blob: 819941bc8b2a62af7aaf6ba35e992efb541a77d3 [file] [log] [blame]
/*
* Copyright © 2016 Red Hat
*
* based on anv driver:
* Copyright © 2016 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "radv_meta.h"
#include "nir/nir_builder.h"
#include "vk_format.h"
enum blit2d_src_type {
BLIT2D_SRC_TYPE_IMAGE,
BLIT2D_SRC_TYPE_IMAGE_3D,
BLIT2D_SRC_TYPE_BUFFER,
BLIT2D_NUM_SRC_TYPES,
};
static VkResult
blit2d_init_color_pipeline(struct radv_device *device,
enum blit2d_src_type src_type,
VkFormat format,
uint32_t log2_samples);
static VkResult
blit2d_init_depth_only_pipeline(struct radv_device *device,
enum blit2d_src_type src_type,
uint32_t log2_samples);
static VkResult
blit2d_init_stencil_only_pipeline(struct radv_device *device,
enum blit2d_src_type src_type,
uint32_t log2_samples);
static void
create_iview(struct radv_cmd_buffer *cmd_buffer,
struct radv_meta_blit2d_surf *surf,
struct radv_image_view *iview, VkFormat depth_format,
VkImageAspectFlagBits aspects)
{
VkFormat format;
VkImageViewType view_type = cmd_buffer->device->physical_device->rad_info.chip_class < GFX9 ? VK_IMAGE_VIEW_TYPE_2D :
radv_meta_get_view_type(surf->image);
if (depth_format)
format = depth_format;
else
format = surf->format;
radv_image_view_init(iview, cmd_buffer->device,
&(VkImageViewCreateInfo) {
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
.image = radv_image_to_handle(surf->image),
.viewType = view_type,
.format = format,
.subresourceRange = {
.aspectMask = aspects,
.baseMipLevel = surf->level,
.levelCount = 1,
.baseArrayLayer = surf->layer,
.layerCount = 1
},
}, NULL);
}
static void
create_bview(struct radv_cmd_buffer *cmd_buffer,
struct radv_meta_blit2d_buffer *src,
struct radv_buffer_view *bview, VkFormat depth_format)
{
VkFormat format;
if (depth_format)
format = depth_format;
else
format = src->format;
radv_buffer_view_init(bview, cmd_buffer->device,
&(VkBufferViewCreateInfo) {
.sType = VK_STRUCTURE_TYPE_BUFFER_VIEW_CREATE_INFO,
.flags = 0,
.buffer = radv_buffer_to_handle(src->buffer),
.format = format,
.offset = src->offset,
.range = VK_WHOLE_SIZE,
});
}
struct blit2d_src_temps {
struct radv_image_view iview;
struct radv_buffer_view bview;
};
static void
blit2d_bind_src(struct radv_cmd_buffer *cmd_buffer,
struct radv_meta_blit2d_surf *src_img,
struct radv_meta_blit2d_buffer *src_buf,
struct blit2d_src_temps *tmp,
enum blit2d_src_type src_type, VkFormat depth_format,
VkImageAspectFlagBits aspects,
uint32_t log2_samples)
{
struct radv_device *device = cmd_buffer->device;
if (src_type == BLIT2D_SRC_TYPE_BUFFER) {
create_bview(cmd_buffer, src_buf, &tmp->bview, depth_format);
radv_meta_push_descriptor_set(cmd_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS,
device->meta_state.blit2d[log2_samples].p_layouts[src_type],
0, /* set */
1, /* descriptorWriteCount */
(VkWriteDescriptorSet[]) {
{
.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstBinding = 0,
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER,
.pTexelBufferView = (VkBufferView[]) { radv_buffer_view_to_handle(&tmp->bview) }
}
});
radv_CmdPushConstants(radv_cmd_buffer_to_handle(cmd_buffer),
device->meta_state.blit2d[log2_samples].p_layouts[src_type],
VK_SHADER_STAGE_FRAGMENT_BIT, 16, 4,
&src_buf->pitch);
} else {
create_iview(cmd_buffer, src_img, &tmp->iview, depth_format, aspects);
if (src_type == BLIT2D_SRC_TYPE_IMAGE_3D)
radv_CmdPushConstants(radv_cmd_buffer_to_handle(cmd_buffer),
device->meta_state.blit2d[log2_samples].p_layouts[src_type],
VK_SHADER_STAGE_FRAGMENT_BIT, 16, 4,
&src_img->layer);
radv_meta_push_descriptor_set(cmd_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS,
device->meta_state.blit2d[log2_samples].p_layouts[src_type],
0, /* set */
1, /* descriptorWriteCount */
(VkWriteDescriptorSet[]) {
{
.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstBinding = 0,
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
.pImageInfo = (VkDescriptorImageInfo[]) {
{
.sampler = VK_NULL_HANDLE,
.imageView = radv_image_view_to_handle(&tmp->iview),
.imageLayout = VK_IMAGE_LAYOUT_GENERAL,
},
}
}
});
}
}
struct blit2d_dst_temps {
VkImage image;
struct radv_image_view iview;
VkFramebuffer fb;
};
static void
blit2d_bind_dst(struct radv_cmd_buffer *cmd_buffer,
struct radv_meta_blit2d_surf *dst,
uint32_t width,
uint32_t height,
VkFormat depth_format,
struct blit2d_dst_temps *tmp,
VkImageAspectFlagBits aspects)
{
create_iview(cmd_buffer, dst, &tmp->iview, depth_format, aspects);
radv_CreateFramebuffer(radv_device_to_handle(cmd_buffer->device),
&(VkFramebufferCreateInfo) {
.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,
.attachmentCount = 1,
.pAttachments = (VkImageView[]) {
radv_image_view_to_handle(&tmp->iview),
},
.width = width,
.height = height,
.layers = 1
}, &cmd_buffer->pool->alloc, &tmp->fb);
}
static void
bind_pipeline(struct radv_cmd_buffer *cmd_buffer,
enum blit2d_src_type src_type, unsigned fs_key,
uint32_t log2_samples)
{
VkPipeline pipeline =
cmd_buffer->device->meta_state.blit2d[log2_samples].pipelines[src_type][fs_key];
radv_CmdBindPipeline(radv_cmd_buffer_to_handle(cmd_buffer),
VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
}
static void
bind_depth_pipeline(struct radv_cmd_buffer *cmd_buffer,
enum blit2d_src_type src_type,
uint32_t log2_samples)
{
VkPipeline pipeline =
cmd_buffer->device->meta_state.blit2d[log2_samples].depth_only_pipeline[src_type];
radv_CmdBindPipeline(radv_cmd_buffer_to_handle(cmd_buffer),
VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
}
