blob: 26c232fc230e49806f40dfecf0a9c5932f14bf65 [file] [log] [blame]
/*
* Copyright © 2016 Red Hat.
* Copyright © 2016 Bas Nieuwenhuizen
*
* based in part on anv driver which is:
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "dirent.h"
#include <stdatomic.h>
#include <stdbool.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include "radv_debug.h"
#include "radv_private.h"
#include "radv_shader.h"
#include "radv_cs.h"
#include "util/disk_cache.h"
#include "vk_util.h"
#include <xf86drm.h>
#include <amdgpu.h>
#include "drm-uapi/amdgpu_drm.h"
#include "winsys/amdgpu/radv_amdgpu_winsys_public.h"
#include "winsys/null/radv_null_winsys_public.h"
#include "ac_llvm_util.h"
#include "vk_format.h"
#include "sid.h"
#include "git_sha1.h"
#include "util/build_id.h"
#include "util/debug.h"
#include "util/mesa-sha1.h"
#include "util/timespec.h"
#include "util/u_atomic.h"
#include "compiler/glsl_types.h"
#include "util/driconf.h"
static struct radv_timeline_point *
radv_timeline_find_point_at_least_locked(struct radv_device *device,
struct radv_timeline *timeline,
uint64_t p);
static struct radv_timeline_point *
radv_timeline_add_point_locked(struct radv_device *device,
struct radv_timeline *timeline,
uint64_t p);
static void
radv_timeline_trigger_waiters_locked(struct radv_timeline *timeline,
struct list_head *processing_list);
static
void radv_destroy_semaphore_part(struct radv_device *device,
struct radv_semaphore_part *part);
static VkResult
radv_create_pthread_cond(pthread_cond_t *cond);
uint64_t radv_get_current_time(void)
{
struct timespec tv;
clock_gettime(CLOCK_MONOTONIC, &tv);
return tv.tv_nsec + tv.tv_sec*1000000000ull;
}
static uint64_t radv_get_absolute_timeout(uint64_t timeout)
{
uint64_t current_time = radv_get_current_time();
timeout = MIN2(UINT64_MAX - current_time, timeout);
return current_time + timeout;
}
static int
radv_device_get_cache_uuid(enum radeon_family family, void *uuid)
{
struct mesa_sha1 ctx;
unsigned char sha1[20];
unsigned ptr_size = sizeof(void*);
memset(uuid, 0, VK_UUID_SIZE);
_mesa_sha1_init(&ctx);
if (!disk_cache_get_function_identifier(radv_device_get_cache_uuid, &ctx) ||
!disk_cache_get_function_identifier(LLVMInitializeAMDGPUTargetInfo, &ctx))
return -1;
_mesa_sha1_update(&ctx, &family, sizeof(family));
_mesa_sha1_update(&ctx, &ptr_size, sizeof(ptr_size));
_mesa_sha1_final(&ctx, sha1);
memcpy(uuid, sha1, VK_UUID_SIZE);
return 0;
}
static void
radv_get_driver_uuid(void *uuid)
{
ac_compute_driver_uuid(uuid, VK_UUID_SIZE);
}
static void
radv_get_device_uuid(struct radeon_info *info, void *uuid)
{
ac_compute_device_uuid(info, uuid, VK_UUID_SIZE);
}
static uint64_t
radv_get_adjusted_vram_size(struct radv_physical_device *device)
{
int ov = driQueryOptioni(&device->instance->dri_options,
"override_vram_size");
if (ov >= 0)
return MIN2(device->rad_info.vram_size, (uint64_t)ov << 20);
return device->rad_info.vram_size;
}
static uint64_t
radv_get_visible_vram_size(struct radv_physical_device *device)
{
return MIN2(radv_get_adjusted_vram_size(device) , device->rad_info.vram_vis_size);
}
static uint64_t
radv_get_vram_size(struct radv_physical_device *device)
{
return radv_get_adjusted_vram_size(device) - device->rad_info.vram_vis_size;
}
static void
radv_physical_device_init_mem_types(struct radv_physical_device *device)
{
uint64_t visible_vram_size = radv_get_visible_vram_size(device);
uint64_t vram_size = radv_get_vram_size(device);
int vram_index = -1, visible_vram_index = -1, gart_index = -1;
device->memory_properties.memoryHeapCount = 0;
if (vram_size > 0) {
vram_index = device->memory_properties.memoryHeapCount++;
device->memory_properties.memoryHeaps[vram_index] = (VkMemoryHeap) {
.size = vram_size,
.flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
};
}
if (device->rad_info.gart_size > 0) {
gart_index = device->memory_properties.memoryHeapCount++;
device->memory_properties.memoryHeaps[gart_index] = (VkMemoryHeap) {
.size = device->rad_info.gart_size,
.flags = 0,
};
}
if (visible_vram_size) {
visible_vram_index = device->memory_properties.memoryHeapCount++;
device->memory_properties.memoryHeaps[visible_vram_index] = (VkMemoryHeap) {
.size = visible_vram_size,
.flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
};
}
unsigned type_count = 0;
if (vram_index >= 0 || visible_vram_index >= 0) {
device->memory_domains[type_count] = RADEON_DOMAIN_VRAM;
device->memory_flags[type_count] = RADEON_FLAG_NO_CPU_ACCESS;
device->memory_properties.memoryTypes[type_count++] = (VkMemoryType) {
.propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
.heapIndex = vram_index >= 0 ? vram_index : visible_vram_index,
};
}
if (gart_index >= 0) {
device->memory_domains[type_count] = RADEON_DOMAIN_GTT;
device->memory_flags[type_count] = RADEON_FLAG_GTT_WC | RADEON_FLAG_CPU_ACCESS;
device->memory_properties.memoryTypes[type_count++] = (VkMemoryType) {
.propertyFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
.heapIndex = gart_index,
};
}
if (visible_vram_index >= 0) {
device->memory_domains[type_count] = RADEON_DOMAIN_VRAM;
device->memory_flags[type_count] = RADEON_FLAG_CPU_ACCESS;
device->memory_properties.memoryTypes[type_count++] = (VkMemoryType) {
.propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
.heapIndex = visible_vram_index,
};
}
if (gart_index >= 0) {
device->memory_domains[type_count] = RADEON_DOMAIN_GTT;
device->memory_flags[type_count] = RADEON_FLAG_CPU_ACCESS;
device->memory_properties.memoryTypes[type_count++] = (VkMemoryType) {
.propertyFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
.heapIndex = gart_index,
};
}
device->memory_properties.memoryTypeCount = type_count;
if (device->rad_info.has_l2_uncached) {
for (int i = 0; i < device->memory_properties.memoryTypeCount; i++) {
VkMemoryType mem_type = device->memory_properties.memoryTypes[i];
if ((mem_type.propertyFlags & (VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT)) ||
mem_type.propertyFlags == VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT) {
VkMemoryPropertyFlags property_flags = mem_type.propertyFlags |
VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD |
VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD;
device->memory_domains[type_count] = device->memory_domains[i];
device->memory_flags[type_count] = device->memory_flags[i] | RADEON_FLAG_VA_UNCACHED;
device->memory_properties.memoryTypes[type_count++] = (VkMemoryType) {
.propertyFlags = property_flags,
.heapIndex = mem_type.heapIndex,
};
}
}
device->memory_properties.memoryTypeCount = type_count;
}
}
static const char *
radv_get_compiler_string(struct radv_physical_device *pdevice)
{
if (!pdevice->use_llvm) {
/* Some games like SotTR apply shader workarounds if the LLVM
* version is too old or if the LLVM version string is
* missing. This gives 2-5% performance with SotTR and ACO.
*/
if (driQueryOptionb(&pdevice->instance->dri_options,
"radv_report_llvm9_version_string")) {
return "ACO/LLVM 9.0.1";
}
return "ACO";
}
return "LLVM " MESA_LLVM_VERSION_STRING;
}
static VkResult
radv_physical_device_try_create(struct radv_instance *instance,
drmDevicePtr drm_device,
struct radv_physical_device **device_out)
{
VkResult result;
int fd = -1;
int master_fd = -1;
if (drm_device) {
const char *path = drm_device->nodes[DRM_NODE_RENDER];
drmVersionPtr version;
fd = open(path, O_RDWR | O_CLOEXEC);
if (fd < 0) {
if (instance->debug_flags & RADV_DEBUG_STARTUP)
radv_logi("Could not open device '%s'", path);
return vk_error(instance, VK_ERROR_INCOMPATIBLE_DRIVER);
}
version = drmGetVersion(fd);
if (!version) {
close(fd);
if (instance->debug_flags & RADV_DEBUG_STARTUP)
radv_logi("Could not get the kernel driver version for device '%s'", path);
return vk_errorf(instance, VK_ERROR_INCOMPATIBLE_DRIVER,
"failed to get version %s: %m", path);
}
if (strcmp(version->name, "amdgpu")) {
drmFreeVersion(version);
close(fd);
if (instance->debug_flags & RADV_DEBUG_STARTUP)
radv_logi("Device '%s' is not using the amdgpu kernel driver.", path);
return VK_ERROR_INCOMPATIBLE_DRIVER;
}
drmFreeVersion(version);
if (instance->debug_flags & RADV_DEBUG_STARTUP)
radv_logi("Found compatible device '%s'.", path);
}
struct radv_physical_device *device =
vk_zalloc2(&instance->alloc, NULL, sizeof(*device), 8,
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (!device) {
result = vk_error(instance, VK_ERROR_OUT_OF_HOST_MEMORY);
goto fail_fd;
}
device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
device->instance = instance;
if (drm_device) {
device->ws = radv_amdgpu_winsys_create(fd, instance->debug_flags,
instance->perftest_flags);
} else {
device->ws = radv_null_winsys_create();
}
if (!device->ws) {
result = vk_errorf(instance, VK_ERROR_INITIALIZATION_FAILED,
"failed to initialize winsys");
goto fail_alloc;
}
if (drm_device && instance->enabled_extensions.KHR_display) {
master_fd = open(drm_device->nodes[DRM_NODE_PRIMARY], O_RDWR | O_CLOEXEC);
if (master_fd >= 0) {
uint32_t accel_working = 0;
struct drm_amdgpu_info request = {
.return_pointer = (uintptr_t)&accel_working,
.return_size = sizeof(accel_working),
.query = AMDGPU_INFO_ACCEL_WORKING
};
if (drmCommandWrite(master_fd, DRM_AMDGPU_INFO, &request, sizeof (struct drm_amdgpu_info)) < 0 || !accel_working) {
close(master_fd);
master_fd = -1;
}
}
}
device->master_fd = master_fd;
device->local_fd = fd;
device->ws->query_info(device->ws, &device->rad_info);
device->use_llvm = instance->debug_flags & RADV_DEBUG_LLVM;
snprintf(device->name, sizeof(device->name),
"AMD RADV %s (%s)",
device->rad_info.name, radv_get_compiler_string(device));
if (radv_device_get_cache_uuid(device->rad_info.family, device->cache_uuid)) {
result = vk_errorf(instance, VK_ERROR_INITIALIZATION_FAILED,
"cannot generate UUID");
goto fail_wsi;
}
/* These flags affect shader compilation. */
uint64_t shader_env_flags = (device->use_llvm ? 0 : 0x2);
/* The gpu id is already embedded in the uuid so we just pass "radv"
* when creating the cache.
