blob: 228df007e1ae99a14ab8d685994ce7d81216d0e2 [file] [log] [blame]
/*
* Copyright © 2016 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <assert.h>
#include <stdbool.h>
#include "radv_meta.h"
#include "radv_private.h"
#include "sid.h"
static nir_shader *
build_dcc_decompress_compute_shader(struct radv_device *dev)
{
nir_builder b;
const struct glsl_type *buf_type = glsl_sampler_type(GLSL_SAMPLER_DIM_2D,
false,
false,
GLSL_TYPE_FLOAT);
const struct glsl_type *img_type = glsl_image_type(GLSL_SAMPLER_DIM_2D,
false,
GLSL_TYPE_FLOAT);
nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_COMPUTE, NULL);
b.shader->info.name = ralloc_strdup(b.shader, "dcc_decompress_compute");
/* We need at least 16/16/1 to cover an entire DCC block in a single workgroup. */
b.shader->info.cs.local_size[0] = 16;
b.shader->info.cs.local_size[1] = 16;
b.shader->info.cs.local_size[2] = 1;
nir_variable *input_img = nir_variable_create(b.shader, nir_var_uniform,
buf_type, "s_tex");
input_img->data.descriptor_set = 0;
input_img->data.binding = 0;
nir_variable *output_img = nir_variable_create(b.shader, nir_var_uniform,
img_type, "out_img");
output_img->data.descriptor_set = 0;
output_img->data.binding = 1;
nir_ssa_def *invoc_id = nir_load_local_invocation_id(&b);
nir_ssa_def *wg_id = nir_load_work_group_id(&b, 32);
nir_ssa_def *block_size = nir_imm_ivec4(&b,
b.shader->info.cs.local_size[0],
b.shader->info.cs.local_size[1],
b.shader->info.cs.local_size[2], 0);
nir_ssa_def *global_id = nir_iadd(&b, nir_imul(&b, wg_id, block_size), invoc_id);
nir_ssa_def *input_img_deref = &nir_build_deref_var(&b, input_img)->dest.ssa;
nir_tex_instr *tex = nir_tex_instr_create(b.shader, 3);
tex->sampler_dim = GLSL_SAMPLER_DIM_2D;
tex->op = nir_texop_txf;
tex->src[0].src_type = nir_tex_src_coord;
tex->src[0].src = nir_src_for_ssa(nir_channels(&b, global_id, 3));
tex->src[1].src_type = nir_tex_src_lod;
tex->src[1].src = nir_src_for_ssa(nir_imm_int(&b, 0));
tex->src[2].src_type = nir_tex_src_texture_deref;
tex->src[2].src = nir_src_for_ssa(input_img_deref);
tex->dest_type = nir_type_float;
tex->is_array = false;
tex->coord_components = 2;
nir_ssa_dest_init(&tex->instr, &tex->dest, 4, 32, "tex");
nir_builder_instr_insert(&b, &tex->instr);
nir_scoped_barrier(&b, NIR_SCOPE_WORKGROUP, NIR_SCOPE_WORKGROUP,
NIR_MEMORY_ACQ_REL, nir_var_mem_ssbo);
nir_ssa_def *outval = &tex->dest.ssa;
nir_intrinsic_instr *store = nir_intrinsic_instr_create(b.shader, nir_intrinsic_image_deref_store);
store->num_components = 4;
store->src[0] = nir_src_for_ssa(&nir_build_deref_var(&b, output_img)->dest.ssa);
store->src[1] = nir_src_for_ssa(global_id);
store->src[2] = nir_src_for_ssa(nir_ssa_undef(&b, 1, 32));
store->src[3] = nir_src_for_ssa(outval);
store->src[4] = nir_src_for_ssa(nir_imm_int(&b, 0));
nir_builder_instr_insert(&b, &store->instr);
return b.shader;
}
static VkResult
create_dcc_compress_compute(struct radv_device *device)
{
VkResult result = VK_SUCCESS;
struct radv_shader_module cs = { .nir = NULL };
cs.nir = build_dcc_decompress_compute_shader(device);
VkDescriptorSetLayoutCreateInfo ds_create_info = {
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
.flags = VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR,
.bindingCount = 2,
.pBindings = (VkDescriptorSetLayoutBinding[]) {
{
.binding = 0,
.descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
.descriptorCount = 1,
.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
.pImmutableSamplers = NULL
},
{
.binding = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
.descriptorCount = 1,
.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
.pImmutableSamplers = NULL
},
}
};
result = radv_CreateDescriptorSetLayout(radv_device_to_handle(device),
&ds_create_info,
&device->meta_state.alloc,
