blob: abced96675b7f9a6e4b5ee95ac1ea6ea4afadf81 [file] [log] [blame]
/*
* Copyright © 2016 Bas Nieuwenhuizen
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "ac_nir_to_llvm.h"
#include "ac_llvm_util.h"
#include "ac_binary.h"
#include "sid.h"
#include "nir/nir.h"
#include "../vulkan/radv_descriptor_set.h"
#include "util/bitscan.h"
#include <llvm-c/Transforms/Scalar.h>
enum radeon_llvm_calling_convention {
RADEON_LLVM_AMDGPU_VS = 87,
RADEON_LLVM_AMDGPU_GS = 88,
RADEON_LLVM_AMDGPU_PS = 89,
RADEON_LLVM_AMDGPU_CS = 90,
};
#define CONST_ADDR_SPACE 2
#define LOCAL_ADDR_SPACE 3
#define RADEON_LLVM_MAX_INPUTS (VARYING_SLOT_VAR31 + 1)
#define RADEON_LLVM_MAX_OUTPUTS (VARYING_SLOT_VAR31 + 1)
enum desc_type {
DESC_IMAGE,
DESC_FMASK,
DESC_SAMPLER,
DESC_BUFFER,
};
struct nir_to_llvm_context {
struct ac_llvm_context ac;
const struct ac_nir_compiler_options *options;
struct ac_shader_variant_info *shader_info;
LLVMContextRef context;
LLVMModuleRef module;
LLVMBuilderRef builder;
LLVMValueRef main_function;
struct hash_table *defs;
struct hash_table *phis;
LLVMValueRef descriptor_sets[AC_UD_MAX_SETS];
LLVMValueRef push_constants;
LLVMValueRef num_work_groups;
LLVMValueRef workgroup_ids;
LLVMValueRef local_invocation_ids;
LLVMValueRef tg_size;
LLVMValueRef vertex_buffers;
LLVMValueRef base_vertex;
LLVMValueRef start_instance;
LLVMValueRef vertex_id;
LLVMValueRef rel_auto_id;
LLVMValueRef vs_prim_id;
LLVMValueRef instance_id;
LLVMValueRef prim_mask;
LLVMValueRef sample_positions;
LLVMValueRef persp_sample, persp_center, persp_centroid;
LLVMValueRef linear_sample, linear_center, linear_centroid;
LLVMValueRef front_face;
LLVMValueRef ancillary;
LLVMValueRef frag_pos[4];
LLVMBasicBlockRef continue_block;
LLVMBasicBlockRef break_block;
LLVMTypeRef i1;
LLVMTypeRef i8;
LLVMTypeRef i16;
LLVMTypeRef i32;
LLVMTypeRef i64;
LLVMTypeRef v2i32;
LLVMTypeRef v3i32;
LLVMTypeRef v4i32;
LLVMTypeRef v8i32;
LLVMTypeRef f32;
LLVMTypeRef f16;
LLVMTypeRef v2f32;
LLVMTypeRef v4f32;
LLVMTypeRef v16i8;
LLVMTypeRef voidt;
LLVMValueRef i32zero;
LLVMValueRef i32one;
LLVMValueRef f32zero;
LLVMValueRef f32one;
LLVMValueRef v4f32empty;
unsigned range_md_kind;
unsigned uniform_md_kind;
unsigned invariant_load_md_kind;
LLVMValueRef empty_md;
gl_shader_stage stage;
LLVMValueRef lds;
LLVMValueRef inputs[RADEON_LLVM_MAX_INPUTS * 4];
LLVMValueRef outputs[RADEON_LLVM_MAX_OUTPUTS * 4];
LLVMValueRef shared_memory;
uint64_t input_mask;
uint64_t output_mask;
int num_locals;
LLVMValueRef *locals;
bool has_ddxy;
unsigned num_clips;
unsigned num_culls;
bool has_ds_bpermute;
};
struct ac_tex_info {
LLVMValueRef args[12];
int arg_count;
LLVMTypeRef dst_type;
bool has_offset;
};
static LLVMValueRef get_sampler_desc(struct nir_to_llvm_context *ctx,
nir_deref_var *deref,
enum desc_type desc_type);
static unsigned radeon_llvm_reg_index_soa(unsigned index, unsigned chan)
{
return (index * 4) + chan;
}
static unsigned llvm_get_type_size(LLVMTypeRef type)
{
LLVMTypeKind kind = LLVMGetTypeKind(type);
switch (kind) {
case LLVMIntegerTypeKind:
return LLVMGetIntTypeWidth(type) / 8;
case LLVMFloatTypeKind:
return 4;
case LLVMPointerTypeKind:
return 8;
case LLVMVectorTypeKind:
return LLVMGetVectorSize(type) *
llvm_get_type_size(LLVMGetElementType(type));
default:
assert(0);
return 0;
}
}
static void set_llvm_calling_convention(LLVMValueRef func,
gl_shader_stage stage)
{
enum radeon_llvm_calling_convention calling_conv;
switch (stage) {
case MESA_SHADER_VERTEX:
case MESA_SHADER_TESS_CTRL:
case MESA_SHADER_TESS_EVAL:
calling_conv = RADEON_LLVM_AMDGPU_VS;
break;
case MESA_SHADER_GEOMETRY:
calling_conv = RADEON_LLVM_AMDGPU_GS;
break;
case MESA_SHADER_FRAGMENT:
calling_conv = RADEON_LLVM_AMDGPU_PS;
break;
case MESA_SHADER_COMPUTE:
calling_conv = RADEON_LLVM_AMDGPU_CS;
break;
default:
unreachable("Unhandle shader type");
}
LLVMSetFunctionCallConv(func, calling_conv);
}
static LLVMValueRef
create_llvm_function(LLVMContextRef ctx, LLVMModuleRef module,
LLVMBuilderRef builder, LLVMTypeRef *return_types,
unsigned num_return_elems, LLVMTypeRef *param_types,
unsigned param_count, unsigned array_params_mask,
unsigned sgpr_params, bool unsafe_math)
{
LLVMTypeRef main_function_type, ret_type;
LLVMBasicBlockRef main_function_body;
if (num_return_elems)
ret_type = LLVMStructTypeInContext(ctx, return_types,
num_return_elems, true);
else
ret_type = LLVMVoidTypeInContext(ctx);
/* Setup the function */
main_function_type =
LLVMFunctionType(ret_type, param_types, param_count, 0);
LLVMValueRef main_function =
LLVMAddFunction(module, "main", main_function_type);
main_function_body =
LLVMAppendBasicBlockInContext(ctx, main_function, "main_body");
LLVMPositionBuilderAtEnd(builder, main_function_body);
LLVMSetFunctionCallConv(main_function, RADEON_LLVM_AMDGPU_CS);
for (unsigned i = 0; i < sgpr_params; ++i) {
if (array_params_mask & (1 << i)) {
LLVMValueRef P = LLVMGetParam(main_function, i);
ac_add_function_attr(main_function, i + 1, AC_FUNC_ATTR_BYVAL);
ac_add_attr_dereferenceable(P, UINT64_MAX);
}
else {
ac_add_function_attr(main_function, i + 1, AC_FUNC_ATTR_INREG);
}
}
if (unsafe_math) {
/* These were copied from some LLVM test. */
LLVMAddTargetDependentFunctionAttr(main_function,
"less-precise-fpmad",
"true");
LLVMAddTargetDependentFunctionAttr(main_function,
"no-infs-fp-math",
"true");
LLVMAddTargetDependentFunctionAttr(main_function,
"no-nans-fp-math",
"true");
LLVMAddTargetDependentFunctionAttr(main_function,
"unsafe-fp-math",
"true");
}
return main_function;
}
static LLVMTypeRef const_array(LLVMTypeRef elem_type, int num_elements)
{
return LLVMPointerType(LLVMArrayType(elem_type, num_elements),
CONST_ADDR_SPACE);
}
static LLVMValueRef get_shared_memory_ptr(struct nir_to_llvm_context *ctx,
int idx,
LLVMTypeRef type)
{
LLVMValueRef offset;
LLVMValueRef ptr;
int addr_space;
offset = LLVMConstInt(ctx->i32, idx, false);
ptr = ctx->shared_memory;
ptr = LLVMBuildGEP(ctx->builder, ptr, &offset, 1, "");
addr_space = LLVMGetPointerAddressSpace(LLVMTypeOf(ptr));
ptr = LLVMBuildBitCast(ctx->builder, ptr, LLVMPointerType(type, addr_space), "");
return ptr;
}
static LLVMValueRef to_integer(struct nir_to_llvm_context *ctx, LLVMValueRef v)
{
LLVMTypeRef type = LLVMTypeOf(v);
if (type == ctx->f32) {
return LLVMBuildBitCast(ctx->builder, v, ctx->i32, "");
} else if (LLVMGetTypeKind(type) == LLVMVectorTypeKind) {
LLVMTypeRef elem_type = LLVMGetElementType(type);
if (elem_type == ctx->f32) {
LLVMTypeRef nt = LLVMVectorType(ctx->i32, LLVMGetVectorSize(type));
return LLVMBuildBitCast(ctx->builder, v, nt, "");
}
}
return v;
}
static LLVMValueRef to_float(struct nir_to_llvm_context *ctx, LLVMValueRef v)
{
LLVMTypeRef type = LLVMTypeOf(v);
if (type == ctx->i32) {
return LLVMBuildBitCast(ctx->builder, v, ctx->f32, "");
} else if (LLVMGetTypeKind(type) == LLVMVectorTypeKind) {
LLVMTypeRef elem_type = LLVMGetElementType(type);
if (elem_type == ctx->i32) {
LLVMTypeRef nt = LLVMVectorType(ctx->f32, LLVMGetVectorSize(type));
return LLVMBuildBitCast(ctx->builder, v, nt, "");
}
}
return v;
}
static LLVMValueRef unpack_param(struct nir_to_llvm_context *ctx,
LLVMValueRef param, unsigned rshift,
unsigned bitwidth)
{
LLVMValueRef value = param;
if (rshift)
value = LLVMBuildLShr(ctx->builder, value,
LLVMConstInt(ctx->i32, rshift, false), "");
if (rshift + bitwidth < 32) {
unsigned mask = (1 << bitwidth) - 1;
value = LLVMBuildAnd(ctx->builder, value,
LLVMConstInt(ctx->i32, mask, false), "");
}
return value;
}
static LLVMValueRef build_gep0(struct nir_to_llvm_context *ctx,
LLVMValueRef base_ptr, LLVMValueRef index)
{
LLVMValueRef indices[2] = {
ctx->i32zero,
index,
};
return LLVMBuildGEP(ctx->builder, base_ptr,
indices, 2, "");
}
static LLVMValueRef build_indexed_load(struct nir_to_llvm_context *ctx,
LLVMValueRef base_ptr, LLVMValueRef index,
bool uniform)
{
LLVMValueRef pointer;
pointer = build_gep0(ctx, base_ptr, index);
if (uniform)
LLVMSetMetadata(pointer, ctx->uniform_md_kind, ctx->empty_md);
return LLVMBuildLoad(ctx->builder, pointer, "");
}
static LLVMValueRef build_indexed_load_const(struct nir_to_llvm_context *ctx,
LLVMValueRef base_ptr, LLVMValueRef index)
{
LLVMValueRef result = build_indexed_load(ctx, base_ptr, index, true);
LLVMSetMetadata(result, ctx->invariant_load_md_kind, ctx->empty_md);
return result;
}
static void set_userdata_location(struct ac_userdata_info *ud_info, uint8_t sgpr_idx, uint8_t num_sgprs)
{
ud_info->sgpr_idx = sgpr_idx;
ud_info->num_sgprs = num_sgprs;
ud_info->indirect = false;
ud_info->indirect_offset = 0;
}
static void set_userdata_location_shader(struct nir_to_llvm_context *ctx,
int idx, uint8_t sgpr_idx, uint8_t num_sgprs)
{
set_userdata_location(&ctx->shader_info->user_sgprs_locs.shader_data[idx], sgpr_idx, num_sgprs);
}
#if 0
static void set_userdata_location_indirect(struct ac_userdata_info *ud_info, uint8_t sgpr_idx, uint8_t num_sgprs,
uint32_t indirect_offset)
{
ud_info->sgpr_idx = sgpr_idx;
ud_info->num_sgprs = num_sgprs;
ud_info->indirect = true;
ud_info->indirect_offset = indirect_offset;
}
#endif
static void create_function(struct nir_to_llvm_context *ctx)
{
LLVMTypeRef arg_types[23];
unsigned arg_idx = 0;
unsigned array_params_mask = 0;
unsigned sgpr_count = 0, user_sgpr_count;
unsigned i;
unsigned num_sets = ctx->options->layout ? ctx->options->layout->num_sets : 0;
unsigned user_sgpr_idx;
bool need_push_constants;
need_push_constants = true;
if (!ctx->options->layout)
need_push_constants = false;
else if (!ctx->options->layout->push_constant_size &&
!ctx->options->layout->dynamic_offset_count)
need_push_constants = false;
/* 1 for each descriptor set */
for (unsigned i = 0; i < num_sets; ++i) {
if (ctx->options->layout->set[i].layout->shader_stages & (1 << ctx->stage)) {
array_params_mask |= (1 << arg_idx);
arg_types[arg_idx++] = const_array(ctx->i8, 1024 * 1024);
}
}
if (need_push_constants) {
/* 1 for push constants and dynamic descriptors */
array_params_mask |= (1 << arg_idx);
arg_types[arg_idx++] = const_array(ctx->i8, 1024 * 1024);
}
switch (ctx->stage) {
case MESA_SHADER_COMPUTE:
arg_types[arg_idx++] = LLVMVectorType(ctx->i32, 3); /* grid size */
user_sgpr_count = arg_idx;
arg_types[arg_idx++] = LLVMVectorType(ctx->i32, 3);
arg_types[arg_idx++] = ctx->i32;
sgpr_count = arg_idx;
arg_types[arg_idx++] = LLVMVectorType(ctx->i32, 3);
break;
case MESA_SHADER_VERTEX:
arg_types[arg_idx++] = const_array(ctx->v16i8, 16); /* vertex buffers */
arg_types[arg_idx++] = ctx->i32; // base vertex
arg_types[arg_idx++] = ctx->i32; // start instance
user_sgpr_count = sgpr_count = arg_idx;
arg_types[arg_idx++] = ctx->i32; // vertex id
arg_types[arg_idx++] = ctx->i32; // rel auto id
arg_types[arg_idx++] = ctx->i32; // vs prim id
arg_types[arg_idx++] = ctx->i32; // instance id
break;
case MESA_SHADER_FRAGMENT:
arg_types[arg_idx++] = const_array(ctx->f32, 32); /* sample positions */
user_sgpr_count = arg_idx;
arg_types[arg_idx++] = ctx->i32; /* prim mask */
sgpr_count = arg_idx;
arg_types[arg_idx++] = ctx->v2i32; /* persp sample */
arg_types[arg_idx++] = ctx->v2i32; /* persp center */
arg_types[arg_idx++] = ctx->v2i32; /* persp centroid */
arg_types[arg_idx++] = ctx->v3i32; /* persp pull model */
arg_types[arg_idx++] = ctx->v2i32; /* linear sample */
arg_types[arg_idx++] = ctx->v2i32; /* linear center */
arg_types[arg_idx++] = ctx->v2i32; /* linear centroid */
arg_types[arg_idx++] = ctx->f32; /* line stipple tex */
arg_types[arg_idx++] = ctx->f32; /* pos x float */
arg_types[arg_idx++] = ctx->f32; /* pos y float */
arg_types[arg_idx++] = ctx->f32; /* pos z float */
arg_types[arg_idx++] = ctx->f32; /* pos w float */
arg_types[arg_idx++] = ctx->i32; /* front face */
arg_types[arg_idx++] = ctx->i32; /* ancillary */
arg_types[arg_idx++] = ctx->f32; /* sample coverage */
arg_types[arg_idx++] = ctx->i32; /* fixed pt */
break;
default:
unreachable("Shader stage not implemented");
}
ctx->main_function = create_llvm_function(
ctx->context, ctx->module, ctx->builder, NULL, 0, arg_types,
arg_idx, array_params_mask, sgpr_count, ctx->options->unsafe_math);
set_llvm_calling_convention(ctx->main_function, ctx->stage);
ctx->shader_info->num_input_sgprs = 0;
ctx->shader_info->num_input_vgprs = 0;
for (i = 0; i < user_sgpr_count; i++)
ctx->shader_info->num_user_sgprs += llvm_get_type_size(arg_types[i]) / 4;
ctx->shader_info->num_input_sgprs = ctx->shader_info->num_user_sgprs;
for (; i < sgpr_count; i++)
ctx->shader_info->num_input_sgprs += llvm_get_type_size(arg_types[i]) / 4;
if (ctx->stage != MESA_SHADER_FRAGMENT)
for (; i < arg_idx; ++i)
ctx->shader_info->num_input_vgprs += llvm_get_type_size(arg_types[i]) / 4;
arg_idx = 0;
user_sgpr_idx = 0;
for (unsigned i = 0; i < num_sets; ++i) {
if (ctx->options->layout->set[i].layout->shader_stages & (1 << ctx->stage)) {
set_userdata_location(&ctx->shader_info->user_sgprs_locs.descriptor_sets[i], user_sgpr_idx, 2);
user_sgpr_idx += 2;
ctx->descriptor_sets[i] =
LLVMGetParam(ctx->main_function, arg_idx++);
} else
ctx->descriptor_sets[i] = NULL;
}
if (need_push_constants) {
ctx->push_constants = LLVMGetParam(ctx->main_function, arg_idx++);
set_userdata_location_shader(ctx, AC_UD_PUSH_CONSTANTS, user_sgpr_idx, 2);
user_sgpr_idx += 2;
}
switch (ctx->stage) {
case MESA_SHADER_COMPUTE:
set_userdata_location_shader(ctx, AC_UD_CS_GRID_SIZE, user_sgpr_idx, 3);
user_sgpr_idx += 3;
ctx->num_work_groups =
LLVMGetParam(ctx->main_function, arg_idx++);
ctx->workgroup_ids =
LLVMGetParam(ctx->main_function, arg_idx++);
ctx->tg_size =
LLVMGetParam(ctx->main_function, arg_idx++);
ctx->local_invocation_ids =
LLVMGetParam(ctx->main_function, arg_idx++);
break;
case MESA_SHADER_VERTEX:
set_userdata_location_shader(ctx, AC_UD_VS_VERTEX_BUFFERS, user_sgpr_idx, 2);
user_sgpr_idx += 2;
ctx->vertex_buffers = LLVMGetParam(ctx->main_function, arg_idx++);
set_userdata_location_shader(ctx, AC_UD_VS_BASE_VERTEX_START_INSTANCE, user_sgpr_idx, 2);
user_sgpr_idx += 2;
ctx->base_vertex = LLVMGetParam(ctx->main_function, arg_idx++);
ctx->start_instance = LLVMGetParam(ctx->main_function, arg_idx++);
ctx->vertex_id = LLVMGetParam(ctx->main_function, arg_idx++);
ctx->rel_auto_id = LLVMGetParam(ctx->main_function, arg_idx++);
ctx->vs_prim_id = LLVMGetParam(ctx->main_function, arg_idx++);
ctx->instance_id = LLVMGetParam(ctx->main_function, arg_idx++);
break;
case MESA_SHADER_FRAGMENT:
set_userdata_location_shader(ctx, AC_UD_PS_SAMPLE_POS, user_sgpr_idx, 2);
user_sgpr_idx += 2;
ctx->sample_positions = LLVMGetParam(ctx->main_function, arg_idx++);
ctx->prim_mask = LLVMGetParam(ctx->main_function, arg_idx++);
ctx->persp_sample = LLVMGetParam(ctx->main_function, arg_idx++);
ctx->persp_center = LLVMGetParam(ctx->main_function, arg_idx++);
ctx->persp_centroid = LLVMGetParam(ctx->main_function, arg_idx++);
arg_idx++;
ctx->linear_sample = LLVMGetParam(ctx->main_function, arg_idx++);
ctx->linear_center = LLVMGetParam(ctx->main_function, arg_idx++);
ctx->linear_centroid = LLVMGetParam(ctx->main_function, arg_idx++);
arg_idx++; /* line stipple */
ctx->frag_pos[0] = LLVMGetParam(ctx->main_function, arg_idx++);
ctx->frag_pos[1] = LLVMGetParam(ctx->main_function, arg_idx++);
ctx->frag_pos[2] = LLVMGetParam(ctx->main_function, arg_idx++);
ctx->frag_pos[3] = LLVMGetParam(ctx->main_function, arg_idx++);
ctx->front_face = LLVMGetParam(ctx->main_function, arg_idx++);
ctx->ancillary = LLVMGetParam(ctx->main_function, arg_idx++);
break;
default:
unreachable("Shader stage not implemented");
}
}
static void setup_types(struct nir_to_llvm_context *ctx)
{
LLVMValueRef args[4];
ctx->voidt = LLVMVoidTypeInContext(ctx->context);
ctx->i1 = LLVMIntTypeInContext(ctx->context, 1);
ctx->i8 = LLVMIntTypeInContext(ctx->context, 8);
ctx->i16 = LLVMIntTypeInContext(ctx->context, 16);
ctx->i32 = LLVMIntTypeInContext(ctx->context, 32);
ctx->i64 = LLVMIntTypeInContext(ctx->context, 64);
ctx->v2i32 = LLVMVectorType(ctx->i32, 2);
ctx->v3i32 = LLVMVectorType(ctx->i32, 3);
ctx->v4i32 = LLVMVectorType(ctx->i32, 4);
ctx->v8i32 = LLVMVectorType(ctx->i32, 8);
ctx->f32 = LLVMFloatTypeInContext(ctx->context);
ctx->f16 = LLVMHalfTypeInContext(ctx->context);
ctx->v2f32 = LLVMVectorType(ctx->f32, 2);