*/
char buf[VK_UUID_SIZE * 2 + 1];
disk_cache_format_hex_id(buf, device->cache_uuid, VK_UUID_SIZE * 2);
device->disk_cache = disk_cache_create(device->name, buf, shader_env_flags);
if (device->rad_info.chip_class < GFX8)
fprintf(stderr, "WARNING: radv is not a conformant vulkan implementation, testing use only.\n");
radv_get_driver_uuid(&device->driver_uuid);
radv_get_device_uuid(&device->rad_info, &device->device_uuid);
device->out_of_order_rast_allowed = device->rad_info.has_out_of_order_rast &&
!(device->instance->debug_flags & RADV_DEBUG_NO_OUT_OF_ORDER);
device->dcc_msaa_allowed =
(device->instance->perftest_flags & RADV_PERFTEST_DCC_MSAA);
device->use_ngg = device->rad_info.chip_class >= GFX10 &&
device->rad_info.family != CHIP_NAVI14 &&
device->rad_info.has_dedicated_vram &&
!(device->instance->debug_flags & RADV_DEBUG_NO_NGG);
/* TODO: Implement NGG GS with ACO. */
device->use_ngg_gs = device->use_ngg && device->use_llvm;
device->use_ngg_streamout = false;
/* Determine the number of threads per wave for all stages. */
device->cs_wave_size = 64;
device->ps_wave_size = 64;
device->ge_wave_size = 64;
if (device->rad_info.chip_class >= GFX10) {
if (device->instance->perftest_flags & RADV_PERFTEST_CS_WAVE_32)
device->cs_wave_size = 32;
/* For pixel shaders, wave64 is recommanded. */
if (device->instance->perftest_flags & RADV_PERFTEST_PS_WAVE_32)
device->ps_wave_size = 32;
if (device->instance->perftest_flags & RADV_PERFTEST_GE_WAVE_32)
device->ge_wave_size = 32;
}
radv_physical_device_init_mem_types(device);
radv_physical_device_get_supported_extensions(device,
&device->supported_extensions);
if (drm_device)
device->bus_info = *drm_device->businfo.pci;
if ((device->instance->debug_flags & RADV_DEBUG_INFO))
ac_print_gpu_info(&device->rad_info);
/* The WSI is structured as a layer on top of the driver, so this has
* to be the last part of initialization (at least until we get other
* semi-layers).
*/
result = radv_init_wsi(device);
if (result != VK_SUCCESS) {
vk_error(instance, result);
goto fail_disk_cache;
}
*device_out = device;
return VK_SUCCESS;
fail_disk_cache:
disk_cache_destroy(device->disk_cache);
fail_wsi:
device->ws->destroy(device->ws);
fail_alloc:
vk_free(&instance->alloc, device);
fail_fd:
if (fd != -1)
close(fd);
if (master_fd != -1)
close(master_fd);
return result;
}
static void
radv_physical_device_destroy(struct radv_physical_device *device)
{
radv_finish_wsi(device);
device->ws->destroy(device->ws);
disk_cache_destroy(device->disk_cache);
close(device->local_fd);
if (device->master_fd != -1)
close(device->master_fd);
vk_free(&device->instance->alloc, device);
}
static void *
default_alloc_func(void *pUserData, size_t size, size_t align,
VkSystemAllocationScope allocationScope)
{
return malloc(size);
}
static void *
default_realloc_func(void *pUserData, void *pOriginal, size_t size,
size_t align, VkSystemAllocationScope allocationScope)
{
return realloc(pOriginal, size);
}
static void
default_free_func(void *pUserData, void *pMemory)
{
free(pMemory);
}
static const VkAllocationCallbacks default_alloc = {
.pUserData = NULL,
.pfnAllocation = default_alloc_func,
.pfnReallocation = default_realloc_func,
.pfnFree = default_free_func,
};
static const struct debug_control radv_debug_options[] = {
{"nofastclears", RADV_DEBUG_NO_FAST_CLEARS},
{"nodcc", RADV_DEBUG_NO_DCC},
{"shaders", RADV_DEBUG_DUMP_SHADERS},
{"nocache", RADV_DEBUG_NO_CACHE},
{"shaderstats", RADV_DEBUG_DUMP_SHADER_STATS},
{"nohiz", RADV_DEBUG_NO_HIZ},
{"nocompute", RADV_DEBUG_NO_COMPUTE_QUEUE},
{"allbos", RADV_DEBUG_ALL_BOS},
{"noibs", RADV_DEBUG_NO_IBS},
{"spirv", RADV_DEBUG_DUMP_SPIRV},
{"vmfaults", RADV_DEBUG_VM_FAULTS},
{"zerovram", RADV_DEBUG_ZERO_VRAM},
{"syncshaders", RADV_DEBUG_SYNC_SHADERS},
{"preoptir", RADV_DEBUG_PREOPTIR},
{"nodynamicbounds", RADV_DEBUG_NO_DYNAMIC_BOUNDS},
{"nooutoforder", RADV_DEBUG_NO_OUT_OF_ORDER},
{"info", RADV_DEBUG_INFO},
{"errors", RADV_DEBUG_ERRORS},
{"startup", RADV_DEBUG_STARTUP},
{"checkir", RADV_DEBUG_CHECKIR},
{"nothreadllvm", RADV_DEBUG_NOTHREADLLVM},
{"nobinning", RADV_DEBUG_NOBINNING},
{"nongg", RADV_DEBUG_NO_NGG},
{"allentrypoints", RADV_DEBUG_ALL_ENTRYPOINTS},
{"metashaders", RADV_DEBUG_DUMP_META_SHADERS},
{"nomemorycache", RADV_DEBUG_NO_MEMORY_CACHE},
{"llvm", RADV_DEBUG_LLVM},
{"forcecompress", RADV_DEBUG_FORCE_COMPRESS},
{NULL, 0}
};
const char *
radv_get_debug_option_name(int id)
{
assert(id < ARRAY_SIZE(radv_debug_options) - 1);
return radv_debug_options[id].string;
}
static const struct debug_control radv_perftest_options[] = {
{"localbos", RADV_PERFTEST_LOCAL_BOS},
{"dccmsaa", RADV_PERFTEST_DCC_MSAA},
{"bolist", RADV_PERFTEST_BO_LIST},
{"tccompatcmask", RADV_PERFTEST_TC_COMPAT_CMASK},
{"cswave32", RADV_PERFTEST_CS_WAVE_32},
{"pswave32", RADV_PERFTEST_PS_WAVE_32},
{"gewave32", RADV_PERFTEST_GE_WAVE_32},
{"dfsm", RADV_PERFTEST_DFSM},
{NULL, 0}
};
const char *
radv_get_perftest_option_name(int id)
{
assert(id < ARRAY_SIZE(radv_perftest_options) - 1);
return radv_perftest_options[id].string;
}
static void
radv_handle_per_app_options(struct radv_instance *instance,
const VkApplicationInfo *info)
{
const char *name = info ? info->pApplicationName : NULL;
const char *engine_name = info ? info->pEngineName : NULL;
if (name) {
if (!strcmp(name, "DOOM_VFR")) {
/* Work around a Doom VFR game bug */
instance->debug_flags |= RADV_DEBUG_NO_DYNAMIC_BOUNDS;
} else if (!strcmp(name, "Fledge")) {
/*
* Zero VRAM for "The Surge 2"
*
* This avoid a hang when when rendering any level. Likely
* uninitialized data in an indirect draw.
*/
instance->debug_flags |= RADV_DEBUG_ZERO_VRAM;
} else if (!strcmp(name, "No Man's Sky")) {
/* Work around a NMS game bug */
instance->debug_flags |= RADV_DEBUG_DISCARD_TO_DEMOTE;
} else if (!strcmp(name, "DOOMEternal")) {
/* Zero VRAM for Doom Eternal to fix rendering issues. */
instance->debug_flags |= RADV_DEBUG_ZERO_VRAM;
} else if (!strcmp(name, "Red Dead Redemption 2")) {
/* Work around a RDR2 game bug */
instance->debug_flags |= RADV_DEBUG_DISCARD_TO_DEMOTE;
}
}
if (engine_name) {
if (!strcmp(engine_name, "vkd3d")) {
/* Zero VRAM for all VKD3D (DX12->VK) games to fix
* rendering issues.
*/
instance->debug_flags |= RADV_DEBUG_ZERO_VRAM;
} else if (!strcmp(engine_name, "Quantic Dream Engine")) {
/* Fix various artifacts in Detroit: Become Human */
instance->debug_flags |= RADV_DEBUG_ZERO_VRAM |
RADV_DEBUG_DISCARD_TO_DEMOTE;
}
}
instance->enable_mrt_output_nan_fixup =
driQueryOptionb(&instance->dri_options,
"radv_enable_mrt_output_nan_fixup");
if (driQueryOptionb(&instance->dri_options, "radv_no_dynamic_bounds"))
instance->debug_flags |= RADV_DEBUG_NO_DYNAMIC_BOUNDS;
}
static const driOptionDescription radv_dri_options[] = {
DRI_CONF_SECTION_PERFORMANCE
DRI_CONF_ADAPTIVE_SYNC(true)
DRI_CONF_VK_X11_OVERRIDE_MIN_IMAGE_COUNT(0)
DRI_CONF_VK_X11_STRICT_IMAGE_COUNT(false)
DRI_CONF_VK_X11_ENSURE_MIN_IMAGE_COUNT(false)
DRI_CONF_RADV_REPORT_LLVM9_VERSION_STRING(false)
DRI_CONF_RADV_ENABLE_MRT_OUTPUT_NAN_FIXUP(false)
DRI_CONF_RADV_NO_DYNAMIC_BOUNDS(false)
DRI_CONF_RADV_OVERRIDE_UNIFORM_OFFSET_ALIGNMENT(0)
DRI_CONF_SECTION_END
DRI_CONF_SECTION_DEBUG
DRI_CONF_OVERRIDE_VRAM_SIZE()
DRI_CONF_VK_WSI_FORCE_BGRA8_UNORM_FIRST(false)
DRI_CONF_SECTION_END
};
static void radv_init_dri_options(struct radv_instance *instance)
{
driParseOptionInfo(&instance->available_dri_options, radv_dri_options, ARRAY_SIZE(radv_dri_options));
driParseConfigFiles(&instance->dri_options,
&instance->available_dri_options,
0, "radv", NULL,
instance->applicationName,
instance->applicationVersion,
instance->engineName,
instance->engineVersion);
}
VkResult radv_CreateInstance(
const VkInstanceCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkInstance* pInstance)
{
struct radv_instance *instance;
VkResult result;
instance = vk_zalloc2(&default_alloc, pAllocator, sizeof(*instance), 8,
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (!instance)
return vk_error(NULL, VK_ERROR_OUT_OF_HOST_MEMORY);
vk_object_base_init(NULL, &instance->base, VK_OBJECT_TYPE_INSTANCE);
if (pAllocator)
instance->alloc = *pAllocator;
else
instance->alloc = default_alloc;
if (pCreateInfo->pApplicationInfo) {
const VkApplicationInfo *app = pCreateInfo->pApplicationInfo;
instance->applicationName =
vk_strdup(&instance->alloc, app->pApplicationName,
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
instance->applicationVersion = app->applicationVersion;
instance->engineName =
vk_strdup(&instance->alloc, app->pEngineName,
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
instance->engineVersion = app->engineVersion;
instance->apiVersion = app->apiVersion;
}
if (instance->apiVersion == 0)
instance->apiVersion = VK_API_VERSION_1_0;
instance->debug_flags = parse_debug_string(getenv("RADV_DEBUG"),
radv_debug_options);
const char *radv_perftest_str = getenv("RADV_PERFTEST");
instance->perftest_flags = parse_debug_string(radv_perftest_str,
radv_perftest_options);
if (radv_perftest_str) {
/* Output warnings for famous RADV_PERFTEST options that no
* longer exist or are deprecated.
