blob: f26a93c16bcf3e2a2fa7573e6f27f1117a0ba4ab [file] [log] [blame]
/*
* Copyright 2017 Advanced Micro Devices, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* on the rights to use, copy, modify, merge, publish, distribute, sub
* license, and/or sell copies of the Software, and to permit persons to whom
* the Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "ac_nir_to_llvm.h"
#include "compiler/nir/nir.h"
#include "compiler/nir/nir_builder.h"
#include "compiler/nir/nir_deref.h"
#include "compiler/nir_types.h"
#include "si_pipe.h"
#include "si_shader_internal.h"
#include "tgsi/tgsi_from_mesa.h"
static const nir_deref_instr *tex_get_texture_deref(nir_tex_instr *instr)
{
for (unsigned i = 0; i < instr->num_srcs; i++) {
switch (instr->src[i].src_type) {
case nir_tex_src_texture_deref:
return nir_src_as_deref(instr->src[i].src);
default:
break;
}
}
return NULL;
}
static nir_variable *intrinsic_get_var(nir_intrinsic_instr *instr)
{
return nir_deref_instr_get_variable(nir_src_as_deref(instr->src[0]));
}
static void gather_usage_helper(const nir_deref_instr **deref_ptr, unsigned location, uint8_t mask,
uint8_t *usage_mask)
{
for (; *deref_ptr; deref_ptr++) {
const nir_deref_instr *deref = *deref_ptr;
switch (deref->deref_type) {
case nir_deref_type_array: {
unsigned elem_size = glsl_count_attribute_slots(deref->type, false);
if (nir_src_is_const(deref->arr.index)) {
location += elem_size * nir_src_as_uint(deref->arr.index);
} else {
unsigned array_elems = glsl_get_length(deref_ptr[-1]->type);
for (unsigned i = 0; i < array_elems; i++) {
gather_usage_helper(deref_ptr + 1, location + elem_size * i, mask, usage_mask);
}
return;
}
break;
}
case nir_deref_type_struct: {
const struct glsl_type *parent_type = deref_ptr[-1]->type;
unsigned index = deref->strct.index;
for (unsigned i = 0; i < index; i++) {
const struct glsl_type *ft = glsl_get_struct_field(parent_type, i);
location += glsl_count_attribute_slots(ft, false);
}
break;
}
default:
unreachable("Unhandled deref type in gather_components_used_helper");
}
}
usage_mask[location] |= mask & 0xf;
if (mask & 0xf0)
usage_mask[location + 1] |= (mask >> 4) & 0xf;
}
static void gather_usage(const nir_deref_instr *deref, uint8_t mask, uint8_t *usage_mask)
{
nir_deref_path path;
nir_deref_path_init(&path, (nir_deref_instr *)deref, NULL);
unsigned location_frac = path.path[0]->var->data.location_frac;
if (glsl_type_is_64bit(deref->type)) {
uint8_t new_mask = 0;
for (unsigned i = 0; i < 4; i++) {
if (mask & (1 << i))
new_mask |= 0x3 << (2 * i);
}
mask = new_mask << location_frac;
} else {
mask <<= location_frac;
mask &= 0xf;
}
gather_usage_helper((const nir_deref_instr **)&path.path[1],
path.path[0]->var->data.driver_location, mask, usage_mask);
nir_deref_path_finish(&path);
}
static void gather_intrinsic_load_deref_input_info(const nir_shader *nir,
const nir_intrinsic_instr *instr,
const nir_deref_instr *deref,
struct si_shader_info *info)
{
switch (nir->info.stage) {
case MESA_SHADER_VERTEX:
gather_usage(deref, nir_ssa_def_components_read(&instr->dest.ssa), info->input_usage_mask);
default:;
}
}
static void gather_intrinsic_load_deref_output_info(const nir_shader *nir,
const nir_intrinsic_instr *instr,
nir_variable *var, struct si_shader_info *info)
{
assert(var && var->data.mode == nir_var_shader_out);
switch (nir->info.stage) {
case MESA_SHADER_TESS_CTRL:
if (var->data.location == VARYING_SLOT_TESS_LEVEL_INNER ||
var->data.location == VARYING_SLOT_TESS_LEVEL_OUTER)
info->reads_tessfactor_outputs = true;
else if (var->data.patch)
info->reads_perpatch_outputs = true;
else
info->reads_pervertex_outputs = true;
break;
case MESA_SHADER_FRAGMENT:
if (var->data.fb_fetch_output)