&device->meta_state.fast_clear_flush.dcc_decompress_compute_ds_layout);
if (result != VK_SUCCESS)
goto cleanup;
VkPipelineLayoutCreateInfo pl_create_info = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
.setLayoutCount = 1,
.pSetLayouts = &device->meta_state.fast_clear_flush.dcc_decompress_compute_ds_layout,
.pushConstantRangeCount = 1,
.pPushConstantRanges = &(VkPushConstantRange){VK_SHADER_STAGE_COMPUTE_BIT, 0, 8},
};
result = radv_CreatePipelineLayout(radv_device_to_handle(device),
&pl_create_info,
&device->meta_state.alloc,
&device->meta_state.fast_clear_flush.dcc_decompress_compute_p_layout);
if (result != VK_SUCCESS)
goto cleanup;
/* compute shader */
VkPipelineShaderStageCreateInfo pipeline_shader_stage = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.stage = VK_SHADER_STAGE_COMPUTE_BIT,
.module = radv_shader_module_to_handle(&cs),
.pName = "main",
.pSpecializationInfo = NULL,
};
VkComputePipelineCreateInfo vk_pipeline_info = {
.sType = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO,
.stage = pipeline_shader_stage,
.flags = 0,
.layout = device->meta_state.fast_clear_flush.dcc_decompress_compute_p_layout,
};
result = radv_CreateComputePipelines(radv_device_to_handle(device),
radv_pipeline_cache_to_handle(&device->meta_state.cache),
1, &vk_pipeline_info, NULL,
&device->meta_state.fast_clear_flush.dcc_decompress_compute_pipeline);
if (result != VK_SUCCESS)
goto cleanup;
cleanup:
ralloc_free(cs.nir);
return result;
}
static VkResult
create_pass(struct radv_device *device)
{
VkResult result;
VkDevice device_h = radv_device_to_handle(device);
const VkAllocationCallbacks *alloc = &device->meta_state.alloc;
VkAttachmentDescription attachment;
attachment.format = VK_FORMAT_UNDEFINED;
attachment.samples = 1;
attachment.loadOp = VK_ATTACHMENT_LOAD_OP_LOAD;
attachment.storeOp = VK_ATTACHMENT_STORE_OP_STORE;
attachment.initialLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
attachment.finalLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
result = radv_CreateRenderPass(device_h,
&(VkRenderPassCreateInfo) {
.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,
.attachmentCount = 1,
.pAttachments = &attachment,
.subpassCount = 1,
.pSubpasses = &(VkSubpassDescription) {
.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS,
.inputAttachmentCount = 0,
.colorAttachmentCount = 1,
.pColorAttachments = (VkAttachmentReference[]) {
{
.attachment = 0,
.layout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
},
},
.pResolveAttachments = NULL,
.pDepthStencilAttachment = &(VkAttachmentReference) {
.attachment = VK_ATTACHMENT_UNUSED,
},
.preserveAttachmentCount = 0,
.pPreserveAttachments = NULL,
},
.dependencyCount = 2,
.pDependencies = (VkSubpassDependency[]) {
{
.srcSubpass = VK_SUBPASS_EXTERNAL,
.dstSubpass = 0,
.srcStageMask = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
.dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
.srcAccessMask = 0,
.dstAccessMask = 0,
.dependencyFlags = 0
},
{
.srcSubpass = 0,
.dstSubpass = VK_SUBPASS_EXTERNAL,
.srcStageMask = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
.dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
.srcAccessMask = 0,
.dstAccessMask = 0,
.dependencyFlags = 0
}
},
},
alloc,
&device->meta_state.fast_clear_flush.pass);
return result;
}
static VkResult
create_pipeline_layout(struct radv_device *device, VkPipelineLayout *layout)
{
VkPipelineLayoutCreateInfo pl_create_info = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
.setLayoutCount = 0,
.pSetLayouts = NULL,
.pushConstantRangeCount = 0,
.pPushConstantRanges = NULL,
};
return radv_CreatePipelineLayout(radv_device_to_handle(device),
&pl_create_info,
&device->meta_state.alloc,
layout);
}
static VkResult
create_pipeline(struct radv_device *device,
VkShaderModule vs_module_h,
