blob: 0a4246fb0675065e9f4d291ba67e7cc86d54759a [file] [log] [blame]
/* -*- mesa-c++ -*-
*
* Copyright (c) 2019 Collabora LTD
*
* Author: Gert Wollny <gert.wollny@collabora.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* on the rights to use, copy, modify, merge, publish, distribute, sub
* license, and/or sell copies of the Software, and to permit persons to whom
* the Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "sfn_nir.h"
#include "nir_builder.h"
#include "../r600_pipe.h"
#include "../r600_shader.h"
#include "sfn_instruction_tex.h"
#include "sfn_shader_vertex.h"
#include "sfn_shader_fragment.h"
#include "sfn_shader_geometry.h"
#include "sfn_shader_compute.h"
#include "sfn_shader_tcs.h"
#include "sfn_shader_tess_eval.h"
#include "sfn_nir_lower_fs_out_to_vector.h"
#include "sfn_ir_to_assembly.h"
#include <vector>
namespace r600 {
using std::vector;
ShaderFromNir::ShaderFromNir():sh(nullptr),
m_current_if_id(0),
m_current_loop_id(0)
{
}
bool ShaderFromNir::lower(const nir_shader *shader, r600_pipe_shader *pipe_shader,
r600_pipe_shader_selector *sel, r600_shader_key& key,
struct r600_shader* gs_shader, enum chip_class _chip_class)
{
sh = shader;
chip_class = _chip_class;
assert(sh);
switch (shader->info.stage) {
case MESA_SHADER_VERTEX:
impl.reset(new VertexShaderFromNir(pipe_shader, *sel, key, gs_shader, chip_class));
break;
case MESA_SHADER_TESS_CTRL:
sfn_log << SfnLog::trans << "Start TCS\n";
impl.reset(new TcsShaderFromNir(pipe_shader, *sel, key, chip_class));
break;
case MESA_SHADER_TESS_EVAL:
sfn_log << SfnLog::trans << "Start TESS_EVAL\n";
impl.reset(new TEvalShaderFromNir(pipe_shader, *sel, key, gs_shader, chip_class));
break;
case MESA_SHADER_GEOMETRY:
sfn_log << SfnLog::trans << "Start GS\n";
impl.reset(new GeometryShaderFromNir(pipe_shader, *sel, key, chip_class));
break;
case MESA_SHADER_FRAGMENT:
sfn_log << SfnLog::trans << "Start FS\n";
impl.reset(new FragmentShaderFromNir(*shader, pipe_shader->shader, *sel, key, chip_class));
break;
case MESA_SHADER_COMPUTE:
sfn_log << SfnLog::trans << "Start CS\n";
impl.reset(new ComputeShaderFromNir(pipe_shader, *sel, key, chip_class));
break;
default:
return false;
}
sfn_log << SfnLog::trans << "Process declarations\n";
if (!process_declaration())
return false;
// at this point all functions should be inlined
const nir_function *func = reinterpret_cast<const nir_function *>(exec_list_get_head_const(&sh->functions));
sfn_log << SfnLog::trans << "Scan shader\n";
nir_foreach_block(block, func->impl) {
nir_foreach_instr(instr, block) {
if (!impl->scan_instruction(instr)) {
fprintf(stderr, "Unhandled sysvalue access ");
nir_print_instr(instr, stderr);
fprintf(stderr, "\n");
return false;
}
}
}
sfn_log << SfnLog::trans << "Reserve registers\n";
if (!impl->allocate_reserved_registers()) {
return false;
}
ValuePool::array_list arrays;
sfn_log << SfnLog::trans << "Allocate local registers\n";
foreach_list_typed(nir_register, reg, node, &func->impl->registers) {
impl->allocate_local_register(*reg, arrays);
}
sfn_log << SfnLog::trans << "Emit shader start\n";
impl->allocate_arrays(arrays);
impl->emit_shader_start();
