback. */
texture = r300_resource(views[i]->texture);
if (texture->tex.is_npot) {
r300_mark_atom_dirty(r300, &r300->fs_rc_constant_state);
}
state->sampler_views[i]->texcache_region =
r300_assign_texture_cache_region(view_index, real_num_views);
view_index++;
}
for (i = count; i < tex_units; i++) {
if (state->sampler_views[i]) {
pipe_sampler_view_reference(
(struct pipe_sampler_view**)&state->sampler_views[i],
NULL);
}
}
state->sampler_view_count = count;
r300_mark_atom_dirty(r300, &r300->textures_state);
if (dirty_tex) {
r300_mark_atom_dirty(r300, &r300->texture_cache_inval);
}
}
struct pipe_sampler_view *
r300_create_sampler_view_custom(struct pipe_context *pipe,
struct pipe_resource *texture,
const struct pipe_sampler_view *templ,
unsigned width0_override,
unsigned height0_override)
{
struct r300_sampler_view *view = CALLOC_STRUCT(r300_sampler_view);
struct r300_resource *tex = r300_resource(texture);
boolean is_r500 = r300_screen(pipe->screen)->caps.is_r500;
boolean dxtc_swizzle = r300_screen(pipe->screen)->caps.dxtc_swizzle;
if (view) {
unsigned hwformat;
view->base = *templ;
view->base.reference.count = 1;
view->base.context = pipe;
view->base.texture = NULL;
pipe_resource_reference(&view->base.texture, texture);
view->width0_override = width0_override;
view->height0_override = height0_override;
view->swizzle[0] = templ->swizzle_r;
view->swizzle[1] = templ->swizzle_g;
view->swizzle[2] = templ->swizzle_b;
view->swizzle[3] = templ->swizzle_a;
hwformat = r300_translate_texformat(templ->format,
view->swizzle,
is_r500,
dxtc_swizzle);
if (hwformat == ~0) {
fprintf(stderr, "r300: Ooops. Got unsupported format %s in %s.\n",
util_format_short_name(templ->format), __func__);
}
assert(hwformat != ~0);
r300_texture_setup_format_state(r300_screen(pipe->screen), tex,
templ->format, 0,
width0_override, height0_override,
&view->format);
view->format.format1 |= hwformat;
if (is_r500) {
view->format.format2 |= r500_tx_format_msb_bit(templ->format);
}
}
return (struct pipe_sampler_view*)view;
}
static struct pipe_sampler_view *
r300_create_sampler_view(struct pipe_context *pipe,
struct pipe_resource *texture,
const struct pipe_sampler_view *templ)
{
return r300_create_sampler_view_custom(pipe, texture, templ,
r300_resource(texture)->tex.width0,
r300_resource(texture)->tex.height0);
}
static void
r300_sampler_view_destroy(struct pipe_context *pipe,
struct pipe_sampler_view *view)
{
pipe_resource_reference(&view->texture, NULL);
FREE(view);
}
static void r300_set_scissor_state(struct pipe_context* pipe,
const struct pipe_scissor_state* state)
{
struct r300_context* r300 = r300_context(pipe);
memcpy(r300->scissor_state.state, state,
sizeof(struct pipe_scissor_state));
r300_mark_atom_dirty(r300, &r300->scissor_state);
}
static void r300_set_viewport_state(struct pipe_context* pipe,
const struct pipe_viewport_state* state)
{
struct r300_context* r300 = r300_context(pipe);
struct r300_viewport_state* viewport =
(struct r300_viewport_state*)r300->viewport_state.state;
r300->viewport = *state;
if (r300->draw) {
draw_set_viewport_state(r300->draw, state);
viewport->vte_control = R300_VTX_XY_FMT | R300_VTX_Z_FMT;
return;
}
/* Do the transform in HW. */
viewport->vte_control = R300_VTX_W0_FMT;
if (state->scale[0] != 1.0f) {
viewport->xscale = state->scale[0];
viewport->vte_control |= R300_VPORT_X_SCALE_ENA;
}
if (state->scale[1] != 1.0f) {
viewport->yscale = state->scale[1];
viewport->vte_control |= R300_VPORT_Y_SCALE_ENA;
}
if (state->scale[2] != 1.0f) {
viewport->zscale = state->scale[2];
viewport->vte_control |= R300_VPORT_Z_SCALE_ENA;
}
if (state->translate[0] != 0.0f) {
viewport->xoffset = state->translate[0];
viewport->vte_control |= R300_VPORT_X_OFFSET_ENA;
}
if (state->translate[1] != 0.0f) {
viewport->yoffset = state->translate[1];
viewport->vte_control |= R300_VPORT_Y_OFFSET_ENA;
}
if (state->translate[2] != 0.0f) {
viewport->zoffset = state->translate[2];
viewport->vte_control |= R300_VPORT_Z_OFFSET_ENA;