ctx->v4f32 = LLVMVectorType(ctx->f32, 4);
ctx->v16i8 = LLVMVectorType(ctx->i8, 16);
ctx->i32zero = LLVMConstInt(ctx->i32, 0, false);
ctx->i32one = LLVMConstInt(ctx->i32, 1, false);
ctx->f32zero = LLVMConstReal(ctx->f32, 0.0);
ctx->f32one = LLVMConstReal(ctx->f32, 1.0);
args[0] = ctx->f32zero;
args[1] = ctx->f32zero;
args[2] = ctx->f32zero;
args[3] = ctx->f32one;
ctx->v4f32empty = LLVMConstVector(args, 4);
ctx->range_md_kind = LLVMGetMDKindIDInContext(ctx->context,
"range", 5);
ctx->invariant_load_md_kind = LLVMGetMDKindIDInContext(ctx->context,
"invariant.load", 14);
ctx->uniform_md_kind =
LLVMGetMDKindIDInContext(ctx->context, "amdgpu.uniform", 14);
ctx->empty_md = LLVMMDNodeInContext(ctx->context, NULL, 0);
args[0] = LLVMConstReal(ctx->f32, 2.5);
}
static int get_llvm_num_components(LLVMValueRef value)
{
LLVMTypeRef type = LLVMTypeOf(value);
unsigned num_components = LLVMGetTypeKind(type) == LLVMVectorTypeKind
? LLVMGetVectorSize(type)
: 1;
return num_components;
}
static LLVMValueRef llvm_extract_elem(struct nir_to_llvm_context *ctx,
LLVMValueRef value,
int index)
{
int count = get_llvm_num_components(value);
assert(index < count);
if (count == 1)
return value;
return LLVMBuildExtractElement(ctx->builder, value,
LLVMConstInt(ctx->i32, index, false), "");
}
static LLVMValueRef trim_vector(struct nir_to_llvm_context *ctx,
LLVMValueRef value, unsigned count)
{
unsigned num_components = get_llvm_num_components(value);
if (count == num_components)
return value;
LLVMValueRef masks[] = {
LLVMConstInt(ctx->i32, 0, false), LLVMConstInt(ctx->i32, 1, false),
LLVMConstInt(ctx->i32, 2, false), LLVMConstInt(ctx->i32, 3, false)};
if (count == 1)
return LLVMBuildExtractElement(ctx->builder, value, masks[0],
"");
LLVMValueRef swizzle = LLVMConstVector(masks, count);
return LLVMBuildShuffleVector(ctx->builder, value, value, swizzle, "");
}
static void
build_store_values_extended(struct nir_to_llvm_context *ctx,
LLVMValueRef *values,
unsigned value_count,
unsigned value_stride,
LLVMValueRef vec)
{
LLVMBuilderRef builder = ctx->builder;
unsigned i;
if (value_count == 1) {
LLVMBuildStore(builder, vec, values[0]);
return;
}
for (i = 0; i < value_count; i++) {
LLVMValueRef ptr = values[i * value_stride];
LLVMValueRef index = LLVMConstInt(ctx->i32, i, false);
LLVMValueRef value = LLVMBuildExtractElement(builder, vec, index, "");
LLVMBuildStore(builder, value, ptr);
}
}
static LLVMTypeRef get_def_type(struct nir_to_llvm_context *ctx,
nir_ssa_def *def)
{
LLVMTypeRef type = LLVMIntTypeInContext(ctx->context, def->bit_size);
if (def->num_components > 1) {
type = LLVMVectorType(type, def->num_components);
}
return type;
}
static LLVMValueRef get_src(struct nir_to_llvm_context *ctx, nir_src src)
{
assert(src.is_ssa);
struct hash_entry *entry = _mesa_hash_table_search(ctx->defs, src.ssa);
return (LLVMValueRef)entry->data;
}
static LLVMBasicBlockRef get_block(struct nir_to_llvm_context *ctx,
struct nir_block *b)
{
struct hash_entry *entry = _mesa_hash_table_search(ctx->defs, b);
return (LLVMBasicBlockRef)entry->data;
}
static LLVMValueRef get_alu_src(struct nir_to_llvm_context *ctx,
nir_alu_src src,
unsigned num_components)
{
LLVMValueRef value = get_src(ctx, src.src);
bool need_swizzle = false;
assert(value);
LLVMTypeRef type = LLVMTypeOf(value);
unsigned src_components = LLVMGetTypeKind(type) == LLVMVectorTypeKind
? LLVMGetVectorSize(type)
: 1;
for (unsigned i = 0; i < num_components; ++i) {
assert(src.swizzle[i] < src_components);
if (src.swizzle[i] != i)
need_swizzle = true;
}
if (need_swizzle || num_components != src_components) {
LLVMValueRef masks[] = {
LLVMConstInt(ctx->i32, src.swizzle[0], false),
LLVMConstInt(ctx->i32, src.swizzle[1], false),
LLVMConstInt(ctx->i32, src.swizzle[2], false),
LLVMConstInt(ctx->i32, src.swizzle[3], false)};
if (src_components > 1 && num_components == 1) {
value = LLVMBuildExtractElement(ctx->builder, value,
masks[0], "");
} else if (src_components == 1 && num_components > 1) {
LLVMValueRef values[] = {value, value, value, value};
value = ac_build_gather_values(&ctx->ac, values, num_components);
} else {
LLVMValueRef swizzle = LLVMConstVector(masks, num_components);
value = LLVMBuildShuffleVector(ctx->builder, value, value,
swizzle, "");
}
}
assert(!src.negate);
assert(!src.abs);
return value;
}
static LLVMValueRef emit_int_cmp(struct nir_to_llvm_context *ctx,
LLVMIntPredicate pred, LLVMValueRef src0,
LLVMValueRef src1)
{
LLVMValueRef result = LLVMBuildICmp(ctx->builder, pred, src0, src1, "");
return LLVMBuildSelect(ctx->builder, result,
LLVMConstInt(ctx->i32, 0xFFFFFFFF, false),
LLVMConstInt(ctx->i32, 0, false), "");
}
static LLVMValueRef emit_float_cmp(struct nir_to_llvm_context *ctx,
LLVMRealPredicate pred, LLVMValueRef src0,
LLVMValueRef src1)
{
LLVMValueRef result;
src0 = to_float(ctx, src0);
src1 = to_float(ctx, src1);
result = LLVMBuildFCmp(ctx->builder, pred, src0, src1, "");
return LLVMBuildSelect(ctx->builder, result,
LLVMConstInt(ctx->i32, 0xFFFFFFFF, false),
LLVMConstInt(ctx->i32, 0, false), "");
}
static LLVMValueRef emit_intrin_1f_param(struct nir_to_llvm_context *ctx,
const char *intrin,
LLVMValueRef src0)
{
LLVMValueRef params[] = {
to_float(ctx, src0),
};
return ac_emit_llvm_intrinsic(&ctx->ac, intrin, ctx->f32, params, 1, AC_FUNC_ATTR_READNONE);
}
static LLVMValueRef emit_intrin_2f_param(struct nir_to_llvm_context *ctx,
const char *intrin,
LLVMValueRef src0, LLVMValueRef src1)
{
LLVMValueRef params[] = {
to_float(ctx, src0),
to_float(ctx, src1),
};
return ac_emit_llvm_intrinsic(&ctx->ac, intrin, ctx->f32, params, 2, AC_FUNC_ATTR_READNONE);
}
static LLVMValueRef emit_intrin_3f_param(struct nir_to_llvm_context *ctx,
const char *intrin,
LLVMValueRef src0, LLVMValueRef src1, LLVMValueRef src2)
{
LLVMValueRef params[] = {
to_float(ctx, src0),
to_float(ctx, src1),
to_float(ctx, src2),
};
return ac_emit_llvm_intrinsic(&ctx->ac, intrin, ctx->f32, params, 3, AC_FUNC_ATTR_READNONE);
}
static LLVMValueRef emit_bcsel(struct nir_to_llvm_context *ctx,
LLVMValueRef src0, LLVMValueRef src1, LLVMValueRef src2)
{
LLVMValueRef v = LLVMBuildICmp(ctx->builder, LLVMIntNE, src0,
ctx->i32zero, "");
return LLVMBuildSelect(ctx->builder, v, src1, src2, "");
}
static LLVMValueRef emit_find_lsb(struct nir_to_llvm_context *ctx,
LLVMValueRef src0)
{
LLVMValueRef params[2] = {
src0,
/* The value of 1 means that ffs(x=0) = undef, so LLVM won't
* add special code to check for x=0. The reason is that
* the LLVM behavior for x=0 is different from what we
* need here.
*
* The hardware already implements the correct behavior.
*/
LLVMConstInt(ctx->i32, 1, false),
};
return ac_emit_llvm_intrinsic(&ctx->ac, "llvm.cttz.i32", ctx->i32, params, 2, AC_FUNC_ATTR_READNONE);
}
static LLVMValueRef emit_ifind_msb(struct nir_to_llvm_context *ctx,
LLVMValueRef src0)
{
LLVMValueRef msb = ac_emit_llvm_intrinsic(&ctx->ac, "llvm.AMDGPU.flbit.i32",
ctx->i32, &src0, 1,
AC_FUNC_ATTR_READNONE);
/* The HW returns the last bit index from MSB, but NIR wants
* the index from LSB. Invert it by doing "31 - msb". */
msb = LLVMBuildSub(ctx->builder, LLVMConstInt(ctx->i32, 31, false),
msb, "");
LLVMValueRef all_ones = LLVMConstInt(ctx->i32, -1, true);
LLVMValueRef cond = LLVMBuildOr(ctx->builder,
LLVMBuildICmp(ctx->builder, LLVMIntEQ,
src0, ctx->i32zero, ""),
LLVMBuildICmp(ctx->builder, LLVMIntEQ,
src0, all_ones, ""), "");
return LLVMBuildSelect(ctx->builder, cond, all_ones, msb, "");
}
static LLVMValueRef emit_ufind_msb(struct nir_to_llvm_context *ctx,
LLVMValueRef src0)
{
LLVMValueRef args[2] = {
src0,
ctx->i32one,
};
LLVMValueRef msb = ac_emit_llvm_intrinsic(&ctx->ac, "llvm.ctlz.i32",
ctx->i32, args, ARRAY_SIZE(args),
AC_FUNC_ATTR_READNONE);
/* The HW returns the last bit index from MSB, but NIR wants
* the index from LSB. Invert it by doing "31 - msb". */
msb = LLVMBuildSub(ctx->builder, LLVMConstInt(ctx->i32, 31, false),
msb, "");
return LLVMBuildSelect(ctx->builder,
LLVMBuildICmp(ctx->builder, LLVMIntEQ, src0,
ctx->i32zero, ""),
LLVMConstInt(ctx->i32, -1, true), msb, "");
}
static LLVMValueRef emit_minmax_int(struct nir_to_llvm_context *ctx,
LLVMIntPredicate pred,
LLVMValueRef src0, LLVMValueRef src1)
{
return LLVMBuildSelect(ctx->builder,
LLVMBuildICmp(ctx->builder, pred, src0, src1, ""),
src0,
src1, "");
}
static LLVMValueRef emit_iabs(struct nir_to_llvm_context *ctx,
LLVMValueRef src0)
{
return emit_minmax_int(ctx, LLVMIntSGT, src0,
LLVMBuildNeg(ctx->builder, src0, ""));
}
static LLVMValueRef emit_fsign(struct nir_to_llvm_context *ctx,
LLVMValueRef src0)
{
LLVMValueRef cmp, val;
cmp = LLVMBuildFCmp(ctx->builder, LLVMRealOGT, src0, ctx->f32zero, "");
val = LLVMBuildSelect(ctx->builder, cmp, ctx->f32one, src0, "");
cmp = LLVMBuildFCmp(ctx->builder, LLVMRealOGE, val, ctx->f32zero, "");
val = LLVMBuildSelect(ctx->builder, cmp, val, LLVMConstReal(ctx->f32, -1.0), "");
return val;
}
static LLVMValueRef emit_isign(struct nir_to_llvm_context *ctx,
LLVMValueRef src0)
{
LLVMValueRef cmp, val;
cmp = LLVMBuildICmp(ctx->builder, LLVMIntSGT, src0, ctx->i32zero, "");
val = LLVMBuildSelect(ctx->builder, cmp, ctx->i32one, src0, "");
cmp = LLVMBuildICmp(ctx->builder, LLVMIntSGE, val, ctx->i32zero, "");
val = LLVMBuildSelect(ctx->builder, cmp, val, LLVMConstInt(ctx->i32, -1, true), "");
return val;
}
static LLVMValueRef emit_ffract(struct nir_to_llvm_context *ctx,
LLVMValueRef src0)
{
const char *intr = "llvm.floor.f32";
LLVMValueRef fsrc0 = to_float(ctx, src0);
LLVMValueRef params[] = {
fsrc0,
};
LLVMValueRef floor = ac_emit_llvm_intrinsic(&ctx->ac, intr,
ctx->f32, params, 1,
AC_FUNC_ATTR_READNONE);
return LLVMBuildFSub(ctx->builder, fsrc0, floor, "");
}
static LLVMValueRef emit_uint_carry(struct nir_to_llvm_context *ctx,
const char *intrin,
LLVMValueRef src0, LLVMValueRef src1)
{
LLVMTypeRef ret_type;
LLVMTypeRef types[] = { ctx->i32, ctx->i1 };
LLVMValueRef res;
LLVMValueRef params[] = { src0, src1 };
ret_type = LLVMStructTypeInContext(ctx->context, types,
2, true);
res = ac_emit_llvm_intrinsic(&ctx->ac, intrin, ret_type,
params, 2, AC_FUNC_ATTR_READNONE);
res = LLVMBuildExtractValue(ctx->builder, res, 1, "");
res = LLVMBuildZExt(ctx->builder, res, ctx->i32, "");
return res;
}
static LLVMValueRef emit_b2f(struct nir_to_llvm_context *ctx,
LLVMValueRef src0)
{
return LLVMBuildAnd(ctx->builder, src0, LLVMBuildBitCast(ctx->builder, LLVMConstReal(ctx->f32, 1.0), ctx->i32, ""), "");
}
static LLVMValueRef emit_umul_high(struct nir_to_llvm_context *ctx,
LLVMValueRef src0, LLVMValueRef src1)
{
LLVMValueRef dst64, result;
src0 = LLVMBuildZExt(ctx->builder, src0, ctx->i64, "");
src1 = LLVMBuildZExt(ctx->builder, src1, ctx->i64, "");
dst64 = LLVMBuildMul(ctx->builder, src0, src1, "");
dst64 = LLVMBuildLShr(ctx->builder, dst64, LLVMConstInt(ctx->i64, 32, false), "");
result = LLVMBuildTrunc(ctx->builder, dst64, ctx->i32, "");
return result;
}
static LLVMValueRef emit_imul_high(struct nir_to_llvm_context *ctx,
LLVMValueRef src0, LLVMValueRef src1)
{
LLVMValueRef dst64, result;
src0 = LLVMBuildSExt(ctx->builder, src0, ctx->i64, "");
src1 = LLVMBuildSExt(ctx->builder, src1, ctx->i64, "");
dst64 = LLVMBuildMul(ctx->builder, src0, src1, "");
dst64 = LLVMBuildAShr(ctx->builder, dst64, LLVMConstInt(ctx->i64, 32, false), "");
result = LLVMBuildTrunc(ctx->builder, dst64, ctx->i32, "");
return result;
}
static LLVMValueRef emit_bitfield_extract(struct nir_to_llvm_context *ctx,
const char *intrin,
LLVMValueRef srcs[3])
{
LLVMValueRef result;
LLVMValueRef icond = LLVMBuildICmp(ctx->builder, LLVMIntEQ, srcs[2], LLVMConstInt(ctx->i32, 32, false), "");
result = ac_emit_llvm_intrinsic(&ctx->ac, intrin, ctx->i32, srcs, 3, AC_FUNC_ATTR_READNONE);
result = LLVMBuildSelect(ctx->builder, icond, srcs[0], result, "");
return result;
}
static LLVMValueRef emit_bitfield_insert(struct nir_to_llvm_context *ctx,
LLVMValueRef src0, LLVMValueRef src1,
LLVMValueRef src2, LLVMValueRef src3)
{
LLVMValueRef bfi_args[3], result;
bfi_args[0] = LLVMBuildShl(ctx->builder,
LLVMBuildSub(ctx->builder,
LLVMBuildShl(ctx->builder,
ctx->i32one,
src3, ""),
ctx->i32one, ""),
src2, "");
bfi_args[1] = LLVMBuildShl(ctx->builder, src1, src2, "");
bfi_args[2] = src0;
LLVMValueRef icond = LLVMBuildICmp(ctx->builder, LLVMIntEQ, src3, LLVMConstInt(ctx->i32, 32, false), "");
/* Calculate:
* (arg0 & arg1) | (~arg0 & arg2) = arg2 ^ (arg0 & (arg1 ^ arg2)
* Use the right-hand side, which the LLVM backend can convert to V_BFI.
*/
result = LLVMBuildXor(ctx->builder, bfi_args[2],
LLVMBuildAnd(ctx->builder, bfi_args[0],
LLVMBuildXor(ctx->builder, bfi_args[1], bfi_args[2], ""), ""), "");
result = LLVMBuildSelect(ctx->builder, icond, src1, result, "");
return result;
}
static LLVMValueRef emit_pack_half_2x16(struct nir_to_llvm_context *ctx,
LLVMValueRef src0)
{
LLVMValueRef const16 = LLVMConstInt(ctx->i32, 16, false);
int i;
LLVMValueRef comp[2];
src0 = to_float(ctx, src0);
comp[0] = LLVMBuildExtractElement(ctx->builder, src0, ctx->i32zero, "");
comp[1] = LLVMBuildExtractElement(ctx->builder, src0, ctx->i32one, "");
for (i = 0; i < 2; i++) {
comp[i] = LLVMBuildFPTrunc(ctx->builder, comp[i], ctx->f16, "");
comp[i] = LLVMBuildBitCast(ctx->builder, comp[i], ctx->i16, "");
comp[i] = LLVMBuildZExt(ctx->builder, comp[i], ctx->i32, "");
}
comp[1] = LLVMBuildShl(ctx->builder, comp[1], const16, "");
comp[0] = LLVMBuildOr(ctx->builder, comp[0], comp[1], "");
return comp[0];
}
static LLVMValueRef emit_unpack_half_2x16(struct nir_to_llvm_context *ctx,
LLVMValueRef src0)
{
LLVMValueRef const16 = LLVMConstInt(ctx->i32, 16, false);
LLVMValueRef temps[2], result, val;
int i;
for (i = 0; i < 2; i++) {
val = i == 1 ? LLVMBuildLShr(ctx->builder, src0, const16, "") : src0;
val = LLVMBuildTrunc(ctx->builder, val, ctx->i16, "");
val = LLVMBuildBitCast(ctx->builder, val, ctx->f16, "");
temps[i] = LLVMBuildFPExt(ctx->builder, val, ctx->f32, "");
}
result = LLVMBuildInsertElement(ctx->builder, LLVMGetUndef(ctx->v2f32), temps[0],
ctx->i32zero, "");
result = LLVMBuildInsertElement(ctx->builder, result, temps[1],
ctx->i32one, "");
return result;
}
/**
* Set range metadata on an instruction. This can only be used on load and
* call instructions. If you know an instruction can only produce the values
* 0, 1, 2, you would do set_range_metadata(value, 0, 3);
* \p lo is the minimum value inclusive.
* \p hi is the maximum value exclusive.
*/
static void set_range_metadata(struct nir_to_llvm_context *ctx,
LLVMValueRef value, unsigned lo, unsigned hi)
{
LLVMValueRef range_md, md_args[2];
LLVMTypeRef type = LLVMTypeOf(value);
LLVMContextRef context = LLVMGetTypeContext(type);
md_args[0] = LLVMConstInt(type, lo, false);
md_args[1] = LLVMConstInt(type, hi, false);
range_md = LLVMMDNodeInContext(context, md_args, 2);
LLVMSetMetadata(value, ctx->range_md_kind, range_md);
}
static LLVMValueRef get_thread_id(struct nir_to_llvm_context *ctx)
{
LLVMValueRef tid;
LLVMValueRef tid_args[2];
tid_args[0] = LLVMConstInt(ctx->i32, 0xffffffff, false);
tid_args[1] = ctx->i32zero;
tid_args[1] = ac_emit_llvm_intrinsic(&ctx->ac,
"llvm.amdgcn.mbcnt.lo", ctx->i32,
tid_args, 2, AC_FUNC_ATTR_READNONE);
tid = ac_emit_llvm_intrinsic(&ctx->ac,
"llvm.amdgcn.mbcnt.hi", ctx->i32,
tid_args, 2, AC_FUNC_ATTR_READNONE);
set_range_metadata(ctx, tid, 0, 64);
return tid;
}
/*
* SI implements derivatives using the local data store (LDS)
* All writes to the LDS happen in all executing threads at
* the same time. TID is the Thread ID for the current
* thread and is a value between 0 and 63, representing
* the thread's position in the wavefront.
*
* For the pixel shader threads are grouped into quads of four pixels.
* The TIDs of the pixels of a quad are:
*
* +------+------+
* |4n + 0|4n + 1|
* +------+------+
* |4n + 2|4n + 3|
* +------+------+
*
* So, masking the TID with 0xfffffffc yields the TID of the top left pixel
* of the quad, masking with 0xfffffffd yields the TID of the top pixel of
* the current pixel's column, and masking with 0xfffffffe yields the TID
* of the left pixel of the current pixel's row.
*
* Adding 1 yields the TID of the pixel to the right of the left pixel, and
* adding 2 yields the TID of the pixel below the top pixel.