static void
bind_stencil_pipeline(struct radv_cmd_buffer *cmd_buffer,
enum blit2d_src_type src_type,
uint32_t log2_samples)
{
VkPipeline pipeline =
cmd_buffer->device->meta_state.blit2d[log2_samples].stencil_only_pipeline[src_type];
radv_CmdBindPipeline(radv_cmd_buffer_to_handle(cmd_buffer),
VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
}
static void
radv_meta_blit2d_normal_dst(struct radv_cmd_buffer *cmd_buffer,
struct radv_meta_blit2d_surf *src_img,
struct radv_meta_blit2d_buffer *src_buf,
struct radv_meta_blit2d_surf *dst,
unsigned num_rects,
struct radv_meta_blit2d_rect *rects, enum blit2d_src_type src_type,
uint32_t log2_samples)
{
struct radv_device *device = cmd_buffer->device;
for (unsigned r = 0; r < num_rects; ++r) {
unsigned i;
for_each_bit(i, dst->aspect_mask) {
unsigned aspect_mask = 1u << i;
unsigned src_aspect_mask = aspect_mask;
VkFormat depth_format = 0;
if (aspect_mask == VK_IMAGE_ASPECT_STENCIL_BIT)
depth_format = vk_format_stencil_only(dst->image->vk_format);
else if (aspect_mask == VK_IMAGE_ASPECT_DEPTH_BIT)
depth_format = vk_format_depth_only(dst->image->vk_format);
else if (src_img)
src_aspect_mask = src_img->aspect_mask;
struct blit2d_src_temps src_temps;
blit2d_bind_src(cmd_buffer, src_img, src_buf, &src_temps, src_type, depth_format, src_aspect_mask, log2_samples);
struct blit2d_dst_temps dst_temps;
blit2d_bind_dst(cmd_buffer, dst, rects[r].dst_x + rects[r].width,
rects[r].dst_y + rects[r].height, depth_format, &dst_temps, aspect_mask);
float vertex_push_constants[4] = {
rects[r].src_x,
rects[r].src_y,
rects[r].src_x + rects[r].width,
rects[r].src_y + rects[r].height,
};
radv_CmdPushConstants(radv_cmd_buffer_to_handle(cmd_buffer),
device->meta_state.blit2d[log2_samples].p_layouts[src_type],
VK_SHADER_STAGE_VERTEX_BIT, 0, 16,
vertex_push_constants);
if (aspect_mask == VK_IMAGE_ASPECT_COLOR_BIT ||
aspect_mask == VK_IMAGE_ASPECT_PLANE_0_BIT ||
aspect_mask == VK_IMAGE_ASPECT_PLANE_1_BIT ||
aspect_mask == VK_IMAGE_ASPECT_PLANE_2_BIT) {
unsigned fs_key = radv_format_meta_fs_key(dst_temps.iview.vk_format);
unsigned dst_layout = radv_meta_dst_layout_from_layout(dst->current_layout);
if (device->meta_state.blit2d[log2_samples].pipelines[src_type][fs_key] == VK_NULL_HANDLE) {
VkResult ret = blit2d_init_color_pipeline(device, src_type, radv_fs_key_format_exemplars[fs_key], log2_samples);
if (ret != VK_SUCCESS) {
cmd_buffer->record_result = ret;
goto fail_pipeline;
}
}
radv_CmdBeginRenderPass(radv_cmd_buffer_to_handle(cmd_buffer),
&(VkRenderPassBeginInfo) {
.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO,
.renderPass = device->meta_state.blit2d_render_passes[fs_key][dst_layout],
.framebuffer = dst_temps.fb,
.renderArea = {
.offset = { rects[r].dst_x, rects[r].dst_y, },
.extent = { rects[r].width, rects[r].height },
},
.clearValueCount = 0,
.pClearValues = NULL,
}, VK_SUBPASS_CONTENTS_INLINE);
bind_pipeline(cmd_buffer, src_type, fs_key, log2_samples);
} else if (aspect_mask == VK_IMAGE_ASPECT_DEPTH_BIT) {
enum radv_blit_ds_layout ds_layout = radv_meta_blit_ds_to_type(dst->current_layout);
if (device->meta_state.blit2d[log2_samples].depth_only_pipeline[src_type] == VK_NULL_HANDLE) {
VkResult ret = blit2d_init_depth_only_pipeline(device, src_type, log2_samples);
if (ret != VK_SUCCESS) {
cmd_buffer->record_result = ret;
goto fail_pipeline;
}
}
radv_CmdBeginRenderPass(radv_cmd_buffer_to_handle(cmd_buffer),
&(VkRenderPassBeginInfo) {
.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO,
.renderPass = device->meta_state.blit2d_depth_only_rp[ds_layout],
.framebuffer = dst_temps.fb,
.renderArea = {
.offset = { rects[r].dst_x, rects[r].dst_y, },
.extent = { rects[r].width, rects[r].height },
},
.clearValueCount = 0,
.pClearValues = NULL,
}, VK_SUBPASS_CONTENTS_INLINE);
bind_depth_pipeline(cmd_buffer, src_type, log2_samples);
} else if (aspect_mask == VK_IMAGE_ASPECT_STENCIL_BIT) {
enum radv_blit_ds_layout ds_layout = radv_meta_blit_ds_to_type(dst->current_layout);
if (device->meta_state.blit2d[log2_samples].stencil_only_pipeline[src_type] == VK_NULL_HANDLE) {
VkResult ret = blit2d_init_stencil_only_pipeline(device, src_type, log2_samples);
if (ret != VK_SUCCESS) {
cmd_buffer->record_result = ret;
goto fail_pipeline;
}
}
radv_CmdBeginRenderPass(radv_cmd_buffer_to_handle(cmd_buffer),
&(VkRenderPassBeginInfo) {
.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO,
.renderPass = device->meta_state.blit2d_stencil_only_rp[ds_layout],
.framebuffer = dst_temps.fb,
.renderArea = {
.offset = { rects[r].dst_x, rects[r].dst_y, },
.extent = { rects[r].width, rects[r].height },
},
.clearValueCount = 0,
.pClearValues = NULL,
}, VK_SUBPASS_CONTENTS_INLINE);
bind_stencil_pipeline(cmd_buffer, src_type, log2_samples);
} else
unreachable("Processing blit2d with multiple aspects.");
radv_CmdSetViewport(radv_cmd_buffer_to_handle(cmd_buffer), 0, 1, &(VkViewport) {
.x = rects[r].dst_x,
.y = rects[r].dst_y,
.width = rects[r].width,
.height = rects[r].height,
.minDepth = 0.0f,
.maxDepth = 1.0f
});
radv_CmdSetScissor(radv_cmd_buffer_to_handle(cmd_buffer), 0, 1, &(VkRect2D) {
.offset = (VkOffset2D) { rects[r].dst_x, rects[r].dst_y },
.extent = (VkExtent2D) { rects[r].width, rects[r].height },
});
radv_CmdDraw(radv_cmd_buffer_to_handle(cmd_buffer), 3, 1, 0, 0);
radv_CmdEndRenderPass(radv_cmd_buffer_to_handle(cmd_buffer));
fail_pipeline:
/* At the point where we emit the draw call, all data from the
* descriptor sets, etc. has been used. We are free to delete it.
