blob: 9afe96f0cfc12bb95493cca3f3d81e65457d754a [file] [log] [blame]
/*
* Copyright (C) 2018-2019 Alyssa Rosenzweig <alyssa@rosenzweig.io>
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/mman.h>
#include <fcntl.h>
#include <stdint.h>
#include <stdlib.h>
#include <stdio.h>
#include <err.h>
#include "main/mtypes.h"
#include "compiler/glsl/glsl_to_nir.h"
#include "compiler/nir_types.h"
#include "main/imports.h"
#include "compiler/nir/nir_builder.h"
#include "util/half_float.h"
#include "util/u_math.h"
#include "util/u_debug.h"
#include "util/u_dynarray.h"
#include "util/list.h"
#include "main/mtypes.h"
#include "midgard.h"
#include "midgard_nir.h"
#include "midgard_compile.h"
#include "midgard_ops.h"
#include "helpers.h"
#include "compiler.h"
#include "midgard_quirks.h"
#include "disassemble.h"
static const struct debug_named_value debug_options[] = {
{"msgs", MIDGARD_DBG_MSGS, "Print debug messages"},
{"shaders", MIDGARD_DBG_SHADERS, "Dump shaders in NIR and MIR"},
{"shaderdb", MIDGARD_DBG_SHADERDB, "Prints shader-db statistics"},
DEBUG_NAMED_VALUE_END
};
DEBUG_GET_ONCE_FLAGS_OPTION(midgard_debug, "MIDGARD_MESA_DEBUG", debug_options, 0)
unsigned SHADER_DB_COUNT = 0;
int midgard_debug = 0;
#define DBG(fmt, ...) \
do { if (midgard_debug & MIDGARD_DBG_MSGS) \
fprintf(stderr, "%s:%d: "fmt, \
__FUNCTION__, __LINE__, ##__VA_ARGS__); } while (0)
static bool
midgard_is_branch_unit(unsigned unit)
{
return (unit == ALU_ENAB_BRANCH) || (unit == ALU_ENAB_BR_COMPACT);
}
static midgard_block *
create_empty_block(compiler_context *ctx)
{
midgard_block *blk = rzalloc(ctx, midgard_block);
blk->predecessors = _mesa_set_create(blk,
_mesa_hash_pointer,
_mesa_key_pointer_equal);
blk->source_id = ctx->block_source_count++;
return blk;
}
static void
midgard_block_add_successor(midgard_block *block, midgard_block *successor)
{
assert(block);
assert(successor);
/* Deduplicate */
for (unsigned i = 0; i < block->nr_successors; ++i) {
if (block->successors[i] == successor)
return;
}
block->successors[block->nr_successors++] = successor;
assert(block->nr_successors <= ARRAY_SIZE(block->successors));
/* Note the predecessor in the other direction */
_mesa_set_add(successor->predecessors, block);
}
static void
schedule_barrier(compiler_context *ctx)
{
midgard_block *temp = ctx->after_block;
ctx->after_block = create_empty_block(ctx);
ctx->block_count++;
list_addtail(&ctx->after_block->link, &ctx->blocks);
list_inithead(&ctx->after_block->instructions);
midgard_block_add_successor(ctx->current_block, ctx->after_block);
ctx->current_block = ctx->after_block;
ctx->after_block = temp;
}
/* Helpers to generate midgard_instruction's using macro magic, since every
* driver seems to do it that way */
#define EMIT(op, ...) emit_mir_instruction(ctx, v_##op(__VA_ARGS__));
#define M_LOAD_STORE(name, store) \
static midgard_instruction m_##name(unsigned ssa, unsigned address) { \
midgard_instruction i = { \
.type = TAG_LOAD_STORE_4, \
.mask = 0xF, \
.dest = ~0, \
.src = { ~0, ~0, ~0, ~0 }, \
.swizzle = SWIZZLE_IDENTITY_4, \
.load_store = { \
.op = midgard_op_##name, \
.address = address \
} \
}; \
\
if (store) \
i.src[0] = ssa; \
else \
i.dest = ssa; \
\
return i; \
}
#define M_LOAD(name) M_LOAD_STORE(name, false)
#define M_STORE(name) M_LOAD_STORE(name, true)
/* Inputs a NIR ALU source, with modifiers attached if necessary, and outputs
* the corresponding Midgard source */
static midgard_vector_alu_src
vector_alu_modifiers(nir_alu_src *src, bool is_int, unsigned broadcast_count,
bool half, bool sext)
{
/* Figure out how many components there are so we can adjust.
* Specifically we want to broadcast the last channel so things like
* ball2/3 work.
*/
if (broadcast_count && src) {
uint8_t last_component = src->swizzle[broadcast_count - 1];
for (unsigned c = broadcast_count; c < NIR_MAX_VEC_COMPONENTS; ++c) {
src->swizzle[c] = last_component;
}
}
midgard_vector_alu_src alu_src = {
.rep_low = 0,
.rep_high = 0,
.half = half
};
if (is_int) {
alu_src.mod = midgard_int_normal;
/* Sign/zero-extend if needed */
if (half) {
alu_src.mod = sext ?
midgard_int_sign_extend
: midgard_int_zero_extend;
}
/* These should have been lowered away */
if (src)
assert(!(src->abs || src->negate));
} else {
if (src)
alu_src.mod = (src->abs << 0) | (src->negate << 1);
}
return alu_src;
}
/* load/store instructions have both 32-bit and 16-bit variants, depending on
* whether we are using vectors composed of highp or mediump. At the moment, we
* don't support half-floats -- this requires changes in other parts of the
* compiler -- therefore the 16-bit versions are commented out. */
//M_LOAD(ld_attr_16);
M_LOAD(ld_attr_32);
//M_LOAD(ld_vary_16);
M_LOAD(ld_vary_32);
M_LOAD(ld_ubo_int4);
M_LOAD(ld_int4);
M_STORE(st_int4);
M_LOAD(ld_color_buffer_8);
//M_STORE(st_vary_16);
M_STORE(st_vary_32);
M_LOAD(ld_cubemap_coords);
M_LOAD(ld_compute_id);
static midgard_instruction
v_branch(bool conditional, bool invert)
{
midgard_instruction ins = {
.type = TAG_ALU_4,
.unit = ALU_ENAB_BRANCH,
.compact_branch = true,
.branch = {
.conditional = conditional,
.invert_conditional = invert
},
.dest = ~0,
.src = { ~0, ~0, ~0, ~0 },
};
return ins;
}
static midgard_branch_extended
midgard_create_branch_extended( midgard_condition cond,
midgard_jmp_writeout_op op,
unsigned dest_tag,
signed quadword_offset)
{
/* The condition code is actually a LUT describing a function to
* combine multiple condition codes. However, we only support a single
* condition code at the moment, so we just duplicate over a bunch of
* times. */
uint16_t duplicated_cond =
(cond << 14) |
(cond << 12) |
(cond << 10) |
(cond << 8) |
(cond << 6) |
(cond << 4) |
(cond << 2) |
(cond << 0);
midgard_branch_extended branch = {
.op = op,
.dest_tag = dest_tag,
.offset = quadword_offset,
.cond = duplicated_cond
};
return branch;
}
static void
attach_constants(compiler_context *ctx, midgard_instruction *ins, void *constants, int name)
{
ins->has_constants = true;
memcpy(&ins->constants, constants, 16);
}
static int
glsl_type_size(const struct glsl_type *type, bool bindless)
{
return glsl_count_attribute_slots(type, false);
}
/* Lower fdot2 to a vector multiplication followed by channel addition */
static void
midgard_nir_lower_fdot2_body(nir_builder *b, nir_alu_instr *alu)
{
if (alu->op != nir_op_fdot2)
return;
b->cursor = nir_before_instr(&alu->instr);
nir_ssa_def *src0 = nir_ssa_for_alu_src(b, alu, 0);
nir_ssa_def *src1 = nir_ssa_for_alu_src(b, alu, 1);
nir_ssa_def *product = nir_fmul(b, src0, src1);
nir_ssa_def *sum = nir_fadd(b,
nir_channel(b, product, 0),
nir_channel(b, product, 1));
/* Replace the fdot2 with this sum */
nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));
}
static int
midgard_sysval_for_ssbo(nir_intrinsic_instr *instr)
{
/* This is way too meta */
bool is_store = instr->intrinsic == nir_intrinsic_store_ssbo;
unsigned idx_idx = is_store ? 1 : 0;
nir_src index = instr->src[idx_idx];
assert(nir_src_is_const(index));
uint32_t uindex = nir_src_as_uint(index);
return PAN_SYSVAL(SSBO, uindex);
}
static int
midgard_sysval_for_sampler(nir_intrinsic_instr *instr)
{
/* TODO: indirect samplers !!! */
nir_src index = instr->src[0];
assert(nir_src_is_const(index));
uint32_t uindex = nir_src_as_uint(index);
return PAN_SYSVAL(SAMPLER, uindex);
}
static int
midgard_nir_sysval_for_intrinsic(nir_intrinsic_instr *instr)
{
switch (instr->intrinsic) {
case nir_intrinsic_load_viewport_scale:
return PAN_SYSVAL_VIEWPORT_SCALE;
case nir_intrinsic_load_viewport_offset:
return PAN_SYSVAL_VIEWPORT_OFFSET;
case nir_intrinsic_load_num_work_groups:
return PAN_SYSVAL_NUM_WORK_GROUPS;
case nir_intrinsic_load_ssbo:
case nir_intrinsic_store_ssbo:
return midgard_sysval_for_ssbo(instr);
case nir_intrinsic_load_sampler_lod_parameters_pan:
return midgard_sysval_for_sampler(instr);
default:
return ~0;
}
}
static int sysval_for_instr(compiler_context *ctx, nir_instr *instr,
unsigned *dest)
{
nir_intrinsic_instr *intr;
nir_dest *dst = NULL;
nir_tex_instr *tex;
int sysval = -1;
bool is_store = false;
switch (instr->type) {
case nir_instr_type_intrinsic:
intr = nir_instr_as_intrinsic(instr);
sysval = midgard_nir_sysval_for_intrinsic(intr);
dst = &intr->dest;
is_store |= intr->intrinsic == nir_intrinsic_store_ssbo;
break;
case nir_instr_type_tex:
tex = nir_instr_as_tex(instr);
if (tex->op != nir_texop_txs)