*/
/* masks for thread ID. */
#define TID_MASK_TOP_LEFT 0xfffffffc
#define TID_MASK_TOP 0xfffffffd
#define TID_MASK_LEFT 0xfffffffe
static LLVMValueRef emit_ddxy(struct nir_to_llvm_context *ctx,
nir_op op,
LLVMValueRef src0)
{
LLVMValueRef tl, trbl, result;
LLVMValueRef tl_tid, trbl_tid;
LLVMValueRef args[2];
LLVMValueRef thread_id;
unsigned mask;
int idx;
ctx->has_ddxy = true;
if (!ctx->lds && !ctx->has_ds_bpermute)
ctx->lds = LLVMAddGlobalInAddressSpace(ctx->module,
LLVMArrayType(ctx->i32, 64),
"ddxy_lds", LOCAL_ADDR_SPACE);
thread_id = get_thread_id(ctx);
if (op == nir_op_fddx_fine || op == nir_op_fddx)
mask = TID_MASK_LEFT;
else if (op == nir_op_fddy_fine || op == nir_op_fddy)
mask = TID_MASK_TOP;
else
mask = TID_MASK_TOP_LEFT;
tl_tid = LLVMBuildAnd(ctx->builder, thread_id,
LLVMConstInt(ctx->i32, mask, false), "");
/* for DDX we want to next X pixel, DDY next Y pixel. */
if (op == nir_op_fddx_fine ||
op == nir_op_fddx_coarse ||
op == nir_op_fddx)
idx = 1;
else
idx = 2;
trbl_tid = LLVMBuildAdd(ctx->builder, tl_tid,
LLVMConstInt(ctx->i32, idx, false), "");
if (ctx->has_ds_bpermute) {
args[0] = LLVMBuildMul(ctx->builder, tl_tid,
LLVMConstInt(ctx->i32, 4, false), "");
args[1] = src0;
tl = ac_emit_llvm_intrinsic(&ctx->ac, "llvm.amdgcn.ds.bpermute",
ctx->i32, args, 2,
AC_FUNC_ATTR_READNONE);
args[0] = LLVMBuildMul(ctx->builder, trbl_tid,
LLVMConstInt(ctx->i32, 4, false), "");
trbl = ac_emit_llvm_intrinsic(&ctx->ac, "llvm.amdgcn.ds.bpermute",
ctx->i32, args, 2,
AC_FUNC_ATTR_READNONE);
} else {
LLVMValueRef store_ptr, load_ptr0, load_ptr1;
store_ptr = build_gep0(ctx, ctx->lds, thread_id);
load_ptr0 = build_gep0(ctx, ctx->lds, tl_tid);
load_ptr1 = build_gep0(ctx, ctx->lds, trbl_tid);
LLVMBuildStore(ctx->builder, src0, store_ptr);
tl = LLVMBuildLoad(ctx->builder, load_ptr0, "");
trbl = LLVMBuildLoad(ctx->builder, load_ptr1, "");
}
tl = LLVMBuildBitCast(ctx->builder, tl, ctx->f32, "");
trbl = LLVMBuildBitCast(ctx->builder, trbl, ctx->f32, "");
result = LLVMBuildFSub(ctx->builder, trbl, tl, "");
return result;
}
/*
* this takes an I,J coordinate pair,
* and works out the X and Y derivatives.
* it returns DDX(I), DDX(J), DDY(I), DDY(J).
*/
static LLVMValueRef emit_ddxy_interp(
struct nir_to_llvm_context *ctx,
LLVMValueRef interp_ij)
{
LLVMValueRef result[4], a;
unsigned i;
for (i = 0; i < 2; i++) {
a = LLVMBuildExtractElement(ctx->builder, interp_ij,
LLVMConstInt(ctx->i32, i, false), "");
result[i] = emit_ddxy(ctx, nir_op_fddx, a);
result[2+i] = emit_ddxy(ctx, nir_op_fddy, a);
}
return ac_build_gather_values(&ctx->ac, result, 4);
}
static void visit_alu(struct nir_to_llvm_context *ctx, nir_alu_instr *instr)
{
LLVMValueRef src[4], result = NULL;
unsigned num_components = instr->dest.dest.ssa.num_components;
unsigned src_components;
assert(nir_op_infos[instr->op].num_inputs <= ARRAY_SIZE(src));
switch (instr->op) {
case nir_op_vec2:
case nir_op_vec3:
case nir_op_vec4:
src_components = 1;
break;
case nir_op_pack_half_2x16:
src_components = 2;
break;
case nir_op_unpack_half_2x16:
src_components = 1;
break;
default:
src_components = num_components;
break;
}
for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++)
src[i] = get_alu_src(ctx, instr->src[i], src_components);
switch (instr->op) {
case nir_op_fmov:
case nir_op_imov:
result = src[0];
break;
case nir_op_fneg:
src[0] = to_float(ctx, src[0]);
result = LLVMBuildFNeg(ctx->builder, src[0], "");
break;
case nir_op_ineg:
result = LLVMBuildNeg(ctx->builder, src[0], "");
break;
case nir_op_inot:
result = LLVMBuildNot(ctx->builder, src[0], "");
break;
case nir_op_iadd:
result = LLVMBuildAdd(ctx->builder, src[0], src[1], "");
break;
case nir_op_fadd:
src[0] = to_float(ctx, src[0]);
src[1] = to_float(ctx, src[1]);
result = LLVMBuildFAdd(ctx->builder, src[0], src[1], "");
break;
case nir_op_fsub:
src[0] = to_float(ctx, src[0]);
src[1] = to_float(ctx, src[1]);
result = LLVMBuildFSub(ctx->builder, src[0], src[1], "");
break;
case nir_op_isub:
result = LLVMBuildSub(ctx->builder, src[0], src[1], "");
break;
case nir_op_imul:
result = LLVMBuildMul(ctx->builder, src[0], src[1], "");
break;
case nir_op_imod:
result = LLVMBuildSRem(ctx->builder, src[0], src[1], "");
break;
case nir_op_umod:
result = LLVMBuildURem(ctx->builder, src[0], src[1], "");
break;
case nir_op_fmod:
src[0] = to_float(ctx, src[0]);
src[1] = to_float(ctx, src[1]);
result = ac_emit_fdiv(&ctx->ac, src[0], src[1]);
result = emit_intrin_1f_param(ctx, "llvm.floor.f32", result);
result = LLVMBuildFMul(ctx->builder, src[1] , result, "");
result = LLVMBuildFSub(ctx->builder, src[0], result, "");
break;
case nir_op_frem:
src[0] = to_float(ctx, src[0]);
src[1] = to_float(ctx, src[1]);
result = LLVMBuildFRem(ctx->builder, src[0], src[1], "");
break;
case nir_op_irem:
result = LLVMBuildSRem(ctx->builder, src[0], src[1], "");
break;
case nir_op_idiv:
result = LLVMBuildSDiv(ctx->builder, src[0], src[1], "");
break;
case nir_op_udiv:
result = LLVMBuildUDiv(ctx->builder, src[0], src[1], "");
break;
case nir_op_fmul:
src[0] = to_float(ctx, src[0]);
src[1] = to_float(ctx, src[1]);
result = LLVMBuildFMul(ctx->builder, src[0], src[1], "");
break;
case nir_op_fdiv:
src[0] = to_float(ctx, src[0]);
src[1] = to_float(ctx, src[1]);
result = ac_emit_fdiv(&ctx->ac, src[0], src[1]);
break;
case nir_op_frcp:
src[0] = to_float(ctx, src[0]);
result = ac_emit_fdiv(&ctx->ac, ctx->f32one, src[0]);
break;
case nir_op_iand:
result = LLVMBuildAnd(ctx->builder, src[0], src[1], "");
break;
case nir_op_ior:
result = LLVMBuildOr(ctx->builder, src[0], src[1], "");
break;
case nir_op_ixor:
result = LLVMBuildXor(ctx->builder, src[0], src[1], "");
break;
case nir_op_ishl:
result = LLVMBuildShl(ctx->builder, src[0], src[1], "");
break;
case nir_op_ishr:
result = LLVMBuildAShr(ctx->builder, src[0], src[1], "");
break;
case nir_op_ushr:
result = LLVMBuildLShr(ctx->builder, src[0], src[1], "");
break;
case nir_op_ilt:
result = emit_int_cmp(ctx, LLVMIntSLT, src[0], src[1]);
break;
case nir_op_ine:
result = emit_int_cmp(ctx, LLVMIntNE, src[0], src[1]);
break;
case nir_op_ieq:
result = emit_int_cmp(ctx, LLVMIntEQ, src[0], src[1]);
break;
case nir_op_ige:
result = emit_int_cmp(ctx, LLVMIntSGE, src[0], src[1]);
break;
case nir_op_ult:
result = emit_int_cmp(ctx, LLVMIntULT, src[0], src[1]);
break;
case nir_op_uge:
result = emit_int_cmp(ctx, LLVMIntUGE, src[0], src[1]);
break;
case nir_op_feq:
result = emit_float_cmp(ctx, LLVMRealUEQ, src[0], src[1]);
break;
case nir_op_fne:
result = emit_float_cmp(ctx, LLVMRealUNE, src[0], src[1]);
break;
case nir_op_flt:
result = emit_float_cmp(ctx, LLVMRealULT, src[0], src[1]);
break;
case nir_op_fge:
result = emit_float_cmp(ctx, LLVMRealUGE, src[0], src[1]);
break;
case nir_op_fabs:
result = emit_intrin_1f_param(ctx, "llvm.fabs.f32", src[0]);
break;
case nir_op_iabs:
result = emit_iabs(ctx, src[0]);
break;
case nir_op_imax:
result = emit_minmax_int(ctx, LLVMIntSGT, src[0], src[1]);
break;
case nir_op_imin:
result = emit_minmax_int(ctx, LLVMIntSLT, src[0], src[1]);
break;
case nir_op_umax:
result = emit_minmax_int(ctx, LLVMIntUGT, src[0], src[1]);
break;
case nir_op_umin:
result = emit_minmax_int(ctx, LLVMIntULT, src[0], src[1]);
break;
case nir_op_isign:
result = emit_isign(ctx, src[0]);
break;
case nir_op_fsign:
src[0] = to_float(ctx, src[0]);
result = emit_fsign(ctx, src[0]);
break;
case nir_op_ffloor:
result = emit_intrin_1f_param(ctx, "llvm.floor.f32", src[0]);
break;
case nir_op_ftrunc:
result = emit_intrin_1f_param(ctx, "llvm.trunc.f32", src[0]);
break;
case nir_op_fceil:
result = emit_intrin_1f_param(ctx, "llvm.ceil.f32", src[0]);
break;
case nir_op_fround_even:
result = emit_intrin_1f_param(ctx, "llvm.rint.f32", src[0]);
break;
case nir_op_ffract:
result = emit_ffract(ctx, src[0]);
break;
case nir_op_fsin:
result = emit_intrin_1f_param(ctx, "llvm.sin.f32", src[0]);
break;
case nir_op_fcos:
result = emit_intrin_1f_param(ctx, "llvm.cos.f32", src[0]);
break;
case nir_op_fsqrt:
result = emit_intrin_1f_param(ctx, "llvm.sqrt.f32", src[0]);
break;
case nir_op_fexp2:
result = emit_intrin_1f_param(ctx, "llvm.exp2.f32", src[0]);
break;
case nir_op_flog2:
result = emit_intrin_1f_param(ctx, "llvm.log2.f32", src[0]);
break;
case nir_op_frsq:
result = emit_intrin_1f_param(ctx, "llvm.sqrt.f32", src[0]);
result = ac_emit_fdiv(&ctx->ac, ctx->f32one, result);
break;
case nir_op_fpow:
result = emit_intrin_2f_param(ctx, "llvm.pow.f32", src[0], src[1]);
break;
case nir_op_fmax:
result = emit_intrin_2f_param(ctx, "llvm.maxnum.f32", src[0], src[1]);
break;
case nir_op_fmin:
result = emit_intrin_2f_param(ctx, "llvm.minnum.f32", src[0], src[1]);
break;
case nir_op_ffma:
result = emit_intrin_3f_param(ctx, "llvm.fma.f32", src[0], src[1], src[2]);
break;
case nir_op_ibitfield_extract:
result = emit_bitfield_extract(ctx, "llvm.AMDGPU.bfe.i32", src);
break;
case nir_op_ubitfield_extract:
result = emit_bitfield_extract(ctx, "llvm.AMDGPU.bfe.u32", src);
break;
case nir_op_bitfield_insert:
result = emit_bitfield_insert(ctx, src[0], src[1], src[2], src[3]);
break;
case nir_op_bitfield_reverse:
result = ac_emit_llvm_intrinsic(&ctx->ac, "llvm.bitreverse.i32", ctx->i32, src, 1, AC_FUNC_ATTR_READNONE);
break;
case nir_op_bit_count:
result = ac_emit_llvm_intrinsic(&ctx->ac, "llvm.ctpop.i32", ctx->i32, src, 1, AC_FUNC_ATTR_READNONE);
break;
case nir_op_vec2:
case nir_op_vec3:
case nir_op_vec4:
for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++)
src[i] = to_integer(ctx, src[i]);
result = ac_build_gather_values(&ctx->ac, src, num_components);
break;
case nir_op_f2i:
src[0] = to_float(ctx, src[0]);
result = LLVMBuildFPToSI(ctx->builder, src[0], ctx->i32, "");
break;
case nir_op_f2u:
src[0] = to_float(ctx, src[0]);
result = LLVMBuildFPToUI(ctx->builder, src[0], ctx->i32, "");
break;
case nir_op_i2f:
result = LLVMBuildSIToFP(ctx->builder, src[0], ctx->f32, "");
break;
case nir_op_u2f:
result = LLVMBuildUIToFP(ctx->builder, src[0], ctx->f32, "");
break;
case nir_op_bcsel:
result = emit_bcsel(ctx, src[0], src[1], src[2]);
break;
case nir_op_find_lsb:
result = emit_find_lsb(ctx, src[0]);
break;
case nir_op_ufind_msb:
result = emit_ufind_msb(ctx, src[0]);
break;
case nir_op_ifind_msb:
result = emit_ifind_msb(ctx, src[0]);
break;
case nir_op_uadd_carry:
result = emit_uint_carry(ctx, "llvm.uadd.with.overflow.i32", src[0], src[1]);
break;
case nir_op_usub_borrow:
result = emit_uint_carry(ctx, "llvm.usub.with.overflow.i32", src[0], src[1]);
break;
case nir_op_b2f:
result = emit_b2f(ctx, src[0]);
break;
case nir_op_fquantize2f16:
src[0] = to_float(ctx, src[0]);
result = LLVMBuildFPTrunc(ctx->builder, src[0], ctx->f16, "");
/* need to convert back up to f32 */
result = LLVMBuildFPExt(ctx->builder, result, ctx->f32, "");
break;
case nir_op_umul_high:
result = emit_umul_high(ctx, src[0], src[1]);
break;
case nir_op_imul_high:
result = emit_imul_high(ctx, src[0], src[1]);
break;
case nir_op_pack_half_2x16:
result = emit_pack_half_2x16(ctx, src[0]);
break;
case nir_op_unpack_half_2x16:
result = emit_unpack_half_2x16(ctx, src[0]);
break;
case nir_op_fddx:
case nir_op_fddy:
case nir_op_fddx_fine:
case nir_op_fddy_fine:
case nir_op_fddx_coarse:
case nir_op_fddy_coarse:
result = emit_ddxy(ctx, instr->op, src[0]);
break;
default:
fprintf(stderr, "Unknown NIR alu instr: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
abort();
}
if (result) {
assert(instr->dest.dest.is_ssa);
result = to_integer(ctx, result);
_mesa_hash_table_insert(ctx->defs, &instr->dest.dest.ssa,
result);
}
}
static void visit_load_const(struct nir_to_llvm_context *ctx,
nir_load_const_instr *instr)
{
LLVMValueRef values[4], value = NULL;
LLVMTypeRef element_type =
LLVMIntTypeInContext(ctx->context, instr->def.bit_size);
for (unsigned i = 0; i < instr->def.num_components; ++i) {
switch (instr->def.bit_size) {
case 32:
values[i] = LLVMConstInt(element_type,
instr->value.u32[i], false);
break;
case 64:
values[i] = LLVMConstInt(element_type,
instr->value.u64[i], false);
break;
default:
fprintf(stderr,
"unsupported nir load_const bit_size: %d\n",
instr->def.bit_size);
abort();
}
}
if (instr->def.num_components > 1) {
value = LLVMConstVector(values, instr->def.num_components);
} else
value = values[0];
_mesa_hash_table_insert(ctx->defs, &instr->def, value);
}
static LLVMValueRef cast_ptr(struct nir_to_llvm_context *ctx, LLVMValueRef ptr,
LLVMTypeRef type)
{
int addr_space = LLVMGetPointerAddressSpace(LLVMTypeOf(ptr));
return LLVMBuildBitCast(ctx->builder, ptr,
LLVMPointerType(type, addr_space), "");
}
static LLVMValueRef
get_buffer_size(struct nir_to_llvm_context *ctx, LLVMValueRef descriptor, bool in_elements)
{
LLVMValueRef size =
LLVMBuildExtractElement(ctx->builder, descriptor,
LLVMConstInt(ctx->i32, 2, false), "");
/* VI only */
if (ctx->options->chip_class >= VI && in_elements) {
/* On VI, the descriptor contains the size in bytes,
* but TXQ must return the size in elements.
* The stride is always non-zero for resources using TXQ.
*/
LLVMValueRef stride =
LLVMBuildExtractElement(ctx->builder, descriptor,
LLVMConstInt(ctx->i32, 1, false), "");
stride = LLVMBuildLShr(ctx->builder, stride,
LLVMConstInt(ctx->i32, 16, false), "");
stride = LLVMBuildAnd(ctx->builder, stride,
LLVMConstInt(ctx->i32, 0x3fff, false), "");
size = LLVMBuildUDiv(ctx->builder, size, stride, "");
}
return size;
}
/**
* Given the i32 or vNi32 \p type, generate the textual name (e.g. for use with
* intrinsic names).