VkPipelineLayout layout)
{
VkResult result;
VkDevice device_h = radv_device_to_handle(device);
struct radv_shader_module fs_module = {
.nir = radv_meta_build_nir_fs_noop(),
};
if (!fs_module.nir) {
/* XXX: Need more accurate error */
result = VK_ERROR_OUT_OF_HOST_MEMORY;
goto cleanup;
}
const VkPipelineShaderStageCreateInfo stages[2] = {
{
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.stage = VK_SHADER_STAGE_VERTEX_BIT,
.module = vs_module_h,
.pName = "main",
},
{
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.stage = VK_SHADER_STAGE_FRAGMENT_BIT,
.module = radv_shader_module_to_handle(&fs_module),
.pName = "main",
},
};
const VkPipelineVertexInputStateCreateInfo vi_state = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO,
.vertexBindingDescriptionCount = 0,
.vertexAttributeDescriptionCount = 0,
};
const VkPipelineInputAssemblyStateCreateInfo ia_state = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO,
.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP,
.primitiveRestartEnable = false,
};
const VkPipelineColorBlendStateCreateInfo blend_state = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO,
.logicOpEnable = false,
.attachmentCount = 1,
.pAttachments = (VkPipelineColorBlendAttachmentState []) {
{
.colorWriteMask = VK_COLOR_COMPONENT_R_BIT |
VK_COLOR_COMPONENT_G_BIT |
VK_COLOR_COMPONENT_B_BIT |
VK_COLOR_COMPONENT_A_BIT,
},
}
};
const VkPipelineRasterizationStateCreateInfo rs_state = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO,
.depthClampEnable = false,
.rasterizerDiscardEnable = false,
.polygonMode = VK_POLYGON_MODE_FILL,
.cullMode = VK_CULL_MODE_NONE,
.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE,
};
result = radv_graphics_pipeline_create(device_h,
radv_pipeline_cache_to_handle(&device->meta_state.cache),
&(VkGraphicsPipelineCreateInfo) {
.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,
.stageCount = 2,
.pStages = stages,
.pVertexInputState = &vi_state,
.pInputAssemblyState = &ia_state,
.pViewportState = &(VkPipelineViewportStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO,
.viewportCount = 1,
.scissorCount = 1,
},
.pRasterizationState = &rs_state,
.pMultisampleState = &(VkPipelineMultisampleStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO,
.rasterizationSamples = 1,
.sampleShadingEnable = false,
.pSampleMask = NULL,
.alphaToCoverageEnable = false,
.alphaToOneEnable = false,
},
.pColorBlendState = &blend_state,
.pDynamicState = &(VkPipelineDynamicStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO,
.dynamicStateCount = 2,
.pDynamicStates = (VkDynamicState[]) {
VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR,
},
},
.layout = layout,
.renderPass = device->meta_state.fast_clear_flush.pass,
.subpass = 0,
},
&(struct radv_graphics_pipeline_create_info) {
.use_rectlist = true,
.custom_blend_mode = V_028808_CB_ELIMINATE_FAST_CLEAR,
},
&device->meta_state.alloc,
&device->meta_state.fast_clear_flush.cmask_eliminate_pipeline);
if (result != VK_SUCCESS)
goto cleanup;
result = radv_graphics_pipeline_create(device_h,
radv_pipeline_cache_to_handle(&device->meta_state.cache),
&(VkGraphicsPipelineCreateInfo) {
.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,
.stageCount = 2,
.pStages = stages,
.pVertexInputState = &vi_state,
.pInputAssemblyState = &ia_state,
.pViewportState = &(VkPipelineViewportStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO,
.viewportCount = 1,
.scissorCount = 1,
},
.pRasterizationState = &rs_state,
.pMultisampleState = &(VkPipelineMultisampleStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO,
.rasterizationSamples = 1,
.sampleShadingEnable = false,
.pSampleMask = NULL,
.alphaToCoverageEnable = false,
.alphaToOneEnable = false,
},
.pColorBlendState = &blend_state,