}
r300_mark_atom_dirty(r300, &r300->viewport_state);
if (r300->fs.state && r300_fs(r300)->shader &&
r300_fs(r300)->shader->inputs.wpos != ATTR_UNUSED) {
r300_mark_atom_dirty(r300, &r300->fs_rc_constant_state);
}
}
static void r300_set_vertex_buffers_hwtcl(struct pipe_context* pipe,
unsigned count,
const struct pipe_vertex_buffer* buffers)
{
struct r300_context* r300 = r300_context(pipe);
/* There must be at least one vertex buffer set, otherwise it locks up. */
if (!count) {
buffers = &r300->dummy_vb;
count = 1;
}
util_copy_vertex_buffers(r300->vertex_buffer,
&r300->nr_vertex_buffers,
buffers, count);
r300->vertex_arrays_dirty = TRUE;
}
static void r300_set_vertex_buffers_swtcl(struct pipe_context* pipe,
unsigned count,
const struct pipe_vertex_buffer* buffers)
{
struct r300_context* r300 = r300_context(pipe);
unsigned i;
util_copy_vertex_buffers(r300->vertex_buffer,
&r300->nr_vertex_buffers,
buffers, count);
draw_set_vertex_buffers(r300->draw, count, buffers);
for (i = 0; i < count; i++) {
if (buffers[i].user_buffer) {
draw_set_mapped_vertex_buffer(r300->draw, i,
buffers[i].user_buffer);
} else if (buffers[i].buffer) {
draw_set_mapped_vertex_buffer(r300->draw, i,
r300_resource(buffers[i].buffer)->malloced_buffer);
}
}
}
static void r300_set_index_buffer_hwtcl(struct pipe_context* pipe,
const struct pipe_index_buffer *ib)
{
struct r300_context* r300 = r300_context(pipe);
if (ib) {
pipe_resource_reference(&r300->index_buffer.buffer, ib->buffer);
memcpy(&r300->index_buffer, ib, sizeof(*ib));
} else {
pipe_resource_reference(&r300->index_buffer.buffer, NULL);
}
}
static void r300_set_index_buffer_swtcl(struct pipe_context* pipe,
const struct pipe_index_buffer *ib)
{
struct r300_context* r300 = r300_context(pipe);
if (ib) {
const void *buf = NULL;
if (ib->user_buffer) {
buf = ib->user_buffer;
} else if (ib->buffer) {
buf = r300_resource(ib->buffer)->malloced_buffer;
}
draw_set_indexes(r300->draw,
(const ubyte *) buf + ib->offset,
ib->index_size);
}
}
/* Initialize the PSC tables. */
static void r300_vertex_psc(struct r300_vertex_element_state *velems)
{
struct r300_vertex_stream_state *vstream = &velems->vertex_stream;
uint16_t type, swizzle;
enum pipe_format format;
unsigned i;
/* Vertex shaders have no semantics on their inputs,
* so PSC should just route stuff based on the vertex elements,
* and not on attrib information. */
for (i = 0; i < velems->count; i++) {
format = velems->velem[i].src_format;
type = r300_translate_vertex_data_type(format);
if (type == R300_INVALID_FORMAT) {
fprintf(stderr, "r300: Bad vertex format %s.\n",
util_format_short_name(format));
assert(0);
abort();
}
type |= i << R300_DST_VEC_LOC_SHIFT;
swizzle = r300_translate_vertex_data_swizzle(format);
if (i & 1) {
vstream->vap_prog_stream_cntl[i >> 1] |= type << 16;
vstream->vap_prog_stream_cntl_ext[i >> 1] |= swizzle << 16;
} else {
vstream->vap_prog_stream_cntl[i >> 1] |= type;
vstream->vap_prog_stream_cntl_ext[i >> 1] |= swizzle;
}
}
/* Set the last vector in the PSC. */
if (i) {
i -= 1;
}
vstream->vap_prog_stream_cntl[i >> 1] |=
(R300_LAST_VEC << (i & 1 ? 16 : 0));
vstream->count = (i >> 1) + 1;
}
static void* r300_create_vertex_elements_state(struct pipe_context* pipe,
unsigned count,
const struct pipe_vertex_element* attribs)
{
struct r300_vertex_element_state *velems;
unsigned i;
struct pipe_vertex_element dummy_attrib = {0};
/* R300 Programmable Stream Control (PSC) doesn't support 0 vertex elements. */
if (!count) {
dummy_attrib.src_format = PIPE_FORMAT_R8G8B8A8_UNORM;
attribs = &dummy_attrib;
count = 1;
} else if (count > 16) {
fprintf(stderr, "r300: More than 16 vertex elements are not supported,"
" requested %i, using 16.\n", count);
count = 16;
}
velems = CALLOC_STRUCT(r300_vertex_element_state);
if (!velems)
return NULL;
velems->count = count;
memcpy(velems->velem, attribs, sizeof(struct pipe_vertex_element) * count);
if (r300_screen(pipe->screen)->caps.has_tcl) {
/* Setup PSC.