*/
static void build_int_type_name(
LLVMTypeRef type,
char *buf, unsigned bufsize)
{
assert(bufsize >= 6);
if (LLVMGetTypeKind(type) == LLVMVectorTypeKind)
snprintf(buf, bufsize, "v%ui32",
LLVMGetVectorSize(type));
else
strcpy(buf, "i32");
}
static LLVMValueRef radv_lower_gather4_integer(struct nir_to_llvm_context *ctx,
struct ac_tex_info *tinfo,
nir_tex_instr *instr,
const char *intr_name,
unsigned coord_vgpr_index)
{
LLVMValueRef coord = tinfo->args[0];
LLVMValueRef half_texel[2];
int c;
//TODO Rect
{
LLVMValueRef txq_args[10];
int txq_arg_count = 0;
LLVMValueRef size;
bool da = instr->is_array || instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE;
txq_args[txq_arg_count++] = LLVMConstInt(ctx->i32, 0, false);
txq_args[txq_arg_count++] = tinfo->args[1];
txq_args[txq_arg_count++] = LLVMConstInt(ctx->i32, 0xf, 0); /* dmask */
txq_args[txq_arg_count++] = LLVMConstInt(ctx->i32, 0, 0); /* unorm */
txq_args[txq_arg_count++] = LLVMConstInt(ctx->i32, 0, 0); /* r128 */
txq_args[txq_arg_count++] = LLVMConstInt(ctx->i32, da ? 1 : 0, 0);
txq_args[txq_arg_count++] = LLVMConstInt(ctx->i32, 0, 0); /* glc */
txq_args[txq_arg_count++] = LLVMConstInt(ctx->i32, 0, 0); /* slc */
txq_args[txq_arg_count++] = LLVMConstInt(ctx->i32, 0, 0); /* tfe */
txq_args[txq_arg_count++] = LLVMConstInt(ctx->i32, 0, 0); /* lwe */
size = ac_emit_llvm_intrinsic(&ctx->ac, "llvm.SI.getresinfo.i32", ctx->v4i32,
txq_args, txq_arg_count,
AC_FUNC_ATTR_READNONE);
for (c = 0; c < 2; c++) {
half_texel[c] = LLVMBuildExtractElement(ctx->builder, size,
LLVMConstInt(ctx->i32, c, false), "");
half_texel[c] = LLVMBuildUIToFP(ctx->builder, half_texel[c], ctx->f32, "");
half_texel[c] = ac_emit_fdiv(&ctx->ac, ctx->f32one, half_texel[c]);
half_texel[c] = LLVMBuildFMul(ctx->builder, half_texel[c],
LLVMConstReal(ctx->f32, -0.5), "");
}
}
for (c = 0; c < 2; c++) {
LLVMValueRef tmp;
LLVMValueRef index = LLVMConstInt(ctx->i32, coord_vgpr_index + c, 0);
tmp = LLVMBuildExtractElement(ctx->builder, coord, index, "");
tmp = LLVMBuildBitCast(ctx->builder, tmp, ctx->f32, "");
tmp = LLVMBuildFAdd(ctx->builder, tmp, half_texel[c], "");
tmp = LLVMBuildBitCast(ctx->builder, tmp, ctx->i32, "");
coord = LLVMBuildInsertElement(ctx->builder, coord, tmp, index, "");
}
tinfo->args[0] = coord;
return ac_emit_llvm_intrinsic(&ctx->ac, intr_name, tinfo->dst_type, tinfo->args, tinfo->arg_count,
AC_FUNC_ATTR_READNONE | AC_FUNC_ATTR_NOUNWIND);
}
static LLVMValueRef build_tex_intrinsic(struct nir_to_llvm_context *ctx,
nir_tex_instr *instr,
struct ac_tex_info *tinfo)
{
const char *name = "llvm.SI.image.sample";
const char *infix = "";
char intr_name[127];
char type[64];
bool is_shadow = instr->is_shadow;
bool has_offset = tinfo->has_offset;
switch (instr->op) {
case nir_texop_txf:
case nir_texop_txf_ms:
case nir_texop_samples_identical:
name = instr->sampler_dim == GLSL_SAMPLER_DIM_MS ? "llvm.SI.image.load" :
instr->sampler_dim == GLSL_SAMPLER_DIM_BUF ? "llvm.SI.vs.load.input" :
"llvm.SI.image.load.mip";
is_shadow = false;
has_offset = false;
break;
case nir_texop_txb:
infix = ".b";
break;
case nir_texop_txl:
infix = ".l";
break;
case nir_texop_txs:
name = "llvm.SI.getresinfo";
break;
case nir_texop_query_levels:
name = "llvm.SI.getresinfo";
break;
case nir_texop_tex:
if (ctx->stage != MESA_SHADER_FRAGMENT)
infix = ".lz";
break;
case nir_texop_txd:
infix = ".d";
break;
case nir_texop_tg4:
name = "llvm.SI.gather4";
infix = ".lz";
break;
case nir_texop_lod:
name = "llvm.SI.getlod";
is_shadow = false;
has_offset = false;
break;
default:
break;
}
build_int_type_name(LLVMTypeOf(tinfo->args[0]), type, sizeof(type));
sprintf(intr_name, "%s%s%s%s.%s", name, is_shadow ? ".c" : "", infix,
has_offset ? ".o" : "", type);
if (instr->op == nir_texop_tg4) {
enum glsl_base_type stype = glsl_get_sampler_result_type(instr->texture->var->type);
if (stype == GLSL_TYPE_UINT || stype == GLSL_TYPE_INT) {
return radv_lower_gather4_integer(ctx, tinfo, instr, intr_name,
(int)has_offset + (int)is_shadow);
}
}
return ac_emit_llvm_intrinsic(&ctx->ac, intr_name, tinfo->dst_type, tinfo->args, tinfo->arg_count,
AC_FUNC_ATTR_READNONE | AC_FUNC_ATTR_NOUNWIND);
}
static LLVMValueRef visit_vulkan_resource_index(struct nir_to_llvm_context *ctx,
nir_intrinsic_instr *instr)
{
LLVMValueRef index = get_src(ctx, instr->src[0]);
unsigned desc_set = nir_intrinsic_desc_set(instr);
unsigned binding = nir_intrinsic_binding(instr);
LLVMValueRef desc_ptr = ctx->descriptor_sets[desc_set];
struct radv_descriptor_set_layout *layout = ctx->options->layout->set[desc_set].layout;
unsigned base_offset = layout->binding[binding].offset;
LLVMValueRef offset, stride;
if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
layout->binding[binding].type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
desc_ptr = ctx->push_constants;
base_offset = ctx->options->layout->push_constant_size;
base_offset += 16 * layout->binding[binding].dynamic_offset_offset;
stride = LLVMConstInt(ctx->i32, 16, false);
} else
stride = LLVMConstInt(ctx->i32, layout->binding[binding].size, false);
offset = LLVMConstInt(ctx->i32, base_offset, false);
index = LLVMBuildMul(ctx->builder, index, stride, "");
offset = LLVMBuildAdd(ctx->builder, offset, index, "");
desc_ptr = build_gep0(ctx, desc_ptr, offset);
desc_ptr = cast_ptr(ctx, desc_ptr, ctx->v4i32);
LLVMSetMetadata(desc_ptr, ctx->uniform_md_kind, ctx->empty_md);
return LLVMBuildLoad(ctx->builder, desc_ptr, "");
}
static LLVMValueRef visit_load_push_constant(struct nir_to_llvm_context *ctx,
nir_intrinsic_instr *instr)
{
LLVMValueRef ptr, addr;
addr = LLVMConstInt(ctx->i32, nir_intrinsic_base(instr), 0);
addr = LLVMBuildAdd(ctx->builder, addr, get_src(ctx, instr->src[0]), "");
ptr = build_gep0(ctx, ctx->push_constants, addr);
ptr = cast_ptr(ctx, ptr, get_def_type(ctx, &instr->dest.ssa));
return LLVMBuildLoad(ctx->builder, ptr, "");
}
static LLVMValueRef visit_get_buffer_size(struct nir_to_llvm_context *ctx,
nir_intrinsic_instr *instr)
{
LLVMValueRef desc = get_src(ctx, instr->src[0]);
return get_buffer_size(ctx, desc, false);
}
static void visit_store_ssbo(struct nir_to_llvm_context *ctx,
nir_intrinsic_instr *instr)
{
const char *store_name;
LLVMTypeRef data_type = ctx->f32;
unsigned writemask = nir_intrinsic_write_mask(instr);
LLVMValueRef base_data, base_offset;
LLVMValueRef params[6];
if (ctx->stage == MESA_SHADER_FRAGMENT)
ctx->shader_info->fs.writes_memory = true;
params[1] = get_src(ctx, instr->src[1]);
params[2] = LLVMConstInt(ctx->i32, 0, false); /* vindex */
params[4] = LLVMConstInt(ctx->i1, 0, false); /* glc */
params[5] = LLVMConstInt(ctx->i1, 0, false); /* slc */
if (instr->num_components > 1)
data_type = LLVMVectorType(ctx->f32, instr->num_components);
base_data = to_float(ctx, get_src(ctx, instr->src[0]));
base_data = trim_vector(ctx, base_data, instr->num_components);
base_data = LLVMBuildBitCast(ctx->builder, base_data,
data_type, "");
base_offset = get_src(ctx, instr->src[2]); /* voffset */
while (writemask) {
int start, count;
LLVMValueRef data;
LLVMValueRef offset;
LLVMValueRef tmp;
u_bit_scan_consecutive_range(&writemask, &start, &count);
/* Due to an LLVM limitation, split 3-element writes
* into a 2-element and a 1-element write. */
if (count == 3) {
writemask |= 1 << (start + 2);
count = 2;
}
if (count == 4) {
store_name = "llvm.amdgcn.buffer.store.v4f32";
data = base_data;
} else if (count == 2) {
tmp = LLVMBuildExtractElement(ctx->builder,
base_data, LLVMConstInt(ctx->i32, start, false), "");
data = LLVMBuildInsertElement(ctx->builder, LLVMGetUndef(ctx->v2f32), tmp,
ctx->i32zero, "");
tmp = LLVMBuildExtractElement(ctx->builder,
base_data, LLVMConstInt(ctx->i32, start + 1, false), "");
data = LLVMBuildInsertElement(ctx->builder, data, tmp,
ctx->i32one, "");
store_name = "llvm.amdgcn.buffer.store.v2f32";
} else {
assert(count == 1);
if (get_llvm_num_components(base_data) > 1)
data = LLVMBuildExtractElement(ctx->builder, base_data,
LLVMConstInt(ctx->i32, start, false), "");
else
data = base_data;
store_name = "llvm.amdgcn.buffer.store.f32";
}
offset = base_offset;
if (start != 0) {
offset = LLVMBuildAdd(ctx->builder, offset, LLVMConstInt(ctx->i32, start * 4, false), "");
}
params[0] = data;
params[3] = offset;
ac_emit_llvm_intrinsic(&ctx->ac, store_name,
ctx->voidt, params, 6, 0);
}
}
static LLVMValueRef visit_atomic_ssbo(struct nir_to_llvm_context *ctx,
nir_intrinsic_instr *instr)
{
const char *name;
LLVMValueRef params[6];
int arg_count = 0;
if (ctx->stage == MESA_SHADER_FRAGMENT)
ctx->shader_info->fs.writes_memory = true;
if (instr->intrinsic == nir_intrinsic_ssbo_atomic_comp_swap) {
params[arg_count++] = llvm_extract_elem(ctx, get_src(ctx, instr->src[3]), 0);
}
params[arg_count++] = llvm_extract_elem(ctx, get_src(ctx, instr->src[2]), 0);
params[arg_count++] = get_src(ctx, instr->src[0]);
params[arg_count++] = LLVMConstInt(ctx->i32, 0, false); /* vindex */
params[arg_count++] = get_src(ctx, instr->src[1]); /* voffset */
params[arg_count++] = LLVMConstInt(ctx->i1, 0, false); /* slc */
switch (instr->intrinsic) {
case nir_intrinsic_ssbo_atomic_add:
name = "llvm.amdgcn.buffer.atomic.add";
break;
case nir_intrinsic_ssbo_atomic_imin:
name = "llvm.amdgcn.buffer.atomic.smin";
break;
case nir_intrinsic_ssbo_atomic_umin:
name = "llvm.amdgcn.buffer.atomic.umin";
break;
case nir_intrinsic_ssbo_atomic_imax:
name = "llvm.amdgcn.buffer.atomic.smax";
break;
case nir_intrinsic_ssbo_atomic_umax:
name = "llvm.amdgcn.buffer.atomic.umax";
break;
case nir_intrinsic_ssbo_atomic_and:
name = "llvm.amdgcn.buffer.atomic.and";
break;
case nir_intrinsic_ssbo_atomic_or:
name = "llvm.amdgcn.buffer.atomic.or";
break;
case nir_intrinsic_ssbo_atomic_xor:
name = "llvm.amdgcn.buffer.atomic.xor";
break;
case nir_intrinsic_ssbo_atomic_exchange:
name = "llvm.amdgcn.buffer.atomic.swap";
break;
case nir_intrinsic_ssbo_atomic_comp_swap:
name = "llvm.amdgcn.buffer.atomic.cmpswap";
break;
default:
abort();
}
return ac_emit_llvm_intrinsic(&ctx->ac, name, ctx->i32, params, arg_count, 0);
}
static LLVMValueRef visit_load_buffer(struct nir_to_llvm_context *ctx,
nir_intrinsic_instr *instr)
{
const char *load_name;
LLVMTypeRef data_type = ctx->f32;
if (instr->num_components == 3)
data_type = LLVMVectorType(ctx->f32, 4);
else if (instr->num_components > 1)
data_type = LLVMVectorType(ctx->f32, instr->num_components);
if (instr->num_components == 4 || instr->num_components == 3)
load_name = "llvm.amdgcn.buffer.load.v4f32";
else if (instr->num_components == 2)
load_name = "llvm.amdgcn.buffer.load.v2f32";
else if (instr->num_components == 1)
load_name = "llvm.amdgcn.buffer.load.f32";
else
abort();
LLVMValueRef params[] = {
get_src(ctx, instr->src[0]),
LLVMConstInt(ctx->i32, 0, false),
get_src(ctx, instr->src[1]),
LLVMConstInt(ctx->i1, 0, false),
LLVMConstInt(ctx->i1, 0, false),
};
LLVMValueRef ret =
ac_emit_llvm_intrinsic(&ctx->ac, load_name, data_type, params, 5, 0);
if (instr->num_components == 3)
ret = trim_vector(ctx, ret, 3);
return LLVMBuildBitCast(ctx->builder, ret,
get_def_type(ctx, &instr->dest.ssa), "");
}
static LLVMValueRef visit_load_ubo_buffer(struct nir_to_llvm_context *ctx,
nir_intrinsic_instr *instr)
{
LLVMValueRef results[4], ret;
LLVMValueRef rsrc = get_src(ctx, instr->src[0]);
LLVMValueRef offset = get_src(ctx, instr->src[1]);
rsrc = LLVMBuildBitCast(ctx->builder, rsrc, LLVMVectorType(ctx->i8, 16), "");
for (unsigned i = 0; i < instr->num_components; ++i) {
LLVMValueRef params[] = {
rsrc,
LLVMBuildAdd(ctx->builder, LLVMConstInt(ctx->i32, 4 * i, 0),
offset, "")
};
results[i] = ac_emit_llvm_intrinsic(&ctx->ac, "llvm.SI.load.const", ctx->f32,
params, 2, AC_FUNC_ATTR_READNONE);
}
ret = ac_build_gather_values(&ctx->ac, results, instr->num_components);
return LLVMBuildBitCast(ctx->builder, ret,
get_def_type(ctx, &instr->dest.ssa), "");
}
static void
radv_get_deref_offset(struct nir_to_llvm_context *ctx, nir_deref *tail,
bool vs_in, unsigned *const_out, LLVMValueRef *indir_out)
{
unsigned const_offset = 0;
LLVMValueRef offset = NULL;
while (tail->child != NULL) {
const struct glsl_type *parent_type = tail->type;
tail = tail->child;
if (tail->deref_type == nir_deref_type_array) {
nir_deref_array *deref_array = nir_deref_as_array(tail);
LLVMValueRef index, stride, local_offset;
unsigned size = glsl_count_attribute_slots(tail->type, vs_in);
const_offset += size * deref_array->base_offset;
if (deref_array->deref_array_type == nir_deref_array_type_direct)
continue;
assert(deref_array->deref_array_type == nir_deref_array_type_indirect);
index = get_src(ctx, deref_array->indirect);
stride = LLVMConstInt(ctx->i32, size, 0);
local_offset = LLVMBuildMul(ctx->builder, stride, index, "");
if (offset)
offset = LLVMBuildAdd(ctx->builder, offset, local_offset, "");
else
offset = local_offset;
} else if (tail->deref_type == nir_deref_type_struct) {
nir_deref_struct *deref_struct = nir_deref_as_struct(tail);
for (unsigned i = 0; i < deref_struct->index; i++) {
const struct glsl_type *ft = glsl_get_struct_field(parent_type, i);
const_offset += glsl_count_attribute_slots(ft, vs_in);
}
} else
unreachable("unsupported deref type");
}
if (const_offset && offset)
offset = LLVMBuildAdd(ctx->builder, offset,
LLVMConstInt(ctx->i32, const_offset, 0),
"");
*const_out = const_offset;
*indir_out = offset;
}
static LLVMValueRef visit_load_var(struct nir_to_llvm_context *ctx,
nir_intrinsic_instr *instr)
{
LLVMValueRef values[4];
int idx = instr->variables[0]->var->data.driver_location;
int ve = instr->dest.ssa.num_components;
LLVMValueRef indir_index;
unsigned const_index;
switch (instr->variables[0]->var->data.mode) {
case nir_var_shader_in:
radv_get_deref_offset(ctx, &instr->variables[0]->deref,
ctx->stage == MESA_SHADER_VERTEX,
&const_index, &indir_index);
for (unsigned chan = 0; chan < ve; chan++) {
if (indir_index) {
unsigned count = glsl_count_attribute_slots(
instr->variables[0]->var->type,
ctx->stage == MESA_SHADER_VERTEX);
LLVMValueRef tmp_vec = ac_build_gather_values_extended(
&ctx->ac, ctx->inputs + idx + chan, count,
4, false);
values[chan] = LLVMBuildExtractElement(ctx->builder,
tmp_vec,
indir_index, "");
} else
values[chan] = ctx->inputs[idx + chan + const_index * 4];
}
return to_integer(ctx, ac_build_gather_values(&ctx->ac, values, ve));
break;
case nir_var_local:
radv_get_deref_offset(ctx, &instr->variables[0]->deref, false,
&const_index, &indir_index);
for (unsigned chan = 0; chan < ve; chan++) {
if (indir_index) {
unsigned count = glsl_count_attribute_slots(
instr->variables[0]->var->type, false);
LLVMValueRef tmp_vec = ac_build_gather_values_extended(
&ctx->ac, ctx->locals + idx + chan, count,
4, true);
values[chan] = LLVMBuildExtractElement(ctx->builder,
tmp_vec,
indir_index, "");
} else {
values[chan] = LLVMBuildLoad(ctx->builder, ctx->locals[idx + chan + const_index * 4], "");
}
}
return to_integer(ctx, ac_build_gather_values(&ctx->ac, values, ve));
case nir_var_shader_out:
radv_get_deref_offset(ctx, &instr->variables[0]->deref, false,
&const_index, &indir_index);
for (unsigned chan = 0; chan < ve; chan++) {
if (indir_index) {
unsigned count = glsl_count_attribute_slots(
instr->variables[0]->var->type, false);
LLVMValueRef tmp_vec = ac_build_gather_values_extended(
&ctx->ac, ctx->outputs + idx + chan, count,
4, true);
values[chan] = LLVMBuildExtractElement(ctx->builder,
tmp_vec,
indir_index, "");
} else {
values[chan] = LLVMBuildLoad(ctx->builder,
ctx->outputs[idx + chan + const_index * 4],
"");
}
}
return to_integer(ctx, ac_build_gather_values(&ctx->ac, values, ve));
case nir_var_shared: {
radv_get_deref_offset(ctx, &instr->variables[0]->deref, false,
&const_index, &indir_index);
LLVMValueRef ptr = get_shared_memory_ptr(ctx, idx, ctx->i32);
LLVMValueRef derived_ptr;
for (unsigned chan = 0; chan < ve; chan++) {
LLVMValueRef index = LLVMConstInt(ctx->i32, chan, false);
if (indir_index)
index = LLVMBuildAdd(ctx->builder, index, indir_index, "");
derived_ptr = LLVMBuildGEP(ctx->builder, ptr, &index, 1, "");
values[chan] = LLVMBuildLoad(ctx->builder, derived_ptr, "");
}
return to_integer(ctx, ac_build_gather_values(&ctx->ac, values, ve));
}
default:
break;
}
return NULL;
}
static void
visit_store_var(struct nir_to_llvm_context *ctx,
nir_intrinsic_instr *instr)
{
LLVMValueRef temp_ptr, value;
int idx = instr->variables[0]->var->data.driver_location;
LLVMValueRef src = to_float(ctx, get_src(ctx, instr->src[0]));
int writemask = instr->const_index[0];
LLVMValueRef indir_index;
unsigned const_index;
switch (instr->variables[0]->var->data.mode) {
case nir_var_shader_out:
radv_get_deref_offset(ctx, &instr->variables[0]->deref, false,
&const_index, &indir_index);
for (unsigned chan = 0; chan < 4; chan++) {
int stride = 4;
if (!(writemask & (1 << chan)))
continue;
if (get_llvm_num_components(src) == 1)
value = src;
else
value = LLVMBuildExtractElement(ctx->builder, src,
LLVMConstInt(ctx->i32,
chan, false),
"");
if (instr->variables[0]->var->data.location == VARYING_SLOT_CLIP_DIST0 ||
instr->variables[0]->var->data.location == VARYING_SLOT_CULL_DIST0)
stride = 1;
if (indir_index) {
unsigned count = glsl_count_attribute_slots(
instr->variables[0]->var->type, false);
LLVMValueRef tmp_vec = ac_build_gather_values_extended(
&ctx->ac, ctx->outputs + idx + chan, count,
stride, true);
if (get_llvm_num_components(tmp_vec) > 1) {
tmp_vec = LLVMBuildInsertElement(ctx->builder, tmp_vec,
value, indir_index, "");
} else
tmp_vec = value;
build_store_values_extended(ctx, ctx->outputs + idx + chan,
count, stride, tmp_vec);
} else {
temp_ptr = ctx->outputs[idx + chan + const_index * stride];
LLVMBuildStore(ctx->builder, value, temp_ptr);
}
}
break;
case nir_var_local:
radv_get_deref_offset(ctx, &instr->variables[0]->deref, false,
&const_index, &indir_index);
for (unsigned chan = 0; chan < 4; chan++) {
if (!(writemask & (1 << chan)))
continue;
if (get_llvm_num_components(src) == 1)
value = src;
else
value = LLVMBuildExtractElement(ctx->builder, src,
LLVMConstInt(ctx->i32, chan, false), "");
if (indir_index) {
unsigned count = glsl_count_attribute_slots(
instr->variables[0]->var->type, false);
LLVMValueRef tmp_vec = ac_build_gather_values_extended(
&ctx->ac, ctx->locals + idx + chan, count,
4, true);
tmp_vec = LLVMBuildInsertElement(ctx->builder, tmp_vec,
