blob: 7a3ce7966d39c908900dd4dbc5b6e1b89628b346 [file] [log] [blame]
/*
* Copyright © 2018 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "nir_xfb_info.h"
#include <util/u_math.h>
static void
add_var_xfb_varying(nir_xfb_info *xfb,
nir_xfb_varyings_info *varyings,
unsigned buffer,
unsigned offset,
const struct glsl_type *type)
{
if (varyings == NULL)
return;
nir_xfb_varying_info *varying = &varyings->varyings[varyings->varying_count++];
varying->type = type;
varying->buffer = buffer;
varying->offset = offset;
xfb->buffers[buffer].varying_count++;
}
static nir_xfb_info *
nir_xfb_info_create(void *mem_ctx, uint16_t output_count)
{
return rzalloc_size(mem_ctx, nir_xfb_info_size(output_count));
}
static size_t
nir_xfb_varyings_info_size(uint16_t varying_count)
{
return sizeof(nir_xfb_info) + sizeof(nir_xfb_varying_info) * varying_count;
}
static nir_xfb_varyings_info *
nir_xfb_varyings_info_create(void *mem_ctx, uint16_t varying_count)
{
return rzalloc_size(mem_ctx, nir_xfb_varyings_info_size(varying_count));
}
static void
add_var_xfb_outputs(nir_xfb_info *xfb,
nir_xfb_varyings_info *varyings,
nir_variable *var,
unsigned buffer,
unsigned *location,
unsigned *offset,
const struct glsl_type *type,
bool varying_added)
{
/* If this type contains a 64-bit value, align to 8 bytes */
if (glsl_type_contains_64bit(type))
*offset = ALIGN_POT(*offset, 8);
if (glsl_type_is_array_or_matrix(type) && !var->data.compact) {
unsigned length = glsl_get_length(type);
const struct glsl_type *child_type = glsl_get_array_element(type);
if (!glsl_type_is_array(child_type) &&
!glsl_type_is_struct(child_type)) {
add_var_xfb_varying(xfb, varyings, buffer, *offset, type);
varying_added = true;
}
for (unsigned i = 0; i < length; i++)
add_var_xfb_outputs(xfb, varyings, var, buffer, location, offset,
child_type, varying_added);
} else if (glsl_type_is_struct_or_ifc(type)) {
unsigned length = glsl_get_length(type);
for (unsigned i = 0; i < length; i++) {
const struct glsl_type *child_type = glsl_get_struct_field(type, i);
add_var_xfb_outputs(xfb, varyings, var, buffer, location, offset,
child_type, varying_added);
}
} else {
assert(buffer < NIR_MAX_XFB_BUFFERS);
if (xfb->buffers_written & (1 << buffer)) {
assert(xfb->buffers[buffer].stride == var->data.xfb.stride);
assert(xfb->buffer_to_stream[buffer] == var->data.stream);
} else {
xfb->buffers_written |= (1 << buffer);
xfb->buffers[buffer].stride = var->data.xfb.stride;
xfb->buffer_to_stream[buffer] = var->data.stream;
}
assert(var->data.stream < NIR_MAX_XFB_STREAMS);
xfb->streams_written |= (1 << var->data.stream);
unsigned comp_slots;
if (var->data.compact) {
/* This only happens for clip/cull which are float arrays */
assert(glsl_without_array(type) == glsl_float_type());
assert(var->data.location == VARYING_SLOT_CLIP_DIST0 ||
var->data.location == VARYING_SLOT_CLIP_DIST1);
comp_slots = glsl_get_length(type);
} else {
comp_slots = glsl_get_component_slots(type);
UNUSED unsigned attrib_slots = DIV_ROUND_UP(comp_slots, 4);
assert(attrib_slots == glsl_count_attribute_slots(type, false));
/* Ensure that we don't have, for instance, a dvec2 with a
* location_frac of 2 which would make it crass a location boundary
* even though it fits in a single slot. However, you can have a
* dvec3 which crosses the slot boundary with a location_frac of 2.