break;
sysval = PAN_SYSVAL(TEXTURE_SIZE,
PAN_TXS_SYSVAL_ID(tex->texture_index,
nir_tex_instr_dest_size(tex) -
(tex->is_array ? 1 : 0),
tex->is_array));
dst = &tex->dest;
break;
default:
break;
}
if (dest && dst && !is_store)
*dest = nir_dest_index(ctx, dst);
return sysval;
}
static void
midgard_nir_assign_sysval_body(compiler_context *ctx, nir_instr *instr)
{
int sysval;
sysval = sysval_for_instr(ctx, instr, NULL);
if (sysval < 0)
return;
/* We have a sysval load; check if it's already been assigned */
if (_mesa_hash_table_u64_search(ctx->sysval_to_id, sysval))
return;
/* It hasn't -- so assign it now! */
unsigned id = ctx->sysval_count++;
_mesa_hash_table_u64_insert(ctx->sysval_to_id, sysval, (void *) ((uintptr_t) id + 1));
ctx->sysvals[id] = sysval;
}
static void
midgard_nir_assign_sysvals(compiler_context *ctx, nir_shader *shader)
{
ctx->sysval_count = 0;
nir_foreach_function(function, shader) {
if (!function->impl) continue;
nir_foreach_block(block, function->impl) {
nir_foreach_instr_safe(instr, block) {
midgard_nir_assign_sysval_body(ctx, instr);
}
}
}
}
static bool
midgard_nir_lower_fdot2(nir_shader *shader)
{
bool progress = false;
nir_foreach_function(function, shader) {
if (!function->impl) continue;
nir_builder _b;
nir_builder *b = &_b;
nir_builder_init(b, function->impl);
nir_foreach_block(block, function->impl) {
nir_foreach_instr_safe(instr, block) {
if (instr->type != nir_instr_type_alu) continue;
nir_alu_instr *alu = nir_instr_as_alu(instr);
midgard_nir_lower_fdot2_body(b, alu);
progress |= true;
}
}
nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
}
return progress;
}
/* Flushes undefined values to zero */
static void
optimise_nir(nir_shader *nir, unsigned quirks)
{
bool progress;
unsigned lower_flrp =
(nir->options->lower_flrp16 ? 16 : 0) |
(nir->options->lower_flrp32 ? 32 : 0) |
(nir->options->lower_flrp64 ? 64 : 0);
NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
NIR_PASS(progress, nir, nir_lower_idiv, nir_lower_idiv_fast);
nir_lower_tex_options lower_tex_options = {
.lower_txs_lod = true,
.lower_txp = ~0,
.lower_tex_without_implicit_lod =
(quirks & MIDGARD_EXPLICIT_LOD),
/* TODO: we have native gradient.. */
.lower_txd = true,
};
NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_options);
/* Must lower fdot2 after tex is lowered */
NIR_PASS(progress, nir, midgard_nir_lower_fdot2);
/* T720 is broken. */
if (quirks & MIDGARD_BROKEN_LOD)
NIR_PASS_V(nir, midgard_nir_lod_errata);
do {
progress = false;
NIR_PASS(progress, nir, nir_lower_var_copies);
NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
NIR_PASS(progress, nir, nir_copy_prop);
NIR_PASS(progress, nir, nir_opt_dce);
NIR_PASS(progress, nir, nir_opt_dead_cf);
NIR_PASS(progress, nir, nir_opt_cse);
NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
NIR_PASS(progress, nir, nir_opt_algebraic);
NIR_PASS(progress, nir, nir_opt_constant_folding);
if (lower_flrp != 0) {
bool lower_flrp_progress = false;
NIR_PASS(lower_flrp_progress,
nir,
nir_lower_flrp,
lower_flrp,
false /* always_precise */,
nir->options->lower_ffma);
if (lower_flrp_progress) {
NIR_PASS(progress, nir,
nir_opt_constant_folding);
progress = true;
}
/* Nothing should rematerialize any flrps, so we only
* need to do this lowering once.
*/
lower_flrp = 0;
}
NIR_PASS(progress, nir, nir_opt_undef);
NIR_PASS(progress, nir, nir_undef_to_zero);
NIR_PASS(progress, nir, nir_opt_loop_unroll,
nir_var_shader_in |
nir_var_shader_out |
nir_var_function_temp);
NIR_PASS(progress, nir, nir_opt_vectorize);
} while (progress);
/* Must be run at the end to prevent creation of fsin/fcos ops */
NIR_PASS(progress, nir, midgard_nir_scale_trig);
do {
progress = false;
NIR_PASS(progress, nir, nir_opt_dce);
NIR_PASS(progress, nir, nir_opt_algebraic);
NIR_PASS(progress, nir, nir_opt_constant_folding);
NIR_PASS(progress, nir, nir_copy_prop);
} while (progress);
NIR_PASS(progress, nir, nir_opt_algebraic_late);
/* We implement booleans as 32-bit 0/~0 */
NIR_PASS(progress, nir, nir_lower_bool_to_int32);
/* Now that booleans are lowered, we can run out late opts */
NIR_PASS(progress, nir, midgard_nir_lower_algebraic_late);
/* Lower mods for float ops only. Integer ops don't support modifiers
* (saturate doesn't make sense on integers, neg/abs require dedicated
* instructions) */
NIR_PASS(progress, nir, nir_lower_to_source_mods, nir_lower_float_source_mods);
NIR_PASS(progress, nir, nir_copy_prop);
NIR_PASS(progress, nir, nir_opt_dce);
/* Take us out of SSA */
NIR_PASS(progress, nir, nir_lower_locals_to_regs);
NIR_PASS(progress, nir, nir_convert_from_ssa, true);
/* We are a vector architecture; write combine where possible */
NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
NIR_PASS(progress, nir, nir_lower_vec_to_movs);
NIR_PASS(progress, nir, nir_opt_dce);
}
/* Do not actually emit a load; instead, cache the constant for inlining */
static void
emit_load_const(compiler_context *ctx, nir_load_const_instr *instr)
{
nir_ssa_def def = instr->def;
float *v = rzalloc_array(NULL, float, 4);
nir_const_value_to_array(v, instr->value, instr->def.num_components, f32);
/* Shifted for SSA, +1 for off-by-one */
_mesa_hash_table_u64_insert(ctx->ssa_constants, (def.index << 1) + 1, v);
}
/* Normally constants are embedded implicitly, but for I/O and such we have to
* explicitly emit a move with the constant source */
static void
emit_explicit_constant(compiler_context *ctx, unsigned node, unsigned to)
{
void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, node + 1);
if (constant_value) {
midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), to);
attach_constants(ctx, &ins, constant_value, node + 1);
emit_mir_instruction(ctx, ins);
}
}
static bool
nir_is_non_scalar_swizzle(nir_alu_src *src, unsigned nr_components)
{
unsigned comp = src->swizzle[0];
for (unsigned c = 1; c < nr_components; ++c) {
if (src->swizzle[c] != comp)
return true;
}
return false;
}
#define ALU_CASE(nir, _op) \
case nir_op_##nir: \
op = midgard_alu_op_##_op; \
assert(src_bitsize == dst_bitsize); \
break;
#define ALU_CASE_BCAST(nir, _op, count) \
case nir_op_##nir: \
op = midgard_alu_op_##_op; \
broadcast_swizzle = count; \
assert(src_bitsize == dst_bitsize); \
break;
static bool
nir_is_fzero_constant(nir_src src)
{
if (!nir_src_is_const(src))
return false;
for (unsigned c = 0; c < nir_src_num_components(src); ++c) {
if (nir_src_comp_as_float(src, c) != 0.0)
return false;
}
return true;
}
/* Analyze the sizes of the inputs to determine which reg mode. Ops needed
* special treatment override this anyway. */
static midgard_reg_mode
reg_mode_for_nir(nir_alu_instr *instr)
{
unsigned src_bitsize = nir_src_bit_size(instr->src[0].src);
switch (src_bitsize) {
case 8:
return midgard_reg_mode_8;
case 16:
return midgard_reg_mode_16;
case 32:
return midgard_reg_mode_32;
case 64:
return midgard_reg_mode_64;
default:
unreachable("Invalid bit size");
}
}
static void
emit_alu(compiler_context *ctx, nir_alu_instr *instr)
{
/* Derivatives end up emitted on the texture pipe, not the ALUs. This
* is handled elsewhere */
if (instr->op == nir_op_fddx || instr->op == nir_op_fddy) {
midgard_emit_derivatives(ctx, instr);
return;
}
bool is_ssa = instr->dest.dest.is_ssa;
unsigned dest = nir_dest_index(ctx, &instr->dest.dest);
unsigned nr_components = nir_dest_num_components(instr->dest.dest);
unsigned nr_inputs = nir_op_infos[instr->op].num_inputs;
/* Most Midgard ALU ops have a 1:1 correspondance to NIR ops; these are
* supported. A few do not and are commented for now. Also, there are a
* number of NIR ops which Midgard does not support and need to be
* lowered, also TODO. This switch block emits the opcode and calling
* convention of the Midgard instruction; actual packing is done in
* emit_alu below */
unsigned op;
/* Number of components valid to check for the instruction (the rest
* will be forced to the last), or 0 to use as-is. Relevant as
* ball-type instructions have a channel count in NIR but are all vec4
* in Midgard */
unsigned broadcast_swizzle = 0;
/* What register mode should we operate in? */
midgard_reg_mode reg_mode =
reg_mode_for_nir(instr);
/* Do we need a destination override? Used for inline
* type conversion */
midgard_dest_override dest_override =
midgard_dest_override_none;
/* Should we use a smaller respective source and sign-extend? */