sfn_log << SfnLog::trans << "Process shader \n";
foreach_list_typed(nir_cf_node, node, node, &func->impl->body) {
if (!process_cf_node(node))
return false;
}
// Add optimizations here
sfn_log << SfnLog::trans << "Finalize\n";
impl->finalize();
if (!sfn_log.has_debug_flag(SfnLog::nomerge)) {
sfn_log << SfnLog::trans << "Merge registers\n";
impl->remap_registers();
}
sfn_log << SfnLog::trans << "Finished translating to R600 IR\n";
return true;
}
Shader ShaderFromNir::shader() const
{
return Shader{impl->m_output, impl->get_temp_registers()};
}
bool ShaderFromNir::process_cf_node(nir_cf_node *node)
{
SFN_TRACE_FUNC(SfnLog::flow, "CF");
switch (node->type) {
case nir_cf_node_block:
return process_block(nir_cf_node_as_block(node));
case nir_cf_node_if:
return process_if(nir_cf_node_as_if(node));
case nir_cf_node_loop:
return process_loop(nir_cf_node_as_loop(node));
default:
return false;
}
}
bool ShaderFromNir::process_if(nir_if *if_stmt)
{
SFN_TRACE_FUNC(SfnLog::flow, "IF");
if (!impl->emit_if_start(m_current_if_id, if_stmt))
return false;
int if_id = m_current_if_id++;
m_if_stack.push(if_id);
foreach_list_typed(nir_cf_node, n, node, &if_stmt->then_list)
if (!process_cf_node(n)) return false;
if (!if_stmt->then_list.is_empty()) {
if (!impl->emit_else_start(if_id))
return false;
foreach_list_typed(nir_cf_node, n, node, &if_stmt->else_list)
if (!process_cf_node(n)) return false;
}
if (!impl->emit_ifelse_end(if_id))
return false;
m_if_stack.pop();
return true;
}
bool ShaderFromNir::process_loop(nir_loop *node)
{
SFN_TRACE_FUNC(SfnLog::flow, "LOOP");
int loop_id = m_current_loop_id++;
if (!impl->emit_loop_start(loop_id))
return false;
foreach_list_typed(nir_cf_node, n, node, &node->body)
if (!process_cf_node(n)) return false;
if (!impl->emit_loop_end(loop_id))
return false;
return true;
}
bool ShaderFromNir::process_block(nir_block *block)
{
SFN_TRACE_FUNC(SfnLog::flow, "BLOCK");
nir_foreach_instr(instr, block) {
int r = emit_instruction(instr);
if (!r) {
sfn_log << SfnLog::err << "R600: Unsupported instruction: "
<< *instr << "\n";
return false;
}
}
return true;
}
ShaderFromNir::~ShaderFromNir()
{
}
pipe_shader_type ShaderFromNir::processor_type() const
{
return impl->m_processor_type;
}
bool ShaderFromNir::emit_instruction(nir_instr *instr)
{
assert(impl);
sfn_log << SfnLog::instr << "Read instruction " << *instr << "\n";
switch (instr->type) {
case nir_instr_type_alu:
return impl->emit_alu_instruction(instr);
case nir_instr_type_deref:
return impl->emit_deref_instruction(nir_instr_as_deref(instr));
case nir_instr_type_intrinsic:
return impl->emit_intrinsic_instruction(nir_instr_as_intrinsic(instr));
case nir_instr_type_load_const:
return impl->set_literal_constant(nir_instr_as_load_const(instr));
case nir_instr_type_tex:
return impl->emit_tex_instruction(instr);
case nir_instr_type_jump:
return impl->emit_jump_instruction(nir_instr_as_jump(instr));
default:
fprintf(stderr, "R600: %s: ShaderFromNir Unsupported instruction: type %d:'", __func__, instr->type);
nir_print_instr(instr, stderr);
fprintf(stderr, "'\n");
return false;
case nir_instr_type_ssa_undef:
return impl->create_undef(nir_instr_as_ssa_undef(instr));
return true;
}
}
bool ShaderFromNir::process_declaration()
{
// scan declarations
nir_foreach_variable(variable, &sh->inputs) {
if (!impl->process_inputs(variable)) {
fprintf(stderr, "R600: error parsing input varible %s\n", variable->name);
return false;
}
}
// scan declarations
nir_foreach_variable(variable, &sh->outputs) {
if (!impl->process_outputs(variable)) {
fprintf(stderr, "R600: error parsing outputs varible %s\n", variable->name);
return false;
}
}
// scan declarations
nir_foreach_variable(variable, &sh->uniforms) {
if (!impl->process_uniforms(variable)) {
fprintf(stderr, "R600: error parsing outputs varible %s\n", variable->name);
return false;
}
}
return true;
}
const std::vector<InstructionBlock>& ShaderFromNir::shader_ir() const
{
assert(impl);
return impl->m_output;
}
AssemblyFromShader::~AssemblyFromShader()
{
}
bool AssemblyFromShader::lower(const std::vector<InstructionBlock>& ir)
{
return do_lower(ir);
}
static nir_ssa_def *
r600_nir_lower_pack_unpack_2x16_impl(nir_builder *b, nir_instr *instr, void *_options)
{
nir_alu_instr *alu = nir_instr_as_alu(instr);
switch (alu->op) {
case nir_op_unpack_half_2x16: {
nir_ssa_def *packed = nir_ssa_for_alu_src(b, alu, 0);
return nir_vec2(b, nir_unpack_half_2x16_split_x(b, packed),
nir_unpack_half_2x16_split_y(b, packed));
}
case nir_op_pack_half_2x16: {
nir_ssa_def *src_vec2 = nir_ssa_for_alu_src(b, alu, 0);
return nir_pack_half_2x16_split(b, nir_channel(b, src_vec2, 0),
nir_channel(b, src_vec2, 1));
}
default:
return nullptr;
}
}
bool r600_nir_lower_pack_unpack_2x16_filter(const nir_instr *instr, const void *_options)
{
return instr->type == nir_instr_type_alu;
}
bool r600_nir_lower_pack_unpack_2x16(nir_shader *shader)
{
return nir_shader_lower_instructions(shader,
r600_nir_lower_pack_unpack_2x16_filter,
r600_nir_lower_pack_unpack_2x16_impl,
nullptr);
};
static void
r600_nir_lower_scratch_address_impl(nir_builder *b, nir_intrinsic_instr *instr)
{
b->cursor = nir_before_instr(&instr->instr);
int address_index = 0;
int align;
if (instr->intrinsic == nir_intrinsic_store_scratch) {
align = instr->src[0].ssa->num_components;
address_index = 1;
} else{
align = instr->dest.ssa.num_components;
}
nir_ssa_def *address = instr->src[address_index].ssa;
nir_ssa_def *new_address = nir_ishr(b, address, nir_imm_int(b, 4 * align));
nir_instr_rewrite_src(&instr->instr, &instr->src[address_index],
nir_src_for_ssa(new_address));
}
bool r600_lower_scratch_addresses(nir_shader *shader)
{
bool progress = false;
nir_foreach_function(function, shader) {
nir_builder build;
nir_builder_init(&build, function->impl);
nir_foreach_block(block, function->impl) {
nir_foreach_instr(instr, block) {
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *op = nir_instr_as_intrinsic(instr);
if (op->intrinsic != nir_intrinsic_load_scratch &&
op->intrinsic != nir_intrinsic_store_scratch)
continue;
r600_nir_lower_scratch_address_impl(&build, op);
progress = true;
}
}
}
return progress;
}
static nir_ssa_def *
r600_lower_ubo_to_align16_impl(nir_builder *b, nir_instr *instr, void *_options)
{
b->cursor = nir_before_instr(instr);