* The unused components will be replaced by (..., 0, 1). */
r300_vertex_psc(velems);
for (i = 0; i < count; i++) {
velems->format_size[i] =
align(util_format_get_blocksize(velems->velem[i].src_format), 4);
velems->vertex_size_dwords += velems->format_size[i] / 4;
}
}
return velems;
}
static void r300_bind_vertex_elements_state(struct pipe_context *pipe,
void *state)
{
struct r300_context *r300 = r300_context(pipe);
struct r300_vertex_element_state *velems = state;
if (velems == NULL) {
return;
}
r300->velems = velems;
if (r300->draw) {
draw_set_vertex_elements(r300->draw, velems->count, velems->velem);
return;
}
UPDATE_STATE(&velems->vertex_stream, r300->vertex_stream_state);
r300->vertex_stream_state.size = (1 + velems->vertex_stream.count) * 2;
r300->vertex_arrays_dirty = TRUE;
}
static void r300_delete_vertex_elements_state(struct pipe_context *pipe, void *state)
{
FREE(state);
}
static void* r300_create_vs_state(struct pipe_context* pipe,
const struct pipe_shader_state* shader)
{
struct r300_context* r300 = r300_context(pipe);
struct r300_vertex_shader* vs = CALLOC_STRUCT(r300_vertex_shader);
/* Copy state directly into shader. */
vs->state = *shader;
vs->state.tokens = tgsi_dup_tokens(shader->tokens);
if (r300->screen->caps.has_tcl) {
r300_init_vs_outputs(r300, vs);
r300_translate_vertex_shader(r300, vs);
} else {
r300_draw_init_vertex_shader(r300, vs);
}
return vs;
}
static void r300_bind_vs_state(struct pipe_context* pipe, void* shader)
{
struct r300_context* r300 = r300_context(pipe);
struct r300_vertex_shader* vs = (struct r300_vertex_shader*)shader;
if (vs == NULL) {
r300->vs_state.state = NULL;
return;
}
if (vs == r300->vs_state.state) {
return;
}
r300->vs_state.state = vs;
/* The majority of the RS block bits is dependent on the vertex shader. */
r300_mark_atom_dirty(r300, &r300->rs_block_state); /* Will be updated before the emission. */
if (r300->screen->caps.has_tcl) {
unsigned fc_op_dwords = r300->screen->caps.is_r500 ? 3 : 2;
r300_mark_atom_dirty(r300, &r300->vs_state);
r300->vs_state.size = vs->code.length + 9 +
(R300_VS_MAX_FC_OPS * fc_op_dwords + 4);
r300_mark_atom_dirty(r300, &r300->vs_constants);
r300->vs_constants.size =
2 +
(vs->externals_count ? vs->externals_count * 4 + 3 : 0) +
(vs->immediates_count ? vs->immediates_count * 4 + 3 : 0);
((struct r300_constant_buffer*)r300->vs_constants.state)->remap_table =
vs->code.constants_remap_table;
r300_mark_atom_dirty(r300, &r300->pvs_flush);
} else {
draw_bind_vertex_shader(r300->draw,
(struct draw_vertex_shader*)vs->draw_vs);
}
}
static void r300_delete_vs_state(struct pipe_context* pipe, void* shader)
{
struct r300_context* r300 = r300_context(pipe);
struct r300_vertex_shader* vs = (struct r300_vertex_shader*)shader;
if (r300->screen->caps.has_tcl) {
rc_constants_destroy(&vs->code.constants);
if (vs->code.constants_remap_table)
FREE(vs->code.constants_remap_table);
} else {
draw_delete_vertex_shader(r300->draw,
(struct draw_vertex_shader*)vs->draw_vs);
}
FREE((void*)vs->state.tokens);
FREE(shader);
}
static void r300_set_constant_buffer(struct pipe_context *pipe,
uint shader, uint index,
struct pipe_constant_buffer *cb)
{
struct r300_context* r300 = r300_context(pipe);
struct r300_constant_buffer *cbuf;
uint32_t *mapped;
if (!cb)
return;
switch (shader) {
case PIPE_SHADER_VERTEX:
cbuf = (struct r300_constant_buffer*)r300->vs_constants.state;
break;
case PIPE_SHADER_FRAGMENT:
cbuf = (struct r300_constant_buffer*)r300->fs_constants.state;
break;
default:
return;
}
if (cb->user_buffer)
mapped = (uint32_t*)cb->user_buffer;
else {
struct r300_resource *rbuf = r300_resource(cb->buffer);
if (rbuf && rbuf->malloced_buffer)