*/
radv_DestroyFramebuffer(radv_device_to_handle(device),
dst_temps.fb,
&cmd_buffer->pool->alloc);
}
}
}
void
radv_meta_blit2d(struct radv_cmd_buffer *cmd_buffer,
struct radv_meta_blit2d_surf *src_img,
struct radv_meta_blit2d_buffer *src_buf,
struct radv_meta_blit2d_surf *dst,
unsigned num_rects,
struct radv_meta_blit2d_rect *rects)
{
bool use_3d = cmd_buffer->device->physical_device->rad_info.chip_class >= GFX9 &&
(src_img && src_img->image->type == VK_IMAGE_TYPE_3D);
enum blit2d_src_type src_type = src_buf ? BLIT2D_SRC_TYPE_BUFFER :
use_3d ? BLIT2D_SRC_TYPE_IMAGE_3D : BLIT2D_SRC_TYPE_IMAGE;
radv_meta_blit2d_normal_dst(cmd_buffer, src_img, src_buf, dst,
num_rects, rects, src_type,
src_img ? util_logbase2(src_img->image->info.samples) : 0);
}
static nir_shader *
build_nir_vertex_shader(void)
{
const struct glsl_type *vec4 = glsl_vec4_type();
const struct glsl_type *vec2 = glsl_vector_type(GLSL_TYPE_FLOAT, 2);
nir_builder b;
nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_VERTEX, NULL);
b.shader->info.name = ralloc_strdup(b.shader, "meta_blit2d_vs");
nir_variable *pos_out = nir_variable_create(b.shader, nir_var_shader_out,
vec4, "gl_Position");
pos_out->data.location = VARYING_SLOT_POS;
nir_variable *tex_pos_out = nir_variable_create(b.shader, nir_var_shader_out,
vec2, "v_tex_pos");
tex_pos_out->data.location = VARYING_SLOT_VAR0;
tex_pos_out->data.interpolation = INTERP_MODE_SMOOTH;
nir_ssa_def *outvec = radv_meta_gen_rect_vertices(&b);
nir_store_var(&b, pos_out, outvec, 0xf);
nir_intrinsic_instr *src_box = nir_intrinsic_instr_create(b.shader, nir_intrinsic_load_push_constant);
src_box->src[0] = nir_src_for_ssa(nir_imm_int(&b, 0));
nir_intrinsic_set_base(src_box, 0);
nir_intrinsic_set_range(src_box, 16);
src_box->num_components = 4;
nir_ssa_dest_init(&src_box->instr, &src_box->dest, 4, 32, "src_box");
nir_builder_instr_insert(&b, &src_box->instr);
nir_intrinsic_instr *vertex_id = nir_intrinsic_instr_create(b.shader, nir_intrinsic_load_vertex_id_zero_base);
nir_ssa_dest_init(&vertex_id->instr, &vertex_id->dest, 1, 32, "vertexid");
nir_builder_instr_insert(&b, &vertex_id->instr);
/* vertex 0 - src_x, src_y */
/* vertex 1 - src_x, src_y+h */
/* vertex 2 - src_x+w, src_y */
/* so channel 0 is vertex_id != 2 ? src_x : src_x + w
channel 1 is vertex id != 1 ? src_y : src_y + w */
nir_ssa_def *c0cmp = nir_ine(&b, &vertex_id->dest.ssa,
nir_imm_int(&b, 2));
nir_ssa_def *c1cmp = nir_ine(&b, &vertex_id->dest.ssa,
nir_imm_int(&b, 1));
nir_ssa_def *comp[2];
comp[0] = nir_bcsel(&b, c0cmp,
nir_channel(&b, &src_box->dest.ssa, 0),
nir_channel(&b, &src_box->dest.ssa, 2));
comp[1] = nir_bcsel(&b, c1cmp,
nir_channel(&b, &src_box->dest.ssa, 1),
nir_channel(&b, &src_box->dest.ssa, 3));
nir_ssa_def *out_tex_vec = nir_vec(&b, comp, 2);
nir_store_var(&b, tex_pos_out, out_tex_vec, 0x3);
return b.shader;
}
typedef nir_ssa_def* (*texel_fetch_build_func)(struct nir_builder *,
struct radv_device *,
nir_ssa_def *, bool, bool);
static nir_ssa_def *
build_nir_texel_fetch(struct nir_builder *b, struct radv_device *device,
nir_ssa_def *tex_pos, bool is_3d, bool is_multisampled)
{
enum glsl_sampler_dim dim =
is_3d ? GLSL_SAMPLER_DIM_3D : is_multisampled ? GLSL_SAMPLER_DIM_MS : GLSL_SAMPLER_DIM_2D;
const struct glsl_type *sampler_type =
glsl_sampler_type(dim, false, false, GLSL_TYPE_UINT);
nir_variable *sampler = nir_variable_create(b->shader, nir_var_uniform,
sampler_type, "s_tex");
sampler->data.descriptor_set = 0;
sampler->data.binding = 0;
nir_ssa_def *tex_pos_3d = NULL;
nir_intrinsic_instr *sample_idx = NULL;
if (is_3d) {
nir_intrinsic_instr *layer = nir_intrinsic_instr_create(b->shader, nir_intrinsic_load_push_constant);
nir_intrinsic_set_base(layer, 16);
nir_intrinsic_set_range(layer, 4);
layer->src[0] = nir_src_for_ssa(nir_imm_int(b, 0));
layer->num_components = 1;
nir_ssa_dest_init(&layer->instr, &layer->dest, 1, 32, "layer");
nir_builder_instr_insert(b, &layer->instr);
nir_ssa_def *chans[3];
chans[0] = nir_channel(b, tex_pos, 0);
chans[1] = nir_channel(b, tex_pos, 1);
chans[2] = &layer->dest.ssa;
tex_pos_3d = nir_vec(b, chans, 3);
}
if (is_multisampled) {
sample_idx = nir_intrinsic_instr_create(b->shader, nir_intrinsic_load_sample_id);
sample_idx->num_components = 1;
nir_ssa_dest_init(&sample_idx->instr, &sample_idx->dest, 1, 32, "sample_idx");
nir_builder_instr_insert(b, &sample_idx->instr);
}
nir_ssa_def *tex_deref = &nir_build_deref_var(b, sampler)->dest.ssa;
nir_tex_instr *tex = nir_tex_instr_create(b->shader, is_multisampled ? 4 : 3);
tex->sampler_dim = dim;
tex->op = is_multisampled ? nir_texop_txf_ms : nir_texop_txf;
tex->src[0].src_type = nir_tex_src_coord;
tex->src[0].src = nir_src_for_ssa(is_3d ? tex_pos_3d : tex_pos);
tex->src[1].src_type = is_multisampled ? nir_tex_src_ms_index : nir_tex_src_lod;
tex->src[1].src = nir_src_for_ssa(is_multisampled ? &sample_idx->dest.ssa : nir_imm_int(b, 0));
tex->src[2].src_type = nir_tex_src_texture_deref;
tex->src[2].src = nir_src_for_ssa(tex_deref);
if (is_multisampled) {
tex->src[3].src_type = nir_tex_src_lod;