*/
if (strstr(radv_perftest_str, "aco")) {
fprintf(stderr, "*******************************************************************************\n");
fprintf(stderr, "* WARNING: Unknown option RADV_PERFTEST='aco'. ACO is enabled by default now. *\n");
fprintf(stderr, "*******************************************************************************\n");
}
if (strstr(radv_perftest_str, "llvm")) {
fprintf(stderr, "*********************************************************************************\n");
fprintf(stderr, "* WARNING: Unknown option 'RADV_PERFTEST=llvm'. Did you mean 'RADV_DEBUG=llvm'? *\n");
fprintf(stderr, "*********************************************************************************\n");
abort();
}
}
if (instance->debug_flags & RADV_DEBUG_STARTUP)
radv_logi("Created an instance");
for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
int idx;
for (idx = 0; idx < RADV_INSTANCE_EXTENSION_COUNT; idx++) {
if (!strcmp(pCreateInfo->ppEnabledExtensionNames[i],
radv_instance_extensions[idx].extensionName))
break;
}
if (idx >= RADV_INSTANCE_EXTENSION_COUNT ||
!radv_instance_extensions_supported.extensions[idx]) {
vk_object_base_finish(&instance->base);
vk_free2(&default_alloc, pAllocator, instance);
return vk_error(instance, VK_ERROR_EXTENSION_NOT_PRESENT);
}
instance->enabled_extensions.extensions[idx] = true;
}
bool unchecked = instance->debug_flags & RADV_DEBUG_ALL_ENTRYPOINTS;
for (unsigned i = 0; i < ARRAY_SIZE(instance->dispatch.entrypoints); i++) {
/* Vulkan requires that entrypoints for extensions which have
* not been enabled must not be advertised.
*/
if (!unchecked &&
!radv_instance_entrypoint_is_enabled(i, instance->apiVersion,
&instance->enabled_extensions)) {
instance->dispatch.entrypoints[i] = NULL;
} else {
instance->dispatch.entrypoints[i] =
radv_instance_dispatch_table.entrypoints[i];
}
}
for (unsigned i = 0; i < ARRAY_SIZE(instance->physical_device_dispatch.entrypoints); i++) {
/* Vulkan requires that entrypoints for extensions which have
* not been enabled must not be advertised.
*/
if (!unchecked &&
!radv_physical_device_entrypoint_is_enabled(i, instance->apiVersion,
&instance->enabled_extensions)) {
instance->physical_device_dispatch.entrypoints[i] = NULL;
} else {
instance->physical_device_dispatch.entrypoints[i] =
radv_physical_device_dispatch_table.entrypoints[i];
}
}
for (unsigned i = 0; i < ARRAY_SIZE(instance->device_dispatch.entrypoints); i++) {
/* Vulkan requires that entrypoints for extensions which have
* not been enabled must not be advertised.
*/
if (!unchecked &&
!radv_device_entrypoint_is_enabled(i, instance->apiVersion,
&instance->enabled_extensions, NULL)) {
instance->device_dispatch.entrypoints[i] = NULL;
} else {
instance->device_dispatch.entrypoints[i] =
radv_device_dispatch_table.entrypoints[i];
}
}
instance->physical_devices_enumerated = false;
list_inithead(&instance->physical_devices);
result = vk_debug_report_instance_init(&instance->debug_report_callbacks);
if (result != VK_SUCCESS) {
vk_object_base_finish(&instance->base);
vk_free2(&default_alloc, pAllocator, instance);
return vk_error(instance, result);
}
glsl_type_singleton_init_or_ref();
VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
radv_init_dri_options(instance);
radv_handle_per_app_options(instance, pCreateInfo->pApplicationInfo);
*pInstance = radv_instance_to_handle(instance);
return VK_SUCCESS;
}
void radv_DestroyInstance(
VkInstance _instance,
const VkAllocationCallbacks* pAllocator)
{
RADV_FROM_HANDLE(radv_instance, instance, _instance);
if (!instance)
return;
list_for_each_entry_safe(struct radv_physical_device, pdevice,
&instance->physical_devices, link) {
radv_physical_device_destroy(pdevice);
}
vk_free(&instance->alloc, instance->engineName);
vk_free(&instance->alloc, instance->applicationName);
VG(VALGRIND_DESTROY_MEMPOOL(instance));
glsl_type_singleton_decref();
driDestroyOptionCache(&instance->dri_options);
driDestroyOptionInfo(&instance->available_dri_options);
vk_debug_report_instance_destroy(&instance->debug_report_callbacks);
vk_object_base_finish(&instance->base);
vk_free(&instance->alloc, instance);
}
static VkResult
radv_enumerate_physical_devices(struct radv_instance *instance)
{
if (instance->physical_devices_enumerated)
return VK_SUCCESS;
instance->physical_devices_enumerated = true;
/* TODO: Check for more devices ? */
drmDevicePtr devices[8];
VkResult result = VK_SUCCESS;
int max_devices;
if (getenv("RADV_FORCE_FAMILY")) {
/* When RADV_FORCE_FAMILY is set, the driver creates a nul
* device that allows to test the compiler without having an
* AMDGPU instance.
*/
struct radv_physical_device *pdevice;
result = radv_physical_device_try_create(instance, NULL, &pdevice);
if (result != VK_SUCCESS)
return result;
list_addtail(&pdevice->link, &instance->physical_devices);
return VK_SUCCESS;
}
max_devices = drmGetDevices2(0, devices, ARRAY_SIZE(devices));
if (instance->debug_flags & RADV_DEBUG_STARTUP)
radv_logi("Found %d drm nodes", max_devices);
if (max_devices < 1)
return vk_error(instance, VK_SUCCESS);
for (unsigned i = 0; i < (unsigned)max_devices; i++) {
if (devices[i]->available_nodes & 1 << DRM_NODE_RENDER &&
devices[i]->bustype == DRM_BUS_PCI &&
devices[i]->deviceinfo.pci->vendor_id == ATI_VENDOR_ID) {
struct radv_physical_device *pdevice;
result = radv_physical_device_try_create(instance, devices[i],
&pdevice);
/* Incompatible DRM device, skip. */
if (result == VK_ERROR_INCOMPATIBLE_DRIVER) {
result = VK_SUCCESS;
continue;
}
/* Error creating the physical device, report the error. */
if (result != VK_SUCCESS)
break;
list_addtail(&pdevice->link, &instance->physical_devices);
}
}
drmFreeDevices(devices, max_devices);
/* If we successfully enumerated any devices, call it success */
return result;
}
VkResult radv_EnumeratePhysicalDevices(
VkInstance _instance,
uint32_t* pPhysicalDeviceCount,
VkPhysicalDevice* pPhysicalDevices)
{
RADV_FROM_HANDLE(radv_instance, instance, _instance);
VK_OUTARRAY_MAKE(out, pPhysicalDevices, pPhysicalDeviceCount);
VkResult result = radv_enumerate_physical_devices(instance);
if (result != VK_SUCCESS)
return result;
list_for_each_entry(struct radv_physical_device, pdevice,
&instance->physical_devices, link) {
vk_outarray_append(&out, i) {
*i = radv_physical_device_to_handle(pdevice);
}
}
return vk_outarray_status(&out);
}
VkResult radv_EnumeratePhysicalDeviceGroups(
VkInstance _instance,
uint32_t* pPhysicalDeviceGroupCount,
VkPhysicalDeviceGroupProperties* pPhysicalDeviceGroupProperties)
{
RADV_FROM_HANDLE(radv_instance, instance, _instance);
VK_OUTARRAY_MAKE(out, pPhysicalDeviceGroupProperties,
pPhysicalDeviceGroupCount);
VkResult result = radv_enumerate_physical_devices(instance);
if (result != VK_SUCCESS)
return result;
list_for_each_entry(struct radv_physical_device, pdevice,
&instance->physical_devices, link) {
vk_outarray_append(&out, p) {
p->physicalDeviceCount = 1;
memset(p->physicalDevices, 0, sizeof(p->physicalDevices));
p->physicalDevices[0] = radv_physical_device_to_handle(pdevice);
p->subsetAllocation = false;
}
}
return vk_outarray_status(&out);
}
void radv_GetPhysicalDeviceFeatures(
VkPhysicalDevice physicalDevice,
VkPhysicalDeviceFeatures* pFeatures)
{
RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice);
memset(pFeatures, 0, sizeof(*pFeatures));
*pFeatures = (VkPhysicalDeviceFeatures) {
.robustBufferAccess = true,
.fullDrawIndexUint32 = true,
.imageCubeArray = true,
.independentBlend = true,
.geometryShader = true,
.tessellationShader = true,
.sampleRateShading = true,
.dualSrcBlend = true,
.logicOp = true,
.multiDrawIndirect = true,
.drawIndirectFirstInstance = true,
.depthClamp = true,
.depthBiasClamp = true,
.fillModeNonSolid = true,
.depthBounds = true,
.wideLines = true,
.largePoints = true,
.alphaToOne = true,
.multiViewport = true,
.samplerAnisotropy = true,
.textureCompressionETC2 = radv_device_supports_etc(pdevice),
.textureCompressionASTC_LDR = false,
.textureCompressionBC = true,
.occlusionQueryPrecise = true,
.pipelineStatisticsQuery = true,
.vertexPipelineStoresAndAtomics = true,
.fragmentStoresAndAtomics = true,
.shaderTessellationAndGeometryPointSize = true,
.shaderImageGatherExtended = true,
.shaderStorageImageExtendedFormats = true,
.shaderStorageImageMultisample = true,
.shaderUniformBufferArrayDynamicIndexing = true,
.shaderSampledImageArrayDynamicIndexing = true,
.shaderStorageBufferArrayDynamicIndexing = true,
.shaderStorageImageArrayDynamicIndexing = true,
.shaderStorageImageReadWithoutFormat = true,
.shaderStorageImageWriteWithoutFormat = true,
.shaderClipDistance = true,
.shaderCullDistance = true,
.shaderFloat64 = true,
.shaderInt64 = true,
.shaderInt16 = true,
.sparseBinding = true,
.variableMultisampleRate = true,
.shaderResourceMinLod = true,
.inheritedQueries = true,
};
}
static void
radv_get_physical_device_features_1_1(struct radv_physical_device *pdevice,
VkPhysicalDeviceVulkan11Features *f)
{
assert(f->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES);
f->storageBuffer16BitAccess = true;