bool half_1 = false, sext_1 = false;
bool half_2 = false, sext_2 = false;
unsigned src_bitsize = nir_src_bit_size(instr->src[0].src);
unsigned dst_bitsize = nir_dest_bit_size(instr->dest.dest);
switch (instr->op) {
ALU_CASE(fadd, fadd);
ALU_CASE(fmul, fmul);
ALU_CASE(fmin, fmin);
ALU_CASE(fmax, fmax);
ALU_CASE(imin, imin);
ALU_CASE(imax, imax);
ALU_CASE(umin, umin);
ALU_CASE(umax, umax);
ALU_CASE(ffloor, ffloor);
ALU_CASE(fround_even, froundeven);
ALU_CASE(ftrunc, ftrunc);
ALU_CASE(fceil, fceil);
ALU_CASE(fdot3, fdot3);
ALU_CASE(fdot4, fdot4);
ALU_CASE(iadd, iadd);
ALU_CASE(isub, isub);
ALU_CASE(imul, imul);
/* Zero shoved as second-arg */
ALU_CASE(iabs, iabsdiff);
ALU_CASE(mov, imov);
ALU_CASE(feq32, feq);
ALU_CASE(fne32, fne);
ALU_CASE(flt32, flt);
ALU_CASE(ieq32, ieq);
ALU_CASE(ine32, ine);
ALU_CASE(ilt32, ilt);
ALU_CASE(ult32, ult);
/* We don't have a native b2f32 instruction. Instead, like many
* GPUs, we exploit booleans as 0/~0 for false/true, and
* correspondingly AND
* by 1.0 to do the type conversion. For the moment, prime us
* to emit:
*
* iand [whatever], #0
*
* At the end of emit_alu (as MIR), we'll fix-up the constant
*/
ALU_CASE(b2f32, iand);
ALU_CASE(b2i32, iand);
/* Likewise, we don't have a dedicated f2b32 instruction, but
* we can do a "not equal to 0.0" test. */
ALU_CASE(f2b32, fne);
ALU_CASE(i2b32, ine);
ALU_CASE(frcp, frcp);
ALU_CASE(frsq, frsqrt);
ALU_CASE(fsqrt, fsqrt);
ALU_CASE(fexp2, fexp2);
ALU_CASE(flog2, flog2);
ALU_CASE(f2i32, f2i_rtz);
ALU_CASE(f2u32, f2u_rtz);
ALU_CASE(i2f32, i2f_rtz);
ALU_CASE(u2f32, u2f_rtz);
ALU_CASE(f2i16, f2i_rtz);
ALU_CASE(f2u16, f2u_rtz);
ALU_CASE(i2f16, i2f_rtz);
ALU_CASE(u2f16, u2f_rtz);
ALU_CASE(fsin, fsin);
ALU_CASE(fcos, fcos);
/* We'll set invert */
ALU_CASE(inot, imov);
ALU_CASE(iand, iand);
ALU_CASE(ior, ior);
ALU_CASE(ixor, ixor);
ALU_CASE(ishl, ishl);
ALU_CASE(ishr, iasr);
ALU_CASE(ushr, ilsr);
ALU_CASE_BCAST(b32all_fequal2, fball_eq, 2);
ALU_CASE_BCAST(b32all_fequal3, fball_eq, 3);
ALU_CASE(b32all_fequal4, fball_eq);
ALU_CASE_BCAST(b32any_fnequal2, fbany_neq, 2);
ALU_CASE_BCAST(b32any_fnequal3, fbany_neq, 3);
ALU_CASE(b32any_fnequal4, fbany_neq);
ALU_CASE_BCAST(b32all_iequal2, iball_eq, 2);
ALU_CASE_BCAST(b32all_iequal3, iball_eq, 3);
ALU_CASE(b32all_iequal4, iball_eq);
ALU_CASE_BCAST(b32any_inequal2, ibany_neq, 2);
ALU_CASE_BCAST(b32any_inequal3, ibany_neq, 3);
ALU_CASE(b32any_inequal4, ibany_neq);
/* Source mods will be shoved in later */
ALU_CASE(fabs, fmov);
ALU_CASE(fneg, fmov);
ALU_CASE(fsat, fmov);
/* For size conversion, we use a move. Ideally though we would squash
* these ops together; maybe that has to happen after in NIR as part of
* propagation...? An earlier algebraic pass ensured we step down by
* only / exactly one size. If stepping down, we use a dest override to
* reduce the size; if stepping up, we use a larger-sized move with a
* half source and a sign/zero-extension modifier */
case nir_op_i2i8:
case nir_op_i2i16:
case nir_op_i2i32:
case nir_op_i2i64:
/* If we end up upscale, we'll need a sign-extend on the
* operand (the second argument) */
sext_2 = true;
/* fallthrough */
case nir_op_u2u8:
case nir_op_u2u16:
case nir_op_u2u32:
case nir_op_u2u64: {
op = midgard_alu_op_imov;
if (dst_bitsize == (src_bitsize * 2)) {
/* Converting up */
half_2 = true;
/* Use a greater register mode */
reg_mode++;
} else if (src_bitsize == (dst_bitsize * 2)) {
/* Converting down */
dest_override = midgard_dest_override_lower;
}
break;
}
case nir_op_f2f16: {
assert(src_bitsize == 32);
op = midgard_alu_op_fmov;
dest_override = midgard_dest_override_lower;
break;
}
case nir_op_f2f32: {
assert(src_bitsize == 16);
op = midgard_alu_op_fmov;
half_2 = true;
reg_mode++;
break;
}
/* For greater-or-equal, we lower to less-or-equal and flip the
* arguments */
case nir_op_fge:
case nir_op_fge32:
case nir_op_ige32:
case nir_op_uge32: {
op =
instr->op == nir_op_fge ? midgard_alu_op_fle :
instr->op == nir_op_fge32 ? midgard_alu_op_fle :
instr->op == nir_op_ige32 ? midgard_alu_op_ile :
instr->op == nir_op_uge32 ? midgard_alu_op_ule :
0;
/* Swap via temporary */
nir_alu_src temp = instr->src[1];
instr->src[1] = instr->src[0];
instr->src[0] = temp;
break;
}
case nir_op_b32csel: {
/* Midgard features both fcsel and icsel, depending on
* the type of the arguments/output. However, as long
* as we're careful we can _always_ use icsel and
* _never_ need fcsel, since the latter does additional
* floating-point-specific processing whereas the
* former just moves bits on the wire. It's not obvious
* why these are separate opcodes, save for the ability
* to do things like sat/pos/abs/neg for free */
bool mixed = nir_is_non_scalar_swizzle(&instr->src[0], nr_components);
op = mixed ? midgard_alu_op_icsel_v : midgard_alu_op_icsel;
/* The condition is the first argument; move the other
* arguments up one to be a binary instruction for
* Midgard with the condition last */
nir_alu_src temp = instr->src[2];
instr->src[2] = instr->src[0];
instr->src[0] = instr->src[1];
instr->src[1] = temp;
break;
}
default:
DBG("Unhandled ALU op %s\n", nir_op_infos[instr->op].name);
assert(0);
return;
}
/* Midgard can perform certain modifiers on output of an ALU op */
unsigned outmod;
if (midgard_is_integer_out_op(op)) {
outmod = midgard_outmod_int_wrap;
} else {
bool sat = instr->dest.saturate || instr->op == nir_op_fsat;
outmod = sat ? midgard_outmod_sat : midgard_outmod_none;
}
/* fmax(a, 0.0) can turn into a .pos modifier as an optimization */
if (instr->op == nir_op_fmax) {
if (nir_is_fzero_constant(instr->src[0].src)) {
op = midgard_alu_op_fmov;
nr_inputs = 1;
outmod = midgard_outmod_pos;
instr->src[0] = instr->src[1];
} else if (nir_is_fzero_constant(instr->src[1].src)) {
op = midgard_alu_op_fmov;
nr_inputs = 1;
outmod = midgard_outmod_pos;
}
}
/* Fetch unit, quirks, etc information */
unsigned opcode_props = alu_opcode_props[op].props;
bool quirk_flipped_r24 = opcode_props & QUIRK_FLIPPED_R24;
/* src0 will always exist afaik, but src1 will not for 1-argument
* instructions. The latter can only be fetched if the instruction
* needs it, or else we may segfault. */
unsigned src0 = nir_alu_src_index(ctx, &instr->src[0]);
unsigned src1 = nr_inputs >= 2 ? nir_alu_src_index(ctx, &instr->src[1]) : ~0;
unsigned src2 = nr_inputs == 3 ? nir_alu_src_index(ctx, &instr->src[2]) : ~0;
assert(nr_inputs <= 3);
/* Rather than use the instruction generation helpers, we do it
* ourselves here to avoid the mess */
midgard_instruction ins = {
.type = TAG_ALU_4,
.src = {
quirk_flipped_r24 ? ~0 : src0,
quirk_flipped_r24 ? src0 : src1,
src2,
~0
},
.dest = dest,
};
nir_alu_src *nirmods[3] = { NULL };
if (nr_inputs >= 2) {
nirmods[0] = &instr->src[0];
nirmods[1] = &instr->src[1];
} else if (nr_inputs == 1) {
nirmods[quirk_flipped_r24] = &instr->src[0];
} else {
assert(0);
}
if (nr_inputs == 3)
nirmods[2] = &instr->src[2];
/* These were lowered to a move, so apply the corresponding mod */
if (instr->op == nir_op_fneg || instr->op == nir_op_fabs) {
nir_alu_src *s = nirmods[quirk_flipped_r24];
if (instr->op == nir_op_fneg)
s->negate = !s->negate;
if (instr->op == nir_op_fabs)
s->abs = !s->abs;
}
bool is_int = midgard_is_integer_op(op);
ins.mask = mask_of(nr_components);
midgard_vector_alu alu = {
.op = op,
.reg_mode = reg_mode,
.dest_override = dest_override,
.outmod = outmod,
.src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0], is_int, broadcast_swizzle, half_1, sext_1)),
.src2 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[1], is_int, broadcast_swizzle, half_2, sext_2)),
};
/* Apply writemask if non-SSA, keeping in mind that we can't write to components that don't exist */
if (!is_ssa)
ins.mask &= instr->dest.write_mask;
for (unsigned m = 0; m < 3; ++m) {
if (!nirmods[m])
continue;
for (unsigned c = 0; c < NIR_MAX_VEC_COMPONENTS; ++c)
ins.swizzle[m][c] = nirmods[m]->swizzle[c];
/* Replicate. TODO: remove when vec16 lands */
for (unsigned c = NIR_MAX_VEC_COMPONENTS; c < MIR_VEC_COMPONENTS; ++c)
ins.swizzle[m][c] = nirmods[m]->swizzle[NIR_MAX_VEC_COMPONENTS - 1];
}
if (nr_inputs == 3) {
/* Conditions can't have mods */
assert(!nirmods[2]->abs);
assert(!nirmods[2]->negate);
}
ins.alu = alu;
/* Late fixup for emulated instructions */
if (instr->op == nir_op_b2f32 || instr->op == nir_op_b2i32) {
/* Presently, our second argument is an inline #0 constant.