tex->src[3].src = nir_src_for_ssa(nir_imm_int(b, 0));
}
tex->dest_type = nir_type_uint;
tex->is_array = false;
tex->coord_components = is_3d ? 3 : 2;
nir_ssa_dest_init(&tex->instr, &tex->dest, 4, 32, "tex");
nir_builder_instr_insert(b, &tex->instr);
return &tex->dest.ssa;
}
static nir_ssa_def *
build_nir_buffer_fetch(struct nir_builder *b, struct radv_device *device,
nir_ssa_def *tex_pos, bool is_3d, bool is_multisampled)
{
const struct glsl_type *sampler_type =
glsl_sampler_type(GLSL_SAMPLER_DIM_BUF, false, false, GLSL_TYPE_UINT);
nir_variable *sampler = nir_variable_create(b->shader, nir_var_uniform,
sampler_type, "s_tex");
sampler->data.descriptor_set = 0;
sampler->data.binding = 0;
nir_intrinsic_instr *width = nir_intrinsic_instr_create(b->shader, nir_intrinsic_load_push_constant);
nir_intrinsic_set_base(width, 16);
nir_intrinsic_set_range(width, 4);
width->src[0] = nir_src_for_ssa(nir_imm_int(b, 0));
width->num_components = 1;
nir_ssa_dest_init(&width->instr, &width->dest, 1, 32, "width");
nir_builder_instr_insert(b, &width->instr);
nir_ssa_def *pos_x = nir_channel(b, tex_pos, 0);
nir_ssa_def *pos_y = nir_channel(b, tex_pos, 1);
pos_y = nir_imul(b, pos_y, &width->dest.ssa);
pos_x = nir_iadd(b, pos_x, pos_y);
nir_ssa_def *tex_deref = &nir_build_deref_var(b, sampler)->dest.ssa;
nir_tex_instr *tex = nir_tex_instr_create(b->shader, 2);
tex->sampler_dim = GLSL_SAMPLER_DIM_BUF;
tex->op = nir_texop_txf;
tex->src[0].src_type = nir_tex_src_coord;
tex->src[0].src = nir_src_for_ssa(pos_x);
tex->src[1].src_type = nir_tex_src_texture_deref;
tex->src[1].src = nir_src_for_ssa(tex_deref);
tex->dest_type = nir_type_uint;
tex->is_array = false;
tex->coord_components = 1;
nir_ssa_dest_init(&tex->instr, &tex->dest, 4, 32, "tex");
nir_builder_instr_insert(b, &tex->instr);
return &tex->dest.ssa;
}
static const VkPipelineVertexInputStateCreateInfo normal_vi_create_info = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO,
.vertexBindingDescriptionCount = 0,
.vertexAttributeDescriptionCount = 0,
};
static nir_shader *
build_nir_copy_fragment_shader(struct radv_device *device,
texel_fetch_build_func txf_func, const char* name, bool is_3d,
bool is_multisampled)
{
const struct glsl_type *vec4 = glsl_vec4_type();
const struct glsl_type *vec2 = glsl_vector_type(GLSL_TYPE_FLOAT, 2);
nir_builder b;
nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_FRAGMENT, NULL);
b.shader->info.name = ralloc_strdup(b.shader, name);
nir_variable *tex_pos_in = nir_variable_create(b.shader, nir_var_shader_in,
vec2, "v_tex_pos");
tex_pos_in->data.location = VARYING_SLOT_VAR0;
nir_variable *color_out = nir_variable_create(b.shader, nir_var_shader_out,
vec4, "f_color");
color_out->data.location = FRAG_RESULT_DATA0;
nir_ssa_def *pos_int = nir_f2i32(&b, nir_load_var(&b, tex_pos_in));
nir_ssa_def *tex_pos = nir_channels(&b, pos_int, 0x3);
nir_ssa_def *color = txf_func(&b, device, tex_pos, is_3d, is_multisampled);
nir_store_var(&b, color_out, color, 0xf);
return b.shader;
}
static nir_shader *
build_nir_copy_fragment_shader_depth(struct radv_device *device,
texel_fetch_build_func txf_func, const char* name, bool is_3d,
bool is_multisampled)
{
const struct glsl_type *vec4 = glsl_vec4_type();
const struct glsl_type *vec2 = glsl_vector_type(GLSL_TYPE_FLOAT, 2);
nir_builder b;
nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_FRAGMENT, NULL);
b.shader->info.name = ralloc_strdup(b.shader, name);
nir_variable *tex_pos_in = nir_variable_create(b.shader, nir_var_shader_in,
vec2, "v_tex_pos");
tex_pos_in->data.location = VARYING_SLOT_VAR0;
nir_variable *color_out = nir_variable_create(b.shader, nir_var_shader_out,
vec4, "f_color");
color_out->data.location = FRAG_RESULT_DEPTH;
nir_ssa_def *pos_int = nir_f2i32(&b, nir_load_var(&b, tex_pos_in));
nir_ssa_def *tex_pos = nir_channels(&b, pos_int, 0x3);
nir_ssa_def *color = txf_func(&b, device, tex_pos, is_3d, is_multisampled);
nir_store_var(&b, color_out, color, 0x1);
return b.shader;
}
static nir_shader *
build_nir_copy_fragment_shader_stencil(struct radv_device *device,
texel_fetch_build_func txf_func, const char* name, bool is_3d,
bool is_multisampled)
{
const struct glsl_type *vec4 = glsl_vec4_type();
const struct glsl_type *vec2 = glsl_vector_type(GLSL_TYPE_FLOAT, 2);
nir_builder b;
nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_FRAGMENT, NULL);
b.shader->info.name = ralloc_strdup(b.shader, name);
nir_variable *tex_pos_in = nir_variable_create(b.shader, nir_var_shader_in,
vec2, "v_tex_pos");
tex_pos_in->data.location = VARYING_SLOT_VAR0;
nir_variable *color_out = nir_variable_create(b.shader, nir_var_shader_out,
vec4, "f_color");
color_out->data.location = FRAG_RESULT_STENCIL;
nir_ssa_def *pos_int = nir_f2i32(&b, nir_load_var(&b, tex_pos_in));
nir_ssa_def *tex_pos = nir_channels(&b, pos_int, 0x3);
nir_ssa_def *color = txf_func(&b, device, tex_pos, is_3d, is_multisampled);
nir_store_var(&b, color_out, color, 0x1);
return b.shader;
}
void
radv_device_finish_meta_blit2d_state(struct radv_device *device)