nir_intrinsic_instr *op = nir_instr_as_intrinsic(instr);
assert(op->intrinsic == nir_intrinsic_load_ubo);
bool const_address = (nir_src_is_const(op->src[1]) && nir_src_is_const(op->src[0]));
nir_ssa_def *offset = op->src[1].ssa;
/* This is ugly: With const addressing we can actually set a proper fetch target mask,
* but for this we need the component encoded, we don't shift and do de decoding in the
* backend. Otherwise we shift by four and resolve the component here
* (TODO: encode the start component in the intrinsic when the offset base is non-constant
* but a multiple of 16 */
nir_ssa_def *new_offset = offset;
if (!const_address)
new_offset = nir_ishr(b, offset, nir_imm_int(b, 4));
nir_intrinsic_instr *load = nir_intrinsic_instr_create(b->shader, nir_intrinsic_load_ubo_r600);
load->num_components = const_address ? op->num_components : 4;
load->src[0] = op->src[0];
load->src[1] = nir_src_for_ssa(new_offset);
nir_intrinsic_set_align(load, nir_intrinsic_align_mul(op), nir_intrinsic_align_offset(op));
nir_ssa_dest_init(&load->instr, &load->dest, load->num_components, 32, NULL);
nir_builder_instr_insert(b, &load->instr);
/* when four components are loaded or both the offset and the location
* are constant, then the backend can deal with it better */
if (op->num_components == 4 || const_address)
return &load->dest.ssa;
/* What comes below is a performance disaster when the offset is not constant
* because then we have to assume that any component can be the first one and we
* have to pick the result manually. */
nir_ssa_def *first_comp = nir_iand(b, nir_ishr(b, offset, nir_imm_int(b, 2)),
nir_imm_int(b,3));
const unsigned swz_000[4] = {0, 0, 0};
nir_ssa_def *component_select = nir_ieq(b, r600_imm_ivec3(b, 0, 1, 2),
nir_swizzle(b, first_comp, swz_000, 3));
if (op->num_components == 1) {
nir_ssa_def *check0 = nir_bcsel(b, nir_channel(b, component_select, 0),
nir_channel(b, &load->dest.ssa, 0),
nir_channel(b, &load->dest.ssa, 3));
nir_ssa_def *check1 = nir_bcsel(b, nir_channel(b, component_select, 1),
nir_channel(b, &load->dest.ssa, 1),
check0);
return nir_bcsel(b, nir_channel(b, component_select, 2),
nir_channel(b, &load->dest.ssa, 2),
check1);
} else if (op->num_components == 2) {
const unsigned szw_01[2] = {0, 1};
const unsigned szw_12[2] = {1, 2};
const unsigned szw_23[2] = {2, 3};
nir_ssa_def *check0 = nir_bcsel(b, nir_channel(b, component_select, 0),
nir_swizzle(b, &load->dest.ssa, szw_01, 2),
nir_swizzle(b, &load->dest.ssa, szw_23, 2));
return nir_bcsel(b, nir_channel(b, component_select, 1),
nir_swizzle(b, &load->dest.ssa, szw_12, 2),
check0);
} else {
const unsigned szw_012[3] = {0, 1, 2};
const unsigned szw_123[3] = {1, 2, 3};
return nir_bcsel(b, nir_channel(b, component_select, 0),
nir_swizzle(b, &load->dest.ssa, szw_012, 3),
nir_swizzle(b, &load->dest.ssa, szw_123, 3));
}
}
bool r600_lower_ubo_to_align16_filter(const nir_instr *instr, const void *_options)
{
if (instr->type != nir_instr_type_intrinsic)
return false;
nir_intrinsic_instr *op = nir_instr_as_intrinsic(instr);
return op->intrinsic == nir_intrinsic_load_ubo;
}