* Switch over to an embedded 1.0 constant (that can't fit
* inline, since we're 32-bit, not 16-bit like the inline
* constants) */
ins.has_inline_constant = false;
ins.src[1] = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
ins.has_constants = true;
if (instr->op == nir_op_b2f32) {
float f = 1.0f;
memcpy(&ins.constants, &f, sizeof(float));
} else {
ins.constants[0] = 1;
}
for (unsigned c = 0; c < 16; ++c)
ins.swizzle[1][c] = 0;
} else if (nr_inputs == 1 && !quirk_flipped_r24) {
/* Lots of instructions need a 0 plonked in */
ins.has_inline_constant = false;
ins.src[1] = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
ins.has_constants = true;
ins.constants[0] = 0;
for (unsigned c = 0; c < 16; ++c)
ins.swizzle[1][c] = 0;
} else if (instr->op == nir_op_inot) {
ins.invert = true;
}
if ((opcode_props & UNITS_ALL) == UNIT_VLUT) {
/* To avoid duplicating the lookup tables (probably), true LUT
* instructions can only operate as if they were scalars. Lower
* them here by changing the component. */
unsigned orig_mask = ins.mask;
for (int i = 0; i < nr_components; ++i) {
/* Mask the associated component, dropping the
* instruction if needed */
ins.mask = 1 << i;
ins.mask &= orig_mask;
if (!ins.mask)
continue;
for (unsigned j = 0; j < MIR_VEC_COMPONENTS; ++j)
ins.swizzle[0][j] = nirmods[0]->swizzle[i]; /* Pull from the correct component */
emit_mir_instruction(ctx, ins);
}
} else {
emit_mir_instruction(ctx, ins);
}
}
#undef ALU_CASE
static void
mir_set_intr_mask(nir_instr *instr, midgard_instruction *ins, bool is_read)
{
nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
unsigned nir_mask = 0;
unsigned dsize = 0;
if (is_read) {
nir_mask = mask_of(nir_intrinsic_dest_components(intr));
dsize = nir_dest_bit_size(intr->dest);
} else {
nir_mask = nir_intrinsic_write_mask(intr);
dsize = 32;
}
/* Once we have the NIR mask, we need to normalize to work in 32-bit space */
unsigned bytemask = mir_to_bytemask(mir_mode_for_destsize(dsize), nir_mask);
mir_set_bytemask(ins, bytemask);
if (dsize == 64)
ins->load_64 = true;
}
/* Uniforms and UBOs use a shared code path, as uniforms are just (slightly
* optimized) versions of UBO #0 */
midgard_instruction *
emit_ubo_read(
compiler_context *ctx,
nir_instr *instr,
unsigned dest,
unsigned offset,
nir_src *indirect_offset,
unsigned index)
{
/* TODO: half-floats */
midgard_instruction ins = m_ld_ubo_int4(dest, 0);
ins.constants[0] = offset;
if (instr->type == nir_instr_type_intrinsic)
mir_set_intr_mask(instr, &ins, true);
if (indirect_offset) {
ins.src[2] = nir_src_index(ctx, indirect_offset);
ins.load_store.arg_2 = 0x80;
} else {
ins.load_store.arg_2 = 0x1E;
}
ins.load_store.arg_1 = index;
return emit_mir_instruction(ctx, ins);
}
/* SSBO reads are like UBO reads if you squint */
static void
emit_ssbo_access(
compiler_context *ctx,
nir_instr *instr,
bool is_read,
unsigned srcdest,
unsigned offset,
nir_src *indirect_offset,
unsigned index)
{
/* TODO: types */
midgard_instruction ins;
if (is_read)
ins = m_ld_int4(srcdest, offset);
else
ins = m_st_int4(srcdest, offset);
/* SSBO reads use a generic memory read interface, so we need the
* address of the SSBO as the first argument. This is a sysval. */
unsigned addr = make_compiler_temp(ctx);
emit_sysval_read(ctx, instr, addr, 2);
/* The source array:
*
* src[0] = store ? value : unused
* src[1] = arg_1
* src[2] = arg_2
*
* We would like arg_1 = the address and
* arg_2 = the offset.
*/
ins.src[1] = addr;
/* TODO: What is this? It looks superficially like a shift << 5, but
* arg_1 doesn't take a shift Should it be E0 or A0? We also need the
* indirect offset. */
if (indirect_offset) {
ins.load_store.arg_1 |= 0xE0;
ins.src[2] = nir_src_index(ctx, indirect_offset);
} else {
ins.load_store.arg_2 = 0x7E;
}
/* TODO: Bounds check */
/* Finally, we emit the direct offset */
ins.load_store.varying_parameters = (offset & 0x1FF) << 1;
ins.load_store.address = (offset >> 9);
mir_set_intr_mask(instr, &ins, is_read);
emit_mir_instruction(ctx, ins);
}
static void
emit_varying_read(
compiler_context *ctx,
unsigned dest, unsigned offset,
unsigned nr_comp, unsigned component,
nir_src *indirect_offset, nir_alu_type type, bool flat)
{
/* XXX: Half-floats? */
/* TODO: swizzle, mask */
midgard_instruction ins = m_ld_vary_32(dest, offset);
ins.mask = mask_of(nr_comp);
for (unsigned i = 0; i < ARRAY_SIZE(ins.swizzle[0]); ++i)
ins.swizzle[0][i] = MIN2(i + component, COMPONENT_W);
midgard_varying_parameter p = {
.is_varying = 1,
.interpolation = midgard_interp_default,
.flat = flat,
};
unsigned u;
memcpy(&u, &p, sizeof(p));
ins.load_store.varying_parameters = u;
if (indirect_offset)
ins.src[2] = nir_src_index(ctx, indirect_offset);
else
ins.load_store.arg_2 = 0x1E;
ins.load_store.arg_1 = 0x9E;
/* Use the type appropriate load */
switch (type) {
case nir_type_uint:
case nir_type_bool:
ins.load_store.op = midgard_op_ld_vary_32u;
break;
case nir_type_int:
ins.load_store.op = midgard_op_ld_vary_32i;
break;
case nir_type_float:
ins.load_store.op = midgard_op_ld_vary_32;
break;
default:
unreachable("Attempted to load unknown type");
break;
}
emit_mir_instruction(ctx, ins);
}
static void
emit_attr_read(
compiler_context *ctx,
unsigned dest, unsigned offset,
unsigned nr_comp, nir_alu_type t)
{
midgard_instruction ins = m_ld_attr_32(dest, offset);
ins.load_store.arg_1 = 0x1E;
ins.load_store.arg_2 = 0x1E;
ins.mask = mask_of(nr_comp);
/* Use the type appropriate load */
switch (t) {
case nir_type_uint:
case nir_type_bool:
ins.load_store.op = midgard_op_ld_attr_32u;
break;
case nir_type_int:
ins.load_store.op = midgard_op_ld_attr_32i;
break;
case nir_type_float:
ins.load_store.op = midgard_op_ld_attr_32;
break;
default:
unreachable("Attempted to load unknown type");
break;
}
emit_mir_instruction(ctx, ins);
}
void
emit_sysval_read(compiler_context *ctx, nir_instr *instr, signed dest_override,
unsigned nr_components)
{
unsigned dest = 0;
/* Figure out which uniform this is */
int sysval = sysval_for_instr(ctx, instr, &dest);
void *val = _mesa_hash_table_u64_search(ctx->sysval_to_id, sysval);
if (dest_override >= 0)
dest = dest_override;
/* Sysvals are prefix uniforms */
unsigned uniform = ((uintptr_t) val) - 1;
/* Emit the read itself -- this is never indirect */
midgard_instruction *ins =
emit_ubo_read(ctx, instr, dest, uniform * 16, NULL, 0);
ins->mask = mask_of(nr_components);
}
static unsigned
compute_builtin_arg(nir_op op)
{
switch (op) {
case nir_intrinsic_load_work_group_id:
return 0x14;
case nir_intrinsic_load_local_invocation_id:
return 0x10;
default:
unreachable("Invalid compute paramater loaded");
}
}
/* Emit store for a fragment shader, which is encoded via a fancy branch. TODO:
* Handle MRT here */
static void
emit_fragment_epilogue(compiler_context *ctx, unsigned rt);
static void
emit_fragment_store(compiler_context *ctx, unsigned src, unsigned rt)
{
emit_explicit_constant(ctx, src, src);
struct midgard_instruction ins =
v_branch(false, false);
ins.writeout = true;
/* Add dependencies */
ins.src[0] = src;
ins.constants[0] = rt * 0x100;
/* Emit the branch */
midgard_instruction *br = emit_mir_instruction(ctx, ins);
schedule_barrier(ctx);
br->branch.target_block = ctx->block_count - 1;
emit_fragment_epilogue(ctx, rt);
}
static void
emit_compute_builtin(compiler_context *ctx, nir_intrinsic_instr *instr)
{
unsigned reg = nir_dest_index(ctx, &instr->dest);
midgard_instruction ins = m_ld_compute_id(reg, 0);
ins.mask = mask_of(3);
ins.load_store.arg_1 = compute_builtin_arg(instr->intrinsic);
emit_mir_instruction(ctx, ins);
}
static unsigned
vertex_builtin_arg(nir_op op)
{
switch (op) {
case nir_intrinsic_load_vertex_id:
return PAN_VERTEX_ID;
case nir_intrinsic_load_instance_id:
return PAN_INSTANCE_ID;
default:
unreachable("Invalid vertex builtin");
}
}
static void
emit_vertex_builtin(compiler_context *ctx, nir_intrinsic_instr *instr)
{
unsigned reg = nir_dest_index(ctx, &instr->dest);
emit_attr_read(ctx, reg, vertex_builtin_arg(instr->intrinsic), 1, nir_type_int);
}
static void
emit_intrinsic(compiler_context *ctx, nir_intrinsic_instr *instr)
{
unsigned offset = 0, reg;
switch (instr->intrinsic) {
case nir_intrinsic_discard_if:
case nir_intrinsic_discard: {
bool conditional = instr->intrinsic == nir_intrinsic_discard_if;
struct midgard_instruction discard = v_branch(conditional, false);
discard.branch.target_type = TARGET_DISCARD;
if (conditional)
discard.src[0] = nir_src_index(ctx, &instr->src[0]);
emit_mir_instruction(ctx, discard);
schedule_barrier(ctx);
break;
}
case nir_intrinsic_load_uniform:
case nir_intrinsic_load_ubo:
case nir_intrinsic_load_ssbo:
case nir_intrinsic_load_input:
case nir_intrinsic_load_interpolated_input: {
bool is_uniform = instr->intrinsic == nir_intrinsic_load_uniform;
bool is_ubo = instr->intrinsic == nir_intrinsic_load_ubo;
bool is_ssbo = instr->intrinsic == nir_intrinsic_load_ssbo;
bool is_flat = instr->intrinsic == nir_intrinsic_load_input;
bool is_interp = instr->intrinsic == nir_intrinsic_load_interpolated_input;
/* Get the base type of the intrinsic */
/* TODO: Infer type? Does it matter? */
nir_alu_type t =
(is_ubo || is_ssbo) ? nir_type_uint :
(is_interp) ? nir_type_float :
nir_intrinsic_type(instr);
t = nir_alu_type_get_base_type(t);
if (!(is_ubo || is_ssbo)) {
offset = nir_intrinsic_base(instr);
}
unsigned nr_comp = nir_intrinsic_dest_components(instr);
nir_src *src_offset = nir_get_io_offset_src(instr);
bool direct = nir_src_is_const(*src_offset);
nir_src *indirect_offset = direct ? NULL : src_offset;
if (direct)
offset += nir_src_as_uint(*src_offset);
/* We may need to apply a fractional offset */
int component = (is_flat || is_interp) ?