info->uses_fbfetch = true;
break;
default:;
}
}
static void gather_intrinsic_store_deref_output_info(const nir_shader *nir,
const nir_intrinsic_instr *instr,
const nir_deref_instr *deref,
struct si_shader_info *info)
{
switch (nir->info.stage) {
case MESA_SHADER_VERTEX: /* needed by LS, ES */
case MESA_SHADER_TESS_EVAL: /* needed by ES */
case MESA_SHADER_GEOMETRY:
gather_usage(deref, nir_intrinsic_write_mask(instr), info->output_usagemask);
break;
default:;
}
}
static void scan_instruction(const struct nir_shader *nir, struct si_shader_info *info,
nir_instr *instr)
{
if (instr->type == nir_instr_type_alu) {
nir_alu_instr *alu = nir_instr_as_alu(instr);
switch (alu->op) {
case nir_op_fddx:
case nir_op_fddy:
case nir_op_fddx_fine:
case nir_op_fddy_fine:
case nir_op_fddx_coarse:
case nir_op_fddy_coarse:
info->uses_derivatives = true;
break;
default:
break;
}
} else if (instr->type == nir_instr_type_tex) {
nir_tex_instr *tex = nir_instr_as_tex(instr);
const nir_deref_instr *deref = tex_get_texture_deref(tex);
nir_variable *var = deref ? nir_deref_instr_get_variable(deref) : NULL;
if (!var) {
info->samplers_declared |= u_bit_consecutive(tex->sampler_index, 1);
} else {
if (deref->mode != nir_var_uniform || var->data.bindless)
info->uses_bindless_samplers = true;
}
switch (tex->op) {
case nir_texop_tex:
case nir_texop_txb:
case nir_texop_lod:
info->uses_derivatives = true;
break;
default:
break;
}
} else if (instr->type == nir_instr_type_intrinsic) {
nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
switch (intr->intrinsic) {
case nir_intrinsic_load_front_face:
info->uses_frontface = 1;
break;
case nir_intrinsic_load_instance_id:
info->uses_instanceid = 1;
break;
case nir_intrinsic_load_invocation_id:
info->uses_invocationid = true;
break;
case nir_intrinsic_load_num_work_groups:
info->uses_grid_size = true;
break;
case nir_intrinsic_load_local_invocation_index:
case nir_intrinsic_load_subgroup_id:
case nir_intrinsic_load_num_subgroups:
info->uses_subgroup_info = true;
break;
case nir_intrinsic_load_local_group_size:
/* The block size is translated to IMM with a fixed block size. */
if (info->properties[TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH] == 0)
info->uses_block_size = true;
break;
case nir_intrinsic_load_local_invocation_id:
case nir_intrinsic_load_work_group_id: {
unsigned mask = nir_ssa_def_components_read(&intr->dest.ssa);
while (mask) {
unsigned i = u_bit_scan(&mask);
if (intr->intrinsic == nir_intrinsic_load_work_group_id)
info->uses_block_id[i] = true;
else
info->uses_thread_id[i] = true;
}
break;
}
case nir_intrinsic_load_vertex_id:
info->uses_vertexid = 1;
break;
case nir_intrinsic_load_vertex_id_zero_base:
info->uses_vertexid_nobase = 1;
break;
case nir_intrinsic_load_base_vertex:
info->uses_basevertex = 1;
break;
case nir_intrinsic_load_draw_id:
info->uses_drawid = 1;
break;
case nir_intrinsic_load_primitive_id:
info->uses_primid = 1;
break;
case nir_intrinsic_load_sample_mask_in:
info->reads_samplemask = true;
break;
case nir_intrinsic_load_tess_level_inner:
case nir_intrinsic_load_tess_level_outer:
info->reads_tess_factors = true;
break;
case nir_intrinsic_bindless_image_load:
case nir_intrinsic_bindless_image_size:
case nir_intrinsic_bindless_image_samples:
info->uses_bindless_images = true;
break;
case nir_intrinsic_bindless_image_store:
info->uses_bindless_images = true;
info->writes_memory = true;
info->num_memory_instructions++; /* we only care about stores */
break;
case nir_intrinsic_image_deref_store:
info->writes_memory = true;
info->num_memory_instructions++; /* we only care about stores */
break;
case nir_intrinsic_bindless_image_atomic_add:
case nir_intrinsic_bindless_image_atomic_imin:
case nir_intrinsic_bindless_image_atomic_umin:
case nir_intrinsic_bindless_image_atomic_imax:
case nir_intrinsic_bindless_image_atomic_umax:
case nir_intrinsic_bindless_image_atomic_and:
case nir_intrinsic_bindless_image_atomic_or:
case nir_intrinsic_bindless_image_atomic_xor:
case nir_intrinsic_bindless_image_atomic_exchange:
case nir_intrinsic_bindless_image_atomic_comp_swap:
info->uses_bindless_images = true;
info->writes_memory = true;
info->num_memory_instructions++; /* we only care about stores */
break;
case nir_intrinsic_image_deref_atomic_add:
case nir_intrinsic_image_deref_atomic_imin:
case nir_intrinsic_image_deref_atomic_umin:
case nir_intrinsic_image_deref_atomic_imax:
case nir_intrinsic_image_deref_atomic_umax:
case nir_intrinsic_image_deref_atomic_and:
case nir_intrinsic_image_deref_atomic_or:
case nir_intrinsic_image_deref_atomic_xor:
case nir_intrinsic_image_deref_atomic_exchange:
case nir_intrinsic_image_deref_atomic_comp_swap:
case nir_intrinsic_image_deref_atomic_inc_wrap:
case nir_intrinsic_image_deref_atomic_dec_wrap:
info->writes_memory = true;
info->num_memory_instructions++; /* we only care about stores */
break;
case nir_intrinsic_store_ssbo:
case nir_intrinsic_ssbo_atomic_add:
case nir_intrinsic_ssbo_atomic_imin:
case nir_intrinsic_ssbo_atomic_umin:
case nir_intrinsic_ssbo_atomic_imax:
case nir_intrinsic_ssbo_atomic_umax:
case nir_intrinsic_ssbo_atomic_and:
case nir_intrinsic_ssbo_atomic_or:
case nir_intrinsic_ssbo_atomic_xor:
case nir_intrinsic_ssbo_atomic_exchange:
case nir_intrinsic_ssbo_atomic_comp_swap:
info->writes_memory = true;
info->num_memory_instructions++; /* we only care about stores */
break;
case nir_intrinsic_load_color0:
case nir_intrinsic_load_color1: {
unsigned index = intr->intrinsic == nir_intrinsic_load_color1;
uint8_t mask = nir_ssa_def_components_read(&intr->dest.ssa);
info->colors_read |= mask << (index * 4);
break;
}
case nir_intrinsic_load_barycentric_pixel:
case nir_intrinsic_load_barycentric_centroid:
case nir_intrinsic_load_barycentric_sample:
case nir_intrinsic_load_barycentric_at_offset: /* uses center */
case nir_intrinsic_load_barycentric_at_sample: { /* uses center */
unsigned mode = nir_intrinsic_interp_mode(intr);
if (mode == INTERP_MODE_FLAT)
break;
if (mode == INTERP_MODE_NOPERSPECTIVE) {
if (intr->intrinsic == nir_intrinsic_load_barycentric_sample)
info->uses_linear_sample = true;
else if (intr->intrinsic == nir_intrinsic_load_barycentric_centroid)
info->uses_linear_centroid = true;
else
info->uses_linear_center = true;
if (intr->intrinsic == nir_intrinsic_load_barycentric_at_sample)
info->uses_linear_opcode_interp_sample = true;
} else {
if (intr->intrinsic == nir_intrinsic_load_barycentric_sample)
info->uses_persp_sample = true;
else if (intr->intrinsic == nir_intrinsic_load_barycentric_centroid)
info->uses_persp_centroid = true;
else
info->uses_persp_center = true;
if (intr->intrinsic == nir_intrinsic_load_barycentric_at_sample)
info->uses_persp_opcode_interp_sample = true;
}
break;
}
case nir_intrinsic_load_deref: {
nir_variable *var = intrinsic_get_var(intr);
nir_variable_mode mode = var->data.mode;
if (mode == nir_var_shader_in) {
/* PS inputs use the interpolated load intrinsics. */
assert(nir->info.stage != MESA_SHADER_FRAGMENT);
gather_intrinsic_load_deref_input_info(nir, intr, nir_src_as_deref(intr->src[0]), info);
} else if (mode == nir_var_shader_out) {
gather_intrinsic_load_deref_output_info(nir, intr, var, info);
}
break;
}
case nir_intrinsic_store_deref: {
nir_variable *var = intrinsic_get_var(intr);
if (var->data.mode == nir_var_shader_out)
gather_intrinsic_store_deref_output_info(nir, intr, nir_src_as_deref(intr->src[0]),