bool r600_lower_ubo_to_align16(nir_shader *shader)
{
return nir_shader_lower_instructions(shader,
r600_lower_ubo_to_align16_filter,
r600_lower_ubo_to_align16_impl,
nullptr);
}
}
using r600::r600_nir_lower_int_tg4;
using r600::r600_nir_lower_pack_unpack_2x16;
using r600::r600_lower_scratch_addresses;
using r600::r600_lower_fs_out_to_vector;
using r600::r600_lower_ubo_to_align16;
int
r600_glsl_type_size(const struct glsl_type *type, bool is_bindless)
{
return glsl_count_vec4_slots(type, false, is_bindless);
}
void
r600_get_natural_size_align_bytes(const struct glsl_type *type,
unsigned *size, unsigned *align)
{
if (type->base_type != GLSL_TYPE_ARRAY) {
*align = 1;
*size = 1;
} else {
unsigned elem_size, elem_align;
glsl_get_natural_size_align_bytes(type->fields.array,
&elem_size, &elem_align);
*align = 1;
*size = type->length;
}
}
static bool
r600_lower_shared_io_impl(nir_function *func)
{
nir_builder b;
nir_builder_init(&b, func->impl);
bool progress = false;
nir_foreach_block(block, func->impl) {
nir_foreach_instr_safe(instr, block) {
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *op = nir_instr_as_intrinsic(instr);
if (op->intrinsic != nir_intrinsic_load_shared &&
op->intrinsic != nir_intrinsic_store_shared)
continue;
b.cursor = nir_before_instr(instr);
if (op->intrinsic == nir_intrinsic_load_shared) {
nir_ssa_def *addr = op->src[0].ssa;
switch (nir_dest_num_components(op->dest)) {
case 2: {
auto addr2 = nir_iadd_imm(&b, addr, 4);
addr = nir_vec2(&b, addr, addr2);
break;
}
case 3: {
auto addr2 = nir_iadd(&b, addr, nir_imm_ivec2(&b, 4, 8));
addr = nir_vec3(&b, addr,
nir_channel(&b, addr2, 0),
nir_channel(&b, addr2, 1));
break;
}
case 4: {
addr = nir_iadd(&b, addr, nir_imm_ivec4(&b, 0, 4, 8, 12));
break;
}
}
auto load = nir_intrinsic_instr_create(b.shader, nir_intrinsic_load_local_shared_r600);
load->num_components = nir_dest_num_components(op->dest);
load->src[0] = nir_src_for_ssa(addr);
nir_ssa_dest_init(&load->instr, &load->dest,
load->num_components, 32, NULL);
nir_ssa_def_rewrite_uses(&op->dest.ssa, nir_src_for_ssa(&load->dest.ssa));
nir_builder_instr_insert(&b, &load->instr);
} else {
nir_ssa_def *addr = op->src[1].ssa;
for (int i = 0; i < 2; ++i) {
unsigned test_mask = (0x3 << 2 * i);
if (!(nir_intrinsic_write_mask(op) & test_mask))
continue;
auto store = nir_intrinsic_instr_create(b.shader, nir_intrinsic_store_local_shared_r600);
unsigned writemask = nir_intrinsic_write_mask(op) & test_mask;
nir_intrinsic_set_write_mask(store, writemask);
store->src[0] = nir_src_for_ssa(op->src[0].ssa);
store->num_components = store->src[0].ssa->num_components;
bool start_even = (writemask & (1u << (2 * i)));
auto addr2 = nir_iadd(&b, addr, nir_imm_int(&b, 8 * i + (start_even ? 0 : 4)));
store->src[1] = nir_src_for_ssa(addr2);
nir_builder_instr_insert(&b, &store->instr);
}
}
nir_instr_remove(instr);
progress = true;
}
}
return progress;
}
static bool
r600_lower_shared_io(nir_shader *nir)
{
bool progress=false;
nir_foreach_function(function, nir) {
if (function->impl &&
r600_lower_shared_io_impl(function))
progress = true;
}
return progress;
}
static bool
optimize_once(nir_shader *shader)
{