nir_intrinsic_component(instr) : 0;
reg = nir_dest_index(ctx, &instr->dest);
if (is_uniform && !ctx->is_blend) {
emit_ubo_read(ctx, &instr->instr, reg, (ctx->sysval_count + offset) * 16, indirect_offset, 0);
} else if (is_ubo) {
nir_src index = instr->src[0];
/* We don't yet support indirect UBOs. For indirect
* block numbers (if that's possible), we don't know
* enough about the hardware yet. For indirect sources,
* we know what we need but we need to add some NIR
* support for lowering correctly with respect to
* 128-bit reads */
assert(nir_src_is_const(index));
assert(nir_src_is_const(*src_offset));
uint32_t uindex = nir_src_as_uint(index) + 1;
emit_ubo_read(ctx, &instr->instr, reg, offset, NULL, uindex);
} else if (is_ssbo) {
nir_src index = instr->src[0];
assert(nir_src_is_const(index));
uint32_t uindex = nir_src_as_uint(index);
emit_ssbo_access(ctx, &instr->instr, true, reg, offset, indirect_offset, uindex);
} else if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->is_blend) {
emit_varying_read(ctx, reg, offset, nr_comp, component, indirect_offset, t, is_flat);
} else if (ctx->is_blend) {
/* For blend shaders, load the input color, which is
* preloaded to r0 */
midgard_instruction move = v_mov(SSA_FIXED_REGISTER(0), reg);
emit_mir_instruction(ctx, move);
schedule_barrier(ctx);
} else if (ctx->stage == MESA_SHADER_VERTEX) {
emit_attr_read(ctx, reg, offset, nr_comp, t);
} else {
DBG("Unknown load\n");
assert(0);
}
break;
}
/* Artefact of load_interpolated_input. TODO: other barycentric modes */
case nir_intrinsic_load_barycentric_pixel:
break;
/* Reads 128-bit value raw off the tilebuffer during blending, tasty */
case nir_intrinsic_load_raw_output_pan:
case nir_intrinsic_load_output_u8_as_fp16_pan:
reg = nir_dest_index(ctx, &instr->dest);
assert(ctx->is_blend);
/* T720 and below use different blend opcodes with slightly
* different semantics than T760 and up */
midgard_instruction ld = m_ld_color_buffer_8(reg, 0);
bool old_blend = ctx->quirks & MIDGARD_OLD_BLEND;
if (instr->intrinsic == nir_intrinsic_load_output_u8_as_fp16_pan) {
ld.load_store.op = old_blend ?
midgard_op_ld_color_buffer_u8_as_fp16_old :
midgard_op_ld_color_buffer_u8_as_fp16;
if (old_blend) {
ld.load_store.address = 1;
ld.load_store.arg_2 = 0x1E;
}
for (unsigned c = 2; c < 16; ++c)
ld.swizzle[0][c] = 0;
}
emit_mir_instruction(ctx, ld);
break;
case nir_intrinsic_load_blend_const_color_rgba: {
assert(ctx->is_blend);
reg = nir_dest_index(ctx, &instr->dest);
/* Blend constants are embedded directly in the shader and
* patched in, so we use some magic routing */
midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), reg);
ins.has_constants = true;
ins.has_blend_constant = true;
emit_mir_instruction(ctx, ins);
break;
}
case nir_intrinsic_store_output:
assert(nir_src_is_const(instr->src[1]) && "no indirect outputs");
offset = nir_intrinsic_base(instr) + nir_src_as_uint(instr->src[1]);
reg = nir_src_index(ctx, &instr->src[0]);
if (ctx->stage == MESA_SHADER_FRAGMENT) {
/* Determine number of render targets */
emit_fragment_store(ctx, reg, offset);
} else if (ctx->stage == MESA_SHADER_VERTEX) {
/* We should have been vectorized, though we don't
* currently check that st_vary is emitted only once
* per slot (this is relevant, since there's not a mask
* parameter available on the store [set to 0 by the
* blob]). We do respect the component by adjusting the
* swizzle. If this is a constant source, we'll need to
* emit that explicitly. */
emit_explicit_constant(ctx, reg, reg);
unsigned component = nir_intrinsic_component(instr);
unsigned nr_comp = nir_src_num_components(instr->src[0]);
midgard_instruction st = m_st_vary_32(reg, offset);
st.load_store.arg_1 = 0x9E;
st.load_store.arg_2 = 0x1E;
switch (nir_alu_type_get_base_type(nir_intrinsic_type(instr))) {
case nir_type_uint:
case nir_type_bool:
st.load_store.op = midgard_op_st_vary_32u;
break;
case nir_type_int:
st.load_store.op = midgard_op_st_vary_32i;
break;
case nir_type_float:
st.load_store.op = midgard_op_st_vary_32;
break;
default:
unreachable("Attempted to store unknown type");
break;
}
for (unsigned i = 0; i < ARRAY_SIZE(st.swizzle[0]); ++i)
st.swizzle[0][i] = MIN2(i + component, nr_comp);
emit_mir_instruction(ctx, st);
} else {
DBG("Unknown store\n");
assert(0);
}
break;
/* Special case of store_output for lowered blend shaders */
case nir_intrinsic_store_raw_output_pan:
assert (ctx->stage == MESA_SHADER_FRAGMENT);
reg = nir_src_index(ctx, &instr->src[0]);
if (ctx->quirks & MIDGARD_OLD_BLEND) {
/* Suppose reg = qr0.xyzw. That means 4 8-bit ---> 1 32-bit. So
* reg = r0.x. We want to splatter. So we can do a 32-bit move
* of:
*
* imov r0.xyzw, r0.xxxx
*/
unsigned expanded = make_compiler_temp(ctx);
midgard_instruction splatter = v_mov(reg, expanded);
for (unsigned c = 0; c < 16; ++c)
splatter.swizzle[1][c] = 0;
emit_mir_instruction(ctx, splatter);
emit_fragment_store(ctx, expanded, ctx->blend_rt);
} else
emit_fragment_store(ctx, reg, ctx->blend_rt);
break;
case nir_intrinsic_store_ssbo:
assert(nir_src_is_const(instr->src[1]));
bool direct_offset = nir_src_is_const(instr->src[2]);
offset = direct_offset ? nir_src_as_uint(instr->src[2]) : 0;
nir_src *indirect_offset = direct_offset ? NULL : &instr->src[2];
reg = nir_src_index(ctx, &instr->src[0]);
uint32_t uindex = nir_src_as_uint(instr->src[1]);
emit_explicit_constant(ctx, reg, reg);
emit_ssbo_access(ctx, &instr->instr, false, reg, offset, indirect_offset, uindex);
break;
case nir_intrinsic_load_viewport_scale:
case nir_intrinsic_load_viewport_offset:
case nir_intrinsic_load_num_work_groups:
case nir_intrinsic_load_sampler_lod_parameters_pan:
emit_sysval_read(ctx, &instr->instr, ~0, 3);
break;
case nir_intrinsic_load_work_group_id:
case nir_intrinsic_load_local_invocation_id:
emit_compute_builtin(ctx, instr);
break;
case nir_intrinsic_load_vertex_id:
case nir_intrinsic_load_instance_id:
emit_vertex_builtin(ctx, instr);
break;
default:
printf ("Unhandled intrinsic\n");
assert(0);
break;
}
}
static unsigned
midgard_tex_format(enum glsl_sampler_dim dim)
{
switch (dim) {
case GLSL_SAMPLER_DIM_1D:
case GLSL_SAMPLER_DIM_BUF:
return MALI_TEX_1D;
case GLSL_SAMPLER_DIM_2D:
case GLSL_SAMPLER_DIM_EXTERNAL:
case GLSL_SAMPLER_DIM_RECT:
return MALI_TEX_2D;
case GLSL_SAMPLER_DIM_3D:
return MALI_TEX_3D;
case GLSL_SAMPLER_DIM_CUBE:
return MALI_TEX_CUBE;
default:
DBG("Unknown sampler dim type\n");
assert(0);
return 0;
}
}
/* Tries to attach an explicit LOD / bias as a constant. Returns whether this
* was successful */
static bool
pan_attach_constant_bias(
compiler_context *ctx,
nir_src lod,
midgard_texture_word *word)
{
/* To attach as constant, it has to *be* constant */
if (!nir_src_is_const(lod))
return false;
float f = nir_src_as_float(lod);
/* Break into fixed-point */
signed lod_int = f;
float lod_frac = f - lod_int;
/* Carry over negative fractions */
if (lod_frac < 0.0) {
lod_int--;
lod_frac += 1.0;
}
/* Encode */
word->bias = float_to_ubyte(lod_frac);
word->bias_int = lod_int;
return true;
}
static enum mali_sampler_type
midgard_sampler_type(nir_alu_type t) {
switch (nir_alu_type_get_base_type(t))
{
case nir_type_float:
return MALI_SAMPLER_FLOAT;
case nir_type_int:
return MALI_SAMPLER_SIGNED;
case nir_type_uint:
return MALI_SAMPLER_UNSIGNED;
default:
unreachable("Unknown sampler type");
}
}
static void
emit_texop_native(compiler_context *ctx, nir_tex_instr *instr,
unsigned midgard_texop)
{
/* TODO */
//assert (!instr->sampler);
//assert (!instr->texture_array_size);
int texture_index = instr->texture_index;
int sampler_index = texture_index;
/* No helper to build texture words -- we do it all here */
midgard_instruction ins = {
.type = TAG_TEXTURE_4,
.mask = 0xF,
.dest = nir_dest_index(ctx, &instr->dest),
.src = { ~0, ~0, ~0, ~0 },
.swizzle = SWIZZLE_IDENTITY_4,
.texture = {
.op = midgard_texop,
.format = midgard_tex_format(instr->sampler_dim),
.texture_handle = texture_index,
.sampler_handle = sampler_index,
/* TODO: half */
.in_reg_full = 1,
.out_full = 1,
.sampler_type = midgard_sampler_type(instr->dest_type),
.shadow = instr->is_shadow,
}
};
/* We may need a temporary for the coordinate */
bool needs_temp_coord =
(midgard_texop == TEXTURE_OP_TEXEL_FETCH) ||
(instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) ||
(instr->is_shadow);
unsigned coords = needs_temp_coord ? make_compiler_temp_reg(ctx) : 0;
for (unsigned i = 0; i < instr->num_srcs; ++i) {
int index = nir_src_index(ctx, &instr->src[i].src);
unsigned nr_components = nir_src_num_components(instr->src[i].src);
switch (instr->src[i].src_type) {
case nir_tex_src_coord: {
emit_explicit_constant(ctx, index, index);
unsigned coord_mask = mask_of(instr->coord_components);
if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
/* texelFetch is undefined on samplerCube */
assert(midgard_texop != TEXTURE_OP_TEXEL_FETCH);
/* For cubemaps, we use a special ld/st op to
* select the face and copy the xy into the
* texture register */