info);
break;
}
case nir_intrinsic_interp_deref_at_centroid:
case nir_intrinsic_interp_deref_at_sample:
case nir_intrinsic_interp_deref_at_offset:
unreachable("interp opcodes should have been lowered");
break;
default:
break;
}
}
}
static void scan_output_slot(const nir_variable *var, unsigned var_idx, unsigned component,
unsigned num_components, struct si_shader_info *info)
{
assert(component + num_components <= 4);
assert(component < 4);
unsigned semantic_name, semantic_index;
unsigned location = var->data.location + var_idx;
unsigned drv_location = var->data.driver_location + var_idx;
if (info->processor == PIPE_SHADER_FRAGMENT) {
tgsi_get_gl_frag_result_semantic(location, &semantic_name, &semantic_index);
/* Adjust for dual source blending */
if (var->data.index > 0) {
semantic_index++;
}
} else {
tgsi_get_gl_varying_semantic(location, true, &semantic_name, &semantic_index);
}
ubyte usagemask = ((1 << num_components) - 1) << component;
unsigned gs_out_streams;
if (var->data.stream & NIR_STREAM_PACKED) {
gs_out_streams = var->data.stream & ~NIR_STREAM_PACKED;
} else {
assert(var->data.stream < 4);
gs_out_streams = 0;
for (unsigned j = 0; j < num_components; ++j)
gs_out_streams |= var->data.stream << (2 * (component + j));
}
unsigned streamx = gs_out_streams & 3;
unsigned streamy = (gs_out_streams >> 2) & 3;
unsigned streamz = (gs_out_streams >> 4) & 3;
unsigned streamw = (gs_out_streams >> 6) & 3;
if (usagemask & TGSI_WRITEMASK_X) {
info->output_streams[drv_location] |= streamx;
info->num_stream_output_components[streamx]++;
}
if (usagemask & TGSI_WRITEMASK_Y) {
info->output_streams[drv_location] |= streamy << 2;
info->num_stream_output_components[streamy]++;
}
if (usagemask & TGSI_WRITEMASK_Z) {
info->output_streams[drv_location] |= streamz << 4;
info->num_stream_output_components[streamz]++;
}
if (usagemask & TGSI_WRITEMASK_W) {
info->output_streams[drv_location] |= streamw << 6;
info->num_stream_output_components[streamw]++;
}
info->output_semantic_name[drv_location] = semantic_name;
info->output_semantic_index[drv_location] = semantic_index;
switch (semantic_name) {
case TGSI_SEMANTIC_PRIMID:
info->writes_primid = true;
break;
case TGSI_SEMANTIC_VIEWPORT_INDEX:
info->writes_viewport_index = true;
break;
case TGSI_SEMANTIC_LAYER:
info->writes_layer = true;
break;
case TGSI_SEMANTIC_PSIZE:
info->writes_psize = true;
break;
case TGSI_SEMANTIC_CLIPVERTEX:
info->writes_clipvertex = true;
break;
case TGSI_SEMANTIC_COLOR:
info->colors_written |= 1 << semantic_index;
break;
case TGSI_SEMANTIC_STENCIL:
info->writes_stencil = true;
break;
case TGSI_SEMANTIC_SAMPLEMASK:
info->writes_samplemask = true;
break;
case TGSI_SEMANTIC_EDGEFLAG:
info->writes_edgeflag = true;
break;
case TGSI_SEMANTIC_POSITION:
if (info->processor == PIPE_SHADER_FRAGMENT)
info->writes_z = true;
else
info->writes_position = true;
break;
}
}
static void scan_output_helper(const nir_variable *var, unsigned location,
const struct glsl_type *type, struct si_shader_info *info)
{
if (glsl_type_is_struct(type) || glsl_type_is_interface(type)) {
for (unsigned i = 0; i < glsl_get_length(type); i++) {
const struct glsl_type *ft = glsl_get_struct_field(type, i);
scan_output_helper(var, location, ft, info);
location += glsl_count_attribute_slots(ft, false);
}
} else if (glsl_type_is_array_or_matrix(type)) {
const struct glsl_type *elem_type = glsl_get_array_element(type);
unsigned num_elems = glsl_get_length(type);
if (var->data.compact) {
assert(glsl_type_is_scalar(elem_type));
assert(glsl_get_bit_size(elem_type) == 32);
unsigned component = var->data.location_frac;
scan_output_slot(var, location, component, MIN2(num_elems, 4 - component), info);