{
struct radv_meta_state *state = &device->meta_state;
for(unsigned j = 0; j < NUM_META_FS_KEYS; ++j) {
for (unsigned k = 0; k < RADV_META_DST_LAYOUT_COUNT; ++k) {
radv_DestroyRenderPass(radv_device_to_handle(device),
state->blit2d_render_passes[j][k],
&state->alloc);
}
}
for (enum radv_blit_ds_layout j = RADV_BLIT_DS_LAYOUT_TILE_ENABLE; j < RADV_BLIT_DS_LAYOUT_COUNT; j++) {
radv_DestroyRenderPass(radv_device_to_handle(device),
state->blit2d_depth_only_rp[j], &state->alloc);
radv_DestroyRenderPass(radv_device_to_handle(device),
state->blit2d_stencil_only_rp[j], &state->alloc);
}
for (unsigned log2_samples = 0; log2_samples < MAX_SAMPLES_LOG2; ++log2_samples) {
for (unsigned src = 0; src < BLIT2D_NUM_SRC_TYPES; src++) {
radv_DestroyPipelineLayout(radv_device_to_handle(device),
state->blit2d[log2_samples].p_layouts[src],
&state->alloc);
radv_DestroyDescriptorSetLayout(radv_device_to_handle(device),
state->blit2d[log2_samples].ds_layouts[src],
&state->alloc);
for (unsigned j = 0; j < NUM_META_FS_KEYS; ++j) {
radv_DestroyPipeline(radv_device_to_handle(device),
state->blit2d[log2_samples].pipelines[src][j],
&state->alloc);
}
radv_DestroyPipeline(radv_device_to_handle(device),
state->blit2d[log2_samples].depth_only_pipeline[src],
&state->alloc);
radv_DestroyPipeline(radv_device_to_handle(device),
state->blit2d[log2_samples].stencil_only_pipeline[src],
&state->alloc);
}
}
}
static VkResult
blit2d_init_color_pipeline(struct radv_device *device,
enum blit2d_src_type src_type,
VkFormat format,
uint32_t log2_samples)
{
VkResult result;
unsigned fs_key = radv_format_meta_fs_key(format);
const char *name;
mtx_lock(&device->meta_state.mtx);
if (device->meta_state.blit2d[log2_samples].pipelines[src_type][fs_key]) {
mtx_unlock(&device->meta_state.mtx);
return VK_SUCCESS;
}
texel_fetch_build_func src_func;
switch(src_type) {
case BLIT2D_SRC_TYPE_IMAGE:
src_func = build_nir_texel_fetch;
name = "meta_blit2d_image_fs";
break;
case BLIT2D_SRC_TYPE_IMAGE_3D:
src_func = build_nir_texel_fetch;
name = "meta_blit3d_image_fs";
break;
case BLIT2D_SRC_TYPE_BUFFER:
src_func = build_nir_buffer_fetch;
name = "meta_blit2d_buffer_fs";
break;
default:
unreachable("unknown blit src type\n");
break;
}
const VkPipelineVertexInputStateCreateInfo *vi_create_info;
struct radv_shader_module fs = { .nir = NULL };
fs.nir = build_nir_copy_fragment_shader(device, src_func, name, src_type == BLIT2D_SRC_TYPE_IMAGE_3D, log2_samples > 0);
vi_create_info = &normal_vi_create_info;
struct radv_shader_module vs = {
.nir = build_nir_vertex_shader(),
};
VkPipelineShaderStageCreateInfo pipeline_shader_stages[] = {
{
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.stage = VK_SHADER_STAGE_VERTEX_BIT,
.module = radv_shader_module_to_handle(&vs),
.pName = "main",
.pSpecializationInfo = NULL
}, {
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.stage = VK_SHADER_STAGE_FRAGMENT_BIT,
.module = radv_shader_module_to_handle(&fs),
.pName = "main",
.pSpecializationInfo = NULL
},
};
for (unsigned dst_layout = 0; dst_layout < RADV_META_DST_LAYOUT_COUNT; ++dst_layout) {
if (!device->meta_state.blit2d_render_passes[fs_key][dst_layout]) {
VkImageLayout layout = radv_meta_dst_layout_to_layout(dst_layout);
result = radv_CreateRenderPass(radv_device_to_handle(device),
&(VkRenderPassCreateInfo) {
.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,
.attachmentCount = 1,
.pAttachments = &(VkAttachmentDescription) {
.format = format,
.loadOp = VK_ATTACHMENT_LOAD_OP_LOAD,
.storeOp = VK_ATTACHMENT_STORE_OP_STORE,
.initialLayout = layout,
.finalLayout = layout,
},
.subpassCount = 1,
.pSubpasses = &(VkSubpassDescription) {
.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS,
.inputAttachmentCount = 0,
.colorAttachmentCount = 1,
.pColorAttachments = &(VkAttachmentReference) {
.attachment = 0,
.layout = layout,
},
.pResolveAttachments = NULL,
.pDepthStencilAttachment = &(VkAttachmentReference) {
.attachment = VK_ATTACHMENT_UNUSED,
.layout = layout,
},
.preserveAttachmentCount = 0,
.pPreserveAttachments = NULL,
},
.dependencyCount = 0,
}, &device->meta_state.alloc, &device->meta_state.blit2d_render_passes[fs_key][dst_layout]);
}
}
const VkGraphicsPipelineCreateInfo vk_pipeline_info = {
.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,
.stageCount = ARRAY_SIZE(pipeline_shader_stages),
.pStages = pipeline_shader_stages,
.pVertexInputState = vi_create_info,
.pInputAssemblyState = &(VkPipelineInputAssemblyStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO,
.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP,
.primitiveRestartEnable = false,
},
.pViewportState = &(VkPipelineViewportStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO,
.viewportCount = 1,
.scissorCount = 1,
},
.pRasterizationState = &(VkPipelineRasterizationStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO,
.rasterizerDiscardEnable = false,
.polygonMode = VK_POLYGON_MODE_FILL,
.cullMode = VK_CULL_MODE_NONE,
.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE
},