.pDynamicState = &(VkPipelineDynamicStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO,
.dynamicStateCount = 2,
.pDynamicStates = (VkDynamicState[]) {
VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR,
},
},
.layout = layout,
.renderPass = device->meta_state.fast_clear_flush.pass,
.subpass = 0,
},
&(struct radv_graphics_pipeline_create_info) {
.use_rectlist = true,
.custom_blend_mode = V_028808_CB_FMASK_DECOMPRESS,
},
&device->meta_state.alloc,
&device->meta_state.fast_clear_flush.fmask_decompress_pipeline);
if (result != VK_SUCCESS)
goto cleanup;
result = radv_graphics_pipeline_create(device_h,
radv_pipeline_cache_to_handle(&device->meta_state.cache),
&(VkGraphicsPipelineCreateInfo) {
.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,
.stageCount = 2,
.pStages = stages,
.pVertexInputState = &vi_state,
.pInputAssemblyState = &ia_state,
.pViewportState = &(VkPipelineViewportStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO,
.viewportCount = 1,
.scissorCount = 1,
},
.pRasterizationState = &rs_state,
.pMultisampleState = &(VkPipelineMultisampleStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO,
.rasterizationSamples = 1,
.sampleShadingEnable = false,
.pSampleMask = NULL,
.alphaToCoverageEnable = false,
.alphaToOneEnable = false,
},
.pColorBlendState = &blend_state,
.pDynamicState = &(VkPipelineDynamicStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO,
.dynamicStateCount = 2,
.pDynamicStates = (VkDynamicState[]) {
VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR,
},
},
.layout = layout,
.renderPass = device->meta_state.fast_clear_flush.pass,
.subpass = 0,
},
&(struct radv_graphics_pipeline_create_info) {
.use_rectlist = true,
.custom_blend_mode = V_028808_CB_DCC_DECOMPRESS,
},
&device->meta_state.alloc,
&device->meta_state.fast_clear_flush.dcc_decompress_pipeline);
if (result != VK_SUCCESS)
goto cleanup;
goto cleanup;
cleanup:
ralloc_free(fs_module.nir);
return result;
}
void
radv_device_finish_meta_fast_clear_flush_state(struct radv_device *device)
{
struct radv_meta_state *state = &device->meta_state;
radv_DestroyPipeline(radv_device_to_handle(device),
state->fast_clear_flush.dcc_decompress_pipeline,
&state->alloc);
radv_DestroyPipeline(radv_device_to_handle(device),
state->fast_clear_flush.fmask_decompress_pipeline,
&state->alloc);
radv_DestroyPipeline(radv_device_to_handle(device),
state->fast_clear_flush.cmask_eliminate_pipeline,
&state->alloc);
radv_DestroyRenderPass(radv_device_to_handle(device),
state->fast_clear_flush.pass, &state->alloc);
radv_DestroyPipelineLayout(radv_device_to_handle(device),
state->fast_clear_flush.p_layout,
&state->alloc);
radv_DestroyPipeline(radv_device_to_handle(device),
state->fast_clear_flush.dcc_decompress_compute_pipeline,
&state->alloc);
radv_DestroyPipelineLayout(radv_device_to_handle(device),
state->fast_clear_flush.dcc_decompress_compute_p_layout,
&state->alloc);
radv_DestroyDescriptorSetLayout(radv_device_to_handle(device),
state->fast_clear_flush.dcc_decompress_compute_ds_layout,
&state->alloc);
}
static VkResult
radv_device_init_meta_fast_clear_flush_state_internal(struct radv_device *device)
{
VkResult res = VK_SUCCESS;
mtx_lock(&device->meta_state.mtx);
if (device->meta_state.fast_clear_flush.cmask_eliminate_pipeline) {
mtx_unlock(&device->meta_state.mtx);
return VK_SUCCESS;
}
struct radv_shader_module vs_module = { .nir = radv_meta_build_nir_vs_generate_vertices() };
if (!vs_module.nir) {
/* XXX: Need more accurate error */
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto fail;
}
res = create_pass(device);
if (res != VK_SUCCESS)
goto fail;
res = create_pipeline_layout(device,
&device->meta_state.fast_clear_flush.p_layout);
if (res != VK_SUCCESS)
goto fail;
VkShaderModule vs_module_h = radv_shader_module_to_handle(&vs_module);