f->uniformAndStorageBuffer16BitAccess = true;
f->storagePushConstant16 = true;
f->storageInputOutput16 = pdevice->rad_info.has_packed_math_16bit && (LLVM_VERSION_MAJOR >= 9 || !pdevice->use_llvm);
f->multiview = true;
f->multiviewGeometryShader = true;
f->multiviewTessellationShader = true;
f->variablePointersStorageBuffer = true;
f->variablePointers = true;
f->protectedMemory = false;
f->samplerYcbcrConversion = true;
f->shaderDrawParameters = true;
}
static void
radv_get_physical_device_features_1_2(struct radv_physical_device *pdevice,
VkPhysicalDeviceVulkan12Features *f)
{
assert(f->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES);
f->samplerMirrorClampToEdge = true;
f->drawIndirectCount = true;
f->storageBuffer8BitAccess = true;
f->uniformAndStorageBuffer8BitAccess = true;
f->storagePushConstant8 = true;
f->shaderBufferInt64Atomics = LLVM_VERSION_MAJOR >= 9 || !pdevice->use_llvm;
f->shaderSharedInt64Atomics = LLVM_VERSION_MAJOR >= 9 || !pdevice->use_llvm;
f->shaderFloat16 = pdevice->rad_info.has_packed_math_16bit;
f->shaderInt8 = true;
f->descriptorIndexing = true;
f->shaderInputAttachmentArrayDynamicIndexing = true;
f->shaderUniformTexelBufferArrayDynamicIndexing = true;
f->shaderStorageTexelBufferArrayDynamicIndexing = true;
f->shaderUniformBufferArrayNonUniformIndexing = true;
f->shaderSampledImageArrayNonUniformIndexing = true;
f->shaderStorageBufferArrayNonUniformIndexing = true;
f->shaderStorageImageArrayNonUniformIndexing = true;
f->shaderInputAttachmentArrayNonUniformIndexing = true;
f->shaderUniformTexelBufferArrayNonUniformIndexing = true;
f->shaderStorageTexelBufferArrayNonUniformIndexing = true;
f->descriptorBindingUniformBufferUpdateAfterBind = true;
f->descriptorBindingSampledImageUpdateAfterBind = true;
f->descriptorBindingStorageImageUpdateAfterBind = true;
f->descriptorBindingStorageBufferUpdateAfterBind = true;
f->descriptorBindingUniformTexelBufferUpdateAfterBind = true;
f->descriptorBindingStorageTexelBufferUpdateAfterBind = true;
f->descriptorBindingUpdateUnusedWhilePending = true;
f->descriptorBindingPartiallyBound = true;
f->descriptorBindingVariableDescriptorCount = true;
f->runtimeDescriptorArray = true;
f->samplerFilterMinmax = true;
f->scalarBlockLayout = pdevice->rad_info.chip_class >= GFX7;
f->imagelessFramebuffer = true;
f->uniformBufferStandardLayout = true;
f->shaderSubgroupExtendedTypes = true;
f->separateDepthStencilLayouts = true;
f->hostQueryReset = true;
f->timelineSemaphore = pdevice->rad_info.has_syncobj_wait_for_submit;
f->bufferDeviceAddress = true;
f->bufferDeviceAddressCaptureReplay = false;
f->bufferDeviceAddressMultiDevice = false;
f->vulkanMemoryModel = true;
f->vulkanMemoryModelDeviceScope = true;
f->vulkanMemoryModelAvailabilityVisibilityChains = false;
f->shaderOutputViewportIndex = true;
f->shaderOutputLayer = true;
f->subgroupBroadcastDynamicId = true;
}
void radv_GetPhysicalDeviceFeatures2(
VkPhysicalDevice physicalDevice,
VkPhysicalDeviceFeatures2 *pFeatures)
{
RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice);
radv_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features);
VkPhysicalDeviceVulkan11Features core_1_1 = {
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES,
};
radv_get_physical_device_features_1_1(pdevice, &core_1_1);
VkPhysicalDeviceVulkan12Features core_1_2 = {
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES,
};
radv_get_physical_device_features_1_2(pdevice, &core_1_2);
#define CORE_FEATURE(major, minor, feature) \
features->feature = core_##major##_##minor.feature
vk_foreach_struct(ext, pFeatures->pNext) {
switch (ext->sType) {
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTERS_FEATURES: {
VkPhysicalDeviceVariablePointersFeatures *features = (void *)ext;
CORE_FEATURE(1, 1, variablePointersStorageBuffer);
CORE_FEATURE(1, 1, variablePointers);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES: {
VkPhysicalDeviceMultiviewFeatures *features = (VkPhysicalDeviceMultiviewFeatures*)ext;
CORE_FEATURE(1, 1, multiview);
CORE_FEATURE(1, 1, multiviewGeometryShader);
CORE_FEATURE(1, 1, multiviewTessellationShader);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DRAW_PARAMETERS_FEATURES: {
VkPhysicalDeviceShaderDrawParametersFeatures *features =
(VkPhysicalDeviceShaderDrawParametersFeatures*)ext;
CORE_FEATURE(1, 1, shaderDrawParameters);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_FEATURES: {
VkPhysicalDeviceProtectedMemoryFeatures *features =
(VkPhysicalDeviceProtectedMemoryFeatures*)ext;
CORE_FEATURE(1, 1, protectedMemory);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES: {
VkPhysicalDevice16BitStorageFeatures *features =
(VkPhysicalDevice16BitStorageFeatures*)ext;
CORE_FEATURE(1, 1, storageBuffer16BitAccess);
CORE_FEATURE(1, 1, uniformAndStorageBuffer16BitAccess);
CORE_FEATURE(1, 1, storagePushConstant16);
CORE_FEATURE(1, 1, storageInputOutput16);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES: {
VkPhysicalDeviceSamplerYcbcrConversionFeatures *features =
(VkPhysicalDeviceSamplerYcbcrConversionFeatures*)ext;
CORE_FEATURE(1, 1, samplerYcbcrConversion);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_FEATURES: {
VkPhysicalDeviceDescriptorIndexingFeatures *features =
(VkPhysicalDeviceDescriptorIndexingFeatures*)ext;
CORE_FEATURE(1, 2, shaderInputAttachmentArrayDynamicIndexing);
CORE_FEATURE(1, 2, shaderUniformTexelBufferArrayDynamicIndexing);
CORE_FEATURE(1, 2, shaderStorageTexelBufferArrayDynamicIndexing);
CORE_FEATURE(1, 2, shaderUniformBufferArrayNonUniformIndexing);
CORE_FEATURE(1, 2, shaderSampledImageArrayNonUniformIndexing);
CORE_FEATURE(1, 2, shaderStorageBufferArrayNonUniformIndexing);
CORE_FEATURE(1, 2, shaderStorageImageArrayNonUniformIndexing);
CORE_FEATURE(1, 2, shaderInputAttachmentArrayNonUniformIndexing);
CORE_FEATURE(1, 2, shaderUniformTexelBufferArrayNonUniformIndexing);
CORE_FEATURE(1, 2, shaderStorageTexelBufferArrayNonUniformIndexing);
CORE_FEATURE(1, 2, descriptorBindingUniformBufferUpdateAfterBind);
CORE_FEATURE(1, 2, descriptorBindingSampledImageUpdateAfterBind);
CORE_FEATURE(1, 2, descriptorBindingStorageImageUpdateAfterBind);
CORE_FEATURE(1, 2, descriptorBindingStorageBufferUpdateAfterBind);
CORE_FEATURE(1, 2, descriptorBindingUniformTexelBufferUpdateAfterBind);
CORE_FEATURE(1, 2, descriptorBindingStorageTexelBufferUpdateAfterBind);
CORE_FEATURE(1, 2, descriptorBindingUpdateUnusedWhilePending);
CORE_FEATURE(1, 2, descriptorBindingPartiallyBound);
CORE_FEATURE(1, 2, descriptorBindingVariableDescriptorCount);
CORE_FEATURE(1, 2, runtimeDescriptorArray);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONDITIONAL_RENDERING_FEATURES_EXT: {
VkPhysicalDeviceConditionalRenderingFeaturesEXT *features =
(VkPhysicalDeviceConditionalRenderingFeaturesEXT*)ext;
features->conditionalRendering = true;
features->inheritedConditionalRendering = false;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_FEATURES_EXT: {
VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *features =
(VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *)ext;
features->vertexAttributeInstanceRateDivisor = true;
features->vertexAttributeInstanceRateZeroDivisor = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_FEATURES_EXT: {
VkPhysicalDeviceTransformFeedbackFeaturesEXT *features =
(VkPhysicalDeviceTransformFeedbackFeaturesEXT*)ext;
features->transformFeedback = true;
features->geometryStreams = !pdevice->use_ngg_streamout;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SCALAR_BLOCK_LAYOUT_FEATURES: {
VkPhysicalDeviceScalarBlockLayoutFeatures *features =
(VkPhysicalDeviceScalarBlockLayoutFeatures *)ext;
CORE_FEATURE(1, 2, scalarBlockLayout);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_PRIORITY_FEATURES_EXT: {
VkPhysicalDeviceMemoryPriorityFeaturesEXT *features =
(VkPhysicalDeviceMemoryPriorityFeaturesEXT *)ext;
features->memoryPriority = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_EXT: {
VkPhysicalDeviceBufferDeviceAddressFeaturesEXT *features =
(VkPhysicalDeviceBufferDeviceAddressFeaturesEXT *)ext;
features->bufferDeviceAddress = true;
features->bufferDeviceAddressCaptureReplay = false;
features->bufferDeviceAddressMultiDevice = false;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES: {
VkPhysicalDeviceBufferDeviceAddressFeatures *features =
(VkPhysicalDeviceBufferDeviceAddressFeatures *)ext;
CORE_FEATURE(1, 2, bufferDeviceAddress);
CORE_FEATURE(1, 2, bufferDeviceAddressCaptureReplay);
CORE_FEATURE(1, 2, bufferDeviceAddressMultiDevice);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_CLIP_ENABLE_FEATURES_EXT: {
VkPhysicalDeviceDepthClipEnableFeaturesEXT *features =
(VkPhysicalDeviceDepthClipEnableFeaturesEXT *)ext;
features->depthClipEnable = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_HOST_QUERY_RESET_FEATURES: {
VkPhysicalDeviceHostQueryResetFeatures *features =
(VkPhysicalDeviceHostQueryResetFeatures *)ext;
CORE_FEATURE(1, 2, hostQueryReset);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_8BIT_STORAGE_FEATURES: {