midgard_instruction ld = m_ld_cubemap_coords(coords, 0);
ld.src[1] = index;
ld.mask = 0x3; /* xy */
ld.load_store.arg_1 = 0x20;
ld.swizzle[1][3] = COMPONENT_X;
emit_mir_instruction(ctx, ld);
/* xyzw -> xyxx */
ins.swizzle[1][2] = instr->is_shadow ? COMPONENT_Z : COMPONENT_X;
ins.swizzle[1][3] = COMPONENT_X;
} else if (needs_temp_coord) {
/* mov coord_temp, coords */
midgard_instruction mov = v_mov(index, coords);
mov.mask = coord_mask;
emit_mir_instruction(ctx, mov);
} else {
coords = index;
}
ins.src[1] = coords;
/* Texelfetch coordinates uses all four elements
* (xyz/index) regardless of texture dimensionality,
* which means it's necessary to zero the unused
* components to keep everything happy */
if (midgard_texop == TEXTURE_OP_TEXEL_FETCH) {
/* mov index.zw, #0, or generalized */
midgard_instruction mov =
v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), coords);
mov.has_constants = true;
mov.mask = coord_mask ^ 0xF;
emit_mir_instruction(ctx, mov);
}
if (instr->sampler_dim == GLSL_SAMPLER_DIM_2D) {
/* Array component in w but NIR wants it in z */
if (nr_components == 3) {
ins.swizzle[1][2] = COMPONENT_Z;
ins.swizzle[1][3] = COMPONENT_Z;
} else if (nr_components == 2) {
ins.swizzle[1][2] =
instr->is_shadow ? COMPONENT_Z : COMPONENT_X;
ins.swizzle[1][3] = COMPONENT_X;
} else
unreachable("Invalid texture 2D components");
}
if (midgard_texop == TEXTURE_OP_TEXEL_FETCH) {
/* We zeroed */
ins.swizzle[1][2] = COMPONENT_Z;
ins.swizzle[1][3] = COMPONENT_W;
}
break;
}
case nir_tex_src_bias:
case nir_tex_src_lod: {
/* Try as a constant if we can */
bool is_txf = midgard_texop == TEXTURE_OP_TEXEL_FETCH;
if (!is_txf && pan_attach_constant_bias(ctx, instr->src[i].src, &ins.texture))
break;
ins.texture.lod_register = true;
ins.src[2] = index;
for (unsigned c = 0; c < MIR_VEC_COMPONENTS; ++c)
ins.swizzle[2][c] = COMPONENT_X;
emit_explicit_constant(ctx, index, index);
break;
};
case nir_tex_src_offset: {
ins.texture.offset_register = true;
ins.src[3] = index;
for (unsigned c = 0; c < MIR_VEC_COMPONENTS; ++c)
ins.swizzle[3][c] = (c > COMPONENT_Z) ? 0 : c;
emit_explicit_constant(ctx, index, index);
break;
};
case nir_tex_src_comparator: {
unsigned comp = COMPONENT_Z;
/* mov coord_temp.foo, coords */
midgard_instruction mov = v_mov(index, coords);
mov.mask = 1 << comp;
for (unsigned i = 0; i < MIR_VEC_COMPONENTS; ++i)
mov.swizzle[1][i] = COMPONENT_X;
emit_mir_instruction(ctx, mov);
break;
}
default:
unreachable("Unknown texture source type\n");
}
}
emit_mir_instruction(ctx, ins);
/* Used for .cont and .last hinting */
ctx->texture_op_count++;
}
static void
emit_tex(compiler_context *ctx, nir_tex_instr *instr)
{
switch (instr->op) {
case nir_texop_tex:
case nir_texop_txb:
emit_texop_native(ctx, instr, TEXTURE_OP_NORMAL);
break;
case nir_texop_txl:
emit_texop_native(ctx, instr, TEXTURE_OP_LOD);
break;
case nir_texop_txf:
emit_texop_native(ctx, instr, TEXTURE_OP_TEXEL_FETCH);
break;
case nir_texop_txs:
emit_sysval_read(ctx, &instr->instr, ~0, 4);
break;
default:
unreachable("Unhanlded texture op");
}
}
static void
emit_jump(compiler_context *ctx, nir_jump_instr *instr)
{
switch (instr->type) {
case nir_jump_break: {
/* Emit a branch out of the loop */
struct midgard_instruction br = v_branch(false, false);
br.branch.target_type = TARGET_BREAK;
br.branch.target_break = ctx->current_loop_depth;
emit_mir_instruction(ctx, br);
break;
}
default:
DBG("Unknown jump type %d\n", instr->type);
break;
}
}
static void
emit_instr(compiler_context *ctx, struct nir_instr *instr)
{
switch (instr->type) {
case nir_instr_type_load_const:
emit_load_const(ctx, nir_instr_as_load_const(instr));
break;
case nir_instr_type_intrinsic:
emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
break;
case nir_instr_type_alu:
emit_alu(ctx, nir_instr_as_alu(instr));
break;
case nir_instr_type_tex:
emit_tex(ctx, nir_instr_as_tex(instr));
break;
case nir_instr_type_jump:
emit_jump(ctx, nir_instr_as_jump(instr));
break;
case nir_instr_type_ssa_undef:
/* Spurious */
break;
default:
DBG("Unhandled instruction type\n");
break;
}
}
/* ALU instructions can inline or embed constants, which decreases register
* pressure and saves space. */
#define CONDITIONAL_ATTACH(idx) { \
void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->src[idx] + 1); \
\
if (entry) { \
attach_constants(ctx, alu, entry, alu->src[idx] + 1); \
alu->src[idx] = SSA_FIXED_REGISTER(REGISTER_CONSTANT); \
} \
}
static void
inline_alu_constants(compiler_context *ctx, midgard_block *block)
{
mir_foreach_instr_in_block(block, alu) {
/* Other instructions cannot inline constants */
if (alu->type != TAG_ALU_4) continue;
if (alu->compact_branch) continue;
/* If there is already a constant here, we can do nothing */
if (alu->has_constants) continue;
CONDITIONAL_ATTACH(0);
if (!alu->has_constants) {
CONDITIONAL_ATTACH(1)
} else if (!alu->inline_constant) {
/* Corner case: _two_ vec4 constants, for instance with a
* csel. For this case, we can only use a constant
* register for one, we'll have to emit a move for the
* other. Note, if both arguments are constants, then
* necessarily neither argument depends on the value of
* any particular register. As the destination register
* will be wiped, that means we can spill the constant
* to the destination register.
*/
void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->src[1] + 1);
unsigned scratch = alu->dest;
if (entry) {
midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), scratch);
attach_constants(ctx, &ins, entry, alu->src[1] + 1);
/* Set the source */
alu->src[1] = scratch;
/* Inject us -before- the last instruction which set r31 */
mir_insert_instruction_before(ctx, mir_prev_op(alu), ins);
}
}
}
}
/* Being a little silly with the names, but returns the op that is the bitwise
* inverse of the op with the argument switched. I.e. (f and g are
* contrapositives):
*
* f(a, b) = ~g(b, a)
*
* Corollary: if g is the contrapositve of f, f is the contrapositive of g:
*
* f(a, b) = ~g(b, a)
* ~f(a, b) = g(b, a)
* ~f(a, b) = ~h(a, b) where h is the contrapositive of g
* f(a, b) = h(a, b)
*
* Thus we define this function in pairs.
*/
static inline midgard_alu_op
mir_contrapositive(midgard_alu_op op)
{
switch (op) {
case midgard_alu_op_flt:
return midgard_alu_op_fle;
case midgard_alu_op_fle:
return midgard_alu_op_flt;
case midgard_alu_op_ilt:
return midgard_alu_op_ile;
case midgard_alu_op_ile:
return midgard_alu_op_ilt;
default:
unreachable("No known contrapositive");
}
}
/* Midgard supports two types of constants, embedded constants (128-bit) and
* inline constants (16-bit). Sometimes, especially with scalar ops, embedded
* constants can be demoted to inline constants, for space savings and
* sometimes a performance boost */
static void
embedded_to_inline_constant(compiler_context *ctx, midgard_block *block)
{
mir_foreach_instr_in_block(block, ins) {
if (!ins->has_constants) continue;
if (ins->has_inline_constant) continue;
/* Blend constants must not be inlined by definition */
if (ins->has_blend_constant) continue;
/* We can inline 32-bit (sometimes) or 16-bit (usually) */
bool is_16 = ins->alu.reg_mode == midgard_reg_mode_16;
bool is_32 = ins->alu.reg_mode == midgard_reg_mode_32;
if (!(is_16 || is_32))
continue;
/* src1 cannot be an inline constant due to encoding
* restrictions. So, if possible we try to flip the arguments
* in that case */
int op = ins->alu.op;
if (ins->src[0] == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
bool flip = alu_opcode_props[op].props & OP_COMMUTES;
switch (op) {
/* Conditionals can be inverted */
case midgard_alu_op_flt:
case midgard_alu_op_ilt:
case midgard_alu_op_fle:
case midgard_alu_op_ile:
ins->alu.op = mir_contrapositive(ins->alu.op);
ins->invert = true;
flip = true;
break;
case midgard_alu_op_fcsel:
case midgard_alu_op_icsel:
DBG("Missed non-commutative flip (%s)\n", alu_opcode_props[op].name);
default:
break;
}
if (flip)
mir_flip(ins);
}
if (ins->src[1] == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
/* Extract the source information */
midgard_vector_alu_src *src;
int q = ins->alu.src2;
midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
src = m;
/* Component is from the swizzle. Take a nonzero component */
assert(ins->mask);
unsigned first_comp = ffs(ins->mask) - 1;
unsigned component = ins->swizzle[1][first_comp];
/* Scale constant appropriately, if we can legally */
uint16_t scaled_constant = 0;
if (midgard_is_integer_op(op) || is_16) {
unsigned int *iconstants = (unsigned int *) ins->constants;
scaled_constant = (uint16_t) iconstants[component];
/* Constant overflow after resize */
if (scaled_constant != iconstants[component])
continue;
} else {
float *f = (float *) ins->constants;
float original = f[component];
scaled_constant = _mesa_float_to_half(original);
/* Check for loss of precision. If this is
* mediump, we don't care, but for a highp
* shader, we need to pay attention. NIR
* doesn't yet tell us which mode we're in!