res = create_pipeline(device, vs_module_h,
device->meta_state.fast_clear_flush.p_layout);
if (res != VK_SUCCESS)
goto fail;
res = create_dcc_compress_compute(device);
if (res != VK_SUCCESS)
goto fail;
goto cleanup;
fail:
radv_device_finish_meta_fast_clear_flush_state(device);
cleanup:
ralloc_free(vs_module.nir);
mtx_unlock(&device->meta_state.mtx);
return res;
}
VkResult
radv_device_init_meta_fast_clear_flush_state(struct radv_device *device, bool on_demand)
{
if (on_demand)
return VK_SUCCESS;
return radv_device_init_meta_fast_clear_flush_state_internal(device);
}
static void
radv_emit_set_predication_state_from_image(struct radv_cmd_buffer *cmd_buffer,
struct radv_image *image,
uint64_t pred_offset, bool value)
{
uint64_t va = 0;
if (value) {
va = radv_buffer_get_va(image->bo) + image->offset;
va += pred_offset;
}
si_emit_set_predication_state(cmd_buffer, true, va);
}
static void
radv_process_color_image_layer(struct radv_cmd_buffer *cmd_buffer,
struct radv_image *image,
const VkImageSubresourceRange *range,
int level, int layer)
{
struct radv_device *device = cmd_buffer->device;
struct radv_image_view iview;
uint32_t width, height;
width = radv_minify(image->info.width, range->baseMipLevel + level);
height = radv_minify(image->info.height, range->baseMipLevel + level);
radv_image_view_init(&iview, device,
&(VkImageViewCreateInfo) {
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
.image = radv_image_to_handle(image),
.viewType = radv_meta_get_view_type(image),
.format = image->vk_format,
.subresourceRange = {
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.baseMipLevel = range->baseMipLevel + level,
.levelCount = 1,
.baseArrayLayer = range->baseArrayLayer + layer,
.layerCount = 1,
},
}, NULL);
VkFramebuffer fb_h;
radv_CreateFramebuffer(radv_device_to_handle(device),
&(VkFramebufferCreateInfo) {
.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,
.attachmentCount = 1,
.pAttachments = (VkImageView[]) {
radv_image_view_to_handle(&iview)
},
.width = width,
.height = height,
.layers = 1
}, &cmd_buffer->pool->alloc, &fb_h);
radv_cmd_buffer_begin_render_pass(cmd_buffer,
&(VkRenderPassBeginInfo) {
.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO,
.renderPass = device->meta_state.fast_clear_flush.pass,
.framebuffer = fb_h,
.renderArea = {
.offset = { 0, 0, },
.extent = { width, height, }
},
.clearValueCount = 0,
.pClearValues = NULL,
});
radv_cmd_buffer_set_subpass(cmd_buffer,
&cmd_buffer->state.pass->subpasses[0]);
radv_CmdDraw(radv_cmd_buffer_to_handle(cmd_buffer), 3, 1, 0, 0);
cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB |
RADV_CMD_FLAG_FLUSH_AND_INV_CB_META;
radv_cmd_buffer_end_render_pass(cmd_buffer);
radv_DestroyFramebuffer(radv_device_to_handle(device), fb_h,
&cmd_buffer->pool->alloc);
}
static void
radv_process_color_image(struct radv_cmd_buffer *cmd_buffer,
struct radv_image *image,
const VkImageSubresourceRange *subresourceRange,
bool decompress_dcc)
{
struct radv_meta_saved_state saved_state;
VkPipeline *pipeline;
if (decompress_dcc && radv_dcc_enabled(image, subresourceRange->baseMipLevel)) {
pipeline = &cmd_buffer->device->meta_state.fast_clear_flush.dcc_decompress_pipeline;
} else if (radv_image_has_fmask(image) && !image->tc_compatible_cmask) {
pipeline = &cmd_buffer->device->meta_state.fast_clear_flush.fmask_decompress_pipeline;
} else {
pipeline = &cmd_buffer->device->meta_state.fast_clear_flush.cmask_eliminate_pipeline;
}
if (!*pipeline) {
VkResult ret;
ret = radv_device_init_meta_fast_clear_flush_state_internal(cmd_buffer->device);
if (ret != VK_SUCCESS) {
cmd_buffer->record_result = ret;
return;
}
}
radv_meta_save(&saved_state, cmd_buffer,
RADV_META_SAVE_GRAPHICS_PIPELINE |
RADV_META_SAVE_PASS);
radv_CmdBindPipeline(radv_cmd_buffer_to_handle(cmd_buffer),