VkPhysicalDevice8BitStorageFeatures *features =
(VkPhysicalDevice8BitStorageFeatures *)ext;
CORE_FEATURE(1, 2, storageBuffer8BitAccess);
CORE_FEATURE(1, 2, uniformAndStorageBuffer8BitAccess);
CORE_FEATURE(1, 2, storagePushConstant8);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_FLOAT16_INT8_FEATURES: {
VkPhysicalDeviceShaderFloat16Int8Features *features =
(VkPhysicalDeviceShaderFloat16Int8Features*)ext;
CORE_FEATURE(1, 2, shaderFloat16);
CORE_FEATURE(1, 2, shaderInt8);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_INT64_FEATURES: {
VkPhysicalDeviceShaderAtomicInt64Features *features =
(VkPhysicalDeviceShaderAtomicInt64Features *)ext;
CORE_FEATURE(1, 2, shaderBufferInt64Atomics);
CORE_FEATURE(1, 2, shaderSharedInt64Atomics);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DEMOTE_TO_HELPER_INVOCATION_FEATURES_EXT: {
VkPhysicalDeviceShaderDemoteToHelperInvocationFeaturesEXT *features =
(VkPhysicalDeviceShaderDemoteToHelperInvocationFeaturesEXT *)ext;
features->shaderDemoteToHelperInvocation = LLVM_VERSION_MAJOR >= 9 || !pdevice->use_llvm;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_FEATURES_EXT: {
VkPhysicalDeviceInlineUniformBlockFeaturesEXT *features =
(VkPhysicalDeviceInlineUniformBlockFeaturesEXT *)ext;
features->inlineUniformBlock = true;
features->descriptorBindingInlineUniformBlockUpdateAfterBind = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COMPUTE_SHADER_DERIVATIVES_FEATURES_NV: {
VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *features =
(VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *)ext;
features->computeDerivativeGroupQuads = false;
features->computeDerivativeGroupLinear = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_YCBCR_IMAGE_ARRAYS_FEATURES_EXT: {
VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *features =
(VkPhysicalDeviceYcbcrImageArraysFeaturesEXT*)ext;
features->ycbcrImageArrays = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_UNIFORM_BUFFER_STANDARD_LAYOUT_FEATURES: {
VkPhysicalDeviceUniformBufferStandardLayoutFeatures *features =
(VkPhysicalDeviceUniformBufferStandardLayoutFeatures *)ext;
CORE_FEATURE(1, 2, uniformBufferStandardLayout);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INDEX_TYPE_UINT8_FEATURES_EXT: {
VkPhysicalDeviceIndexTypeUint8FeaturesEXT *features =
(VkPhysicalDeviceIndexTypeUint8FeaturesEXT *)ext;
features->indexTypeUint8 = pdevice->rad_info.chip_class >= GFX8;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGELESS_FRAMEBUFFER_FEATURES: {
VkPhysicalDeviceImagelessFramebufferFeatures *features =
(VkPhysicalDeviceImagelessFramebufferFeatures *)ext;
CORE_FEATURE(1, 2, imagelessFramebuffer);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_EXECUTABLE_PROPERTIES_FEATURES_KHR: {
VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR *features =
(VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR *)ext;
features->pipelineExecutableInfo = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_CLOCK_FEATURES_KHR: {
VkPhysicalDeviceShaderClockFeaturesKHR *features =
(VkPhysicalDeviceShaderClockFeaturesKHR *)ext;
features->shaderSubgroupClock = true;
features->shaderDeviceClock = pdevice->rad_info.chip_class >= GFX8;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_FEATURES_EXT: {
VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *features =
(VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *)ext;
features->texelBufferAlignment = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TIMELINE_SEMAPHORE_FEATURES: {
VkPhysicalDeviceTimelineSemaphoreFeatures *features =
(VkPhysicalDeviceTimelineSemaphoreFeatures *) ext;
CORE_FEATURE(1, 2, timelineSemaphore);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_FEATURES_EXT: {
VkPhysicalDeviceSubgroupSizeControlFeaturesEXT *features =
(VkPhysicalDeviceSubgroupSizeControlFeaturesEXT *)ext;
features->subgroupSizeControl = true;
features->computeFullSubgroups = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COHERENT_MEMORY_FEATURES_AMD: {
VkPhysicalDeviceCoherentMemoryFeaturesAMD *features =
(VkPhysicalDeviceCoherentMemoryFeaturesAMD *)ext;
features->deviceCoherentMemory = pdevice->rad_info.has_l2_uncached;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_SUBGROUP_EXTENDED_TYPES_FEATURES: {
VkPhysicalDeviceShaderSubgroupExtendedTypesFeatures *features =
(VkPhysicalDeviceShaderSubgroupExtendedTypesFeatures *)ext;
CORE_FEATURE(1, 2, shaderSubgroupExtendedTypes);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SEPARATE_DEPTH_STENCIL_LAYOUTS_FEATURES_KHR: {
VkPhysicalDeviceSeparateDepthStencilLayoutsFeaturesKHR *features =
(VkPhysicalDeviceSeparateDepthStencilLayoutsFeaturesKHR *)ext;
CORE_FEATURE(1, 2, separateDepthStencilLayouts);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES: {
radv_get_physical_device_features_1_1(pdevice, (void *)ext);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES: {
radv_get_physical_device_features_1_2(pdevice, (void *)ext);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_FEATURES_EXT: {
VkPhysicalDeviceLineRasterizationFeaturesEXT *features =
(VkPhysicalDeviceLineRasterizationFeaturesEXT *)ext;
features->rectangularLines = false;
features->bresenhamLines = true;
features->smoothLines = false;
features->stippledRectangularLines = false;
features->stippledBresenhamLines = true;
features->stippledSmoothLines = false;
break;
}
case VK_STRUCTURE_TYPE_DEVICE_MEMORY_OVERALLOCATION_CREATE_INFO_AMD: {
VkDeviceMemoryOverallocationCreateInfoAMD *features =
(VkDeviceMemoryOverallocationCreateInfoAMD *)ext;
features->overallocationBehavior = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ROBUSTNESS_2_FEATURES_EXT: {
VkPhysicalDeviceRobustness2FeaturesEXT *features =
(VkPhysicalDeviceRobustness2FeaturesEXT *)ext;
features->robustBufferAccess2 = true;
features->robustImageAccess2 = true;
features->nullDescriptor = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CUSTOM_BORDER_COLOR_FEATURES_EXT: {
VkPhysicalDeviceCustomBorderColorFeaturesEXT *features =
(VkPhysicalDeviceCustomBorderColorFeaturesEXT *)ext;
features->customBorderColors = true;
features->customBorderColorWithoutFormat = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRIVATE_DATA_FEATURES_EXT: {
VkPhysicalDevicePrivateDataFeaturesEXT *features =
(VkPhysicalDevicePrivateDataFeaturesEXT *)ext;
features->privateData = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_CREATION_CACHE_CONTROL_FEATURES_EXT: {
VkPhysicalDevicePipelineCreationCacheControlFeaturesEXT *features =
(VkPhysicalDevicePipelineCreationCacheControlFeaturesEXT *)ext;
features-> pipelineCreationCacheControl = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_MEMORY_MODEL_FEATURES_KHR: {
VkPhysicalDeviceVulkanMemoryModelFeaturesKHR *features =
(VkPhysicalDeviceVulkanMemoryModelFeaturesKHR *)ext;
CORE_FEATURE(1, 2, vulkanMemoryModel);
CORE_FEATURE(1, 2, vulkanMemoryModelDeviceScope);
CORE_FEATURE(1, 2, vulkanMemoryModelAvailabilityVisibilityChains);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTENDED_DYNAMIC_STATE_FEATURES_EXT: {
VkPhysicalDeviceExtendedDynamicStateFeaturesEXT *features =
(VkPhysicalDeviceExtendedDynamicStateFeaturesEXT *) ext;
features->extendedDynamicState = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_ROBUSTNESS_FEATURES_EXT: {
VkPhysicalDeviceImageRobustnessFeaturesEXT *features =
(VkPhysicalDeviceImageRobustnessFeaturesEXT *)ext;
features->robustImageAccess = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_FLOAT_FEATURES_EXT: {
VkPhysicalDeviceShaderAtomicFloatFeaturesEXT *features =
(VkPhysicalDeviceShaderAtomicFloatFeaturesEXT *)ext;
features->shaderBufferFloat32Atomics = true;
features->shaderBufferFloat32AtomicAdd = false;
features->shaderBufferFloat64Atomics = true;
features->shaderBufferFloat64AtomicAdd = false;
features->shaderSharedFloat32Atomics = true;
features->shaderSharedFloat32AtomicAdd = pdevice->rad_info.chip_class >= GFX8 &&
(!pdevice->use_llvm || LLVM_VERSION_MAJOR >= 10);
features->shaderSharedFloat64Atomics = true;
features->shaderSharedFloat64AtomicAdd = false;
features->shaderImageFloat32Atomics = true;
features->shaderImageFloat32AtomicAdd = false;
features->sparseImageFloat32Atomics = false;
features->sparseImageFloat32AtomicAdd = false;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_4444_FORMATS_FEATURES_EXT: {
VkPhysicalDevice4444FormatsFeaturesEXT *features =
(VkPhysicalDevice4444FormatsFeaturesEXT *)ext;
features->formatA4R4G4B4 = true;
features->formatA4B4G4R4 = true;
break;
}
default:
break;
}
}
#undef CORE_FEATURE
}
static size_t
radv_max_descriptor_set_size()
{
/* make sure that the entire descriptor set is addressable with a signed
* 32-bit int. So the sum of all limits scaled by descriptor size has to
* be at most 2 GiB. the combined image & samples object count as one of
* both. This limit is for the pipeline layout, not for the set layout, but
* there is no set limit, so we just set a pipeline limit. I don't think
* any app is going to hit this soon. */