* Practically this prevents most constants
* from being inlined, sadly. */
float fp32 = _mesa_half_to_float(scaled_constant);
if (fp32 != original)
continue;
}
/* We don't know how to handle these with a constant */
if (mir_nontrivial_source2_mod_simple(ins) || src->rep_low || src->rep_high) {
DBG("Bailing inline constant...\n");
continue;
}
/* Make sure that the constant is not itself a vector
* by checking if all accessed values are the same. */
uint32_t *cons = ins->constants;
uint32_t value = cons[component];
bool is_vector = false;
unsigned mask = effective_writemask(&ins->alu, ins->mask);
for (unsigned c = 0; c < MIR_VEC_COMPONENTS; ++c) {
/* We only care if this component is actually used */
if (!(mask & (1 << c)))
continue;
uint32_t test = cons[ins->swizzle[1][c]];
if (test != value) {
is_vector = true;
break;
}
}
if (is_vector)
continue;
/* Get rid of the embedded constant */
ins->has_constants = false;
ins->src[1] = ~0;
ins->has_inline_constant = true;
ins->inline_constant = scaled_constant;
}
}
}
/* Dead code elimination for branches at the end of a block - only one branch
* per block is legal semantically */
static void
midgard_opt_cull_dead_branch(compiler_context *ctx, midgard_block *block)
{
bool branched = false;
mir_foreach_instr_in_block_safe(block, ins) {
if (!midgard_is_branch_unit(ins->unit)) continue;
if (branched)
mir_remove_instruction(ins);
branched = true;
}
}
/* fmov.pos is an idiom for fpos. Propoagate the .pos up to the source, so then
* the move can be propagated away entirely */
static bool
mir_compose_float_outmod(midgard_outmod_float *outmod, midgard_outmod_float comp)
{
/* Nothing to do */
if (comp == midgard_outmod_none)
return true;
if (*outmod == midgard_outmod_none) {
*outmod = comp;
return true;
}
/* TODO: Compose rules */
return false;
}
static bool
midgard_opt_pos_propagate(compiler_context *ctx, midgard_block *block)
{
bool progress = false;
mir_foreach_instr_in_block_safe(block, ins) {
if (ins->type != TAG_ALU_4) continue;
if (ins->alu.op != midgard_alu_op_fmov) continue;
if (ins->alu.outmod != midgard_outmod_pos) continue;
/* TODO: Registers? */
unsigned src = ins->src[1];
if (src & IS_REG) continue;
/* There might be a source modifier, too */
if (mir_nontrivial_source2_mod(ins)) continue;
/* Backpropagate the modifier */
mir_foreach_instr_in_block_from_rev(block, v, mir_prev_op(ins)) {
if (v->type != TAG_ALU_4) continue;
if (v->dest != src) continue;
/* Can we even take a float outmod? */
if (midgard_is_integer_out_op(v->alu.op)) continue;
midgard_outmod_float temp = v->alu.outmod;
progress |= mir_compose_float_outmod(&temp, ins->alu.outmod);
/* Throw in the towel.. */
if (!progress) break;
/* Otherwise, transfer the modifier */
v->alu.outmod = temp;
ins->alu.outmod = midgard_outmod_none;
break;
}
}
return progress;
}
static void
emit_fragment_epilogue(compiler_context *ctx, unsigned rt)
{
/* Include a move to specify the render target */
if (rt > 0) {
midgard_instruction rt_move = v_mov(SSA_FIXED_REGISTER(1),
SSA_FIXED_REGISTER(1));
rt_move.mask = 1 << COMPONENT_Z;
rt_move.unit = UNIT_SADD;
emit_mir_instruction(ctx, rt_move);
}
/* Loop to ourselves */
struct midgard_instruction ins = v_branch(false, false);
ins.writeout = true;
ins.branch.target_block = ctx->block_count - 1;
emit_mir_instruction(ctx, ins);
ctx->current_block->epilogue = true;
schedule_barrier(ctx);
}
static midgard_block *
emit_block(compiler_context *ctx, nir_block *block)
{
midgard_block *this_block = ctx->after_block;
ctx->after_block = NULL;
if (!this_block)
this_block = create_empty_block(ctx);
list_addtail(&this_block->link, &ctx->blocks);
this_block->is_scheduled = false;
++ctx->block_count;
/* Set up current block */
list_inithead(&this_block->instructions);
ctx->current_block = this_block;
nir_foreach_instr(instr, block) {
emit_instr(ctx, instr);
++ctx->instruction_count;
}
return this_block;
}
static midgard_block *emit_cf_list(struct compiler_context *ctx, struct exec_list *list);
static void
emit_if(struct compiler_context *ctx, nir_if *nif)
{
midgard_block *before_block = ctx->current_block;
/* Speculatively emit the branch, but we can't fill it in until later */
EMIT(branch, true, true);
midgard_instruction *then_branch = mir_last_in_block(ctx->current_block);
then_branch->src[0] = nir_src_index(ctx, &nif->condition);
/* Emit the two subblocks. */
midgard_block *then_block = emit_cf_list(ctx, &nif->then_list);
midgard_block *end_then_block = ctx->current_block;
/* Emit a jump from the end of the then block to the end of the else */
EMIT(branch, false, false);
midgard_instruction *then_exit = mir_last_in_block(ctx->current_block);
/* Emit second block, and check if it's empty */
int else_idx = ctx->block_count;
int count_in = ctx->instruction_count;
midgard_block *else_block = emit_cf_list(ctx, &nif->else_list);
midgard_block *end_else_block = ctx->current_block;
int after_else_idx = ctx->block_count;
/* Now that we have the subblocks emitted, fix up the branches */
assert(then_block);
assert(else_block);
if (ctx->instruction_count == count_in) {
/* The else block is empty, so don't emit an exit jump */
mir_remove_instruction(then_exit);
then_branch->branch.target_block = after_else_idx;
} else {
then_branch->branch.target_block = else_idx;
then_exit->branch.target_block = after_else_idx;
}
/* Wire up the successors */
ctx->after_block = create_empty_block(ctx);
midgard_block_add_successor(before_block, then_block);
midgard_block_add_successor(before_block, else_block);
midgard_block_add_successor(end_then_block, ctx->after_block);
midgard_block_add_successor(end_else_block, ctx->after_block);
}
static void
emit_loop(struct compiler_context *ctx, nir_loop *nloop)
{
/* Remember where we are */
midgard_block *start_block = ctx->current_block;
/* Allocate a loop number, growing the current inner loop depth */
int loop_idx = ++ctx->current_loop_depth;
/* Get index from before the body so we can loop back later */
int start_idx = ctx->block_count;
/* Emit the body itself */
midgard_block *loop_block = emit_cf_list(ctx, &nloop->body);
/* Branch back to loop back */
struct midgard_instruction br_back = v_branch(false, false);
br_back.branch.target_block = start_idx;
emit_mir_instruction(ctx, br_back);
/* Mark down that branch in the graph. */
midgard_block_add_successor(start_block, loop_block);
midgard_block_add_successor(ctx->current_block, loop_block);
/* Find the index of the block about to follow us (note: we don't add
* one; blocks are 0-indexed so we get a fencepost problem) */
int break_block_idx = ctx->block_count;
/* Fix up the break statements we emitted to point to the right place,
* now that we can allocate a block number for them */
ctx->after_block = create_empty_block(ctx);
list_for_each_entry_from(struct midgard_block, block, start_block, &ctx->blocks, link) {
mir_foreach_instr_in_block(block, ins) {
if (ins->type != TAG_ALU_4) continue;
if (!ins->compact_branch) continue;
/* We found a branch -- check the type to see if we need to do anything */
if (ins->branch.target_type != TARGET_BREAK) continue;
/* It's a break! Check if it's our break */
if (ins->branch.target_break != loop_idx) continue;
/* Okay, cool, we're breaking out of this loop.
* Rewrite from a break to a goto */
ins->branch.target_type = TARGET_GOTO;
ins->branch.target_block = break_block_idx;
midgard_block_add_successor(block, ctx->after_block);
}
}
/* Now that we've finished emitting the loop, free up the depth again
* so we play nice with recursion amid nested loops */
--ctx->current_loop_depth;
/* Dump loop stats */
++ctx->loop_count;
}
static midgard_block *
emit_cf_list(struct compiler_context *ctx, struct exec_list *list)
{
midgard_block *start_block = NULL;
foreach_list_typed(nir_cf_node, node, node, list) {
switch (node->type) {
case nir_cf_node_block: {
midgard_block *block = emit_block(ctx, nir_cf_node_as_block(node));
if (!start_block)
start_block = block;
break;
}
case nir_cf_node_if:
emit_if(ctx, nir_cf_node_as_if(node));
break;
case nir_cf_node_loop:
emit_loop(ctx, nir_cf_node_as_loop(node));
break;
case nir_cf_node_function:
assert(0);
break;
}
}
return start_block;
}
/* Due to lookahead, we need to report the first tag executed in the command
* stream and in branch targets. An initial block might be empty, so iterate
* until we find one that 'works' */
static unsigned
midgard_get_first_tag_from_block(compiler_context *ctx, unsigned block_idx)
{
midgard_block *initial_block = mir_get_block(ctx, block_idx);
unsigned first_tag = 0;
mir_foreach_block_from(ctx, initial_block, v) {
if (v->quadword_count) {
midgard_bundle *initial_bundle =
util_dynarray_element(&v->bundles, midgard_bundle, 0);
first_tag = initial_bundle->tag;
break;
}
}
return first_tag;
}
static unsigned
pan_format_from_nir_base(nir_alu_type base)
{
switch (base) {
case nir_type_int:
return MALI_FORMAT_SINT;
case nir_type_uint:
case nir_type_bool:
return MALI_FORMAT_UINT;
case nir_type_float:
return MALI_CHANNEL_FLOAT;
default:
unreachable("Invalid base");
}
}
static unsigned
pan_format_from_nir_size(nir_alu_type base, unsigned size)
{
if (base == nir_type_float) {
switch (size) {
case 16: return MALI_FORMAT_SINT;
case 32: return MALI_FORMAT_UNORM;
default:
unreachable("Invalid float size for format");
}
} else {
switch (size) {
case 1:
case 8: return MALI_CHANNEL_8;
case 16: return MALI_CHANNEL_16;
case 32: return MALI_CHANNEL_32;
default:
unreachable("Invalid int size for format");
}
}
}
static enum mali_format
pan_format_from_glsl(const struct glsl_type *type)
{
enum glsl_base_type glsl_base = glsl_get_base_type(glsl_without_array(type));
nir_alu_type t = nir_get_nir_type_for_glsl_base_type(glsl_base);
unsigned base = nir_alu_type_get_base_type(t);
unsigned size = nir_alu_type_get_type_size(t);