if (component + num_elems > 4) {
scan_output_slot(var, location + 1, 0, component + num_elems - 4, info);
}
} else {
unsigned elem_count = glsl_count_attribute_slots(elem_type, false);
for (unsigned i = 0; i < num_elems; i++) {
scan_output_helper(var, location, elem_type, info);
location += elem_count;
}
}
} else if (glsl_type_is_dual_slot(type)) {
unsigned component = var->data.location_frac;
scan_output_slot(var, location, component, 4 - component, info);
scan_output_slot(var, location + 1, 0, component + 2 * glsl_get_components(type) - 4, info);
} else {
unsigned component = var->data.location_frac;
assert(glsl_type_is_vector_or_scalar(type));
unsigned num_components = glsl_get_components(type);
if (glsl_type_is_64bit(type))
num_components *= 2;
scan_output_slot(var, location, component, num_components, info);
}
}
void si_nir_scan_shader(const struct nir_shader *nir, struct si_shader_info *info)
{
nir_function *func;
unsigned i;
info->processor = pipe_shader_type_from_mesa(nir->info.stage);
info->properties[TGSI_PROPERTY_NEXT_SHADER] = pipe_shader_type_from_mesa(nir->info.next_stage);
if (nir->info.stage == MESA_SHADER_VERTEX) {
info->properties[TGSI_PROPERTY_VS_WINDOW_SPACE_POSITION] = nir->info.vs.window_space_position;
info->properties[TGSI_PROPERTY_VS_BLIT_SGPRS_AMD] = nir->info.vs.blit_sgprs_amd;
}
if (nir->info.stage == MESA_SHADER_TESS_CTRL) {
info->properties[TGSI_PROPERTY_TCS_VERTICES_OUT] = nir->info.tess.tcs_vertices_out;
}
if (nir->info.stage == MESA_SHADER_TESS_EVAL) {
if (nir->info.tess.primitive_mode == GL_ISOLINES)
info->properties[TGSI_PROPERTY_TES_PRIM_MODE] = PIPE_PRIM_LINES;
else
info->properties[TGSI_PROPERTY_TES_PRIM_MODE] = nir->info.tess.primitive_mode;
STATIC_ASSERT((TESS_SPACING_EQUAL + 1) % 3 == PIPE_TESS_SPACING_EQUAL);
STATIC_ASSERT((TESS_SPACING_FRACTIONAL_ODD + 1) % 3 == PIPE_TESS_SPACING_FRACTIONAL_ODD);
STATIC_ASSERT((TESS_SPACING_FRACTIONAL_EVEN + 1) % 3 == PIPE_TESS_SPACING_FRACTIONAL_EVEN);
info->properties[TGSI_PROPERTY_TES_SPACING] = (nir->info.tess.spacing + 1) % 3;
info->properties[TGSI_PROPERTY_TES_VERTEX_ORDER_CW] = !nir->info.tess.ccw;
info->properties[TGSI_PROPERTY_TES_POINT_MODE] = nir->info.tess.point_mode;
}
if (nir->info.stage == MESA_SHADER_GEOMETRY) {
info->properties[TGSI_PROPERTY_GS_INPUT_PRIM] = nir->info.gs.input_primitive;
info->properties[TGSI_PROPERTY_GS_OUTPUT_PRIM] = nir->info.gs.output_primitive;
info->properties[TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES] = nir->info.gs.vertices_out;
info->properties[TGSI_PROPERTY_GS_INVOCATIONS] = nir->info.gs.invocations;
}
if (nir->info.stage == MESA_SHADER_FRAGMENT) {
info->properties[TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL] =
nir->info.fs.early_fragment_tests | nir->info.fs.post_depth_coverage;
info->properties[TGSI_PROPERTY_FS_POST_DEPTH_COVERAGE] = nir->info.fs.post_depth_coverage;
if (nir->info.fs.pixel_center_integer) {
info->properties[TGSI_PROPERTY_FS_COORD_PIXEL_CENTER] = TGSI_FS_COORD_PIXEL_CENTER_INTEGER;
}
if (nir->info.fs.depth_layout != FRAG_DEPTH_LAYOUT_NONE) {
switch (nir->info.fs.depth_layout) {
case FRAG_DEPTH_LAYOUT_ANY:
info->properties[TGSI_PROPERTY_FS_DEPTH_LAYOUT] = TGSI_FS_DEPTH_LAYOUT_ANY;
break;
case FRAG_DEPTH_LAYOUT_GREATER:
info->properties[TGSI_PROPERTY_FS_DEPTH_LAYOUT] = TGSI_FS_DEPTH_LAYOUT_GREATER;
break;
case FRAG_DEPTH_LAYOUT_LESS:
info->properties[TGSI_PROPERTY_FS_DEPTH_LAYOUT] = TGSI_FS_DEPTH_LAYOUT_LESS;
break;
case FRAG_DEPTH_LAYOUT_UNCHANGED:
info->properties[TGSI_PROPERTY_FS_DEPTH_LAYOUT] = TGSI_FS_DEPTH_LAYOUT_UNCHANGED;
break;
default:
unreachable("Unknow depth layout");
}
}
}
if (gl_shader_stage_is_compute(nir->info.stage)) {