VK_PIPELINE_BIND_POINT_GRAPHICS, *pipeline);
for (uint32_t l = 0; l < radv_get_levelCount(image, subresourceRange); ++l) {
uint32_t width, height;
/* Do not decompress levels without DCC. */
if (decompress_dcc &&
!radv_dcc_enabled(image, subresourceRange->baseMipLevel + l))
continue;
width = radv_minify(image->info.width,
subresourceRange->baseMipLevel + l);
height = radv_minify(image->info.height,
subresourceRange->baseMipLevel + l);
radv_CmdSetViewport(radv_cmd_buffer_to_handle(cmd_buffer), 0, 1,
&(VkViewport) {
.x = 0,
.y = 0,
.width = width,
.height = height,
.minDepth = 0.0f,
.maxDepth = 1.0f
});
radv_CmdSetScissor(radv_cmd_buffer_to_handle(cmd_buffer), 0, 1,
&(VkRect2D) {
.offset = { 0, 0 },
.extent = { width, height },
});
for (uint32_t s = 0; s < radv_get_layerCount(image, subresourceRange); s++) {
radv_process_color_image_layer(cmd_buffer, image,
subresourceRange, l, s);
}
}
radv_meta_restore(&saved_state, cmd_buffer);
}
static void
radv_emit_color_decompress(struct radv_cmd_buffer *cmd_buffer,
struct radv_image *image,
const VkImageSubresourceRange *subresourceRange,
bool decompress_dcc)
{
bool old_predicating = false;
assert(cmd_buffer->queue_family_index == RADV_QUEUE_GENERAL);
if (radv_dcc_enabled(image, subresourceRange->baseMipLevel)) {
uint64_t pred_offset = decompress_dcc ? image->dcc_pred_offset :
image->fce_pred_offset;
pred_offset += 8 * subresourceRange->baseMipLevel;
old_predicating = cmd_buffer->state.predicating;
radv_emit_set_predication_state_from_image(cmd_buffer, image, pred_offset, true);
cmd_buffer->state.predicating = true;
}
radv_process_color_image(cmd_buffer, image, subresourceRange,
decompress_dcc);
if (radv_dcc_enabled(image, subresourceRange->baseMipLevel)) {
uint64_t pred_offset = decompress_dcc ? image->dcc_pred_offset :
image->fce_pred_offset;
pred_offset += 8 * subresourceRange->baseMipLevel;
cmd_buffer->state.predicating = old_predicating;
radv_emit_set_predication_state_from_image(cmd_buffer, image, pred_offset, false);
if (cmd_buffer->state.predication_type != -1) {
/* Restore previous conditional rendering user state. */
si_emit_set_predication_state(cmd_buffer,
cmd_buffer->state.predication_type,
cmd_buffer->state.predication_va);
}
}
if (radv_dcc_enabled(image, subresourceRange->baseMipLevel)) {
/* Clear the image's fast-clear eliminate predicate because
* FMASK and DCC also imply a fast-clear eliminate.
*/
radv_update_fce_metadata(cmd_buffer, image, subresourceRange, false);
/* Mark the image as being decompressed. */
if (decompress_dcc)
radv_update_dcc_metadata(cmd_buffer, image, subresourceRange, false);
}
}
void
radv_fast_clear_flush_image_inplace(struct radv_cmd_buffer *cmd_buffer,
struct radv_image *image,
const VkImageSubresourceRange *subresourceRange)
{
struct radv_barrier_data barrier = {};
if (radv_image_has_fmask(image)) {
barrier.layout_transitions.fmask_decompress = 1;
} else {
barrier.layout_transitions.fast_clear_eliminate = 1;
}
radv_describe_layout_transition(cmd_buffer, &barrier);
radv_emit_color_decompress(cmd_buffer, image, subresourceRange, false);
}
static void
radv_decompress_dcc_gfx(struct radv_cmd_buffer *cmd_buffer,
struct radv_image *image,
const VkImageSubresourceRange *subresourceRange)
{
radv_emit_color_decompress(cmd_buffer, image, subresourceRange, true);
}
static void
radv_decompress_dcc_compute(struct radv_cmd_buffer *cmd_buffer,
struct radv_image *image,
const VkImageSubresourceRange *subresourceRange)
{
struct radv_meta_saved_state saved_state;
struct radv_image_view load_iview = {0};
struct radv_image_view store_iview = {0};
struct radv_device *device = cmd_buffer->device;
/* This assumes the image is 2d with 1 layer */
struct radv_cmd_state *state = &cmd_buffer->state;
state->flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB |
RADV_CMD_FLAG_FLUSH_AND_INV_CB_META;
if (!cmd_buffer->device->meta_state.fast_clear_flush.cmask_eliminate_pipeline) {
VkResult ret = radv_device_init_meta_fast_clear_flush_state_internal(cmd_buffer->device);
if (ret != VK_SUCCESS) {
cmd_buffer->record_result = ret;
return;
}
}
radv_meta_save(&saved_state, cmd_buffer, RADV_META_SAVE_DESCRIPTORS |
RADV_META_SAVE_COMPUTE_PIPELINE);
radv_CmdBindPipeline(radv_cmd_buffer_to_handle(cmd_buffer),
VK_PIPELINE_BIND_POINT_COMPUTE,
device->meta_state.fast_clear_flush.dcc_decompress_compute_pipeline);
for (uint32_t l = 0; l < radv_get_levelCount(image, subresourceRange); l++) {
uint32_t width, height;
/* Do not decompress levels without DCC. */
if (!radv_dcc_enabled(image, subresourceRange->baseMipLevel + l))
continue;
width = radv_minify(image->info.width,
subresourceRange->baseMipLevel + l);
height = radv_minify(image->info.height,
subresourceRange->baseMipLevel + l);
for (uint32_t s = 0; s < radv_get_layerCount(image, subresourceRange); s++) {
radv_image_view_init(&load_iview, cmd_buffer->device,
&(VkImageViewCreateInfo) {
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
.image = radv_image_to_handle(image),
.viewType = VK_IMAGE_VIEW_TYPE_2D,
.format = image->vk_format,
.subresourceRange = {
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.baseMipLevel = subresourceRange->baseMipLevel + l,
.levelCount = 1,
.baseArrayLayer = subresourceRange->baseArrayLayer + s,
.layerCount = 1
},
}, NULL);
radv_image_view_init(&store_iview, cmd_buffer->device,
&(VkImageViewCreateInfo) {
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
.image = radv_image_to_handle(image),
.viewType = VK_IMAGE_VIEW_TYPE_2D,
.format = image->vk_format,
.subresourceRange = {
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.baseMipLevel = subresourceRange->baseMipLevel + l,
.levelCount = 1,
.baseArrayLayer = subresourceRange->baseArrayLayer + s,
.layerCount = 1
},
}, &(struct radv_image_view_extra_create_info) {
.disable_compression = true
});
radv_meta_push_descriptor_set(cmd_buffer,
VK_PIPELINE_BIND_POINT_COMPUTE,
device->meta_state.fast_clear_flush.dcc_decompress_compute_p_layout,
0, /* set */
2, /* descriptorWriteCount */
(VkWriteDescriptorSet[]) {
{
.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstBinding = 0,
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
.pImageInfo = (VkDescriptorImageInfo[]) {
{
.sampler = VK_NULL_HANDLE,
.imageView = radv_image_view_to_handle(&load_iview),
.imageLayout = VK_IMAGE_LAYOUT_GENERAL,
},
}
},
{
.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstBinding = 1,
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
.pImageInfo = (VkDescriptorImageInfo[]) {
{
.sampler = VK_NULL_HANDLE,
.imageView = radv_image_view_to_handle(&store_iview),
.imageLayout = VK_IMAGE_LAYOUT_GENERAL,
},
}
}
});
radv_unaligned_dispatch(cmd_buffer, width, height, 1);
}
}
/* Mark this image as actually being decompressed. */
radv_update_dcc_metadata(cmd_buffer, image, subresourceRange, false);
/* The fill buffer below does its own saving */
radv_meta_restore(&saved_state, cmd_buffer);
state->flush_bits |= RADV_CMD_FLAG_CS_PARTIAL_FLUSH |
RADV_CMD_FLAG_INV_VCACHE;
/* Initialize the DCC metadata as "fully expanded". */
radv_initialize_dcc(cmd_buffer, image, subresourceRange, 0xffffffff);
}
void
radv_decompress_dcc(struct radv_cmd_buffer *cmd_buffer,
struct radv_image *image,
const VkImageSubresourceRange *subresourceRange)
{
struct radv_barrier_data barrier = {};
barrier.layout_transitions.dcc_decompress = 1;
radv_describe_layout_transition(cmd_buffer, &barrier);
if (cmd_buffer->queue_family_index == RADV_QUEUE_GENERAL)
radv_decompress_dcc_gfx(cmd_buffer, image, subresourceRange);
else
radv_decompress_dcc_compute(cmd_buffer, image, subresourceRange);
}