value, indir_index, "");
build_store_values_extended(ctx, ctx->locals + idx + chan,
count, 4, tmp_vec);
} else {
temp_ptr = ctx->locals[idx + chan + const_index * 4];
LLVMBuildStore(ctx->builder, value, temp_ptr);
}
}
break;
case nir_var_shared: {
LLVMValueRef ptr;
radv_get_deref_offset(ctx, &instr->variables[0]->deref, false,
&const_index, &indir_index);
ptr = get_shared_memory_ptr(ctx, idx, ctx->i32);
LLVMValueRef derived_ptr;
for (unsigned chan = 0; chan < 4; chan++) {
if (!(writemask & (1 << chan)))
continue;
LLVMValueRef index = LLVMConstInt(ctx->i32, chan, false);
if (get_llvm_num_components(src) == 1)
value = src;
else
value = LLVMBuildExtractElement(ctx->builder, src,
LLVMConstInt(ctx->i32,
chan, false),
"");
if (indir_index)
index = LLVMBuildAdd(ctx->builder, index, indir_index, "");
derived_ptr = LLVMBuildGEP(ctx->builder, ptr, &index, 1, "");
LLVMBuildStore(ctx->builder,
to_integer(ctx, value), derived_ptr);
}
break;
}
default:
break;
}
}
static int image_type_to_components_count(enum glsl_sampler_dim dim, bool array)
{
switch (dim) {
case GLSL_SAMPLER_DIM_BUF:
return 1;
case GLSL_SAMPLER_DIM_1D:
return array ? 2 : 1;
case GLSL_SAMPLER_DIM_2D:
return array ? 3 : 2;
case GLSL_SAMPLER_DIM_MS:
return array ? 4 : 3;
case GLSL_SAMPLER_DIM_3D:
case GLSL_SAMPLER_DIM_CUBE:
return 3;
case GLSL_SAMPLER_DIM_RECT:
case GLSL_SAMPLER_DIM_SUBPASS:
return 2;
case GLSL_SAMPLER_DIM_SUBPASS_MS:
return 3;
default:
break;
}
return 0;
}
static LLVMValueRef get_image_coords(struct nir_to_llvm_context *ctx,
nir_intrinsic_instr *instr)
{
const struct glsl_type *type = instr->variables[0]->var->type;
if(instr->variables[0]->deref.child)
type = instr->variables[0]->deref.child->type;
LLVMValueRef src0 = get_src(ctx, instr->src[0]);
LLVMValueRef coords[4];
LLVMValueRef masks[] = {
LLVMConstInt(ctx->i32, 0, false), LLVMConstInt(ctx->i32, 1, false),
LLVMConstInt(ctx->i32, 2, false), LLVMConstInt(ctx->i32, 3, false),
};
LLVMValueRef res;
int count;
enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
bool add_frag_pos = (dim == GLSL_SAMPLER_DIM_SUBPASS ||
dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
bool is_ms = (dim == GLSL_SAMPLER_DIM_MS ||
dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
count = image_type_to_components_count(dim,
glsl_sampler_type_is_array(type));
if (count == 1) {
if (instr->src[0].ssa->num_components)
res = LLVMBuildExtractElement(ctx->builder, src0, masks[0], "");
else
res = src0;
} else {
int chan;
if (is_ms)
count--;
for (chan = 0; chan < count; ++chan) {
coords[chan] = LLVMBuildExtractElement(ctx->builder, src0, masks[chan], "");
}
if (add_frag_pos) {
for (chan = 0; chan < count; ++chan)
coords[chan] = LLVMBuildAdd(ctx->builder, coords[chan], LLVMBuildFPToUI(ctx->builder, ctx->frag_pos[chan], ctx->i32, ""), "");
}
if (is_ms) {
coords[count] = llvm_extract_elem(ctx, get_src(ctx, instr->src[1]), 0);
count++;
}
if (count == 3) {
coords[3] = LLVMGetUndef(ctx->i32);
count = 4;
}
res = ac_build_gather_values(&ctx->ac, coords, count);
}
return res;
}
static void build_type_name_for_intr(
LLVMTypeRef type,
char *buf, unsigned bufsize)
{
LLVMTypeRef elem_type = type;
assert(bufsize >= 8);
if (LLVMGetTypeKind(type) == LLVMVectorTypeKind) {
int ret = snprintf(buf, bufsize, "v%u",
LLVMGetVectorSize(type));
if (ret < 0) {
char *type_name = LLVMPrintTypeToString(type);
fprintf(stderr, "Error building type name for: %s\n",
type_name);
return;
}
elem_type = LLVMGetElementType(type);
buf += ret;
bufsize -= ret;
}
switch (LLVMGetTypeKind(elem_type)) {
default: break;
case LLVMIntegerTypeKind:
snprintf(buf, bufsize, "i%d", LLVMGetIntTypeWidth(elem_type));
break;
case LLVMFloatTypeKind:
snprintf(buf, bufsize, "f32");
break;
case LLVMDoubleTypeKind:
snprintf(buf, bufsize, "f64");
break;
}
}
static void get_image_intr_name(const char *base_name,
LLVMTypeRef data_type,
LLVMTypeRef coords_type,
LLVMTypeRef rsrc_type,
char *out_name, unsigned out_len)
{
char coords_type_name[8];
build_type_name_for_intr(coords_type, coords_type_name,
sizeof(coords_type_name));
if (HAVE_LLVM <= 0x0309) {
snprintf(out_name, out_len, "%s.%s", base_name, coords_type_name);
} else {
char data_type_name[8];
char rsrc_type_name[8];
build_type_name_for_intr(data_type, data_type_name,
sizeof(data_type_name));
build_type_name_for_intr(rsrc_type, rsrc_type_name,
sizeof(rsrc_type_name));
snprintf(out_name, out_len, "%s.%s.%s.%s", base_name,
data_type_name, coords_type_name, rsrc_type_name);
}
}
static LLVMValueRef visit_image_load(struct nir_to_llvm_context *ctx,
nir_intrinsic_instr *instr)
{
LLVMValueRef params[7];
LLVMValueRef res;
char intrinsic_name[64];
const nir_variable *var = instr->variables[0]->var;
const struct glsl_type *type = var->type;
if(instr->variables[0]->deref.child)
type = instr->variables[0]->deref.child->type;
type = glsl_without_array(type);
if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_BUF) {
params[0] = get_sampler_desc(ctx, instr->variables[0], DESC_BUFFER);
params[1] = LLVMBuildExtractElement(ctx->builder, get_src(ctx, instr->src[0]),
LLVMConstInt(ctx->i32, 0, false), ""); /* vindex */
params[2] = LLVMConstInt(ctx->i32, 0, false); /* voffset */
params[3] = LLVMConstInt(ctx->i1, 0, false); /* glc */
params[4] = LLVMConstInt(ctx->i1, 0, false); /* slc */
res = ac_emit_llvm_intrinsic(&ctx->ac, "llvm.amdgcn.buffer.load.format.v4f32", ctx->v4f32,
params, 5, 0);
res = trim_vector(ctx, res, instr->dest.ssa.num_components);
res = to_integer(ctx, res);
} else {
bool is_da = glsl_sampler_type_is_array(type) ||
glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_CUBE;
LLVMValueRef da = is_da ? ctx->i32one : ctx->i32zero;
LLVMValueRef glc = LLVMConstInt(ctx->i1, 0, false);
LLVMValueRef slc = LLVMConstInt(ctx->i1, 0, false);
params[0] = get_image_coords(ctx, instr);
params[1] = get_sampler_desc(ctx, instr->variables[0], DESC_IMAGE);
params[2] = LLVMConstInt(ctx->i32, 15, false); /* dmask */
if (HAVE_LLVM <= 0x0309) {
params[3] = LLVMConstInt(ctx->i1, 0, false); /* r128 */
params[4] = da;
params[5] = glc;
params[6] = slc;
} else {
LLVMValueRef lwe = LLVMConstInt(ctx->i1, 0, false);
params[3] = glc;
params[4] = slc;
params[5] = lwe;
params[6] = da;
}
get_image_intr_name("llvm.amdgcn.image.load",
ctx->v4f32, /* vdata */
LLVMTypeOf(params[0]), /* coords */
LLVMTypeOf(params[1]), /* rsrc */
intrinsic_name, sizeof(intrinsic_name));
res = ac_emit_llvm_intrinsic(&ctx->ac, intrinsic_name, ctx->v4f32,
params, 7, AC_FUNC_ATTR_READONLY);
}
return to_integer(ctx, res);
}
static void visit_image_store(struct nir_to_llvm_context *ctx,
nir_intrinsic_instr *instr)
{
LLVMValueRef params[8];
char intrinsic_name[64];
const nir_variable *var = instr->variables[0]->var;
LLVMValueRef i1false = LLVMConstInt(ctx->i1, 0, 0);
LLVMValueRef i1true = LLVMConstInt(ctx->i1, 1, 0);
const struct glsl_type *type = glsl_without_array(var->type);
if (ctx->stage == MESA_SHADER_FRAGMENT)
ctx->shader_info->fs.writes_memory = true;
if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_BUF) {
params[0] = to_float(ctx, get_src(ctx, instr->src[2])); /* data */
params[1] = get_sampler_desc(ctx, instr->variables[0], DESC_BUFFER);
params[2] = LLVMBuildExtractElement(ctx->builder, get_src(ctx, instr->src[0]),
LLVMConstInt(ctx->i32, 0, false), ""); /* vindex */
params[3] = LLVMConstInt(ctx->i32, 0, false); /* voffset */
params[4] = i1false; /* glc */
params[5] = i1false; /* slc */
ac_emit_llvm_intrinsic(&ctx->ac, "llvm.amdgcn.buffer.store.format.v4f32", ctx->voidt,
params, 6, 0);
} else {
bool is_da = glsl_sampler_type_is_array(type) ||
glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_CUBE;
LLVMValueRef da = is_da ? i1true : i1false;
LLVMValueRef glc = i1false;
LLVMValueRef slc = i1false;
params[0] = to_float(ctx, get_src(ctx, instr->src[2]));
params[1] = get_image_coords(ctx, instr); /* coords */
params[2] = get_sampler_desc(ctx, instr->variables[0], DESC_IMAGE);
params[3] = LLVMConstInt(ctx->i32, 15, false); /* dmask */
if (HAVE_LLVM <= 0x0309) {
params[4] = i1false; /* r128 */
params[5] = da;
params[6] = glc;
params[7] = slc;
} else {
LLVMValueRef lwe = i1false;
params[4] = glc;
params[5] = slc;
params[6] = lwe;
params[7] = da;
}
get_image_intr_name("llvm.amdgcn.image.store",
LLVMTypeOf(params[0]), /* vdata */
LLVMTypeOf(params[1]), /* coords */
LLVMTypeOf(params[2]), /* rsrc */
intrinsic_name, sizeof(intrinsic_name));
ac_emit_llvm_intrinsic(&ctx->ac, intrinsic_name, ctx->voidt,
params, 8, 0);
}
}
static LLVMValueRef visit_image_atomic(struct nir_to_llvm_context *ctx,
nir_intrinsic_instr *instr)
{
LLVMValueRef params[6];
int param_count = 0;
const nir_variable *var = instr->variables[0]->var;
LLVMValueRef i1false = LLVMConstInt(ctx->i1, 0, 0);
LLVMValueRef i1true = LLVMConstInt(ctx->i1, 1, 0);
const char *base_name = "llvm.amdgcn.image.atomic";
const char *atomic_name;
LLVMValueRef coords;
char intrinsic_name[32], coords_type[8];
const struct glsl_type *type = glsl_without_array(var->type);
if (ctx->stage == MESA_SHADER_FRAGMENT)
ctx->shader_info->fs.writes_memory = true;
params[param_count++] = get_src(ctx, instr->src[2]);
if (instr->intrinsic == nir_intrinsic_image_atomic_comp_swap)
params[param_count++] = get_src(ctx, instr->src[3]);
if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_BUF) {
params[param_count++] = get_sampler_desc(ctx, instr->variables[0], DESC_BUFFER);
coords = params[param_count++] = LLVMBuildExtractElement(ctx->builder, get_src(ctx, instr->src[0]),
LLVMConstInt(ctx->i32, 0, false), ""); /* vindex */
params[param_count++] = ctx->i32zero; /* voffset */
params[param_count++] = i1false; /* glc */
params[param_count++] = i1false; /* slc */
} else {
bool da = glsl_sampler_type_is_array(type) ||
glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_CUBE;
coords = params[param_count++] = get_image_coords(ctx, instr);
params[param_count++] = get_sampler_desc(ctx, instr->variables[0], DESC_IMAGE);
params[param_count++] = i1false; /* r128 */
params[param_count++] = da ? i1true : i1false; /* da */
params[param_count++] = i1false; /* slc */
}
switch (instr->intrinsic) {
case nir_intrinsic_image_atomic_add:
atomic_name = "add";
break;
case nir_intrinsic_image_atomic_min:
atomic_name = "smin";
break;
case nir_intrinsic_image_atomic_max:
atomic_name = "smax";
break;
case nir_intrinsic_image_atomic_and:
atomic_name = "and";
break;
case nir_intrinsic_image_atomic_or:
atomic_name = "or";
break;
case nir_intrinsic_image_atomic_xor:
atomic_name = "xor";
break;
case nir_intrinsic_image_atomic_exchange:
atomic_name = "swap";
break;
case nir_intrinsic_image_atomic_comp_swap:
atomic_name = "cmpswap";
break;
default:
abort();
}
build_int_type_name(LLVMTypeOf(coords),
coords_type, sizeof(coords_type));
snprintf(intrinsic_name, sizeof(intrinsic_name),
"%s.%s.%s", base_name, atomic_name, coords_type);
return ac_emit_llvm_intrinsic(&ctx->ac, intrinsic_name, ctx->i32, params, param_count, 0);
}
static LLVMValueRef visit_image_size(struct nir_to_llvm_context *ctx,
nir_intrinsic_instr *instr)
{
LLVMValueRef res;
LLVMValueRef params[10];
const nir_variable *var = instr->variables[0]->var;
const struct glsl_type *type = instr->variables[0]->var->type;
bool da = glsl_sampler_type_is_array(var->type) ||
glsl_get_sampler_dim(var->type) == GLSL_SAMPLER_DIM_CUBE;
if(instr->variables[0]->deref.child)
type = instr->variables[0]->deref.child->type;
if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_BUF)
return get_buffer_size(ctx, get_sampler_desc(ctx, instr->variables[0], DESC_BUFFER), true);
params[0] = ctx->i32zero;
params[1] = get_sampler_desc(ctx, instr->variables[0], DESC_IMAGE);
params[2] = LLVMConstInt(ctx->i32, 15, false);
params[3] = ctx->i32zero;
params[4] = ctx->i32zero;
params[5] = da ? ctx->i32one : ctx->i32zero;
params[6] = ctx->i32zero;
params[7] = ctx->i32zero;
params[8] = ctx->i32zero;
params[9] = ctx->i32zero;
res = ac_emit_llvm_intrinsic(&ctx->ac, "llvm.SI.getresinfo.i32", ctx->v4i32,
params, 10, AC_FUNC_ATTR_READNONE);
if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_CUBE &&
glsl_sampler_type_is_array(type)) {
LLVMValueRef two = LLVMConstInt(ctx->i32, 2, false);
LLVMValueRef six = LLVMConstInt(ctx->i32, 6, false);
LLVMValueRef z = LLVMBuildExtractElement(ctx->builder, res, two, "");
z = LLVMBuildSDiv(ctx->builder, z, six, "");
res = LLVMBuildInsertElement(ctx->builder, res, z, two, "");
}
return res;
}
static void emit_waitcnt(struct nir_to_llvm_context *ctx)
{
LLVMValueRef args[1] = {
LLVMConstInt(ctx->i32, 0xf70, false),
};
ac_emit_llvm_intrinsic(&ctx->ac, "llvm.amdgcn.s.waitcnt",
ctx->voidt, args, 1, 0);
}
static void emit_barrier(struct nir_to_llvm_context *ctx)
{
// TODO tess
ac_emit_llvm_intrinsic(&ctx->ac, "llvm.amdgcn.s.barrier",
ctx->voidt, NULL, 0, 0);
}
static void emit_discard_if(struct nir_to_llvm_context *ctx,
nir_intrinsic_instr *instr)
{
LLVMValueRef cond;
ctx->shader_info->fs.can_discard = true;
cond = LLVMBuildICmp(ctx->builder, LLVMIntNE,
get_src(ctx, instr->src[0]),
ctx->i32zero, "");
cond = LLVMBuildSelect(ctx->builder, cond,
LLVMConstReal(ctx->f32, -1.0f),
ctx->f32zero, "");
ac_emit_llvm_intrinsic(&ctx->ac, "llvm.AMDGPU.kill",
ctx->voidt,
&cond, 1, 0);
}
static LLVMValueRef
visit_load_local_invocation_index(struct nir_to_llvm_context *ctx)
{
LLVMValueRef result;
LLVMValueRef thread_id = get_thread_id(ctx);
result = LLVMBuildAnd(ctx->builder, ctx->tg_size,
LLVMConstInt(ctx->i32, 0xfc0, false), "");
return LLVMBuildAdd(ctx->builder, result, thread_id, "");
}
static LLVMValueRef visit_var_atomic(struct nir_to_llvm_context *ctx,
nir_intrinsic_instr *instr)
{
LLVMValueRef ptr, result;
int idx = instr->variables[0]->var->data.driver_location;
LLVMValueRef src = get_src(ctx, instr->src[0]);
ptr = get_shared_memory_ptr(ctx, idx, ctx->i32);
if (instr->intrinsic == nir_intrinsic_var_atomic_comp_swap) {
LLVMValueRef src1 = get_src(ctx, instr->src[1]);
result = LLVMBuildAtomicCmpXchg(ctx->builder,
ptr, src, src1,
LLVMAtomicOrderingSequentiallyConsistent,
LLVMAtomicOrderingSequentiallyConsistent,
false);
} else {
LLVMAtomicRMWBinOp op;
switch (instr->intrinsic) {
case nir_intrinsic_var_atomic_add:
op = LLVMAtomicRMWBinOpAdd;
break;
case nir_intrinsic_var_atomic_umin:
op = LLVMAtomicRMWBinOpUMin;
break;
case nir_intrinsic_var_atomic_umax:
op = LLVMAtomicRMWBinOpUMax;
break;
case nir_intrinsic_var_atomic_imin:
op = LLVMAtomicRMWBinOpMin;
break;
case nir_intrinsic_var_atomic_imax:
op = LLVMAtomicRMWBinOpMax;
break;
case nir_intrinsic_var_atomic_and:
op = LLVMAtomicRMWBinOpAnd;
break;
case nir_intrinsic_var_atomic_or:
op = LLVMAtomicRMWBinOpOr;
break;
case nir_intrinsic_var_atomic_xor:
op = LLVMAtomicRMWBinOpXor;
break;
case nir_intrinsic_var_atomic_exchange:
op = LLVMAtomicRMWBinOpXchg;
break;
default:
return NULL;
}
result = LLVMBuildAtomicRMW(ctx->builder, op, ptr, to_integer(ctx, src),
LLVMAtomicOrderingSequentiallyConsistent,
false);
}
return result;
}
#define INTERP_CENTER 0
#define INTERP_CENTROID 1
#define INTERP_SAMPLE 2
static LLVMValueRef lookup_interp_param(struct nir_to_llvm_context *ctx,
enum glsl_interp_mode interp, unsigned location)
{
switch (interp) {
case INTERP_MODE_FLAT:
default:
return NULL;
case INTERP_MODE_SMOOTH:
case INTERP_MODE_NONE:
if (location == INTERP_CENTER)
return ctx->persp_center;
else if (location == INTERP_CENTROID)
return ctx->persp_centroid;
else if (location == INTERP_SAMPLE)
return ctx->persp_sample;
break;
case INTERP_MODE_NOPERSPECTIVE:
if (location == INTERP_CENTER)
return ctx->linear_center;
else if (location == INTERP_CENTROID)
return ctx->linear_centroid;
else if (location == INTERP_SAMPLE)
return ctx->linear_sample;
break;
}
return NULL;
}
static LLVMValueRef load_sample_position(struct nir_to_llvm_context *ctx,
LLVMValueRef sample_id)
{
/* offset = sample_id * 8 (8 = 2 floats containing samplepos.xy) */
LLVMValueRef offset0 = LLVMBuildMul(ctx->builder, sample_id, LLVMConstInt(ctx->i32, 8, false), "");
LLVMValueRef offset1 = LLVMBuildAdd(ctx->builder, offset0, LLVMConstInt(ctx->i32, 4, false), "");
LLVMValueRef result[2];
result[0] = build_indexed_load_const(ctx, ctx->sample_positions, offset0);
result[1] = build_indexed_load_const(ctx, ctx->sample_positions, offset1);
return ac_build_gather_values(&ctx->ac, result, 2);
}
static LLVMValueRef load_sample_pos(struct nir_to_llvm_context *ctx)
{
LLVMValueRef values[2];
values[0] = emit_ffract(ctx, ctx->frag_pos[0]);
values[1] = emit_ffract(ctx, ctx->frag_pos[1]);
return ac_build_gather_values(&ctx->ac, values, 2);
}
static LLVMValueRef visit_interp(struct nir_to_llvm_context *ctx,
nir_intrinsic_instr *instr)
{
LLVMValueRef result[2];
LLVMValueRef interp_param, attr_number;
unsigned location;
unsigned chan;
LLVMValueRef src_c0, src_c1;
const char *intr_name;
LLVMValueRef src0;
int input_index = instr->variables[0]->var->data.location - VARYING_SLOT_VAR0;
switch (instr->intrinsic) {
case nir_intrinsic_interp_var_at_centroid:
location = INTERP_CENTROID;
break;
case nir_intrinsic_interp_var_at_sample:
case nir_intrinsic_interp_var_at_offset:
location = INTERP_SAMPLE;
src0 = get_src(ctx, instr->src[0]);
break;
default:
break;
}
if (instr->intrinsic == nir_intrinsic_interp_var_at_offset) {
src_c0 = to_float(ctx, LLVMBuildExtractElement(ctx->builder, src0, ctx->i32zero, ""));
src_c1 = to_float(ctx, LLVMBuildExtractElement(ctx->builder, src0, ctx->i32one, ""));
} else if (instr->intrinsic == nir_intrinsic_interp_var_at_sample) {
LLVMValueRef sample_position;
LLVMValueRef halfval = LLVMConstReal(ctx->f32, 0.5f);
/* fetch sample ID */
sample_position = load_sample_position(ctx, src0);
src_c0 = LLVMBuildExtractElement(ctx->builder, sample_position, ctx->i32zero, "");
src_c0 = LLVMBuildFSub(ctx->builder, src_c0, halfval, "");
src_c1 = LLVMBuildExtractElement(ctx->builder, sample_position, ctx->i32one, "");
src_c1 = LLVMBuildFSub(ctx->builder, src_c1, halfval, "");
}
interp_param = lookup_interp_param(ctx, instr->variables[0]->var->data.interpolation, location);
attr_number = LLVMConstInt(ctx->i32, input_index, false);
if (location == INTERP_SAMPLE) {
LLVMValueRef ij_out[2];
LLVMValueRef ddxy_out = emit_ddxy_interp(ctx, interp_param);
/*
* take the I then J parameters, and the DDX/Y for it, and
* calculate the IJ inputs for the interpolator.