info->properties[TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH] = nir->info.cs.local_size[0];
info->properties[TGSI_PROPERTY_CS_FIXED_BLOCK_HEIGHT] = nir->info.cs.local_size[1];
info->properties[TGSI_PROPERTY_CS_FIXED_BLOCK_DEPTH] = nir->info.cs.local_size[2];
info->properties[TGSI_PROPERTY_CS_USER_DATA_COMPONENTS_AMD] =
nir->info.cs.user_data_components_amd;
}
i = 0;
uint64_t processed_inputs = 0;
nir_foreach_variable (variable, &nir->inputs) {
unsigned semantic_name, semantic_index;
const struct glsl_type *type = variable->type;
if (nir_is_per_vertex_io(variable, nir->info.stage)) {
assert(glsl_type_is_array(type));
type = glsl_get_array_element(type);
}
unsigned attrib_count =
glsl_count_attribute_slots(type, nir->info.stage == MESA_SHADER_VERTEX);
i = variable->data.driver_location;
/* Vertex shader inputs don't have semantics. The state
* tracker has already mapped them to attributes via
* variable->data.driver_location.
*/
if (nir->info.stage == MESA_SHADER_VERTEX)
continue;
for (unsigned j = 0; j < attrib_count; j++, i++) {
if (processed_inputs & ((uint64_t)1 << i))
continue;
processed_inputs |= ((uint64_t)1 << i);
tgsi_get_gl_varying_semantic(variable->data.location + j, true, &semantic_name,
&semantic_index);
info->input_semantic_name[i] = semantic_name;
info->input_semantic_index[i] = semantic_index;
if (semantic_name == TGSI_SEMANTIC_PRIMID)
info->uses_primid = true;
if (semantic_name == TGSI_SEMANTIC_COLOR) {
/* We only need this for color inputs. */
if (variable->data.sample)
info->input_interpolate_loc[i] = TGSI_INTERPOLATE_LOC_SAMPLE;
else if (variable->data.centroid)
info->input_interpolate_loc[i] = TGSI_INTERPOLATE_LOC_CENTROID;
else
info->input_interpolate_loc[i] = TGSI_INTERPOLATE_LOC_CENTER;
}
enum glsl_base_type base_type = glsl_get_base_type(glsl_without_array(variable->type));
switch (variable->data.interpolation) {
case INTERP_MODE_NONE:
if (glsl_base_type_is_integer(base_type)) {
info->input_interpolate[i] = TGSI_INTERPOLATE_CONSTANT;
break;
}
if (semantic_name == TGSI_SEMANTIC_COLOR) {
info->input_interpolate[i] = TGSI_INTERPOLATE_COLOR;
break;
}
/* fall-through */
case INTERP_MODE_SMOOTH:
assert(!glsl_base_type_is_integer(base_type));
info->input_interpolate[i] = TGSI_INTERPOLATE_PERSPECTIVE;
break;
case INTERP_MODE_NOPERSPECTIVE:
assert(!glsl_base_type_is_integer(base_type));
info->input_interpolate[i] = TGSI_INTERPOLATE_LINEAR;
break;
case INTERP_MODE_FLAT:
info->input_interpolate[i] = TGSI_INTERPOLATE_CONSTANT;
break;
}
}
}
nir_foreach_variable (variable, &nir->outputs) {
const struct glsl_type *type = variable->type;
if (nir_is_per_vertex_io(variable, nir->info.stage)) {
assert(glsl_type_is_array(type));
type = glsl_get_array_element(type);
}
ASSERTED unsigned attrib_count = glsl_count_attribute_slots(type, false);
scan_output_helper(variable, 0, type, info);
unsigned loc = variable->data.location;
if (nir->info.stage == MESA_SHADER_FRAGMENT && loc == FRAG_RESULT_COLOR &&
nir->info.outputs_written & (1ull << loc)) {
assert(attrib_count == 1);
info->properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS] = true;
}
}
info->num_inputs = nir->num_inputs;
info->num_outputs = nir->num_outputs;
info->constbuf0_num_slots = nir->num_uniforms;
info->shader_buffers_declared = u_bit_consecutive(0, nir->info.num_ssbos);
info->const_buffers_declared = u_bit_consecutive(0, nir->info.num_ubos);
info->images_declared = u_bit_consecutive(0, nir->info.num_images);
info->msaa_images_declared = nir->info.msaa_images;
info->image_buffers = nir->info.image_buffers;
info->samplers_declared = nir->info.textures_used;
info->num_written_clipdistance = nir->info.clip_distance_array_size;
info->num_written_culldistance = nir->info.cull_distance_array_size;