.pMultisampleState = &(VkPipelineMultisampleStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO,
.rasterizationSamples = 1 << log2_samples,
.sampleShadingEnable = log2_samples > 1,
.minSampleShading = 1.0,
.pSampleMask = (VkSampleMask[]) { UINT32_MAX },
},
.pColorBlendState = &(VkPipelineColorBlendStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO,
.attachmentCount = 1,
.pAttachments = (VkPipelineColorBlendAttachmentState []) {
{ .colorWriteMask =
VK_COLOR_COMPONENT_A_BIT |
VK_COLOR_COMPONENT_R_BIT |
VK_COLOR_COMPONENT_G_BIT |
VK_COLOR_COMPONENT_B_BIT },
}
},
.pDynamicState = &(VkPipelineDynamicStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO,
.dynamicStateCount = 9,
.pDynamicStates = (VkDynamicState[]) {
VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR,
VK_DYNAMIC_STATE_LINE_WIDTH,
VK_DYNAMIC_STATE_DEPTH_BIAS,
VK_DYNAMIC_STATE_BLEND_CONSTANTS,
VK_DYNAMIC_STATE_DEPTH_BOUNDS,
VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK,
VK_DYNAMIC_STATE_STENCIL_WRITE_MASK,
VK_DYNAMIC_STATE_STENCIL_REFERENCE,
},
},
.flags = 0,
.layout = device->meta_state.blit2d[log2_samples].p_layouts[src_type],
.renderPass = device->meta_state.blit2d_render_passes[fs_key][0],
.subpass = 0,
};
const struct radv_graphics_pipeline_create_info radv_pipeline_info = {
.use_rectlist = true
};
result = radv_graphics_pipeline_create(radv_device_to_handle(device),
radv_pipeline_cache_to_handle(&device->meta_state.cache),
&vk_pipeline_info, &radv_pipeline_info,
&device->meta_state.alloc,
&device->meta_state.blit2d[log2_samples].pipelines[src_type][fs_key]);
ralloc_free(vs.nir);
ralloc_free(fs.nir);
mtx_unlock(&device->meta_state.mtx);
return result;
}
static VkResult
blit2d_init_depth_only_pipeline(struct radv_device *device,
enum blit2d_src_type src_type,
uint32_t log2_samples)
{
VkResult result;
const char *name;
mtx_lock(&device->meta_state.mtx);
if (device->meta_state.blit2d[log2_samples].depth_only_pipeline[src_type]) {
mtx_unlock(&device->meta_state.mtx);
return VK_SUCCESS;
}
texel_fetch_build_func src_func;
switch(src_type) {
case BLIT2D_SRC_TYPE_IMAGE:
src_func = build_nir_texel_fetch;
name = "meta_blit2d_depth_image_fs";
break;
case BLIT2D_SRC_TYPE_IMAGE_3D:
src_func = build_nir_texel_fetch;
name = "meta_blit3d_depth_image_fs";
break;
case BLIT2D_SRC_TYPE_BUFFER:
src_func = build_nir_buffer_fetch;
name = "meta_blit2d_depth_buffer_fs";
break;
default:
unreachable("unknown blit src type\n");
break;
}
const VkPipelineVertexInputStateCreateInfo *vi_create_info;
struct radv_shader_module fs = { .nir = NULL };
fs.nir = build_nir_copy_fragment_shader_depth(device, src_func, name, src_type == BLIT2D_SRC_TYPE_IMAGE_3D, log2_samples > 0);
vi_create_info = &normal_vi_create_info;
struct radv_shader_module vs = {
.nir = build_nir_vertex_shader(),
};
VkPipelineShaderStageCreateInfo pipeline_shader_stages[] = {
{
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.stage = VK_SHADER_STAGE_VERTEX_BIT,
.module = radv_shader_module_to_handle(&vs),
.pName = "main",
.pSpecializationInfo = NULL
}, {
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.stage = VK_SHADER_STAGE_FRAGMENT_BIT,
.module = radv_shader_module_to_handle(&fs),
.pName = "main",
.pSpecializationInfo = NULL
},
};
for (enum radv_blit_ds_layout ds_layout = RADV_BLIT_DS_LAYOUT_TILE_ENABLE; ds_layout < RADV_BLIT_DS_LAYOUT_COUNT; ds_layout++) {
if (!device->meta_state.blit2d_depth_only_rp[ds_layout]) {
VkImageLayout layout = radv_meta_blit_ds_to_layout(ds_layout);
result = radv_CreateRenderPass(radv_device_to_handle(device),
&(VkRenderPassCreateInfo) {
.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,
.attachmentCount = 1,
.pAttachments = &(VkAttachmentDescription) {
.format = VK_FORMAT_D32_SFLOAT,
.loadOp = VK_ATTACHMENT_LOAD_OP_LOAD,
.storeOp = VK_ATTACHMENT_STORE_OP_STORE,
.initialLayout = layout,
.finalLayout = layout,
},
.subpassCount = 1,
.pSubpasses = &(VkSubpassDescription) {
.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS,
.inputAttachmentCount = 0,
.colorAttachmentCount = 0,
.pColorAttachments = NULL,
.pResolveAttachments = NULL,
.pDepthStencilAttachment = &(VkAttachmentReference) {
.attachment = 0,
.layout = layout,
},
.preserveAttachmentCount = 0,
.pPreserveAttachments = NULL,
},
.dependencyCount = 0,
}, &device->meta_state.alloc, &device->meta_state.blit2d_depth_only_rp[ds_layout]);
}
}
const VkGraphicsPipelineCreateInfo vk_pipeline_info = {
.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,
.stageCount = ARRAY_SIZE(pipeline_shader_stages),
.pStages = pipeline_shader_stages,
.pVertexInputState = vi_create_info,
.pInputAssemblyState = &(VkPipelineInputAssemblyStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO,
.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP,
.primitiveRestartEnable = false,
},
.pViewportState = &(VkPipelineViewportStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO,
.viewportCount = 1,
.scissorCount = 1,
},
.pRasterizationState = &(VkPipelineRasterizationStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO,
.rasterizerDiscardEnable = false,