return pan_format_from_nir_base(base) |
pan_format_from_nir_size(base, size) |
MALI_NR_CHANNELS(4);
}
int
midgard_compile_shader_nir(nir_shader *nir, midgard_program *program, bool is_blend, unsigned blend_rt, unsigned gpu_id, bool shaderdb)
{
struct util_dynarray *compiled = &program->compiled;
midgard_debug = debug_get_option_midgard_debug();
/* TODO: Bound against what? */
compiler_context *ctx = rzalloc(NULL, compiler_context);
ctx->nir = nir;
ctx->stage = nir->info.stage;
ctx->is_blend = is_blend;
ctx->alpha_ref = program->alpha_ref;
ctx->blend_rt = blend_rt;
ctx->quirks = midgard_get_quirks(gpu_id);
/* Start off with a safe cutoff, allowing usage of all 16 work
* registers. Later, we'll promote uniform reads to uniform registers
* if we determine it is beneficial to do so */
ctx->uniform_cutoff = 8;
/* Initialize at a global (not block) level hash tables */
ctx->ssa_constants = _mesa_hash_table_u64_create(NULL);
ctx->hash_to_temp = _mesa_hash_table_u64_create(NULL);
ctx->sysval_to_id = _mesa_hash_table_u64_create(NULL);
/* Record the varying mapping for the command stream's bookkeeping */
struct exec_list *varyings =
ctx->stage == MESA_SHADER_VERTEX ? &nir->outputs : &nir->inputs;
unsigned max_varying = 0;
nir_foreach_variable(var, varyings) {
unsigned loc = var->data.driver_location;
unsigned sz = glsl_type_size(var->type, FALSE);
for (int c = 0; c < sz; ++c) {
program->varyings[loc + c] = var->data.location + c;
program->varying_type[loc + c] = pan_format_from_glsl(var->type);
max_varying = MAX2(max_varying, loc + c);
}
}
/* Lower gl_Position pre-optimisation, but after lowering vars to ssa
* (so we don't accidentally duplicate the epilogue since mesa/st has
* messed with our I/O quite a bit already) */
NIR_PASS_V(nir, nir_lower_vars_to_ssa);
if (ctx->stage == MESA_SHADER_VERTEX) {
NIR_PASS_V(nir, nir_lower_viewport_transform);
NIR_PASS_V(nir, nir_lower_point_size, 1.0, 1024.0);
}
NIR_PASS_V(nir, nir_lower_var_copies);
NIR_PASS_V(nir, nir_lower_vars_to_ssa);
NIR_PASS_V(nir, nir_split_var_copies);
NIR_PASS_V(nir, nir_lower_var_copies);
NIR_PASS_V(nir, nir_lower_global_vars_to_local);
NIR_PASS_V(nir, nir_lower_var_copies);
NIR_PASS_V(nir, nir_lower_vars_to_ssa);
NIR_PASS_V(nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
/* Optimisation passes */
optimise_nir(nir, ctx->quirks);
if (midgard_debug & MIDGARD_DBG_SHADERS) {
nir_print_shader(nir, stdout);
}
/* Assign sysvals and counts, now that we're sure
* (post-optimisation) */
midgard_nir_assign_sysvals(ctx, nir);
program->uniform_count = nir->num_uniforms;
program->sysval_count = ctx->sysval_count;
memcpy(program->sysvals, ctx->sysvals, sizeof(ctx->sysvals[0]) * ctx->sysval_count);
nir_foreach_function(func, nir) {
if (!func->impl)
continue;
list_inithead(&ctx->blocks);
ctx->block_count = 0;
ctx->func = func;
emit_cf_list(ctx, &func->impl->body);
break; /* TODO: Multi-function shaders */
}
util_dynarray_init(compiled, NULL);
/* Per-block lowering before opts */
mir_foreach_block(ctx, block) {
inline_alu_constants(ctx, block);
midgard_opt_promote_fmov(ctx, block);
embedded_to_inline_constant(ctx, block);
}
/* MIR-level optimizations */
bool progress = false;
do {
progress = false;
mir_foreach_block(ctx, block) {
progress |= midgard_opt_pos_propagate(ctx, block);
progress |= midgard_opt_copy_prop(ctx, block);
progress |= midgard_opt_dead_code_eliminate(ctx, block);
progress |= midgard_opt_combine_projection(ctx, block);
progress |= midgard_opt_varying_projection(ctx, block);
progress |= midgard_opt_not_propagate(ctx, block);
progress |= midgard_opt_fuse_src_invert(ctx, block);
progress |= midgard_opt_fuse_dest_invert(ctx, block);
progress |= midgard_opt_csel_invert(ctx, block);
progress |= midgard_opt_drop_cmp_invert(ctx, block);
}
} while (progress);
mir_foreach_block(ctx, block) {
midgard_lower_invert(ctx, block);
midgard_lower_derivatives(ctx, block);
}
/* Nested control-flow can result in dead branches at the end of the
* block. This messes with our analysis and is just dead code, so cull
* them */
mir_foreach_block(ctx, block) {
midgard_opt_cull_dead_branch(ctx, block);
}
/* Ensure we were lowered */
mir_foreach_instr_global(ctx, ins) {
assert(!ins->invert);
}
/* Schedule! */
schedule_program(ctx);
mir_ra(ctx);
/* Now that all the bundles are scheduled and we can calculate block
* sizes, emit actual branch instructions rather than placeholders */
int br_block_idx = 0;
mir_foreach_block(ctx, block) {
util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
for (int c = 0; c < bundle->instruction_count; ++c) {
midgard_instruction *ins = bundle->instructions[c];
if (!midgard_is_branch_unit(ins->unit)) continue;
/* Parse some basic branch info */
bool is_compact = ins->unit == ALU_ENAB_BR_COMPACT;
bool is_conditional = ins->branch.conditional;
bool is_inverted = ins->branch.invert_conditional;
bool is_discard = ins->branch.target_type == TARGET_DISCARD;
bool is_writeout = ins->writeout;
/* Determine the block we're jumping to */
int target_number = ins->branch.target_block;
/* Report the destination tag */
int dest_tag = is_discard ? 0 : midgard_get_first_tag_from_block(ctx, target_number);
/* Count up the number of quadwords we're
* jumping over = number of quadwords until
* (br_block_idx, target_number) */
int quadword_offset = 0;
if (is_discard) {
/* Ignored */
} else if (target_number > br_block_idx) {
/* Jump forward */
for (int idx = br_block_idx + 1; idx < target_number; ++idx) {
midgard_block *blk = mir_get_block(ctx, idx);
assert(blk);
quadword_offset += blk->quadword_count;
}
} else {
/* Jump backwards */
for (int idx = br_block_idx; idx >= target_number; --idx) {
midgard_block *blk = mir_get_block(ctx, idx);
assert(blk);
quadword_offset -= blk->quadword_count;
}
}
/* Unconditional extended branches (far jumps)
* have issues, so we always use a conditional
* branch, setting the condition to always for
* unconditional. For compact unconditional
* branches, cond isn't used so it doesn't
* matter what we pick. */
midgard_condition cond =
!is_conditional ? midgard_condition_always :
is_inverted ? midgard_condition_false :
midgard_condition_true;
midgard_jmp_writeout_op op =
is_discard ? midgard_jmp_writeout_op_discard :
is_writeout ? midgard_jmp_writeout_op_writeout :
(is_compact && !is_conditional) ? midgard_jmp_writeout_op_branch_uncond :
midgard_jmp_writeout_op_branch_cond;
if (!is_compact) {
midgard_branch_extended branch =
midgard_create_branch_extended(
cond, op,
dest_tag,
quadword_offset);
memcpy(&ins->branch_extended, &branch, sizeof(branch));
} else if (is_conditional || is_discard) {
midgard_branch_cond branch = {
.op = op,
.dest_tag = dest_tag,
.offset = quadword_offset,
.cond = cond
};
assert(branch.offset == quadword_offset);
memcpy(&ins->br_compact, &branch, sizeof(branch));
} else {
assert(op == midgard_jmp_writeout_op_branch_uncond);
midgard_branch_uncond branch = {
.op = op,
.dest_tag = dest_tag,
.offset = quadword_offset,
.unknown = 1
};
assert(branch.offset == quadword_offset);
memcpy(&ins->br_compact, &branch, sizeof(branch));
}
}
}
++br_block_idx;
}
/* Emit flat binary from the instruction arrays. Iterate each block in
* sequence. Save instruction boundaries such that lookahead tags can
* be assigned easily */
/* Cache _all_ bundles in source order for lookahead across failed branches */
int bundle_count = 0;
mir_foreach_block(ctx, block) {
bundle_count += block->bundles.size / sizeof(midgard_bundle);
}
midgard_bundle **source_order_bundles = malloc(sizeof(midgard_bundle *) * bundle_count);
int bundle_idx = 0;
mir_foreach_block(ctx, block) {
util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
source_order_bundles[bundle_idx++] = bundle;
}
}
int current_bundle = 0;
/* Midgard prefetches instruction types, so during emission we
* need to lookahead. Unless this is the last instruction, in
* which we return 1. Or if this is the second to last and the
* last is an ALU, then it's also 1... */
mir_foreach_block(ctx, block) {
mir_foreach_bundle_in_block(block, bundle) {
int lookahead = 1;
if (current_bundle + 1 < bundle_count) {
uint8_t next = source_order_bundles[current_bundle + 1]->tag;
if (!(current_bundle + 2 < bundle_count) && IS_ALU(next)) {
lookahead = 1;
} else {
lookahead = next;
}
}
emit_binary_bundle(ctx, bundle, compiled, lookahead);
++current_bundle;
}
/* TODO: Free deeper */
//util_dynarray_fini(&block->instructions);
}
free(source_order_bundles);
/* Report the very first tag executed */
program->first_tag = midgard_get_first_tag_from_block(ctx, 0);
/* Deal with off-by-one related to the fencepost problem */
program->work_register_count = ctx->work_registers + 1;
program->uniform_cutoff = ctx->uniform_cutoff;
program->blend_patch_offset = ctx->blend_constant_offset;
program->tls_size = ctx->tls_size;
if (midgard_debug & MIDGARD_DBG_SHADERS)
disassemble_midgard(program->compiled.data, program->compiled.size, gpu_id, ctx->stage);
if (midgard_debug & MIDGARD_DBG_SHADERDB || shaderdb) {
unsigned nr_bundles = 0, nr_ins = 0;
/* Count instructions and bundles */
mir_foreach_block(ctx, block) {
nr_bundles += util_dynarray_num_elements(
&block->bundles, midgard_bundle);
mir_foreach_bundle_in_block(block, bun)
nr_ins += bun->instruction_count;
}
/* Calculate thread count. There are certain cutoffs by
* register count for thread count */
unsigned nr_registers = program->work_register_count;
unsigned nr_threads =
(nr_registers <= 4) ? 4 :
(nr_registers <= 8) ? 2 :
1;
/* Dump stats */
fprintf(stderr, "shader%d - %s shader: "
"%u inst, %u bundles, %u quadwords, "
"%u registers, %u threads, %u loops, "
"%u:%u spills:fills\n",
SHADER_DB_COUNT++,
gl_shader_stage_name(ctx->stage),
nr_ins, nr_bundles, ctx->quadword_count,
nr_registers, nr_threads,
ctx->loop_count,
ctx->spills, ctx->fills);
}
ralloc_free(ctx);
return 0;
}