return ((1ull << 31) - 16 * MAX_DYNAMIC_BUFFERS
- MAX_INLINE_UNIFORM_BLOCK_SIZE * MAX_INLINE_UNIFORM_BLOCK_COUNT) /
(32 /* uniform buffer, 32 due to potential space wasted on alignment */ +
32 /* storage buffer, 32 due to potential space wasted on alignment */ +
32 /* sampler, largest when combined with image */ +
64 /* sampled image */ +
64 /* storage image */);
}
static uint32_t
radv_uniform_buffer_offset_alignment(const struct radv_physical_device *pdevice)
{
uint32_t uniform_offset_alignment = driQueryOptioni(&pdevice->instance->dri_options,
"radv_override_uniform_offset_alignment");
if (!util_is_power_of_two_or_zero(uniform_offset_alignment)) {
fprintf(stderr, "ERROR: invalid radv_override_uniform_offset_alignment setting %d:"
"not a power of two\n", uniform_offset_alignment);
uniform_offset_alignment = 0;
}
/* Take at least the hardware limit. */
return MAX2(uniform_offset_alignment, 4);
}
void radv_GetPhysicalDeviceProperties(
VkPhysicalDevice physicalDevice,
VkPhysicalDeviceProperties* pProperties)
{
RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice);
VkSampleCountFlags sample_counts = 0xf;
size_t max_descriptor_set_size = radv_max_descriptor_set_size();
VkPhysicalDeviceLimits limits = {
.maxImageDimension1D = (1 << 14),
.maxImageDimension2D = (1 << 14),
.maxImageDimension3D = (1 << 11),
.maxImageDimensionCube = (1 << 14),
.maxImageArrayLayers = (1 << 11),
.maxTexelBufferElements = UINT32_MAX,
.maxUniformBufferRange = UINT32_MAX,
.maxStorageBufferRange = UINT32_MAX,
.maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
.maxMemoryAllocationCount = UINT32_MAX,
.maxSamplerAllocationCount = 64 * 1024,
.bufferImageGranularity = 64, /* A cache line */
.sparseAddressSpaceSize = RADV_MAX_MEMORY_ALLOCATION_SIZE, /* buffer max size */
.maxBoundDescriptorSets = MAX_SETS,
.maxPerStageDescriptorSamplers = max_descriptor_set_size,
.maxPerStageDescriptorUniformBuffers = max_descriptor_set_size,
.maxPerStageDescriptorStorageBuffers = max_descriptor_set_size,
.maxPerStageDescriptorSampledImages = max_descriptor_set_size,
.maxPerStageDescriptorStorageImages = max_descriptor_set_size,
.maxPerStageDescriptorInputAttachments = max_descriptor_set_size,
.maxPerStageResources = max_descriptor_set_size,
.maxDescriptorSetSamplers = max_descriptor_set_size,
.maxDescriptorSetUniformBuffers = max_descriptor_set_size,
.maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_UNIFORM_BUFFERS,
.maxDescriptorSetStorageBuffers = max_descriptor_set_size,
.maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_STORAGE_BUFFERS,
.maxDescriptorSetSampledImages = max_descriptor_set_size,
.maxDescriptorSetStorageImages = max_descriptor_set_size,
.maxDescriptorSetInputAttachments = max_descriptor_set_size,
.maxVertexInputAttributes = MAX_VERTEX_ATTRIBS,
.maxVertexInputBindings = MAX_VBS,
.maxVertexInputAttributeOffset = 2047,
.maxVertexInputBindingStride = 2048,
.maxVertexOutputComponents = 128,
.maxTessellationGenerationLevel = 64,
.maxTessellationPatchSize = 32,
.maxTessellationControlPerVertexInputComponents = 128,
.maxTessellationControlPerVertexOutputComponents = 128,
.maxTessellationControlPerPatchOutputComponents = 120,
.maxTessellationControlTotalOutputComponents = 4096,
.maxTessellationEvaluationInputComponents = 128,
.maxTessellationEvaluationOutputComponents = 128,
.maxGeometryShaderInvocations = 127,
.maxGeometryInputComponents = 64,
.maxGeometryOutputComponents = 128,
.maxGeometryOutputVertices = 256,
.maxGeometryTotalOutputComponents = 1024,
.maxFragmentInputComponents = 128,
.maxFragmentOutputAttachments = 8,
.maxFragmentDualSrcAttachments = 1,
.maxFragmentCombinedOutputResources = 8,
.maxComputeSharedMemorySize = 32768,
.maxComputeWorkGroupCount = { 65535, 65535, 65535 },
.maxComputeWorkGroupInvocations = 1024,
.maxComputeWorkGroupSize = {
1024,
1024,
1024
},
.subPixelPrecisionBits = 8,
.subTexelPrecisionBits = 8,
.mipmapPrecisionBits = 8,
.maxDrawIndexedIndexValue = UINT32_MAX,
.maxDrawIndirectCount = UINT32_MAX,
.maxSamplerLodBias = 16,
.maxSamplerAnisotropy = 16,
.maxViewports = MAX_VIEWPORTS,
.maxViewportDimensions = { (1 << 14), (1 << 14) },
.viewportBoundsRange = { INT16_MIN, INT16_MAX },
.viewportSubPixelBits = 8,
.minMemoryMapAlignment = 4096, /* A page */
.minTexelBufferOffsetAlignment = 4,
.minUniformBufferOffsetAlignment = radv_uniform_buffer_offset_alignment(pdevice),
.minStorageBufferOffsetAlignment = 4,
.minTexelOffset = -32,
.maxTexelOffset = 31,
.minTexelGatherOffset = -32,
.maxTexelGatherOffset = 31,
.minInterpolationOffset = -2,
.maxInterpolationOffset = 2,
.subPixelInterpolationOffsetBits = 8,
.maxFramebufferWidth = (1 << 14),
.maxFramebufferHeight = (1 << 14),
.maxFramebufferLayers = (1 << 10),
.framebufferColorSampleCounts = sample_counts,
.framebufferDepthSampleCounts = sample_counts,
.framebufferStencilSampleCounts = sample_counts,
.framebufferNoAttachmentsSampleCounts = sample_counts,
.maxColorAttachments = MAX_RTS,
.sampledImageColorSampleCounts = sample_counts,
.sampledImageIntegerSampleCounts = sample_counts,
.sampledImageDepthSampleCounts = sample_counts,
.sampledImageStencilSampleCounts = sample_counts,
.storageImageSampleCounts = sample_counts,
.maxSampleMaskWords = 1,
.timestampComputeAndGraphics = true,
.timestampPeriod = 1000000.0 / pdevice->rad_info.clock_crystal_freq,
.maxClipDistances = 8,
.maxCullDistances = 8,
.maxCombinedClipAndCullDistances = 8,
.discreteQueuePriorities = 2,
.pointSizeRange = { 0.0, 8191.875 },
.lineWidthRange = { 0.0, 8191.875 },
.pointSizeGranularity = (1.0 / 8.0),
.lineWidthGranularity = (1.0 / 8.0),
.strictLines = false, /* FINISHME */
.standardSampleLocations = true,
.optimalBufferCopyOffsetAlignment = 128,
.optimalBufferCopyRowPitchAlignment = 128,
.nonCoherentAtomSize = 64,
};
*pProperties = (VkPhysicalDeviceProperties) {
.apiVersion = radv_physical_device_api_version(pdevice),
.driverVersion = vk_get_driver_version(),
.vendorID = ATI_VENDOR_ID,
.deviceID = pdevice->rad_info.pci_id,
.deviceType = pdevice->rad_info.has_dedicated_vram ? VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU : VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
.limits = limits,
.sparseProperties = {0},
};
strcpy(pProperties->deviceName, pdevice->name);
memcpy(pProperties->pipelineCacheUUID, pdevice->cache_uuid, VK_UUID_SIZE);
}
static void
radv_get_physical_device_properties_1_1(struct radv_physical_device *pdevice,
VkPhysicalDeviceVulkan11Properties *p)
{
assert(p->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_PROPERTIES);
memcpy(p->deviceUUID, pdevice->device_uuid, VK_UUID_SIZE);
memcpy(p->driverUUID, pdevice->driver_uuid, VK_UUID_SIZE);
memset(p->deviceLUID, 0, VK_LUID_SIZE);
/* The LUID is for Windows. */
p->deviceLUIDValid = false;
p->deviceNodeMask = 0;
p->subgroupSize = RADV_SUBGROUP_SIZE;
p->subgroupSupportedStages = VK_SHADER_STAGE_ALL_GRAPHICS |
VK_SHADER_STAGE_COMPUTE_BIT;
p->subgroupSupportedOperations = VK_SUBGROUP_FEATURE_BASIC_BIT |
VK_SUBGROUP_FEATURE_VOTE_BIT |
VK_SUBGROUP_FEATURE_ARITHMETIC_BIT |
VK_SUBGROUP_FEATURE_BALLOT_BIT |
VK_SUBGROUP_FEATURE_CLUSTERED_BIT |
VK_SUBGROUP_FEATURE_QUAD_BIT |
VK_SUBGROUP_FEATURE_SHUFFLE_BIT |
VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT;
p->subgroupQuadOperationsInAllStages = true;
p->pointClippingBehavior = VK_POINT_CLIPPING_BEHAVIOR_ALL_CLIP_PLANES;
p->maxMultiviewViewCount = MAX_VIEWS;
p->maxMultiviewInstanceIndex = INT_MAX;
p->protectedNoFault = false;
p->maxPerSetDescriptors = RADV_MAX_PER_SET_DESCRIPTORS;
p->maxMemoryAllocationSize = RADV_MAX_MEMORY_ALLOCATION_SIZE;
}
static void
radv_get_physical_device_properties_1_2(struct radv_physical_device *pdevice,
VkPhysicalDeviceVulkan12Properties *p)
{
assert(p->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_PROPERTIES);
p->driverID = VK_DRIVER_ID_MESA_RADV;
snprintf(p->driverName, VK_MAX_DRIVER_NAME_SIZE, "radv");
snprintf(p->driverInfo, VK_MAX_DRIVER_INFO_SIZE,
"Mesa " PACKAGE_VERSION MESA_GIT_SHA1 " (%s)",
radv_get_compiler_string(pdevice));
p->conformanceVersion = (VkConformanceVersion) {
.major = 1,
.minor = 2,
.subminor = 3,
.patch = 0,
};
/* On AMD hardware, denormals and rounding modes for fp16/fp64 are
* controlled by the same config register.
*/
if (pdevice->rad_info.has_packed_math_16bit) {
p->denormBehaviorIndependence = VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_32_BIT_ONLY_KHR;
p->roundingModeIndependence = VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_32_BIT_ONLY_KHR;
} else {
p->denormBehaviorIndependence = VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_ALL_KHR;
p->roundingModeIndependence = VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_ALL_KHR;
}
/* With LLVM, do not allow both preserving and flushing denorms because
* different shaders in the same pipeline can have different settings and
* this won't work for merged shaders. To make it work, this requires LLVM
* support for changing the register. The same logic applies for the
* rounding modes because they are configured with the same config
* register.