.polygonMode = VK_POLYGON_MODE_FILL,
.cullMode = VK_CULL_MODE_NONE,
.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE
},
.pMultisampleState = &(VkPipelineMultisampleStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO,
.rasterizationSamples = 1 << log2_samples,
.sampleShadingEnable = false,
.pSampleMask = (VkSampleMask[]) { UINT32_MAX },
},
.pColorBlendState = &(VkPipelineColorBlendStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO,
.attachmentCount = 0,
.pAttachments = NULL,
},
.pDepthStencilState = &(VkPipelineDepthStencilStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO,
.depthTestEnable = true,
.depthWriteEnable = true,
.depthCompareOp = VK_COMPARE_OP_ALWAYS,
},
.pDynamicState = &(VkPipelineDynamicStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO,
.dynamicStateCount = 9,
.pDynamicStates = (VkDynamicState[]) {
VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR,
VK_DYNAMIC_STATE_LINE_WIDTH,
VK_DYNAMIC_STATE_DEPTH_BIAS,
VK_DYNAMIC_STATE_BLEND_CONSTANTS,
VK_DYNAMIC_STATE_DEPTH_BOUNDS,
VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK,
VK_DYNAMIC_STATE_STENCIL_WRITE_MASK,
VK_DYNAMIC_STATE_STENCIL_REFERENCE,
},
},
.flags = 0,
.layout = device->meta_state.blit2d[log2_samples].p_layouts[src_type],
.renderPass = device->meta_state.blit2d_depth_only_rp[0],
.subpass = 0,
};
const struct radv_graphics_pipeline_create_info radv_pipeline_info = {
.use_rectlist = true
};
result = radv_graphics_pipeline_create(radv_device_to_handle(device),
radv_pipeline_cache_to_handle(&device->meta_state.cache),
&vk_pipeline_info, &radv_pipeline_info,
&device->meta_state.alloc,
&device->meta_state.blit2d[log2_samples].depth_only_pipeline[src_type]);
ralloc_free(vs.nir);
ralloc_free(fs.nir);
mtx_unlock(&device->meta_state.mtx);
return result;
}
static VkResult
blit2d_init_stencil_only_pipeline(struct radv_device *device,
enum blit2d_src_type src_type,
uint32_t log2_samples)
{
VkResult result;
const char *name;
mtx_lock(&device->meta_state.mtx);
if (device->meta_state.blit2d[log2_samples].stencil_only_pipeline[src_type]) {
mtx_unlock(&device->meta_state.mtx);
return VK_SUCCESS;
}
texel_fetch_build_func src_func;
switch(src_type) {
case BLIT2D_SRC_TYPE_IMAGE:
src_func = build_nir_texel_fetch;
name = "meta_blit2d_stencil_image_fs";
break;
case BLIT2D_SRC_TYPE_IMAGE_3D:
src_func = build_nir_texel_fetch;
name = "meta_blit3d_stencil_image_fs";
break;
case BLIT2D_SRC_TYPE_BUFFER:
src_func = build_nir_buffer_fetch;
name = "meta_blit2d_stencil_buffer_fs";
break;
default:
unreachable("unknown blit src type\n");
break;
}
const VkPipelineVertexInputStateCreateInfo *vi_create_info;
struct radv_shader_module fs = { .nir = NULL };
fs.nir = build_nir_copy_fragment_shader_stencil(device, src_func, name, src_type == BLIT2D_SRC_TYPE_IMAGE_3D, log2_samples > 0);
vi_create_info = &normal_vi_create_info;
struct radv_shader_module vs = {
.nir = build_nir_vertex_shader(),
};
VkPipelineShaderStageCreateInfo pipeline_shader_stages[] = {
{
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.stage = VK_SHADER_STAGE_VERTEX_BIT,
.module = radv_shader_module_to_handle(&vs),
.pName = "main",
.pSpecializationInfo = NULL
}, {
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.stage = VK_SHADER_STAGE_FRAGMENT_BIT,
.module = radv_shader_module_to_handle(&fs),
.pName = "main",
.pSpecializationInfo = NULL
},
};
for (enum radv_blit_ds_layout ds_layout = RADV_BLIT_DS_LAYOUT_TILE_ENABLE; ds_layout < RADV_BLIT_DS_LAYOUT_COUNT; ds_layout++) {
if (!device->meta_state.blit2d_stencil_only_rp[ds_layout]) {
VkImageLayout layout = radv_meta_blit_ds_to_layout(ds_layout);
result = radv_CreateRenderPass(radv_device_to_handle(device),
&(VkRenderPassCreateInfo) {
.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,
.attachmentCount = 1,
.pAttachments = &(VkAttachmentDescription) {
.format = VK_FORMAT_S8_UINT,
.loadOp = VK_ATTACHMENT_LOAD_OP_LOAD,
.storeOp = VK_ATTACHMENT_STORE_OP_STORE,
.initialLayout = layout,
.finalLayout = layout,
},
.subpassCount = 1,
.pSubpasses = &(VkSubpassDescription) {
.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS,
.inputAttachmentCount = 0,
.colorAttachmentCount = 0,
.pColorAttachments = NULL,
.pResolveAttachments = NULL,
.pDepthStencilAttachment = &(VkAttachmentReference) {
.attachment = 0,
.layout = layout,
},
.preserveAttachmentCount = 0,
.pPreserveAttachments = NULL,
},
.dependencyCount = 0,
}, &device->meta_state.alloc, &device->meta_state.blit2d_stencil_only_rp[ds_layout]);
}
}
const VkGraphicsPipelineCreateInfo vk_pipeline_info = {
.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,
.stageCount = ARRAY_SIZE(pipeline_shader_stages),
.pStages = pipeline_shader_stages,
.pVertexInputState = vi_create_info,
.pInputAssemblyState = &(VkPipelineInputAssemblyStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO,
.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP,
.primitiveRestartEnable = false,
},
.pViewportState = &(VkPipelineViewportStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO,
.viewportCount = 1,