* temp1 = ddx * offset/sample.x + I;
* interp_param.I = ddy * offset/sample.y + temp1;
* temp1 = ddx * offset/sample.x + J;
* interp_param.J = ddy * offset/sample.y + temp1;
*/
for (unsigned i = 0; i < 2; i++) {
LLVMValueRef ix_ll = LLVMConstInt(ctx->i32, i, false);
LLVMValueRef iy_ll = LLVMConstInt(ctx->i32, i + 2, false);
LLVMValueRef ddx_el = LLVMBuildExtractElement(ctx->builder,
ddxy_out, ix_ll, "");
LLVMValueRef ddy_el = LLVMBuildExtractElement(ctx->builder,
ddxy_out, iy_ll, "");
LLVMValueRef interp_el = LLVMBuildExtractElement(ctx->builder,
interp_param, ix_ll, "");
LLVMValueRef temp1, temp2;
interp_el = LLVMBuildBitCast(ctx->builder, interp_el,
ctx->f32, "");
temp1 = LLVMBuildFMul(ctx->builder, ddx_el, src_c0, "");
temp1 = LLVMBuildFAdd(ctx->builder, temp1, interp_el, "");
temp2 = LLVMBuildFMul(ctx->builder, ddy_el, src_c1, "");
temp2 = LLVMBuildFAdd(ctx->builder, temp2, temp1, "");
ij_out[i] = LLVMBuildBitCast(ctx->builder,
temp2, ctx->i32, "");
}
interp_param = ac_build_gather_values(&ctx->ac, ij_out, 2);
}
intr_name = interp_param ? "llvm.SI.fs.interp" : "llvm.SI.fs.constant";
for (chan = 0; chan < 2; chan++) {
LLVMValueRef args[4];
LLVMValueRef llvm_chan = LLVMConstInt(ctx->i32, chan, false);
args[0] = llvm_chan;
args[1] = attr_number;
args[2] = ctx->prim_mask;
args[3] = interp_param;
result[chan] = ac_emit_llvm_intrinsic(&ctx->ac, intr_name,
ctx->f32, args, args[3] ? 4 : 3,
AC_FUNC_ATTR_READNONE);
}
return ac_build_gather_values(&ctx->ac, result, 2);
}
static void visit_intrinsic(struct nir_to_llvm_context *ctx,
nir_intrinsic_instr *instr)
{
LLVMValueRef result = NULL;
switch (instr->intrinsic) {
case nir_intrinsic_load_work_group_id: {
result = ctx->workgroup_ids;
break;
}
case nir_intrinsic_load_base_vertex: {
result = ctx->base_vertex;
break;
}
case nir_intrinsic_load_vertex_id_zero_base: {
result = ctx->vertex_id;
break;
}
case nir_intrinsic_load_local_invocation_id: {
result = ctx->local_invocation_ids;
break;
}
case nir_intrinsic_load_base_instance:
result = ctx->start_instance;
break;
case nir_intrinsic_load_sample_id:
ctx->shader_info->fs.force_persample = true;
result = unpack_param(ctx, ctx->ancillary, 8, 4);
break;
case nir_intrinsic_load_sample_pos:
ctx->shader_info->fs.force_persample = true;
result = load_sample_pos(ctx);
break;
case nir_intrinsic_load_front_face:
result = ctx->front_face;
break;
case nir_intrinsic_load_instance_id:
result = ctx->instance_id;
ctx->shader_info->vs.vgpr_comp_cnt = MAX2(3,
ctx->shader_info->vs.vgpr_comp_cnt);
break;
case nir_intrinsic_load_num_work_groups:
result = ctx->num_work_groups;
break;
case nir_intrinsic_load_local_invocation_index:
result = visit_load_local_invocation_index(ctx);
break;
case nir_intrinsic_load_push_constant:
result = visit_load_push_constant(ctx, instr);
break;
case nir_intrinsic_vulkan_resource_index:
result = visit_vulkan_resource_index(ctx, instr);
break;
case nir_intrinsic_store_ssbo:
visit_store_ssbo(ctx, instr);
break;
case nir_intrinsic_load_ssbo:
result = visit_load_buffer(ctx, instr);
break;
case nir_intrinsic_ssbo_atomic_add:
case nir_intrinsic_ssbo_atomic_imin:
case nir_intrinsic_ssbo_atomic_umin:
case nir_intrinsic_ssbo_atomic_imax:
case nir_intrinsic_ssbo_atomic_umax:
case nir_intrinsic_ssbo_atomic_and:
case nir_intrinsic_ssbo_atomic_or:
case nir_intrinsic_ssbo_atomic_xor:
case nir_intrinsic_ssbo_atomic_exchange:
case nir_intrinsic_ssbo_atomic_comp_swap:
result = visit_atomic_ssbo(ctx, instr);
break;
case nir_intrinsic_load_ubo:
result = visit_load_ubo_buffer(ctx, instr);
break;
case nir_intrinsic_get_buffer_size:
result = visit_get_buffer_size(ctx, instr);
break;
case nir_intrinsic_load_var:
result = visit_load_var(ctx, instr);
break;
case nir_intrinsic_store_var:
visit_store_var(ctx, instr);
break;
case nir_intrinsic_image_load:
result = visit_image_load(ctx, instr);
break;
case nir_intrinsic_image_store:
visit_image_store(ctx, instr);
break;
case nir_intrinsic_image_atomic_add:
case nir_intrinsic_image_atomic_min:
case nir_intrinsic_image_atomic_max:
case nir_intrinsic_image_atomic_and:
case nir_intrinsic_image_atomic_or:
case nir_intrinsic_image_atomic_xor:
case nir_intrinsic_image_atomic_exchange:
case nir_intrinsic_image_atomic_comp_swap:
result = visit_image_atomic(ctx, instr);
break;
case nir_intrinsic_image_size:
result = visit_image_size(ctx, instr);
break;
case nir_intrinsic_discard:
ctx->shader_info->fs.can_discard = true;
ac_emit_llvm_intrinsic(&ctx->ac, "llvm.AMDGPU.kilp",
ctx->voidt,
NULL, 0, 0);
break;
case nir_intrinsic_discard_if:
emit_discard_if(ctx, instr);
break;
case nir_intrinsic_memory_barrier:
emit_waitcnt(ctx);
break;
case nir_intrinsic_barrier:
emit_barrier(ctx);
break;
case nir_intrinsic_var_atomic_add:
case nir_intrinsic_var_atomic_imin:
case nir_intrinsic_var_atomic_umin:
case nir_intrinsic_var_atomic_imax:
case nir_intrinsic_var_atomic_umax:
case nir_intrinsic_var_atomic_and:
case nir_intrinsic_var_atomic_or:
case nir_intrinsic_var_atomic_xor:
case nir_intrinsic_var_atomic_exchange:
case nir_intrinsic_var_atomic_comp_swap:
result = visit_var_atomic(ctx, instr);
break;
case nir_intrinsic_interp_var_at_centroid:
case nir_intrinsic_interp_var_at_sample:
case nir_intrinsic_interp_var_at_offset:
result = visit_interp(ctx, instr);
break;
default:
fprintf(stderr, "Unknown intrinsic: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
break;
}
if (result) {
_mesa_hash_table_insert(ctx->defs, &instr->dest.ssa, result);
}
}
static LLVMValueRef get_sampler_desc(struct nir_to_llvm_context *ctx,
nir_deref_var *deref,
enum desc_type desc_type)
{
unsigned desc_set = deref->var->data.descriptor_set;
LLVMValueRef list = ctx->descriptor_sets[desc_set];
struct radv_descriptor_set_layout *layout = ctx->options->layout->set[desc_set].layout;
struct radv_descriptor_set_binding_layout *binding = layout->binding + deref->var->data.binding;
unsigned offset = binding->offset;
unsigned stride = binding->size;
unsigned type_size;
LLVMBuilderRef builder = ctx->builder;
LLVMTypeRef type;
LLVMValueRef index = NULL;
assert(deref->var->data.binding < layout->binding_count);
switch (desc_type) {
case DESC_IMAGE:
type = ctx->v8i32;
type_size = 32;
break;
case DESC_FMASK:
type = ctx->v8i32;
offset += 32;
type_size = 32;
break;
case DESC_SAMPLER:
type = ctx->v4i32;
if (binding->type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
offset += 64;
type_size = 16;
break;
case DESC_BUFFER:
type = ctx->v4i32;
type_size = 16;
break;
default:
unreachable("invalid desc_type\n");
}
if (deref->deref.child) {
nir_deref_array *child = (nir_deref_array*)deref->deref.child;
assert(child->deref_array_type != nir_deref_array_type_wildcard);
offset += child->base_offset * stride;
if (child->deref_array_type == nir_deref_array_type_indirect) {
index = get_src(ctx, child->indirect);
}
}
assert(stride % type_size == 0);
if (!index)
index = ctx->i32zero;
index = LLVMBuildMul(builder, index, LLVMConstInt(ctx->i32, stride / type_size, 0), "");
list = build_gep0(ctx, list, LLVMConstInt(ctx->i32, offset, 0));
list = LLVMBuildPointerCast(builder, list, const_array(type, 0), "");
return build_indexed_load_const(ctx, list, index);
}
static void set_tex_fetch_args(struct nir_to_llvm_context *ctx,
struct ac_tex_info *tinfo,
nir_tex_instr *instr,
nir_texop op,
LLVMValueRef res_ptr, LLVMValueRef samp_ptr,
LLVMValueRef *param, unsigned count,
unsigned dmask)
{
int num_args;
unsigned is_rect = 0;
bool da = instr->is_array || instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE;
if (op == nir_texop_lod)
da = false;
/* Pad to power of two vector */
while (count < util_next_power_of_two(count))
param[count++] = LLVMGetUndef(ctx->i32);
if (count > 1)
tinfo->args[0] = ac_build_gather_values(&ctx->ac, param, count);
else
tinfo->args[0] = param[0];
tinfo->args[1] = res_ptr;
num_args = 2;
if (op == nir_texop_txf ||
op == nir_texop_txf_ms ||
op == nir_texop_query_levels ||
op == nir_texop_texture_samples ||
op == nir_texop_txs)
tinfo->dst_type = ctx->v4i32;
else {
tinfo->dst_type = ctx->v4f32;
tinfo->args[num_args++] = samp_ptr;
}
if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF && op == nir_texop_txf) {
tinfo->args[0] = res_ptr;
tinfo->args[1] = LLVMConstInt(ctx->i32, 0, false);
tinfo->args[2] = param[0];
tinfo->arg_count = 3;
return;
}
tinfo->args[num_args++] = LLVMConstInt(ctx->i32, dmask, 0);
tinfo->args[num_args++] = LLVMConstInt(ctx->i32, is_rect, 0); /* unorm */
tinfo->args[num_args++] = LLVMConstInt(ctx->i32, 0, 0); /* r128 */
tinfo->args[num_args++] = LLVMConstInt(ctx->i32, da ? 1 : 0, 0);
tinfo->args[num_args++] = LLVMConstInt(ctx->i32, 0, 0); /* glc */
tinfo->args[num_args++] = LLVMConstInt(ctx->i32, 0, 0); /* slc */
tinfo->args[num_args++] = LLVMConstInt(ctx->i32, 0, 0); /* tfe */
tinfo->args[num_args++] = LLVMConstInt(ctx->i32, 0, 0); /* lwe */
tinfo->arg_count = num_args;
}
/* Disable anisotropic filtering if BASE_LEVEL == LAST_LEVEL.
*
* SI-CI:
* If BASE_LEVEL == LAST_LEVEL, the shader must disable anisotropic
* filtering manually. The driver sets img7 to a mask clearing
* MAX_ANISO_RATIO if BASE_LEVEL == LAST_LEVEL. The shader must do:
* s_and_b32 samp0, samp0, img7
*
* VI:
* The ANISO_OVERRIDE sampler field enables this fix in TA.
*/
static LLVMValueRef sici_fix_sampler_aniso(struct nir_to_llvm_context *ctx,
LLVMValueRef res, LLVMValueRef samp)
{
LLVMBuilderRef builder = ctx->builder;
LLVMValueRef img7, samp0;
if (ctx->options->chip_class >= VI)
return samp;
img7 = LLVMBuildExtractElement(builder, res,
LLVMConstInt(ctx->i32, 7, 0), "");
samp0 = LLVMBuildExtractElement(builder, samp,
LLVMConstInt(ctx->i32, 0, 0), "");
samp0 = LLVMBuildAnd(builder, samp0, img7, "");
return LLVMBuildInsertElement(builder, samp, samp0,
LLVMConstInt(ctx->i32, 0, 0), "");
}
static void tex_fetch_ptrs(struct nir_to_llvm_context *ctx,
nir_tex_instr *instr,
LLVMValueRef *res_ptr, LLVMValueRef *samp_ptr,
LLVMValueRef *fmask_ptr)
{
if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
*res_ptr = get_sampler_desc(ctx, instr->texture, DESC_BUFFER);
else
*res_ptr = get_sampler_desc(ctx, instr->texture, DESC_IMAGE);
if (samp_ptr) {
if (instr->sampler)
*samp_ptr = get_sampler_desc(ctx, instr->sampler, DESC_SAMPLER);
else
*samp_ptr = get_sampler_desc(ctx, instr->texture, DESC_SAMPLER);
if (instr->sampler_dim < GLSL_SAMPLER_DIM_RECT)
*samp_ptr = sici_fix_sampler_aniso(ctx, *res_ptr, *samp_ptr);
}
if (fmask_ptr && !instr->sampler && (instr->op == nir_texop_txf_ms ||
instr->op == nir_texop_samples_identical))
*fmask_ptr = get_sampler_desc(ctx, instr->texture, DESC_FMASK);
}
static LLVMValueRef apply_round_slice(struct nir_to_llvm_context *ctx,
LLVMValueRef coord)
{
coord = to_float(ctx, coord);
coord = ac_emit_llvm_intrinsic(&ctx->ac, "llvm.rint.f32", ctx->f32, &coord, 1, 0);
coord = to_integer(ctx, coord);
return coord;
}
static void visit_tex(struct nir_to_llvm_context *ctx, nir_tex_instr *instr)
{
LLVMValueRef result = NULL;
struct ac_tex_info tinfo = { 0 };
unsigned dmask = 0xf;
LLVMValueRef address[16];
LLVMValueRef coords[5];
LLVMValueRef coord = NULL, lod = NULL, comparator = NULL;
LLVMValueRef bias = NULL, offsets = NULL;
LLVMValueRef res_ptr, samp_ptr, fmask_ptr = NULL, sample_index = NULL;
LLVMValueRef ddx = NULL, ddy = NULL;
LLVMValueRef derivs[6];
unsigned chan, count = 0;
unsigned const_src = 0, num_deriv_comp = 0;
tex_fetch_ptrs(ctx, instr, &res_ptr, &samp_ptr, &fmask_ptr);
for (unsigned i = 0; i < instr->num_srcs; i++) {
switch (instr->src[i].src_type) {
case nir_tex_src_coord:
coord = get_src(ctx, instr->src[i].src);
break;
case nir_tex_src_projector:
break;
case nir_tex_src_comparator:
comparator = get_src(ctx, instr->src[i].src);
break;
case nir_tex_src_offset:
offsets = get_src(ctx, instr->src[i].src);
const_src = i;
break;
case nir_tex_src_bias:
bias = get_src(ctx, instr->src[i].src);
break;
case nir_tex_src_lod:
lod = get_src(ctx, instr->src[i].src);
break;
case nir_tex_src_ms_index:
sample_index = get_src(ctx, instr->src[i].src);
break;
case nir_tex_src_ms_mcs:
break;
case nir_tex_src_ddx:
ddx = get_src(ctx, instr->src[i].src);
num_deriv_comp = instr->src[i].src.ssa->num_components;
break;
case nir_tex_src_ddy:
ddy = get_src(ctx, instr->src[i].src);
break;
case nir_tex_src_texture_offset:
case nir_tex_src_sampler_offset:
case nir_tex_src_plane:
default:
break;
}
}
if (instr->op == nir_texop_txs && instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
result = get_buffer_size(ctx, res_ptr, false);
goto write_result;
}
if (instr->op == nir_texop_texture_samples) {
LLVMValueRef res, samples, is_msaa;
res = LLVMBuildBitCast(ctx->builder, res_ptr, ctx->v8i32, "");
samples = LLVMBuildExtractElement(ctx->builder, res,
LLVMConstInt(ctx->i32, 3, false), "");
is_msaa = LLVMBuildLShr(ctx->builder, samples,
LLVMConstInt(ctx->i32, 28, false), "");
is_msaa = LLVMBuildAnd(ctx->builder, is_msaa,
LLVMConstInt(ctx->i32, 0xe, false), "");
is_msaa = LLVMBuildICmp(ctx->builder, LLVMIntEQ, is_msaa,
LLVMConstInt(ctx->i32, 0xe, false), "");
samples = LLVMBuildLShr(ctx->builder, samples,
LLVMConstInt(ctx->i32, 16, false), "");
samples = LLVMBuildAnd(ctx->builder, samples,
LLVMConstInt(ctx->i32, 0xf, false), "");
samples = LLVMBuildShl(ctx->builder, ctx->i32one,
samples, "");
samples = LLVMBuildSelect(ctx->builder, is_msaa, samples,
ctx->i32one, "");
result = samples;
goto write_result;
}
if (coord)
for (chan = 0; chan < instr->coord_components; chan++)
coords[chan] = llvm_extract_elem(ctx, coord, chan);
if (offsets && instr->op != nir_texop_txf) {
LLVMValueRef offset[3], pack;
for (chan = 0; chan < 3; ++chan)
offset[chan] = ctx->i32zero;
tinfo.has_offset = true;
for (chan = 0; chan < get_llvm_num_components(offsets); chan++) {
offset[chan] = llvm_extract_elem(ctx, offsets, chan);
offset[chan] = LLVMBuildAnd(ctx->builder, offset[chan],
LLVMConstInt(ctx->i32, 0x3f, false), "");
if (chan)
offset[chan] = LLVMBuildShl(ctx->builder, offset[chan],
LLVMConstInt(ctx->i32, chan * 8, false), "");
}
pack = LLVMBuildOr(ctx->builder, offset[0], offset[1], "");
pack = LLVMBuildOr(ctx->builder, pack, offset[2], "");
address[count++] = pack;
}
/* pack LOD bias value */
if (instr->op == nir_texop_txb && bias) {
address[count++] = bias;
}
/* Pack depth comparison value */
if (instr->is_shadow && comparator) {
address[count++] = llvm_extract_elem(ctx, comparator, 0);
}
/* pack derivatives */
if (ddx || ddy) {
switch (instr->sampler_dim) {
case GLSL_SAMPLER_DIM_3D:
case GLSL_SAMPLER_DIM_CUBE:
num_deriv_comp = 3;
break;
case GLSL_SAMPLER_DIM_2D:
default:
num_deriv_comp = 2;
break;
case GLSL_SAMPLER_DIM_1D:
num_deriv_comp = 1;
break;
}
for (unsigned i = 0; i < num_deriv_comp; i++) {
derivs[i * 2] = to_float(ctx, llvm_extract_elem(ctx, ddx, i));
derivs[i * 2 + 1] = to_float(ctx, llvm_extract_elem(ctx, ddy, i));
}
}
if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE && coord) {
for (chan = 0; chan < instr->coord_components; chan++)
coords[chan] = to_float(ctx, coords[chan]);
if (instr->coord_components == 3)
coords[3] = LLVMGetUndef(ctx->f32);
ac_prepare_cube_coords(&ctx->ac,
instr->op == nir_texop_txd, instr->is_array,
coords, derivs);
if (num_deriv_comp)
num_deriv_comp--;
}
if (ddx || ddy) {
for (unsigned i = 0; i < num_deriv_comp * 2; i++)
address[count++] = derivs[i];
}
/* Pack texture coordinates */
if (coord) {
address[count++] = coords[0];
if (instr->coord_components > 1) {
if (instr->sampler_dim == GLSL_SAMPLER_DIM_1D && instr->is_array && instr->op != nir_texop_txf) {
coords[1] = apply_round_slice(ctx, coords[1]);
}
address[count++] = coords[1];
}
if (instr->coord_components > 2) {
/* This seems like a bit of a hack - but it passes Vulkan CTS with it */
if (instr->sampler_dim != GLSL_SAMPLER_DIM_3D && instr->op != nir_texop_txf) {
coords[2] = apply_round_slice(ctx, coords[2]);
}
address[count++] = coords[2];
}
}
/* Pack LOD */
if ((instr->op == nir_texop_txl || instr->op == nir_texop_txf) && lod) {
address[count++] = lod;
} else if (instr->op == nir_texop_txf_ms && sample_index) {
address[count++] = sample_index;
} else if(instr->op == nir_texop_txs) {
count = 0;
if (lod)
address[count++] = lod;
else
address[count++] = ctx->i32zero;
}
for (chan = 0; chan < count; chan++) {
address[chan] = LLVMBuildBitCast(ctx->builder,
address[chan], ctx->i32, "");
}
if (instr->op == nir_texop_samples_identical) {
LLVMValueRef txf_address[4];
struct ac_tex_info txf_info = { 0 };
unsigned txf_count = count;
memcpy(txf_address, address, sizeof(txf_address));
if (!instr->is_array)
txf_address[2] = ctx->i32zero;
txf_address[3] = ctx->i32zero;
set_tex_fetch_args(ctx, &txf_info, instr, nir_texop_txf,
fmask_ptr, NULL,
txf_address, txf_count, 0xf);
result = build_tex_intrinsic(ctx, instr, &txf_info);
result = LLVMBuildExtractElement(ctx->builder, result, ctx->i32zero, "");
result = emit_int_cmp(ctx, LLVMIntEQ, result, ctx->i32zero);
goto write_result;
}
/* Adjust the sample index according to FMASK.
*
* For uncompressed MSAA surfaces, FMASK should return 0x76543210,
* which is the identity mapping. Each nibble says which physical sample
* should be fetched to get that sample.
*
* For example, 0x11111100 means there are only 2 samples stored and
* the second sample covers 3/4 of the pixel. When reading samples 0
* and 1, return physical sample 0 (determined by the first two 0s
* in FMASK), otherwise return physical sample 1.