*/
p->shaderDenormFlushToZeroFloat32 = true;
p->shaderDenormPreserveFloat32 = !pdevice->use_llvm;
p->shaderRoundingModeRTEFloat32 = true;
p->shaderRoundingModeRTZFloat32 = !pdevice->use_llvm;
p->shaderSignedZeroInfNanPreserveFloat32 = true;
p->shaderDenormFlushToZeroFloat16 = pdevice->rad_info.has_packed_math_16bit && !pdevice->use_llvm;
p->shaderDenormPreserveFloat16 = pdevice->rad_info.has_packed_math_16bit;
p->shaderRoundingModeRTEFloat16 = pdevice->rad_info.has_packed_math_16bit;
p->shaderRoundingModeRTZFloat16 = pdevice->rad_info.has_packed_math_16bit && !pdevice->use_llvm;
p->shaderSignedZeroInfNanPreserveFloat16 = pdevice->rad_info.has_packed_math_16bit;
p->shaderDenormFlushToZeroFloat64 = pdevice->rad_info.chip_class >= GFX8 && !pdevice->use_llvm;
p->shaderDenormPreserveFloat64 = pdevice->rad_info.chip_class >= GFX8;
p->shaderRoundingModeRTEFloat64 = pdevice->rad_info.chip_class >= GFX8;
p->shaderRoundingModeRTZFloat64 = pdevice->rad_info.chip_class >= GFX8 && !pdevice->use_llvm;
p->shaderSignedZeroInfNanPreserveFloat64 = pdevice->rad_info.chip_class >= GFX8;
p->maxUpdateAfterBindDescriptorsInAllPools = UINT32_MAX / 64;
p->shaderUniformBufferArrayNonUniformIndexingNative = false;
p->shaderSampledImageArrayNonUniformIndexingNative = false;
p->shaderStorageBufferArrayNonUniformIndexingNative = false;
p->shaderStorageImageArrayNonUniformIndexingNative = false;
p->shaderInputAttachmentArrayNonUniformIndexingNative = false;
p->robustBufferAccessUpdateAfterBind = false;
p->quadDivergentImplicitLod = false;
size_t max_descriptor_set_size = ((1ull << 31) - 16 * MAX_DYNAMIC_BUFFERS -
MAX_INLINE_UNIFORM_BLOCK_SIZE * MAX_INLINE_UNIFORM_BLOCK_COUNT) /
(32 /* uniform buffer, 32 due to potential space wasted on alignment */ +
32 /* storage buffer, 32 due to potential space wasted on alignment */ +
32 /* sampler, largest when combined with image */ +
64 /* sampled image */ +
64 /* storage image */);
p->maxPerStageDescriptorUpdateAfterBindSamplers = max_descriptor_set_size;
p->maxPerStageDescriptorUpdateAfterBindUniformBuffers = max_descriptor_set_size;
p->maxPerStageDescriptorUpdateAfterBindStorageBuffers = max_descriptor_set_size;
p->maxPerStageDescriptorUpdateAfterBindSampledImages = max_descriptor_set_size;
p->maxPerStageDescriptorUpdateAfterBindStorageImages = max_descriptor_set_size;
p->maxPerStageDescriptorUpdateAfterBindInputAttachments = max_descriptor_set_size;
p->maxPerStageUpdateAfterBindResources = max_descriptor_set_size;
p->maxDescriptorSetUpdateAfterBindSamplers = max_descriptor_set_size;
p->maxDescriptorSetUpdateAfterBindUniformBuffers = max_descriptor_set_size;
p->maxDescriptorSetUpdateAfterBindUniformBuffersDynamic = MAX_DYNAMIC_UNIFORM_BUFFERS;
p->maxDescriptorSetUpdateAfterBindStorageBuffers = max_descriptor_set_size;
p->maxDescriptorSetUpdateAfterBindStorageBuffersDynamic = MAX_DYNAMIC_STORAGE_BUFFERS;
p->maxDescriptorSetUpdateAfterBindSampledImages = max_descriptor_set_size;
p->maxDescriptorSetUpdateAfterBindStorageImages = max_descriptor_set_size;
p->maxDescriptorSetUpdateAfterBindInputAttachments = max_descriptor_set_size;
/* We support all of the depth resolve modes */
p->supportedDepthResolveModes = VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR |
VK_RESOLVE_MODE_AVERAGE_BIT_KHR |
VK_RESOLVE_MODE_MIN_BIT_KHR |
VK_RESOLVE_MODE_MAX_BIT_KHR;
/* Average doesn't make sense for stencil so we don't support that */
p->supportedStencilResolveModes = VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR |
VK_RESOLVE_MODE_MIN_BIT_KHR |
VK_RESOLVE_MODE_MAX_BIT_KHR;
p->independentResolveNone = true;
p->independentResolve = true;
/* GFX6-8 only support single channel min/max filter. */
p->filterMinmaxImageComponentMapping = pdevice->rad_info.chip_class >= GFX9;
p->filterMinmaxSingleComponentFormats = true;
p->maxTimelineSemaphoreValueDifference = UINT64_MAX;
p->framebufferIntegerColorSampleCounts = VK_SAMPLE_COUNT_1_BIT;
}
void radv_GetPhysicalDeviceProperties2(
VkPhysicalDevice physicalDevice,
VkPhysicalDeviceProperties2 *pProperties)
{
RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice);
radv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties);
VkPhysicalDeviceVulkan11Properties core_1_1 = {
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_PROPERTIES,
};
radv_get_physical_device_properties_1_1(pdevice, &core_1_1);
VkPhysicalDeviceVulkan12Properties core_1_2 = {
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_PROPERTIES,
};
radv_get_physical_device_properties_1_2(pdevice, &core_1_2);
#define CORE_RENAMED_PROPERTY(major, minor, ext_property, core_property) \
memcpy(&properties->ext_property, &core_##major##_##minor.core_property, \
sizeof(core_##major##_##minor.core_property))
#define CORE_PROPERTY(major, minor, property) \
CORE_RENAMED_PROPERTY(major, minor, property, property)
vk_foreach_struct(ext, pProperties->pNext) {
switch (ext->sType) {
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: {
VkPhysicalDevicePushDescriptorPropertiesKHR *properties =
(VkPhysicalDevicePushDescriptorPropertiesKHR *) ext;
properties->maxPushDescriptors = MAX_PUSH_DESCRIPTORS;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES: {
VkPhysicalDeviceIDProperties *properties = (VkPhysicalDeviceIDProperties*)ext;
CORE_PROPERTY(1, 1, deviceUUID);
CORE_PROPERTY(1, 1, driverUUID);
CORE_PROPERTY(1, 1, deviceLUID);
CORE_PROPERTY(1, 1, deviceLUIDValid);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES: {
VkPhysicalDeviceMultiviewProperties *properties = (VkPhysicalDeviceMultiviewProperties*)ext;
CORE_PROPERTY(1, 1, maxMultiviewViewCount);
CORE_PROPERTY(1, 1, maxMultiviewInstanceIndex);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES: {
VkPhysicalDevicePointClippingProperties *properties =
(VkPhysicalDevicePointClippingProperties*)ext;
CORE_PROPERTY(1, 1, pointClippingBehavior);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DISCARD_RECTANGLE_PROPERTIES_EXT: {
VkPhysicalDeviceDiscardRectanglePropertiesEXT *properties =
(VkPhysicalDeviceDiscardRectanglePropertiesEXT*)ext;
properties->maxDiscardRectangles = MAX_DISCARD_RECTANGLES;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_HOST_PROPERTIES_EXT: {
VkPhysicalDeviceExternalMemoryHostPropertiesEXT *properties =
(VkPhysicalDeviceExternalMemoryHostPropertiesEXT *) ext;
properties->minImportedHostPointerAlignment = 4096;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES: {
VkPhysicalDeviceSubgroupProperties *properties =
(VkPhysicalDeviceSubgroupProperties*)ext;
CORE_PROPERTY(1, 1, subgroupSize);
CORE_RENAMED_PROPERTY(1, 1, supportedStages,
subgroupSupportedStages);
CORE_RENAMED_PROPERTY(1, 1, supportedOperations,
subgroupSupportedOperations);
CORE_RENAMED_PROPERTY(1, 1, quadOperationsInAllStages,
subgroupQuadOperationsInAllStages);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_3_PROPERTIES: {
VkPhysicalDeviceMaintenance3Properties *properties =
(VkPhysicalDeviceMaintenance3Properties*)ext;
CORE_PROPERTY(1, 1, maxPerSetDescriptors);
CORE_PROPERTY(1, 1, maxMemoryAllocationSize);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_FILTER_MINMAX_PROPERTIES: {
VkPhysicalDeviceSamplerFilterMinmaxProperties *properties =
(VkPhysicalDeviceSamplerFilterMinmaxProperties *)ext;
CORE_PROPERTY(1, 2, filterMinmaxImageComponentMapping);
CORE_PROPERTY(1, 2, filterMinmaxSingleComponentFormats);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_CORE_PROPERTIES_AMD: {
VkPhysicalDeviceShaderCorePropertiesAMD *properties =
(VkPhysicalDeviceShaderCorePropertiesAMD *)ext;
/* Shader engines. */
properties->shaderEngineCount =
pdevice->rad_info.max_se;
properties->shaderArraysPerEngineCount =
pdevice->rad_info.max_sh_per_se;
properties->computeUnitsPerShaderArray =
pdevice->rad_info.min_good_cu_per_sa;
properties->simdPerComputeUnit =
pdevice->rad_info.num_simd_per_compute_unit;
properties->wavefrontsPerSimd =
pdevice->rad_info.max_wave64_per_simd;
properties->wavefrontSize = 64;
/* SGPR. */
properties->sgprsPerSimd =
pdevice->rad_info.num_physical_sgprs_per_simd;
properties->minSgprAllocation =
pdevice->rad_info.min_sgpr_alloc;
properties->maxSgprAllocation =
pdevice->rad_info.max_sgpr_alloc;
properties->sgprAllocationGranularity =
pdevice->rad_info.sgpr_alloc_granularity;
/* VGPR. */
properties->vgprsPerSimd =
pdevice->rad_info.num_physical_wave64_vgprs_per_simd;
properties->minVgprAllocation =
pdevice->rad_info.min_wave64_vgpr_alloc;
properties->maxVgprAllocation =
pdevice->rad_info.max_vgpr_alloc;
properties->vgprAllocationGranularity =
pdevice->rad_info.wave64_vgpr_alloc_granularity;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_CORE_PROPERTIES_2_AMD: {
VkPhysicalDeviceShaderCoreProperties2AMD *properties =
(VkPhysicalDeviceShaderCoreProperties2AMD *)ext;
properties->shaderCoreFeatures = 0;
properties->activeComputeUnitCount =
pdevice->rad_info.num_good_compute_units;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_PROPERTIES_EXT: {
VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *properties =
(VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *)ext;
properties->maxVertexAttribDivisor = UINT32_MAX;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_PROPERTIES: {
VkPhysicalDeviceDescriptorIndexingProperties *properties =
(VkPhysicalDeviceDescriptorIndexingProperties*)ext;
CORE_PROPERTY(1, 2, maxUpdateAfterBindDescriptorsInAllPools);
CORE_PROPERTY(1, 2, shaderUniformBufferArrayNonUniformIndexingNative);