*/
assert(DIV_ROUND_UP(var->data.location_frac + comp_slots, 4) ==
attrib_slots);
}
assert(var->data.location_frac + comp_slots <= 8);
uint8_t comp_mask = ((1 << comp_slots) - 1) << var->data.location_frac;
unsigned comp_offset = var->data.location_frac;
if (!varying_added) {
add_var_xfb_varying(xfb, varyings, buffer, *offset, type);
}
while (comp_mask) {
nir_xfb_output_info *output = &xfb->outputs[xfb->output_count++];
output->buffer = buffer;
output->offset = *offset;
output->location = *location;
output->component_mask = comp_mask & 0xf;
output->component_offset = comp_offset;
*offset += util_bitcount(output->component_mask) * 4;
(*location)++;
comp_mask >>= 4;
comp_offset = 0;
}
}
}
static int
compare_xfb_varying_offsets(const void *_a, const void *_b)
{
const nir_xfb_varying_info *a = _a, *b = _b;
if (a->buffer != b->buffer)
return a->buffer - b->buffer;
return a->offset - b->offset;
}
static int
compare_xfb_output_offsets(const void *_a, const void *_b)
{
const nir_xfb_output_info *a = _a, *b = _b;
return a->offset - b->offset;
}
nir_xfb_info *
nir_gather_xfb_info(const nir_shader *shader, void *mem_ctx)
{
return nir_gather_xfb_info_with_varyings(shader, mem_ctx, NULL);
}
nir_xfb_info *
nir_gather_xfb_info_with_varyings(const nir_shader *shader,
void *mem_ctx,
nir_xfb_varyings_info **varyings_info_out)
{
assert(shader->info.stage == MESA_SHADER_VERTEX ||
shader->info.stage == MESA_SHADER_TESS_EVAL ||
shader->info.stage == MESA_SHADER_GEOMETRY);
/* Compute the number of outputs we have. This is simply the number of
* cumulative locations consumed by all the variables. If a location is
* represented by multiple variables, then they each count separately in
* number of outputs. This is only an estimate as some variables may have
* an xfb_buffer but not an output so it may end up larger than we need but
* it should be good enough for allocation.
*/
unsigned num_outputs = 0;
unsigned num_varyings = 0;
nir_xfb_varyings_info *varyings_info = NULL;
nir_foreach_variable(var, &shader->outputs) {
if (var->data.explicit_xfb_buffer) {
num_outputs += glsl_count_attribute_slots(var->type, false);
num_varyings += glsl_varying_count(var->type);
}
}
if (num_outputs == 0 || num_varyings == 0)
return NULL;
nir_xfb_info *xfb = nir_xfb_info_create(mem_ctx, num_outputs);
if (varyings_info_out != NULL) {
*varyings_info_out = nir_xfb_varyings_info_create(mem_ctx, num_varyings);
varyings_info = *varyings_info_out;
}
/* Walk the list of outputs and add them to the array */
nir_foreach_variable(var, &shader->outputs) {
if (!var->data.explicit_xfb_buffer)
continue;
unsigned location = var->data.location;
/* In order to know if we have a array of blocks can't be done just by
* checking if we have an interface type and is an array, because due
* splitting we could end on a case were we received a split struct
* that contains an array.
*/
bool is_array_block = var->interface_type != NULL &&
glsl_type_is_array(var->type) &&
glsl_without_array(var->type) == var->interface_type;
if (var->data.explicit_offset && !is_array_block) {
unsigned offset = var->data.offset;
add_var_xfb_outputs(xfb, varyings_info, var, var->data.xfb.buffer,
&location, &offset, var->type, false);
} else if (is_array_block) {
assert(glsl_type_is_struct_or_ifc(var->interface_type));
unsigned aoa_size = glsl_get_aoa_size(var->type);
const struct glsl_type *itype = var->interface_type;
unsigned nfields = glsl_get_length(itype);
for (unsigned b = 0; b < aoa_size; b++) {
for (unsigned f = 0; f < nfields; f++) {
int foffset = glsl_get_struct_field_offset(itype, f);
const struct glsl_type *ftype = glsl_get_struct_field(itype, f);
if (foffset < 0) {
location += glsl_count_attribute_slots(ftype, false);
continue;
}
unsigned offset = foffset;
add_var_xfb_outputs(xfb, varyings_info, var, var->data.xfb.buffer + b,
&location, &offset, ftype, false);
}
}
}
}
/* Everything is easier in the state setup code if outputs and varyings are
* sorted in order of output offset (and buffer for varyings).
*/
qsort(xfb->outputs, xfb->output_count, sizeof(xfb->outputs[0]),
compare_xfb_output_offsets);
if (varyings_info != NULL) {
qsort(varyings_info->varyings, varyings_info->varying_count,
sizeof(varyings_info->varyings[0]),
compare_xfb_varying_offsets);
}
#ifndef NDEBUG
/* Finally, do a sanity check */
unsigned max_offset[NIR_MAX_XFB_BUFFERS] = {0};
for (unsigned i = 0; i < xfb->output_count; i++) {
assert(xfb->outputs[i].offset >= max_offset[xfb->outputs[i].buffer]);
assert(xfb->outputs[i].component_mask != 0);
unsigned slots = util_bitcount(xfb->outputs[i].component_mask);
max_offset[xfb->outputs[i].buffer] = xfb->outputs[i].offset + slots * 4;
}
#endif
return xfb;
}