info->clipdist_writemask = u_bit_consecutive(0, info->num_written_clipdistance);
info->culldist_writemask = u_bit_consecutive(0, info->num_written_culldistance);
if (info->processor == PIPE_SHADER_FRAGMENT)
info->uses_kill = nir->info.fs.uses_discard;
if (nir->info.stage == MESA_SHADER_TESS_CTRL) {
info->tessfactors_are_def_in_all_invocs = ac_are_tessfactors_def_in_all_invocs(nir);
}
func = (struct nir_function *)exec_list_get_head_const(&nir->functions);
nir_foreach_block (block, func->impl) {
nir_foreach_instr (instr, block)
scan_instruction(nir, info, instr);
}
}
static void si_nir_opts(struct nir_shader *nir)
{
bool progress;
do {
progress = false;
NIR_PASS_V(nir, nir_lower_vars_to_ssa);
NIR_PASS(progress, nir, nir_opt_copy_prop_vars);
NIR_PASS(progress, nir, nir_opt_dead_write_vars);
NIR_PASS_V(nir, nir_lower_alu_to_scalar, NULL, NULL);
NIR_PASS_V(nir, nir_lower_phis_to_scalar);
/* (Constant) copy propagation is needed for txf with offsets. */
NIR_PASS(progress, nir, nir_copy_prop);
NIR_PASS(progress, nir, nir_opt_remove_phis);
NIR_PASS(progress, nir, nir_opt_dce);
if (nir_opt_trivial_continues(nir)) {
progress = true;
NIR_PASS(progress, nir, nir_copy_prop);
NIR_PASS(progress, nir, nir_opt_dce);
}
NIR_PASS(progress, nir, nir_opt_if, true);
NIR_PASS(progress, nir, nir_opt_dead_cf);
NIR_PASS(progress, nir, nir_opt_cse);
NIR_PASS(progress, nir, nir_opt_peephole_select, 8, true, true);
/* Needed for algebraic lowering */
NIR_PASS(progress, nir, nir_opt_algebraic);
NIR_PASS(progress, nir, nir_opt_constant_folding);
if (!nir->info.flrp_lowered) {
unsigned lower_flrp = (nir->options->lower_flrp16 ? 16 : 0) |
(nir->options->lower_flrp32 ? 32 : 0) |
(nir->options->lower_flrp64 ? 64 : 0);
assert(lower_flrp);
bool lower_flrp_progress = false;
NIR_PASS(lower_flrp_progress, nir, nir_lower_flrp, lower_flrp, false /* always_precise */,
nir->options->lower_ffma);
if (lower_flrp_progress) {
NIR_PASS(progress, nir, nir_opt_constant_folding);
progress = true;
}
/* Nothing should rematerialize any flrps, so we only
* need to do this lowering once.
*/
nir->info.flrp_lowered = true;
}
NIR_PASS(progress, nir, nir_opt_undef);
NIR_PASS(progress, nir, nir_opt_conditional_discard);
if (nir->options->max_unroll_iterations) {
NIR_PASS(progress, nir, nir_opt_loop_unroll, 0);
}
} while (progress);
}
static int type_size_vec4(const struct glsl_type *type, bool bindless)
{
return glsl_count_attribute_slots(type, false);
}
static void si_nir_lower_color(nir_shader *nir)
{
nir_function_impl *entrypoint = nir_shader_get_entrypoint(nir);
nir_builder b;
nir_builder_init(&b, entrypoint);
nir_foreach_block (block, entrypoint) {
nir_foreach_instr_safe (instr, block) {
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
if (intrin->intrinsic != nir_intrinsic_load_deref)
continue;
nir_deref_instr *deref = nir_src_as_deref(intrin->src[0]);
if (deref->mode != nir_var_shader_in)
continue;
b.cursor = nir_before_instr(instr);
nir_variable *var = nir_deref_instr_get_variable(deref);
nir_ssa_def *def;
if (var->data.location == VARYING_SLOT_COL0) {
def = nir_load_color0(&b);
} else if (var->data.location == VARYING_SLOT_COL1) {
def = nir_load_color1(&b);
} else {
continue;
}
nir_ssa_def_rewrite_uses(&intrin->dest.ssa, nir_src_for_ssa(def));
nir_instr_remove(instr);
}
}
}
static void si_nir_lower_ps_inputs(struct nir_shader *nir)
{
if (nir->info.stage != MESA_SHADER_FRAGMENT)
return;
NIR_PASS_V(nir, nir_lower_io_to_temporaries, nir_shader_get_entrypoint(nir), false, true);
/* Since we're doing nir_lower_io_to_temporaries late, we need
* to lower all the copy_deref's introduced by
* lower_io_to_temporaries before calling nir_lower_io.