*
* The sample index should be adjusted as follows:
* sample_index = (fmask >> (sample_index * 4)) & 0xF;
*/
if (instr->sampler_dim == GLSL_SAMPLER_DIM_MS) {
LLVMValueRef txf_address[4];
struct ac_tex_info txf_info = { 0 };
unsigned txf_count = count;
memcpy(txf_address, address, sizeof(txf_address));
if (!instr->is_array)
txf_address[2] = ctx->i32zero;
txf_address[3] = ctx->i32zero;
set_tex_fetch_args(ctx, &txf_info, instr, nir_texop_txf,
fmask_ptr, NULL,
txf_address, txf_count, 0xf);
result = build_tex_intrinsic(ctx, instr, &txf_info);
LLVMValueRef four = LLVMConstInt(ctx->i32, 4, false);
LLVMValueRef F = LLVMConstInt(ctx->i32, 0xf, false);
LLVMValueRef fmask = LLVMBuildExtractElement(ctx->builder,
result,
ctx->i32zero, "");
unsigned sample_chan = instr->is_array ? 3 : 2;
LLVMValueRef sample_index4 =
LLVMBuildMul(ctx->builder, address[sample_chan], four, "");
LLVMValueRef shifted_fmask =
LLVMBuildLShr(ctx->builder, fmask, sample_index4, "");
LLVMValueRef final_sample =
LLVMBuildAnd(ctx->builder, shifted_fmask, F, "");
/* Don't rewrite the sample index if WORD1.DATA_FORMAT of the FMASK
* resource descriptor is 0 (invalid),
*/
LLVMValueRef fmask_desc =
LLVMBuildBitCast(ctx->builder, fmask_ptr,
ctx->v8i32, "");
LLVMValueRef fmask_word1 =
LLVMBuildExtractElement(ctx->builder, fmask_desc,
ctx->i32one, "");
LLVMValueRef word1_is_nonzero =
LLVMBuildICmp(ctx->builder, LLVMIntNE,
fmask_word1, ctx->i32zero, "");
/* Replace the MSAA sample index. */
address[sample_chan] =
LLVMBuildSelect(ctx->builder, word1_is_nonzero,
final_sample, address[sample_chan], "");
}
if (offsets && instr->op == nir_texop_txf) {
nir_const_value *const_offset =
nir_src_as_const_value(instr->src[const_src].src);
int num_offsets = instr->src[const_src].src.ssa->num_components;
assert(const_offset);
num_offsets = MIN2(num_offsets, instr->coord_components);
if (num_offsets > 2)
address[2] = LLVMBuildAdd(ctx->builder,
address[2], LLVMConstInt(ctx->i32, const_offset->i32[2], false), "");
if (num_offsets > 1)
address[1] = LLVMBuildAdd(ctx->builder,
address[1], LLVMConstInt(ctx->i32, const_offset->i32[1], false), "");
address[0] = LLVMBuildAdd(ctx->builder,
address[0], LLVMConstInt(ctx->i32, const_offset->i32[0], false), "");
}
/* TODO TG4 support */
if (instr->op == nir_texop_tg4) {
if (instr->is_shadow)
dmask = 1;
else
dmask = 1 << instr->component;
}
set_tex_fetch_args(ctx, &tinfo, instr, instr->op,
res_ptr, samp_ptr, address, count, dmask);
result = build_tex_intrinsic(ctx, instr, &tinfo);
if (instr->op == nir_texop_query_levels)
result = LLVMBuildExtractElement(ctx->builder, result, LLVMConstInt(ctx->i32, 3, false), "");
else if (instr->is_shadow && instr->op != nir_texop_txs && instr->op != nir_texop_lod && instr->op != nir_texop_tg4)
result = LLVMBuildExtractElement(ctx->builder, result, ctx->i32zero, "");
else if (instr->op == nir_texop_txs &&
instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
instr->is_array) {
LLVMValueRef two = LLVMConstInt(ctx->i32, 2, false);
LLVMValueRef six = LLVMConstInt(ctx->i32, 6, false);
LLVMValueRef z = LLVMBuildExtractElement(ctx->builder, result, two, "");
z = LLVMBuildSDiv(ctx->builder, z, six, "");
result = LLVMBuildInsertElement(ctx->builder, result, z, two, "");
} else if (instr->dest.ssa.num_components != 4)
result = trim_vector(ctx, result, instr->dest.ssa.num_components);
write_result:
if (result) {
assert(instr->dest.is_ssa);
result = to_integer(ctx, result);
_mesa_hash_table_insert(ctx->defs, &instr->dest.ssa, result);
}
}
static void visit_phi(struct nir_to_llvm_context *ctx, nir_phi_instr *instr)
{
LLVMTypeRef type = get_def_type(ctx, &instr->dest.ssa);
LLVMValueRef result = LLVMBuildPhi(ctx->builder, type, "");
_mesa_hash_table_insert(ctx->defs, &instr->dest.ssa, result);
_mesa_hash_table_insert(ctx->phis, instr, result);
}
static void visit_post_phi(struct nir_to_llvm_context *ctx,
nir_phi_instr *instr,
LLVMValueRef llvm_phi)
{
nir_foreach_phi_src(src, instr) {
LLVMBasicBlockRef block = get_block(ctx, src->pred);
LLVMValueRef llvm_src = get_src(ctx, src->src);
LLVMAddIncoming(llvm_phi, &llvm_src, &block, 1);
}
}
static void phi_post_pass(struct nir_to_llvm_context *ctx)
{
struct hash_entry *entry;
hash_table_foreach(ctx->phis, entry) {
visit_post_phi(ctx, (nir_phi_instr*)entry->key,
(LLVMValueRef)entry->data);
}
}
static void visit_ssa_undef(struct nir_to_llvm_context *ctx,
nir_ssa_undef_instr *instr)
{
unsigned num_components = instr->def.num_components;
LLVMValueRef undef;
if (num_components == 1)
undef = LLVMGetUndef(ctx->i32);
else {
undef = LLVMGetUndef(LLVMVectorType(ctx->i32, num_components));
}
_mesa_hash_table_insert(ctx->defs, &instr->def, undef);
}
static void visit_jump(struct nir_to_llvm_context *ctx,
nir_jump_instr *instr)
{
switch (instr->type) {
case nir_jump_break:
LLVMBuildBr(ctx->builder, ctx->break_block);
LLVMClearInsertionPosition(ctx->builder);
break;
case nir_jump_continue:
LLVMBuildBr(ctx->builder, ctx->continue_block);
LLVMClearInsertionPosition(ctx->builder);
break;
default:
fprintf(stderr, "Unknown NIR jump instr: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
abort();
}
}
static void visit_cf_list(struct nir_to_llvm_context *ctx,
struct exec_list *list);
static void visit_block(struct nir_to_llvm_context *ctx, nir_block *block)
{
LLVMBasicBlockRef llvm_block = LLVMGetInsertBlock(ctx->builder);
nir_foreach_instr(instr, block)
{
switch (instr->type) {
case nir_instr_type_alu:
visit_alu(ctx, nir_instr_as_alu(instr));
break;
case nir_instr_type_load_const:
visit_load_const(ctx, nir_instr_as_load_const(instr));
break;
case nir_instr_type_intrinsic:
visit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
break;
case nir_instr_type_tex:
visit_tex(ctx, nir_instr_as_tex(instr));
break;
case nir_instr_type_phi:
visit_phi(ctx, nir_instr_as_phi(instr));
break;
case nir_instr_type_ssa_undef:
visit_ssa_undef(ctx, nir_instr_as_ssa_undef(instr));
break;
case nir_instr_type_jump:
visit_jump(ctx, nir_instr_as_jump(instr));
break;
default:
fprintf(stderr, "Unknown NIR instr type: ");
nir_print_instr(instr, stderr);
fprintf(stderr, "\n");
abort();
}
}
_mesa_hash_table_insert(ctx->defs, block, llvm_block);
}
static void visit_if(struct nir_to_llvm_context *ctx, nir_if *if_stmt)
{
LLVMValueRef value = get_src(ctx, if_stmt->condition);
LLVMBasicBlockRef merge_block =
LLVMAppendBasicBlockInContext(ctx->context, ctx->main_function, "");
LLVMBasicBlockRef if_block =
LLVMAppendBasicBlockInContext(ctx->context, ctx->main_function, "");
LLVMBasicBlockRef else_block = merge_block;
if (!exec_list_is_empty(&if_stmt->else_list))
else_block = LLVMAppendBasicBlockInContext(
ctx->context, ctx->main_function, "");
LLVMValueRef cond = LLVMBuildICmp(ctx->builder, LLVMIntNE, value,
LLVMConstInt(ctx->i32, 0, false), "");
LLVMBuildCondBr(ctx->builder, cond, if_block, else_block);
LLVMPositionBuilderAtEnd(ctx->builder, if_block);
visit_cf_list(ctx, &if_stmt->then_list);
if (LLVMGetInsertBlock(ctx->builder))
LLVMBuildBr(ctx->builder, merge_block);
if (!exec_list_is_empty(&if_stmt->else_list)) {
LLVMPositionBuilderAtEnd(ctx->builder, else_block);
visit_cf_list(ctx, &if_stmt->else_list);
if (LLVMGetInsertBlock(ctx->builder))
LLVMBuildBr(ctx->builder, merge_block);
}
LLVMPositionBuilderAtEnd(ctx->builder, merge_block);
}
static void visit_loop(struct nir_to_llvm_context *ctx, nir_loop *loop)
{
LLVMBasicBlockRef continue_parent = ctx->continue_block;
LLVMBasicBlockRef break_parent = ctx->break_block;
ctx->continue_block =
LLVMAppendBasicBlockInContext(ctx->context, ctx->main_function, "");
ctx->break_block =
LLVMAppendBasicBlockInContext(ctx->context, ctx->main_function, "");
LLVMBuildBr(ctx->builder, ctx->continue_block);
LLVMPositionBuilderAtEnd(ctx->builder, ctx->continue_block);
visit_cf_list(ctx, &loop->body);
if (LLVMGetInsertBlock(ctx->builder))
LLVMBuildBr(ctx->builder, ctx->continue_block);
LLVMPositionBuilderAtEnd(ctx->builder, ctx->break_block);
ctx->continue_block = continue_parent;
ctx->break_block = break_parent;
}
static void visit_cf_list(struct nir_to_llvm_context *ctx,
struct exec_list *list)
{
foreach_list_typed(nir_cf_node, node, node, list)
{
switch (node->type) {
case nir_cf_node_block:
visit_block(ctx, nir_cf_node_as_block(node));
break;
case nir_cf_node_if:
visit_if(ctx, nir_cf_node_as_if(node));
break;
case nir_cf_node_loop:
visit_loop(ctx, nir_cf_node_as_loop(node));
break;
default:
assert(0);
}
}
}
static void
handle_vs_input_decl(struct nir_to_llvm_context *ctx,
struct nir_variable *variable)
{
LLVMValueRef t_list_ptr = ctx->vertex_buffers;
LLVMValueRef t_offset;
LLVMValueRef t_list;
LLVMValueRef args[3];
LLVMValueRef input;
LLVMValueRef buffer_index;
int index = variable->data.location - VERT_ATTRIB_GENERIC0;
int idx = variable->data.location;
unsigned attrib_count = glsl_count_attribute_slots(variable->type, true);
variable->data.driver_location = idx * 4;
if (ctx->options->key.vs.instance_rate_inputs & (1u << index)) {
buffer_index = LLVMBuildAdd(ctx->builder, ctx->instance_id,
ctx->start_instance, "");
ctx->shader_info->vs.vgpr_comp_cnt = MAX2(3,
ctx->shader_info->vs.vgpr_comp_cnt);
} else
buffer_index = LLVMBuildAdd(ctx->builder, ctx->vertex_id,
ctx->base_vertex, "");
for (unsigned i = 0; i < attrib_count; ++i, ++idx) {
t_offset = LLVMConstInt(ctx->i32, index + i, false);
t_list = build_indexed_load_const(ctx, t_list_ptr, t_offset);
args[0] = t_list;
args[1] = LLVMConstInt(ctx->i32, 0, false);
args[2] = buffer_index;
input = ac_emit_llvm_intrinsic(&ctx->ac,
"llvm.SI.vs.load.input", ctx->v4f32, args, 3,
AC_FUNC_ATTR_READNONE | AC_FUNC_ATTR_NOUNWIND);
for (unsigned chan = 0; chan < 4; chan++) {
LLVMValueRef llvm_chan = LLVMConstInt(ctx->i32, chan, false);
ctx->inputs[radeon_llvm_reg_index_soa(idx, chan)] =
to_integer(ctx, LLVMBuildExtractElement(ctx->builder,
input, llvm_chan, ""));
}
}
}
static void interp_fs_input(struct nir_to_llvm_context *ctx,
unsigned attr,
LLVMValueRef interp_param,
LLVMValueRef prim_mask,
LLVMValueRef result[4])
{
const char *intr_name;
LLVMValueRef attr_number;
unsigned chan;
attr_number = LLVMConstInt(ctx->i32, attr, false);
/* fs.constant returns the param from the middle vertex, so it's not
* really useful for flat shading. It's meant to be used for custom
* interpolation (but the intrinsic can't fetch from the other two
* vertices).
*
* Luckily, it doesn't matter, because we rely on the FLAT_SHADE state
* to do the right thing. The only reason we use fs.constant is that
* fs.interp cannot be used on integers, because they can be equal
* to NaN.
*/
intr_name = interp_param ? "llvm.SI.fs.interp" : "llvm.SI.fs.constant";
for (chan = 0; chan < 4; chan++) {
LLVMValueRef args[4];
LLVMValueRef llvm_chan = LLVMConstInt(ctx->i32, chan, false);
args[0] = llvm_chan;
args[1] = attr_number;
args[2] = prim_mask;
args[3] = interp_param;
result[chan] = ac_emit_llvm_intrinsic(&ctx->ac, intr_name,
ctx->f32, args, args[3] ? 4 : 3,
AC_FUNC_ATTR_READNONE | AC_FUNC_ATTR_NOUNWIND);
}
}
static void
handle_fs_input_decl(struct nir_to_llvm_context *ctx,
struct nir_variable *variable)
{
int idx = variable->data.location;
unsigned attrib_count = glsl_count_attribute_slots(variable->type, false);
LLVMValueRef interp;
variable->data.driver_location = idx * 4;
ctx->input_mask |= ((1ull << attrib_count) - 1) << variable->data.location;
if (glsl_get_base_type(glsl_without_array(variable->type)) == GLSL_TYPE_FLOAT) {
unsigned interp_type;
if (variable->data.sample) {
interp_type = INTERP_SAMPLE;
ctx->shader_info->fs.force_persample = true;
} else if (variable->data.centroid)
interp_type = INTERP_CENTROID;
else
interp_type = INTERP_CENTER;
interp = lookup_interp_param(ctx, variable->data.interpolation, interp_type);
} else
interp = NULL;
for (unsigned i = 0; i < attrib_count; ++i)
ctx->inputs[radeon_llvm_reg_index_soa(idx + i, 0)] = interp;
}
static void
handle_shader_input_decl(struct nir_to_llvm_context *ctx,
struct nir_variable *variable)
{
switch (ctx->stage) {
case MESA_SHADER_VERTEX:
handle_vs_input_decl(ctx, variable);
break;
case MESA_SHADER_FRAGMENT:
handle_fs_input_decl(ctx, variable);
break;
default:
break;
}
}
static void
handle_fs_inputs_pre(struct nir_to_llvm_context *ctx,
struct nir_shader *nir)
{
unsigned index = 0;
for (unsigned i = 0; i < RADEON_LLVM_MAX_INPUTS; ++i) {
LLVMValueRef interp_param;
LLVMValueRef *inputs = ctx->inputs +radeon_llvm_reg_index_soa(i, 0);
if (!(ctx->input_mask & (1ull << i)))
continue;
if (i >= VARYING_SLOT_VAR0 || i == VARYING_SLOT_PNTC) {
interp_param = *inputs;
interp_fs_input(ctx, index, interp_param, ctx->prim_mask,
inputs);
if (!interp_param)
ctx->shader_info->fs.flat_shaded_mask |= 1u << index;
++index;
} else if (i == VARYING_SLOT_POS) {
for(int i = 0; i < 3; ++i)
inputs[i] = ctx->frag_pos[i];
inputs[3] = ac_emit_fdiv(&ctx->ac, ctx->f32one, ctx->frag_pos[3]);
}
}
ctx->shader_info->fs.num_interp = index;
if (ctx->input_mask & (1 << VARYING_SLOT_PNTC))
ctx->shader_info->fs.has_pcoord = true;
ctx->shader_info->fs.input_mask = ctx->input_mask >> VARYING_SLOT_VAR0;
}
static LLVMValueRef
ac_build_alloca(struct nir_to_llvm_context *ctx,
LLVMTypeRef type,
const char *name)
{
LLVMBuilderRef builder = ctx->builder;
LLVMBasicBlockRef current_block = LLVMGetInsertBlock(builder);
LLVMValueRef function = LLVMGetBasicBlockParent(current_block);
LLVMBasicBlockRef first_block = LLVMGetEntryBasicBlock(function);
LLVMValueRef first_instr = LLVMGetFirstInstruction(first_block);
LLVMBuilderRef first_builder = LLVMCreateBuilderInContext(ctx->context);
LLVMValueRef res;
if (first_instr) {
LLVMPositionBuilderBefore(first_builder, first_instr);
} else {
LLVMPositionBuilderAtEnd(first_builder, first_block);
}
res = LLVMBuildAlloca(first_builder, type, name);
LLVMBuildStore(builder, LLVMConstNull(type), res);
LLVMDisposeBuilder(first_builder);
return res;
}
static LLVMValueRef si_build_alloca_undef(struct nir_to_llvm_context *ctx,
LLVMTypeRef type,
const char *name)
{
LLVMValueRef ptr = ac_build_alloca(ctx, type, name);
LLVMBuildStore(ctx->builder, LLVMGetUndef(type), ptr);
return ptr;
}
static void
handle_shader_output_decl(struct nir_to_llvm_context *ctx,
struct nir_variable *variable)
{
int idx = variable->data.location + variable->data.index;
unsigned attrib_count = glsl_count_attribute_slots(variable->type, false);
variable->data.driver_location = idx * 4;
if (ctx->stage == MESA_SHADER_VERTEX) {
if (idx == VARYING_SLOT_CLIP_DIST0 ||
idx == VARYING_SLOT_CULL_DIST0) {
int length = glsl_get_length(variable->type);
if (idx == VARYING_SLOT_CLIP_DIST0) {
ctx->shader_info->vs.clip_dist_mask = (1 << length) - 1;
ctx->num_clips = length;
} else if (idx == VARYING_SLOT_CULL_DIST0) {
ctx->shader_info->vs.cull_dist_mask = (1 << length) - 1;
ctx->num_culls = length;
}
if (length > 4)
attrib_count = 2;
else
attrib_count = 1;
}
}
for (unsigned i = 0; i < attrib_count; ++i) {
for (unsigned chan = 0; chan < 4; chan++) {
ctx->outputs[radeon_llvm_reg_index_soa(idx + i, chan)] =
si_build_alloca_undef(ctx, ctx->f32, "");
}
}
ctx->output_mask |= ((1ull << attrib_count) - 1) << idx;
}
static void
setup_locals(struct nir_to_llvm_context *ctx,
struct nir_function *func)
{
int i, j;
ctx->num_locals = 0;
nir_foreach_variable(variable, &func->impl->locals) {
unsigned attrib_count = glsl_count_attribute_slots(variable->type, false);
variable->data.driver_location = ctx->num_locals * 4;
ctx->num_locals += attrib_count;
}
ctx->locals = malloc(4 * ctx->num_locals * sizeof(LLVMValueRef));
if (!ctx->locals)
return;
for (i = 0; i < ctx->num_locals; i++) {
for (j = 0; j < 4; j++) {
ctx->locals[i * 4 + j] =
si_build_alloca_undef(ctx, ctx->f32, "temp");
}
}
}
static LLVMValueRef
emit_float_saturate(struct nir_to_llvm_context *ctx, LLVMValueRef v, float lo, float hi)
{
v = to_float(ctx, v);
v = emit_intrin_2f_param(ctx, "llvm.maxnum.f32", v, LLVMConstReal(ctx->f32, lo));
return emit_intrin_2f_param(ctx, "llvm.minnum.f32", v, LLVMConstReal(ctx->f32, hi));
}
static LLVMValueRef emit_pack_int16(struct nir_to_llvm_context *ctx,
LLVMValueRef src0, LLVMValueRef src1)
{
LLVMValueRef const16 = LLVMConstInt(ctx->i32, 16, false);
LLVMValueRef comp[2];
comp[0] = LLVMBuildAnd(ctx->builder, src0, LLVMConstInt(ctx-> i32, 65535, 0), "");
comp[1] = LLVMBuildAnd(ctx->builder, src1, LLVMConstInt(ctx-> i32, 65535, 0), "");
comp[1] = LLVMBuildShl(ctx->builder, comp[1], const16, "");
return LLVMBuildOr(ctx->builder, comp[0], comp[1], "");
}
/* Initialize arguments for the shader export intrinsic */
static void
si_llvm_init_export_args(struct nir_to_llvm_context *ctx,
LLVMValueRef *values,
unsigned target,
LLVMValueRef *args)
{
/* Default is 0xf. Adjusted below depending on the format. */
args[0] = LLVMConstInt(ctx->i32, target != V_008DFC_SQ_EXP_NULL ? 0xf : 0, false);
/* Specify whether the EXEC mask represents the valid mask */
args[1] = LLVMConstInt(ctx->i32, 0, false);
/* Specify whether this is the last export */
args[2] = LLVMConstInt(ctx->i32, 0, false);
/* Specify the target we are exporting */
args[3] = LLVMConstInt(ctx->i32, target, false);
args[4] = LLVMConstInt(ctx->i32, 0, false); /* COMPR flag */
args[5] = LLVMGetUndef(ctx->f32);
args[6] = LLVMGetUndef(ctx->f32);
args[7] = LLVMGetUndef(ctx->f32);
args[8] = LLVMGetUndef(ctx->f32);
if (!values)
return;
if (ctx->stage == MESA_SHADER_FRAGMENT && target >= V_008DFC_SQ_EXP_MRT) {
LLVMValueRef val[4];
unsigned index = target - V_008DFC_SQ_EXP_MRT;
unsigned col_format = (ctx->options->key.fs.col_format >> (4 * index)) & 0xf;
bool is_int8 = (ctx->options->key.fs.is_int8 >> index) & 1;
switch(col_format) {
case V_028714_SPI_SHADER_ZERO:
args[0] = LLVMConstInt(ctx->i32, 0x0, 0);
args[3] = LLVMConstInt(ctx->i32, V_008DFC_SQ_EXP_NULL, 0);
break;
case V_028714_SPI_SHADER_32_R:
args[0] = LLVMConstInt(ctx->i32, 0x1, 0);
args[5] = values[0];
break;
case V_028714_SPI_SHADER_32_GR:
args[0] = LLVMConstInt(ctx->i32, 0x3, 0);
args[5] = values[0];
args[6] = values[1];
break;
case V_028714_SPI_SHADER_32_AR:
args[0] = LLVMConstInt(ctx->i32, 0x9, 0);
args[5] = values[0];
args[8] = values[3];
break;
case V_028714_SPI_SHADER_FP16_ABGR:
args[4] = ctx->i32one;
for (unsigned chan = 0; chan < 2; chan++) {