bool progress = false;
NIR_PASS(progress, shader, nir_copy_prop);
NIR_PASS(progress, shader, nir_opt_dce);
NIR_PASS(progress, shader, nir_opt_algebraic);
NIR_PASS(progress, shader, nir_opt_constant_folding);
NIR_PASS(progress, shader, nir_opt_copy_prop_vars);
NIR_PASS(progress, shader, nir_opt_vectorize);
NIR_PASS(progress, shader, nir_opt_remove_phis);
if (nir_opt_trivial_continues(shader)) {
progress = true;
NIR_PASS(progress, shader, nir_copy_prop);
NIR_PASS(progress, shader, nir_opt_dce);
}
NIR_PASS(progress, shader, nir_opt_if, false);
NIR_PASS(progress, shader, nir_opt_dead_cf);
NIR_PASS(progress, shader, nir_opt_cse);
NIR_PASS(progress, shader, nir_opt_peephole_select, 200, true, true);
NIR_PASS(progress, shader, nir_opt_conditional_discard);
NIR_PASS(progress, shader, nir_opt_dce);
NIR_PASS(progress, shader, nir_opt_undef);
return progress;
}
bool has_saturate(const nir_function *func)
{
nir_foreach_block(block, func->impl) {
nir_foreach_instr(instr, block) {
if (instr->type == nir_instr_type_alu) {
auto alu = nir_instr_as_alu(instr);
if (alu->dest.saturate)
return true;
}
}
}
return false;
}
int r600_shader_from_nir(struct r600_context *rctx,
struct r600_pipe_shader *pipeshader,
r600_shader_key *key)
{
char filename[4000];
struct r600_pipe_shader_selector *sel = pipeshader->selector;
r600::ShaderFromNir convert;
if (rctx->screen->b.debug_flags & DBG_PREOPT_IR) {
fprintf(stderr, "PRE-OPT-NIR-----------.------------------------------\n");
nir_print_shader(sel->nir, stderr);
fprintf(stderr, "END PRE-OPT-NIR--------------------------------------\n\n");
}
NIR_PASS_V(sel->nir, nir_lower_vars_to_ssa);
NIR_PASS_V(sel->nir, nir_lower_regs_to_ssa);
NIR_PASS_V(sel->nir, nir_lower_phis_to_scalar);
NIR_PASS_V(sel->nir, r600_lower_shared_io);
static const struct nir_lower_tex_options lower_tex_options = {
.lower_txp = ~0u,
};
NIR_PASS_V(sel->nir, nir_lower_tex, &lower_tex_options);
NIR_PASS_V(sel->nir, r600::r600_nir_lower_txl_txf_array_or_cube);
NIR_PASS_V(sel->nir, r600_nir_lower_int_tg4);
NIR_PASS_V(sel->nir, r600_nir_lower_pack_unpack_2x16);
NIR_PASS_V(sel->nir, nir_lower_io, nir_var_uniform, r600_glsl_type_size,
nir_lower_io_lower_64bit_to_32);
if (sel->nir->info.stage == MESA_SHADER_VERTEX)
NIR_PASS_V(sel->nir, r600_vectorize_vs_inputs);
if (sel->nir->info.stage == MESA_SHADER_FRAGMENT)
NIR_PASS_V(sel->nir, r600_lower_fs_out_to_vector);
if (sel->nir->info.stage == MESA_SHADER_TESS_CTRL ||
(sel->nir->info.stage == MESA_SHADER_VERTEX && key->vs.as_ls)) {
NIR_PASS_V(sel->nir, nir_lower_io, nir_var_shader_out, r600_glsl_type_size,
nir_lower_io_lower_64bit_to_32);
NIR_PASS_V(sel->nir, r600_lower_tess_io, (pipe_prim_type)key->tcs.prim_mode);
}
if (sel->nir->info.stage == MESA_SHADER_TESS_CTRL ||
sel->nir->info.stage == MESA_SHADER_TESS_EVAL) {
NIR_PASS_V(sel->nir, nir_lower_io, nir_var_shader_in, r600_glsl_type_size,
nir_lower_io_lower_64bit_to_32);
}
if (sel->nir->info.stage == MESA_SHADER_TESS_CTRL ||
sel->nir->info.stage == MESA_SHADER_TESS_EVAL ||
(sel->nir->info.stage == MESA_SHADER_VERTEX && key->vs.as_ls)) {
auto prim_type = sel->nir->info.stage == MESA_SHADER_TESS_CTRL ?