*/
NIR_PASS_V(nir, nir_split_var_copies);
NIR_PASS_V(nir, nir_lower_var_copies);
NIR_PASS_V(nir, nir_lower_global_vars_to_local);
si_nir_lower_color(nir);
NIR_PASS_V(nir, nir_lower_io, nir_var_shader_in, type_size_vec4, 0);
/* This pass needs actual constants */
NIR_PASS_V(nir, nir_opt_constant_folding);
NIR_PASS_V(nir, nir_io_add_const_offset_to_base, nir_var_shader_in);
}
void si_nir_adjust_driver_locations(struct nir_shader *nir)
{
/* Adjust the driver location of inputs and outputs. the gallium frontend
* interprets them as slots, while the ac/nir backend interprets them
* as individual components.
*/
if (nir->info.stage != MESA_SHADER_FRAGMENT) {
nir_foreach_variable (variable, &nir->inputs)
variable->data.driver_location *= 4;
}
nir_foreach_variable (variable, &nir->outputs)
variable->data.driver_location *= 4;
}
/**
* Perform "lowering" operations on the NIR that are run once when the shader
* selector is created.
*/
static void si_lower_nir(struct si_screen *sscreen, struct nir_shader *nir)
{
/* Perform lowerings (and optimizations) of code.
*
* Performance considerations aside, we must:
* - lower certain ALU operations
* - ensure constant offsets for texture instructions are folded
* and copy-propagated
*/
static const struct nir_lower_tex_options lower_tex_options = {
.lower_txp = ~0u,
};
NIR_PASS_V(nir, nir_lower_tex, &lower_tex_options);
const nir_lower_subgroups_options subgroups_options = {
.subgroup_size = 64,
.ballot_bit_size = 64,
.lower_to_scalar = true,
.lower_subgroup_masks = true,
.lower_vote_trivial = false,
.lower_vote_eq_to_ballot = true,
};
NIR_PASS_V(nir, nir_lower_subgroups, &subgroups_options);
/* Lower load constants to scalar and then clean up the mess */
NIR_PASS_V(nir, nir_lower_load_const_to_scalar);
NIR_PASS_V(nir, nir_lower_var_copies);
NIR_PASS_V(nir, nir_lower_pack);
NIR_PASS_V(nir, nir_opt_access);
si_nir_opts(nir);
/* Lower large variables that are always constant with load_constant
* intrinsics, which get turned into PC-relative loads from a data
* section next to the shader.
*
* st/mesa calls finalize_nir twice, but we can't call this pass twice.
*/
bool changed = false;
if (!nir->constant_data) {
NIR_PASS(changed, nir, nir_opt_large_constants, glsl_get_natural_size_align_bytes, 16);
}
changed |= ac_lower_indirect_derefs(nir, sscreen->info.chip_class);
if (changed)
si_nir_opts(nir);
NIR_PASS_V(nir, nir_lower_bool_to_int32);
NIR_PASS_V(nir, nir_remove_dead_variables, nir_var_function_temp, NULL);
if (sscreen->debug_flags & DBG(FS_CORRECT_DERIVS_AFTER_KILL))
NIR_PASS_V(nir, nir_lower_discard_to_demote);
}
void si_finalize_nir(struct pipe_screen *screen, void *nirptr, bool optimize)
{
struct si_screen *sscreen = (struct si_screen *)screen;
struct nir_shader *nir = (struct nir_shader *)nirptr;
nir_shader_gather_info(nir, nir_shader_get_entrypoint(nir));
si_nir_lower_ps_inputs(nir);
si_lower_nir(sscreen, nir);
}