.scissorCount = 1,
},
.pRasterizationState = &(VkPipelineRasterizationStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO,
.rasterizerDiscardEnable = false,
.polygonMode = VK_POLYGON_MODE_FILL,
.cullMode = VK_CULL_MODE_NONE,
.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE
},
.pMultisampleState = &(VkPipelineMultisampleStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO,
.rasterizationSamples = 1 << log2_samples,
.sampleShadingEnable = false,
.pSampleMask = (VkSampleMask[]) { UINT32_MAX },
},
.pColorBlendState = &(VkPipelineColorBlendStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO,
.attachmentCount = 0,
.pAttachments = NULL,
},
.pDepthStencilState = &(VkPipelineDepthStencilStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO,
.depthTestEnable = false,
.depthWriteEnable = false,
.stencilTestEnable = true,
.front = {
.failOp = VK_STENCIL_OP_REPLACE,
.passOp = VK_STENCIL_OP_REPLACE,
.depthFailOp = VK_STENCIL_OP_REPLACE,
.compareOp = VK_COMPARE_OP_ALWAYS,
.compareMask = 0xff,
.writeMask = 0xff,
.reference = 0
},
.back = {
.failOp = VK_STENCIL_OP_REPLACE,
.passOp = VK_STENCIL_OP_REPLACE,
.depthFailOp = VK_STENCIL_OP_REPLACE,
.compareOp = VK_COMPARE_OP_ALWAYS,
.compareMask = 0xff,
.writeMask = 0xff,
.reference = 0
},
.depthCompareOp = VK_COMPARE_OP_ALWAYS,
},
.pDynamicState = &(VkPipelineDynamicStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO,
.dynamicStateCount = 6,
.pDynamicStates = (VkDynamicState[]) {
VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR,
VK_DYNAMIC_STATE_LINE_WIDTH,
VK_DYNAMIC_STATE_DEPTH_BIAS,
VK_DYNAMIC_STATE_BLEND_CONSTANTS,
VK_DYNAMIC_STATE_DEPTH_BOUNDS,
},
},
.flags = 0,
.layout = device->meta_state.blit2d[log2_samples].p_layouts[src_type],
.renderPass = device->meta_state.blit2d_stencil_only_rp[0],
.subpass = 0,
};
const struct radv_graphics_pipeline_create_info radv_pipeline_info = {
.use_rectlist = true
};
result = radv_graphics_pipeline_create(radv_device_to_handle(device),
radv_pipeline_cache_to_handle(&device->meta_state.cache),
&vk_pipeline_info, &radv_pipeline_info,
&device->meta_state.alloc,
&device->meta_state.blit2d[log2_samples].stencil_only_pipeline[src_type]);
ralloc_free(vs.nir);
ralloc_free(fs.nir);
mtx_unlock(&device->meta_state.mtx);
return result;
}
static VkResult
meta_blit2d_create_pipe_layout(struct radv_device *device,
int idx,
uint32_t log2_samples)
{
VkResult result;
VkDescriptorType desc_type = (idx == BLIT2D_SRC_TYPE_BUFFER) ? VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER : VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE;
const VkPushConstantRange push_constant_ranges[] = {
{VK_SHADER_STAGE_VERTEX_BIT, 0, 16},
{VK_SHADER_STAGE_FRAGMENT_BIT, 16, 4},
};
int num_push_constant_range = (idx != BLIT2D_SRC_TYPE_IMAGE || log2_samples > 0) ? 2 : 1;
result = radv_CreateDescriptorSetLayout(radv_device_to_handle(device),
&(VkDescriptorSetLayoutCreateInfo) {
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
.flags = VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR,
.bindingCount = 1,
.pBindings = (VkDescriptorSetLayoutBinding[]) {
{
.binding = 0,
.descriptorType = desc_type,
.descriptorCount = 1,
.stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT,
.pImmutableSamplers = NULL
},
}
}, &device->meta_state.alloc, &device->meta_state.blit2d[log2_samples].ds_layouts[idx]);
if (result != VK_SUCCESS)
goto fail;
result = radv_CreatePipelineLayout(radv_device_to_handle(device),
&(VkPipelineLayoutCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
.setLayoutCount = 1,
.pSetLayouts = &device->meta_state.blit2d[log2_samples].ds_layouts[idx],
.pushConstantRangeCount = num_push_constant_range,
.pPushConstantRanges = push_constant_ranges,
},
&device->meta_state.alloc, &device->meta_state.blit2d[log2_samples].p_layouts[idx]);
if (result != VK_SUCCESS)
goto fail;
return VK_SUCCESS;
fail:
return result;
}
VkResult
radv_device_init_meta_blit2d_state(struct radv_device *device, bool on_demand)
{
VkResult result;
bool create_3d = device->physical_device->rad_info.chip_class >= GFX9;
for (unsigned log2_samples = 0; log2_samples < MAX_SAMPLES_LOG2; log2_samples++) {
for (unsigned src = 0; src < BLIT2D_NUM_SRC_TYPES; src++) {
if (src == BLIT2D_SRC_TYPE_IMAGE_3D && !create_3d)
continue;
/* Don't need to handle copies between buffers and multisample images. */
if (src == BLIT2D_SRC_TYPE_BUFFER && log2_samples > 0)
continue;
result = meta_blit2d_create_pipe_layout(device, src, log2_samples);
if (result != VK_SUCCESS)
goto fail;
if (on_demand)
continue;
for (unsigned j = 0; j < NUM_META_FS_KEYS; ++j) {
result = blit2d_init_color_pipeline(device, src, radv_fs_key_format_exemplars[j], log2_samples);
if (result != VK_SUCCESS)
goto fail;
}
result = blit2d_init_depth_only_pipeline(device, src, log2_samples);
if (result != VK_SUCCESS)
goto fail;
result = blit2d_init_stencil_only_pipeline(device, src, log2_samples);
if (result != VK_SUCCESS)
goto fail;
}
}
return VK_SUCCESS;
fail:
radv_device_finish_meta_blit2d_state(device);
return result;
}