key->tcs.prim_mode : sel->nir->info.tess.primitive_mode;
NIR_PASS_V(sel->nir, r600_lower_tess_io, static_cast<pipe_prim_type>(prim_type));
}
if (sel->nir->info.stage == MESA_SHADER_TESS_CTRL)
NIR_PASS_V(sel->nir, r600_append_tcs_TF_emission,
(pipe_prim_type)key->tcs.prim_mode);
const nir_function *func = reinterpret_cast<const nir_function *>(exec_list_get_head_const(&sel->nir->functions));
bool optimize = func->impl->registers.length() == 0 && !has_saturate(func);
if (optimize) {
optimize_once(sel->nir);
NIR_PASS_V(sel->nir, r600_lower_ubo_to_align16);
}
/* It seems the output of this optimization is cached somewhere, and
* when there are registers, then we can no longer copy propagate, so
* skip the optimization then. (There is probably a better way, but yeah)
*/
if (optimize)
while(optimize_once(sel->nir));
NIR_PASS_V(sel->nir, nir_remove_dead_variables, nir_var_shader_in, NULL);
NIR_PASS_V(sel->nir, nir_remove_dead_variables, nir_var_shader_out, NULL);
NIR_PASS_V(sel->nir, nir_lower_vars_to_scratch,
nir_var_function_temp,
40,
r600_get_natural_size_align_bytes);
while (optimize && optimize_once(sel->nir));
NIR_PASS_V(sel->nir, nir_lower_locals_to_regs);
//NIR_PASS_V(sel->nir, nir_opt_algebraic);
//NIR_PASS_V(sel->nir, nir_copy_prop);
NIR_PASS_V(sel->nir, nir_lower_to_source_mods, nir_lower_float_source_mods);
NIR_PASS_V(sel->nir, nir_convert_from_ssa, true);
NIR_PASS_V(sel->nir, nir_opt_dce);
if ((rctx->screen->b.debug_flags & DBG_NIR) &&
(rctx->screen->b.debug_flags & DBG_ALL_SHADERS)) {
fprintf(stderr, "-- NIR --------------------------------------------------------\n");
struct nir_function *func = (struct nir_function *)exec_list_get_head(&sel->nir->functions);
nir_index_ssa_defs(func->impl);
nir_print_shader(sel->nir, stderr);
fprintf(stderr, "-- END --------------------------------------------------------\n");
}
memset(&pipeshader->shader, 0, sizeof(r600_shader));
pipeshader->scratch_space_needed = sel->nir->scratch_size;
if (sel->nir->info.stage == MESA_SHADER_TESS_EVAL ||
sel->nir->info.stage == MESA_SHADER_VERTEX ||
sel->nir->info.stage == MESA_SHADER_GEOMETRY) {
pipeshader->shader.clip_dist_write |= ((1 << sel->nir->info.clip_distance_array_size) - 1);
pipeshader->shader.cull_dist_write = ((1 << sel->nir->info.cull_distance_array_size) - 1)
<< sel->nir->info.clip_distance_array_size;
pipeshader->shader.cc_dist_mask = (1 << (sel->nir->info.cull_distance_array_size +
sel->nir->info.clip_distance_array_size)) - 1;
}
struct r600_shader* gs_shader = nullptr;
if (rctx->gs_shader)
gs_shader = &rctx->gs_shader->current->shader;
r600_screen *rscreen = rctx->screen;
bool r = convert.lower(sel->nir, pipeshader, sel, *key, gs_shader, rscreen->b.chip_class);
if (!r || rctx->screen->b.debug_flags & DBG_ALL_SHADERS) {
static int shnr = 0;
snprintf(filename, 4000, "nir-%s_%d.inc", sel->nir->info.name, shnr++);
if (access(filename, F_OK) == -1) {
FILE *f = fopen(filename, "w");
if (f) {
fprintf(f, "const char *shader_blob_%s = {\nR\"(", sel->nir->info.name);
nir_print_shader(sel->nir, f);
fprintf(f, ")\";\n");
fclose(f);
}
}
if (!r)
return -2;
}
auto shader = convert.shader();
r600_bytecode_init(&pipeshader->shader.bc, rscreen->b.chip_class, rscreen->b.family,
rscreen->has_compressed_msaa_texturing);
r600::sfn_log << r600::SfnLog::shader_info
<< "pipeshader->shader.processor_type = "
<< pipeshader->shader.processor_type << "\n";
pipeshader->shader.bc.type = pipeshader->shader.processor_type;
pipeshader->shader.bc.isa = rctx->isa;
r600::AssemblyFromShaderLegacy afs(&pipeshader->shader, key);
if (!afs.lower(shader.m_ir)) {
R600_ERR("%s: Lowering to assembly failed\n", __func__);
return -1;
}
if (sel->nir->info.stage == MESA_SHADER_GEOMETRY) {
r600::sfn_log << r600::SfnLog::shader_info << "Geometry shader, create copy shader\n";
generate_gs_copy_shader(rctx, pipeshader, &sel->so);
assert(pipeshader->gs_copy_shader);
} else {
r600::sfn_log << r600::SfnLog::shader_info << "This is not a Geometry shader\n";
}
return 0;
}