mapped = (uint32_t*)rbuf->malloced_buffer;
else
return;
}
if (shader == PIPE_SHADER_FRAGMENT ||
(shader == PIPE_SHADER_VERTEX && r300->screen->caps.has_tcl)) {
cbuf->ptr = mapped;
}
if (shader == PIPE_SHADER_VERTEX) {
if (r300->screen->caps.has_tcl) {
struct r300_vertex_shader *vs =
(struct r300_vertex_shader*)r300->vs_state.state;
if (!vs) {
cbuf->buffer_base = 0;
return;
}
cbuf->buffer_base = r300->vs_const_base;
r300->vs_const_base += vs->code.constants.Count;
if (r300->vs_const_base > R500_MAX_PVS_CONST_VECS) {
r300->vs_const_base = vs->code.constants.Count;
cbuf->buffer_base = 0;
r300_mark_atom_dirty(r300, &r300->pvs_flush);
}
r300_mark_atom_dirty(r300, &r300->vs_constants);
} else if (r300->draw) {
draw_set_mapped_constant_buffer(r300->draw, PIPE_SHADER_VERTEX,
0, mapped, cb->buffer_size);
}
} else if (shader == PIPE_SHADER_FRAGMENT) {
r300_mark_atom_dirty(r300, &r300->fs_constants);
}
}
static void r300_texture_barrier(struct pipe_context *pipe)
{
struct r300_context *r300 = r300_context(pipe);
r300_mark_atom_dirty(r300, &r300->gpu_flush);
r300_mark_atom_dirty(r300, &r300->texture_cache_inval);
}
void r300_init_state_functions(struct r300_context* r300)
{
r300->context.create_blend_state = r300_create_blend_state;
r300->context.bind_blend_state = r300_bind_blend_state;
r300->context.delete_blend_state = r300_delete_blend_state;
r300->context.set_blend_color = r300_set_blend_color;
r300->context.set_clip_state = r300_set_clip_state;
r300->context.set_sample_mask = r300_set_sample_mask;
r300->context.set_constant_buffer = r300_set_constant_buffer;
r300->context.create_depth_stencil_alpha_state = r300_create_dsa_state;
r300->context.bind_depth_stencil_alpha_state = r300_bind_dsa_state;
r300->context.delete_depth_stencil_alpha_state = r300_delete_dsa_state;
r300->context.set_stencil_ref = r300_set_stencil_ref;
r300->context.set_framebuffer_state = r300_set_framebuffer_state;
r300->context.create_fs_state = r300_create_fs_state;
r300->context.bind_fs_state = r300_bind_fs_state;
r300->context.delete_fs_state = r300_delete_fs_state;
r300->context.set_polygon_stipple = r300_set_polygon_stipple;
r300->context.create_rasterizer_state = r300_create_rs_state;
r300->context.bind_rasterizer_state = r300_bind_rs_state;
r300->context.delete_rasterizer_state = r300_delete_rs_state;
r300->context.create_sampler_state = r300_create_sampler_state;
r300->context.bind_fragment_sampler_states = r300_bind_sampler_states;
r300->context.bind_vertex_sampler_states = r300_lacks_vertex_textures;
r300->context.delete_sampler_state = r300_delete_sampler_state;
r300->context.set_fragment_sampler_views = r300_set_fragment_sampler_views;
r300->context.create_sampler_view = r300_create_sampler_view;
r300->context.sampler_view_destroy = r300_sampler_view_destroy;
r300->context.set_scissor_state = r300_set_scissor_state;
r300->context.set_viewport_state = r300_set_viewport_state;
if (r300->screen->caps.has_tcl) {
r300->context.set_vertex_buffers = r300_set_vertex_buffers_hwtcl;
r300->context.set_index_buffer = r300_set_index_buffer_hwtcl;
} else {
r300->context.set_vertex_buffers = r300_set_vertex_buffers_swtcl;
r300->context.set_index_buffer = r300_set_index_buffer_swtcl;
}
r300->context.create_vertex_elements_state = r300_create_vertex_elements_state;
r300->context.bind_vertex_elements_state = r300_bind_vertex_elements_state;
r300->context.delete_vertex_elements_state = r300_delete_vertex_elements_state;
r300->context.create_vs_state = r300_create_vs_state;
r300->context.bind_vs_state = r300_bind_vs_state;
r300->context.delete_vs_state = r300_delete_vs_state;
r300->context.texture_barrier = r300_texture_barrier;
}