LLVMValueRef pack_args[2] = {
values[2 * chan],
values[2 * chan + 1]
};
LLVMValueRef packed;
packed = ac_emit_llvm_intrinsic(&ctx->ac, "llvm.SI.packf16",
ctx->i32, pack_args, 2,
AC_FUNC_ATTR_READNONE);
args[chan + 5] = packed;
}
break;
case V_028714_SPI_SHADER_UNORM16_ABGR:
for (unsigned chan = 0; chan < 4; chan++) {
val[chan] = emit_float_saturate(ctx, values[chan], 0, 1);
val[chan] = LLVMBuildFMul(ctx->builder, val[chan],
LLVMConstReal(ctx->f32, 65535), "");
val[chan] = LLVMBuildFAdd(ctx->builder, val[chan],
LLVMConstReal(ctx->f32, 0.5), "");
val[chan] = LLVMBuildFPToUI(ctx->builder, val[chan],
ctx->i32, "");
}
args[4] = ctx->i32one;
args[5] = emit_pack_int16(ctx, val[0], val[1]);
args[6] = emit_pack_int16(ctx, val[2], val[3]);
break;
case V_028714_SPI_SHADER_SNORM16_ABGR:
for (unsigned chan = 0; chan < 4; chan++) {
val[chan] = emit_float_saturate(ctx, values[chan], -1, 1);
val[chan] = LLVMBuildFMul(ctx->builder, val[chan],
LLVMConstReal(ctx->f32, 32767), "");
/* If positive, add 0.5, else add -0.5. */
val[chan] = LLVMBuildFAdd(ctx->builder, val[chan],
LLVMBuildSelect(ctx->builder,
LLVMBuildFCmp(ctx->builder, LLVMRealOGE,
val[chan], ctx->f32zero, ""),
LLVMConstReal(ctx->f32, 0.5),
LLVMConstReal(ctx->f32, -0.5), ""), "");
val[chan] = LLVMBuildFPToSI(ctx->builder, val[chan], ctx->i32, "");
}
args[4] = ctx->i32one;
args[5] = emit_pack_int16(ctx, val[0], val[1]);
args[6] = emit_pack_int16(ctx, val[2], val[3]);
break;
case V_028714_SPI_SHADER_UINT16_ABGR: {
LLVMValueRef max = LLVMConstInt(ctx->i32, is_int8 ? 255 : 65535, 0);
for (unsigned chan = 0; chan < 4; chan++) {
val[chan] = to_integer(ctx, values[chan]);
val[chan] = emit_minmax_int(ctx, LLVMIntULT, val[chan], max);
}
args[4] = ctx->i32one;
args[5] = emit_pack_int16(ctx, val[0], val[1]);
args[6] = emit_pack_int16(ctx, val[2], val[3]);
break;
}
case V_028714_SPI_SHADER_SINT16_ABGR: {
LLVMValueRef max = LLVMConstInt(ctx->i32, is_int8 ? 127 : 32767, 0);
LLVMValueRef min = LLVMConstInt(ctx->i32, is_int8 ? -128 : -32768, 0);
/* Clamp. */
for (unsigned chan = 0; chan < 4; chan++) {
val[chan] = to_integer(ctx, values[chan]);
val[chan] = emit_minmax_int(ctx, LLVMIntSLT, val[chan], max);
val[chan] = emit_minmax_int(ctx, LLVMIntSGT, val[chan], min);
}
args[4] = ctx->i32one;
args[5] = emit_pack_int16(ctx, val[0], val[1]);
args[6] = emit_pack_int16(ctx, val[2], val[3]);
break;
}
default:
case V_028714_SPI_SHADER_32_ABGR:
memcpy(&args[5], values, sizeof(values[0]) * 4);
break;
}
} else
memcpy(&args[5], values, sizeof(values[0]) * 4);
for (unsigned i = 5; i < 9; ++i)
args[i] = to_float(ctx, args[i]);
}
static void
handle_vs_outputs_post(struct nir_to_llvm_context *ctx)
{
uint32_t param_count = 0;
unsigned target;
unsigned pos_idx, num_pos_exports = 0;
LLVMValueRef args[9];
LLVMValueRef pos_args[4][9] = { { 0 } };
LLVMValueRef psize_value = NULL, layer_value = NULL, viewport_index_value = NULL;
int i;
const uint64_t clip_mask = ctx->output_mask & ((1ull << VARYING_SLOT_CLIP_DIST0) |
(1ull << VARYING_SLOT_CLIP_DIST1) |
(1ull << VARYING_SLOT_CULL_DIST0) |
(1ull << VARYING_SLOT_CULL_DIST1));
if (clip_mask) {
LLVMValueRef slots[8];
unsigned j;
if (ctx->shader_info->vs.cull_dist_mask)
ctx->shader_info->vs.cull_dist_mask <<= ctx->num_clips;
i = VARYING_SLOT_CLIP_DIST0;
for (j = 0; j < ctx->num_clips; j++)
slots[j] = to_float(ctx, LLVMBuildLoad(ctx->builder,
ctx->outputs[radeon_llvm_reg_index_soa(i, j)], ""));
i = VARYING_SLOT_CULL_DIST0;
for (j = 0; j < ctx->num_culls; j++)
slots[ctx->num_clips + j] = to_float(ctx, LLVMBuildLoad(ctx->builder,
ctx->outputs[radeon_llvm_reg_index_soa(i, j)], ""));
for (i = ctx->num_clips + ctx->num_culls; i < 8; i++)
slots[i] = LLVMGetUndef(ctx->f32);
if (ctx->num_clips + ctx->num_culls > 4) {
target = V_008DFC_SQ_EXP_POS + 3;
si_llvm_init_export_args(ctx, &slots[4], target, args);
memcpy(pos_args[target - V_008DFC_SQ_EXP_POS],
args, sizeof(args));
}
target = V_008DFC_SQ_EXP_POS + 2;
si_llvm_init_export_args(ctx, &slots[0], target, args);
memcpy(pos_args[target - V_008DFC_SQ_EXP_POS],
args, sizeof(args));
}
for (unsigned i = 0; i < RADEON_LLVM_MAX_OUTPUTS; ++i) {
LLVMValueRef values[4];
if (!(ctx->output_mask & (1ull << i)))
continue;
for (unsigned j = 0; j < 4; j++)
values[j] = to_float(ctx, LLVMBuildLoad(ctx->builder,
ctx->outputs[radeon_llvm_reg_index_soa(i, j)], ""));
if (i == VARYING_SLOT_POS) {
target = V_008DFC_SQ_EXP_POS;
} else if (i == VARYING_SLOT_CLIP_DIST0 ||
i == VARYING_SLOT_CLIP_DIST1 ||
i == VARYING_SLOT_CULL_DIST0 ||
i == VARYING_SLOT_CULL_DIST1) {
continue;
} else if (i == VARYING_SLOT_PSIZ) {
ctx->shader_info->vs.writes_pointsize = true;
psize_value = values[0];
continue;
} else if (i == VARYING_SLOT_LAYER) {
ctx->shader_info->vs.writes_layer = true;
layer_value = values[0];
continue;
} else if (i == VARYING_SLOT_VIEWPORT) {
ctx->shader_info->vs.writes_viewport_index = true;
viewport_index_value = values[0];
continue;
} else if (i >= VARYING_SLOT_VAR0) {
ctx->shader_info->vs.export_mask |= 1u << (i - VARYING_SLOT_VAR0);
target = V_008DFC_SQ_EXP_PARAM + param_count;
param_count++;
}
si_llvm_init_export_args(ctx, values, target, args);
if (target >= V_008DFC_SQ_EXP_POS &&
target <= (V_008DFC_SQ_EXP_POS + 3)) {
memcpy(pos_args[target - V_008DFC_SQ_EXP_POS],
args, sizeof(args));
} else {
ac_emit_llvm_intrinsic(&ctx->ac,
"llvm.SI.export",
ctx->voidt,
args, 9, 0);
}
}
/* We need to add the position output manually if it's missing. */
if (!pos_args[0][0]) {
pos_args[0][0] = LLVMConstInt(ctx->i32, 0xf, false);
pos_args[0][1] = ctx->i32zero; /* EXEC mask */
pos_args[0][2] = ctx->i32zero; /* last export? */
pos_args[0][3] = LLVMConstInt(ctx->i32, V_008DFC_SQ_EXP_POS, false);
pos_args[0][4] = ctx->i32zero; /* COMPR flag */
pos_args[0][5] = ctx->f32zero; /* X */
pos_args[0][6] = ctx->f32zero; /* Y */
pos_args[0][7] = ctx->f32zero; /* Z */
pos_args[0][8] = ctx->f32one; /* W */
}
uint32_t mask = ((ctx->shader_info->vs.writes_pointsize == true ? 1 : 0) |
(ctx->shader_info->vs.writes_layer == true ? 4 : 0) |
(ctx->shader_info->vs.writes_viewport_index == true ? 8 : 0));
if (mask) {
pos_args[1][0] = LLVMConstInt(ctx->i32, mask, false); /* writemask */
pos_args[1][1] = ctx->i32zero; /* EXEC mask */
pos_args[1][2] = ctx->i32zero; /* last export? */
pos_args[1][3] = LLVMConstInt(ctx->i32, V_008DFC_SQ_EXP_POS + 1, false);
pos_args[1][4] = ctx->i32zero; /* COMPR flag */
pos_args[1][5] = ctx->f32zero; /* X */
pos_args[1][6] = ctx->f32zero; /* Y */
pos_args[1][7] = ctx->f32zero; /* Z */
pos_args[1][8] = ctx->f32zero; /* W */
if (ctx->shader_info->vs.writes_pointsize == true)
pos_args[1][5] = psize_value;
if (ctx->shader_info->vs.writes_layer == true)
pos_args[1][7] = layer_value;
if (ctx->shader_info->vs.writes_viewport_index == true)
pos_args[1][8] = viewport_index_value;
}
for (i = 0; i < 4; i++) {
if (pos_args[i][0])
num_pos_exports++;
}
pos_idx = 0;
for (i = 0; i < 4; i++) {
if (!pos_args[i][0])
continue;
/* Specify the target we are exporting */
pos_args[i][3] = LLVMConstInt(ctx->i32, V_008DFC_SQ_EXP_POS + pos_idx++, false);
if (pos_idx == num_pos_exports)
pos_args[i][2] = ctx->i32one;
ac_emit_llvm_intrinsic(&ctx->ac,
"llvm.SI.export",
ctx->voidt,
pos_args[i], 9, 0);
}
ctx->shader_info->vs.pos_exports = num_pos_exports;
ctx->shader_info->vs.param_exports = param_count;
}
static void
si_export_mrt_color(struct nir_to_llvm_context *ctx,
LLVMValueRef *color, unsigned param, bool is_last)
{
LLVMValueRef args[9];
/* Export */
si_llvm_init_export_args(ctx, color, param,
args);
if (is_last) {
args[1] = ctx->i32one; /* whether the EXEC mask is valid */
args[2] = ctx->i32one; /* DONE bit */
} else if (args[0] == ctx->i32zero)
return; /* unnecessary NULL export */
ac_emit_llvm_intrinsic(&ctx->ac, "llvm.SI.export",
ctx->voidt, args, 9, 0);
}
static void
si_export_mrt_z(struct nir_to_llvm_context *ctx,
LLVMValueRef depth, LLVMValueRef stencil,
LLVMValueRef samplemask)
{
LLVMValueRef args[9];
unsigned mask = 0;
args[1] = ctx->i32one; /* whether the EXEC mask is valid */
args[2] = ctx->i32one; /* DONE bit */
/* Specify the target we are exporting */
args[3] = LLVMConstInt(ctx->i32, V_008DFC_SQ_EXP_MRTZ, false);
args[4] = ctx->i32zero; /* COMP flag */
args[5] = LLVMGetUndef(ctx->f32); /* R, depth */
args[6] = LLVMGetUndef(ctx->f32); /* G, stencil test val[0:7], stencil op val[8:15] */
args[7] = LLVMGetUndef(ctx->f32); /* B, sample mask */
args[8] = LLVMGetUndef(ctx->f32); /* A, alpha to mask */
if (depth) {
args[5] = depth;
mask |= 0x1;
}
if (stencil) {
args[6] = stencil;
mask |= 0x2;
}
if (samplemask) {
args[7] = samplemask;
mask |= 0x04;
}
/* SI (except OLAND) has a bug that it only looks
* at the X writemask component. */
if (ctx->options->chip_class == SI &&
ctx->options->family != CHIP_OLAND)
mask |= 0x01;
args[0] = LLVMConstInt(ctx->i32, mask, false);
ac_emit_llvm_intrinsic(&ctx->ac, "llvm.SI.export",
ctx->voidt, args, 9, 0);
}
static void
handle_fs_outputs_post(struct nir_to_llvm_context *ctx)
{
unsigned index = 0;
LLVMValueRef depth = NULL, stencil = NULL, samplemask = NULL;
for (unsigned i = 0; i < RADEON_LLVM_MAX_OUTPUTS; ++i) {
LLVMValueRef values[4];
if (!(ctx->output_mask & (1ull << i)))
continue;
if (i == FRAG_RESULT_DEPTH) {
ctx->shader_info->fs.writes_z = true;
depth = to_float(ctx, LLVMBuildLoad(ctx->builder,
ctx->outputs[radeon_llvm_reg_index_soa(i, 0)], ""));
} else if (i == FRAG_RESULT_STENCIL) {
ctx->shader_info->fs.writes_stencil = true;
stencil = to_float(ctx, LLVMBuildLoad(ctx->builder,
ctx->outputs[radeon_llvm_reg_index_soa(i, 0)], ""));
} else {
bool last = false;
for (unsigned j = 0; j < 4; j++)
values[j] = to_float(ctx, LLVMBuildLoad(ctx->builder,
ctx->outputs[radeon_llvm_reg_index_soa(i, j)], ""));
if (!ctx->shader_info->fs.writes_z && !ctx->shader_info->fs.writes_stencil)
last = ctx->output_mask <= ((1ull << (i + 1)) - 1);
si_export_mrt_color(ctx, values, V_008DFC_SQ_EXP_MRT + index, last);
index++;
}
}
if (depth || stencil)
si_export_mrt_z(ctx, depth, stencil, samplemask);
else if (!index)
si_export_mrt_color(ctx, NULL, V_008DFC_SQ_EXP_NULL, true);
ctx->shader_info->fs.output_mask = index ? ((1ull << index) - 1) : 0;
}
static void
handle_shader_outputs_post(struct nir_to_llvm_context *ctx)
{
switch (ctx->stage) {
case MESA_SHADER_VERTEX:
handle_vs_outputs_post(ctx);
break;
case MESA_SHADER_FRAGMENT:
handle_fs_outputs_post(ctx);
break;
default:
break;
}
}
static void
handle_shared_compute_var(struct nir_to_llvm_context *ctx,
struct nir_variable *variable, uint32_t *offset, int idx)
{
unsigned size = glsl_count_attribute_slots(variable->type, false);
variable->data.driver_location = *offset;
*offset += size;
}
static void ac_llvm_finalize_module(struct nir_to_llvm_context * ctx)
{
LLVMPassManagerRef passmgr;
/* Create the pass manager */
passmgr = LLVMCreateFunctionPassManagerForModule(
ctx->module);
/* This pass should eliminate all the load and store instructions */
LLVMAddPromoteMemoryToRegisterPass(passmgr);
/* Add some optimization passes */
LLVMAddScalarReplAggregatesPass(passmgr);
LLVMAddLICMPass(passmgr);
LLVMAddAggressiveDCEPass(passmgr);
LLVMAddCFGSimplificationPass(passmgr);
LLVMAddInstructionCombiningPass(passmgr);
/* Run the pass */
LLVMInitializeFunctionPassManager(passmgr);
LLVMRunFunctionPassManager(passmgr, ctx->main_function);
LLVMFinalizeFunctionPassManager(passmgr);
LLVMDisposeBuilder(ctx->builder);
LLVMDisposePassManager(passmgr);
}
static
LLVMModuleRef ac_translate_nir_to_llvm(LLVMTargetMachineRef tm,
struct nir_shader *nir,
struct ac_shader_variant_info *shader_info,
const struct ac_nir_compiler_options *options)
{
struct nir_to_llvm_context ctx = {0};
struct nir_function *func;
unsigned i;
ctx.options = options;
ctx.shader_info = shader_info;
ctx.context = LLVMContextCreate();
ctx.module = LLVMModuleCreateWithNameInContext("shader", ctx.context);
ac_llvm_context_init(&ctx.ac, ctx.context);
ctx.ac.module = ctx.module;
ctx.has_ds_bpermute = ctx.options->chip_class >= VI;
memset(shader_info, 0, sizeof(*shader_info));
LLVMSetTarget(ctx.module, "amdgcn--");
setup_types(&ctx);
ctx.builder = LLVMCreateBuilderInContext(ctx.context);
ctx.ac.builder = ctx.builder;
ctx.stage = nir->stage;
for (i = 0; i < AC_UD_MAX_SETS; i++)
shader_info->user_sgprs_locs.descriptor_sets[i].sgpr_idx = -1;
for (i = 0; i < AC_UD_MAX_UD; i++)
shader_info->user_sgprs_locs.shader_data[i].sgpr_idx = -1;
create_function(&ctx);
if (nir->stage == MESA_SHADER_COMPUTE) {
int num_shared = 0;
nir_foreach_variable(variable, &nir->shared)
num_shared++;
if (num_shared) {
int idx = 0;
uint32_t shared_size = 0;
LLVMValueRef var;
LLVMTypeRef i8p = LLVMPointerType(ctx.i8, LOCAL_ADDR_SPACE);
nir_foreach_variable(variable, &nir->shared) {
handle_shared_compute_var(&ctx, variable, &shared_size, idx);
idx++;
}
shared_size *= 4;
var = LLVMAddGlobalInAddressSpace(ctx.module,
LLVMArrayType(ctx.i8, shared_size),
"compute_lds",
LOCAL_ADDR_SPACE);
LLVMSetAlignment(var, 4);
ctx.shared_memory = LLVMBuildBitCast(ctx.builder, var, i8p, "");
}
}
nir_foreach_variable(variable, &nir->inputs)
handle_shader_input_decl(&ctx, variable);
if (nir->stage == MESA_SHADER_FRAGMENT)
handle_fs_inputs_pre(&ctx, nir);
nir_foreach_variable(variable, &nir->outputs)
handle_shader_output_decl(&ctx, variable);
ctx.defs = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
_mesa_key_pointer_equal);
ctx.phis = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
_mesa_key_pointer_equal);
func = (struct nir_function *)exec_list_get_head(&nir->functions);
setup_locals(&ctx, func);
visit_cf_list(&ctx, &func->impl->body);
phi_post_pass(&ctx);
handle_shader_outputs_post(&ctx);
LLVMBuildRetVoid(ctx.builder);
ac_llvm_finalize_module(&ctx);
free(ctx.locals);
ralloc_free(ctx.defs);
ralloc_free(ctx.phis);
return ctx.module;
}
static void ac_diagnostic_handler(LLVMDiagnosticInfoRef di, void *context)
{
unsigned *retval = (unsigned *)context;
LLVMDiagnosticSeverity severity = LLVMGetDiagInfoSeverity(di);
char *description = LLVMGetDiagInfoDescription(di);
if (severity == LLVMDSError) {
*retval = 1;
fprintf(stderr, "LLVM triggered Diagnostic Handler: %s\n",
description);
}
LLVMDisposeMessage(description);
}
static unsigned ac_llvm_compile(LLVMModuleRef M,
struct ac_shader_binary *binary,
LLVMTargetMachineRef tm)
{
unsigned retval = 0;
char *err;
LLVMContextRef llvm_ctx;
LLVMMemoryBufferRef out_buffer;
unsigned buffer_size;
const char *buffer_data;
LLVMBool mem_err;
/* Setup Diagnostic Handler*/
llvm_ctx = LLVMGetModuleContext(M);
LLVMContextSetDiagnosticHandler(llvm_ctx, ac_diagnostic_handler,
&retval);
/* Compile IR*/
mem_err = LLVMTargetMachineEmitToMemoryBuffer(tm, M, LLVMObjectFile,
&err, &out_buffer);
/* Process Errors/Warnings */
if (mem_err) {
fprintf(stderr, "%s: %s", __FUNCTION__, err);
free(err);
retval = 1;
goto out;
}
/* Extract Shader Code*/
buffer_size = LLVMGetBufferSize(out_buffer);
buffer_data = LLVMGetBufferStart(out_buffer);
ac_elf_read(buffer_data, buffer_size, binary);
/* Clean up */
LLVMDisposeMemoryBuffer(out_buffer);
out:
return retval;
}
static void ac_compile_llvm_module(LLVMTargetMachineRef tm,
LLVMModuleRef llvm_module,
struct ac_shader_binary *binary,
struct ac_shader_config *config,
struct ac_shader_variant_info *shader_info,
gl_shader_stage stage,
bool dump_shader)
{
if (dump_shader)
LLVMDumpModule(llvm_module);
memset(binary, 0, sizeof(*binary));
int v = ac_llvm_compile(llvm_module, binary, tm);
if (v) {
fprintf(stderr, "compile failed\n");
}
if (dump_shader)
fprintf(stderr, "disasm:\n%s\n", binary->disasm_string);
ac_shader_binary_read_config(binary, config, 0);
LLVMContextRef ctx = LLVMGetModuleContext(llvm_module);
LLVMDisposeModule(llvm_module);
LLVMContextDispose(ctx);
if (stage == MESA_SHADER_FRAGMENT) {
shader_info->num_input_vgprs = 0;
if (G_0286CC_PERSP_SAMPLE_ENA(config->spi_ps_input_addr))
shader_info->num_input_vgprs += 2;
if (G_0286CC_PERSP_CENTER_ENA(config->spi_ps_input_addr))
shader_info->num_input_vgprs += 2;
if (G_0286CC_PERSP_CENTROID_ENA(config->spi_ps_input_addr))
shader_info->num_input_vgprs += 2;
if (G_0286CC_PERSP_PULL_MODEL_ENA(config->spi_ps_input_addr))
shader_info->num_input_vgprs += 3;
if (G_0286CC_LINEAR_SAMPLE_ENA(config->spi_ps_input_addr))
shader_info->num_input_vgprs += 2;
if (G_0286CC_LINEAR_CENTER_ENA(config->spi_ps_input_addr))
shader_info->num_input_vgprs += 2;
if (G_0286CC_LINEAR_CENTROID_ENA(config->spi_ps_input_addr))
shader_info->num_input_vgprs += 2;
if (G_0286CC_LINE_STIPPLE_TEX_ENA(config->spi_ps_input_addr))
shader_info->num_input_vgprs += 1;
if (G_0286CC_POS_X_FLOAT_ENA(config->spi_ps_input_addr))
shader_info->num_input_vgprs += 1;
if (G_0286CC_POS_Y_FLOAT_ENA(config->spi_ps_input_addr))
shader_info->num_input_vgprs += 1;
if (G_0286CC_POS_Z_FLOAT_ENA(config->spi_ps_input_addr))
shader_info->num_input_vgprs += 1;
if (G_0286CC_POS_W_FLOAT_ENA(config->spi_ps_input_addr))
shader_info->num_input_vgprs += 1;
if (G_0286CC_FRONT_FACE_ENA(config->spi_ps_input_addr))
shader_info->num_input_vgprs += 1;
if (G_0286CC_ANCILLARY_ENA(config->spi_ps_input_addr))
shader_info->num_input_vgprs += 1;
if (G_0286CC_SAMPLE_COVERAGE_ENA(config->spi_ps_input_addr))
shader_info->num_input_vgprs += 1;
if (G_0286CC_POS_FIXED_PT_ENA(config->spi_ps_input_addr))
shader_info->num_input_vgprs += 1;
}
config->num_vgprs = MAX2(config->num_vgprs, shader_info->num_input_vgprs);
/* +3 for scratch wave offset and VCC */
config->num_sgprs = MAX2(config->num_sgprs,
shader_info->num_input_sgprs + 3);
}
void ac_compile_nir_shader(LLVMTargetMachineRef tm,
struct ac_shader_binary *binary,
struct ac_shader_config *config,
struct ac_shader_variant_info *shader_info,
struct nir_shader *nir,
const struct ac_nir_compiler_options *options,
bool dump_shader)
{
LLVMModuleRef llvm_module = ac_translate_nir_to_llvm(tm, nir, shader_info,
options);
ac_compile_llvm_module(tm, llvm_module, binary, config, shader_info, nir->stage, dump_shader);
switch (nir->stage) {
case MESA_SHADER_COMPUTE:
for (int i = 0; i < 3; ++i)
shader_info->cs.block_size[i] = nir->info->cs.local_size[i];
break;
case MESA_SHADER_FRAGMENT:
shader_info->fs.early_fragment_test = nir->info->fs.early_fragment_tests;
break;
default:
break;
}
}