CORE_PROPERTY(1, 2, shaderSampledImageArrayNonUniformIndexingNative);
CORE_PROPERTY(1, 2, shaderStorageBufferArrayNonUniformIndexingNative);
CORE_PROPERTY(1, 2, shaderStorageImageArrayNonUniformIndexingNative);
CORE_PROPERTY(1, 2, shaderInputAttachmentArrayNonUniformIndexingNative);
CORE_PROPERTY(1, 2, robustBufferAccessUpdateAfterBind);
CORE_PROPERTY(1, 2, quadDivergentImplicitLod);
CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindSamplers);
CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindUniformBuffers);
CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindStorageBuffers);
CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindSampledImages);
CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindStorageImages);
CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindInputAttachments);
CORE_PROPERTY(1, 2, maxPerStageUpdateAfterBindResources);
CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindSamplers);
CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindUniformBuffers);
CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindUniformBuffersDynamic);
CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindStorageBuffers);
CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindStorageBuffersDynamic);
CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindSampledImages);
CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindStorageImages);
CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindInputAttachments);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_PROPERTIES: {
VkPhysicalDeviceProtectedMemoryProperties *properties =
(VkPhysicalDeviceProtectedMemoryProperties *)ext;
CORE_PROPERTY(1, 1, protectedNoFault);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONSERVATIVE_RASTERIZATION_PROPERTIES_EXT: {
VkPhysicalDeviceConservativeRasterizationPropertiesEXT *properties =
(VkPhysicalDeviceConservativeRasterizationPropertiesEXT *)ext;
properties->primitiveOverestimationSize = 0;
properties->maxExtraPrimitiveOverestimationSize = 0;
properties->extraPrimitiveOverestimationSizeGranularity = 0;
properties->primitiveUnderestimation = false;
properties->conservativePointAndLineRasterization = false;
properties->degenerateTrianglesRasterized = false;
properties->degenerateLinesRasterized = false;
properties->fullyCoveredFragmentShaderInputVariable = false;
properties->conservativeRasterizationPostDepthCoverage = false;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PCI_BUS_INFO_PROPERTIES_EXT: {
VkPhysicalDevicePCIBusInfoPropertiesEXT *properties =
(VkPhysicalDevicePCIBusInfoPropertiesEXT *)ext;
properties->pciDomain = pdevice->bus_info.domain;
properties->pciBus = pdevice->bus_info.bus;
properties->pciDevice = pdevice->bus_info.dev;
properties->pciFunction = pdevice->bus_info.func;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRIVER_PROPERTIES: {
VkPhysicalDeviceDriverProperties *properties =
(VkPhysicalDeviceDriverProperties *) ext;
CORE_PROPERTY(1, 2, driverID);
CORE_PROPERTY(1, 2, driverName);
CORE_PROPERTY(1, 2, driverInfo);
CORE_PROPERTY(1, 2, conformanceVersion);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_PROPERTIES_EXT: {
VkPhysicalDeviceTransformFeedbackPropertiesEXT *properties =
(VkPhysicalDeviceTransformFeedbackPropertiesEXT *)ext;
properties->maxTransformFeedbackStreams = MAX_SO_STREAMS;
properties->maxTransformFeedbackBuffers = MAX_SO_BUFFERS;
properties->maxTransformFeedbackBufferSize = UINT32_MAX;
properties->maxTransformFeedbackStreamDataSize = 512;
properties->maxTransformFeedbackBufferDataSize = UINT32_MAX;
properties->maxTransformFeedbackBufferDataStride = 512;
properties->transformFeedbackQueries = !pdevice->use_ngg_streamout;
properties->transformFeedbackStreamsLinesTriangles = !pdevice->use_ngg_streamout;
properties->transformFeedbackRasterizationStreamSelect = false;
properties->transformFeedbackDraw = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_PROPERTIES_EXT: {
VkPhysicalDeviceInlineUniformBlockPropertiesEXT *props =
(VkPhysicalDeviceInlineUniformBlockPropertiesEXT *)ext;
props->maxInlineUniformBlockSize = MAX_INLINE_UNIFORM_BLOCK_SIZE;
props->maxPerStageDescriptorInlineUniformBlocks = MAX_INLINE_UNIFORM_BLOCK_SIZE * MAX_SETS;
props->maxPerStageDescriptorUpdateAfterBindInlineUniformBlocks = MAX_INLINE_UNIFORM_BLOCK_SIZE * MAX_SETS;
props->maxDescriptorSetInlineUniformBlocks = MAX_INLINE_UNIFORM_BLOCK_COUNT;
props->maxDescriptorSetUpdateAfterBindInlineUniformBlocks = MAX_INLINE_UNIFORM_BLOCK_COUNT;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLE_LOCATIONS_PROPERTIES_EXT: {
VkPhysicalDeviceSampleLocationsPropertiesEXT *properties =
(VkPhysicalDeviceSampleLocationsPropertiesEXT *)ext;
properties->sampleLocationSampleCounts = VK_SAMPLE_COUNT_2_BIT |
VK_SAMPLE_COUNT_4_BIT |
VK_SAMPLE_COUNT_8_BIT;
properties->maxSampleLocationGridSize = (VkExtent2D){ 2 , 2 };
properties->sampleLocationCoordinateRange[0] = 0.0f;
properties->sampleLocationCoordinateRange[1] = 0.9375f;
properties->sampleLocationSubPixelBits = 4;
properties->variableSampleLocations = false;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_STENCIL_RESOLVE_PROPERTIES: {
VkPhysicalDeviceDepthStencilResolveProperties *properties =
(VkPhysicalDeviceDepthStencilResolveProperties *)ext;
CORE_PROPERTY(1, 2, supportedDepthResolveModes);
CORE_PROPERTY(1, 2, supportedStencilResolveModes);
CORE_PROPERTY(1, 2, independentResolveNone);
CORE_PROPERTY(1, 2, independentResolve);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_PROPERTIES_EXT: {
VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT *properties =
(VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT *)ext;
properties->storageTexelBufferOffsetAlignmentBytes = 4;
properties->storageTexelBufferOffsetSingleTexelAlignment = true;
properties->uniformTexelBufferOffsetAlignmentBytes = 4;
properties->uniformTexelBufferOffsetSingleTexelAlignment = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT_CONTROLS_PROPERTIES : {
VkPhysicalDeviceFloatControlsProperties *properties =
(VkPhysicalDeviceFloatControlsProperties *)ext;
CORE_PROPERTY(1, 2, denormBehaviorIndependence);
CORE_PROPERTY(1, 2, roundingModeIndependence);
CORE_PROPERTY(1, 2, shaderDenormFlushToZeroFloat16);
CORE_PROPERTY(1, 2, shaderDenormPreserveFloat16);
CORE_PROPERTY(1, 2, shaderRoundingModeRTEFloat16);
CORE_PROPERTY(1, 2, shaderRoundingModeRTZFloat16);
CORE_PROPERTY(1, 2, shaderSignedZeroInfNanPreserveFloat16);
CORE_PROPERTY(1, 2, shaderDenormFlushToZeroFloat32);
CORE_PROPERTY(1, 2, shaderDenormPreserveFloat32);
CORE_PROPERTY(1, 2, shaderRoundingModeRTEFloat32);
CORE_PROPERTY(1, 2, shaderRoundingModeRTZFloat32);
CORE_PROPERTY(1, 2, shaderSignedZeroInfNanPreserveFloat32);
CORE_PROPERTY(1, 2, shaderDenormFlushToZeroFloat64);
CORE_PROPERTY(1, 2, shaderDenormPreserveFloat64);
CORE_PROPERTY(1, 2, shaderRoundingModeRTEFloat64);
CORE_PROPERTY(1, 2, shaderRoundingModeRTZFloat64);
CORE_PROPERTY(1, 2, shaderSignedZeroInfNanPreserveFloat64);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TIMELINE_SEMAPHORE_PROPERTIES: {
VkPhysicalDeviceTimelineSemaphoreProperties *properties =
(VkPhysicalDeviceTimelineSemaphoreProperties *) ext;
CORE_PROPERTY(1, 2, maxTimelineSemaphoreValueDifference);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_PROPERTIES_EXT: {
VkPhysicalDeviceSubgroupSizeControlPropertiesEXT *props =
(VkPhysicalDeviceSubgroupSizeControlPropertiesEXT *)ext;
props->minSubgroupSize = 64;
props->maxSubgroupSize = 64;
props->maxComputeWorkgroupSubgroups = UINT32_MAX;
props->requiredSubgroupSizeStages = 0;
if (pdevice->rad_info.chip_class >= GFX10) {
/* Only GFX10+ supports wave32. */
props->minSubgroupSize = 32;
props->requiredSubgroupSizeStages = VK_SHADER_STAGE_COMPUTE_BIT;
}
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_PROPERTIES:
radv_get_physical_device_properties_1_1(pdevice, (void *)ext);
break;
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_PROPERTIES:
radv_get_physical_device_properties_1_2(pdevice, (void *)ext);
break;
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_PROPERTIES_EXT: {
VkPhysicalDeviceLineRasterizationPropertiesEXT *props =
(VkPhysicalDeviceLineRasterizationPropertiesEXT *)ext;
props->lineSubPixelPrecisionBits = 4;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ROBUSTNESS_2_PROPERTIES_EXT: {
VkPhysicalDeviceRobustness2PropertiesEXT *properties =
(VkPhysicalDeviceRobustness2PropertiesEXT *)ext;
properties->robustStorageBufferAccessSizeAlignment = 4;
properties->robustUniformBufferAccessSizeAlignment = 4;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CUSTOM_BORDER_COLOR_PROPERTIES_EXT: {
VkPhysicalDeviceCustomBorderColorPropertiesEXT *props =
(VkPhysicalDeviceCustomBorderColorPropertiesEXT *)ext;
props->maxCustomBorderColorSamplers = RADV_BORDER_COLOR_COUNT;
break;
}
default:
break;
}
}
}
static void radv_get_physical_device_queue_family_properties(
struct radv_physical_device* pdevice,
uint32_t* pCount,
VkQueueFamilyProperties** pQueueFamilyProperties)
{
int num_queue_families = 1;
int idx;
if (pdevice->rad_info.num_rings[RING_COMPUTE] > 0 &&
!(pdevice->instance->debug_flags & RADV_DEBUG_NO_COMPUTE_QUEUE))
num_queue_families++;
if (pQueueFamilyProperties == NULL) {
*pCount = num_queue_families;
return;
}
if (!*pCount)
return;
idx = 0;
if (*pCount >= 1) {
*pQueueFamilyProperties[idx] = (VkQueueFamilyProperties) {
.queueFlags = VK_QUEUE_GRAPHICS_BIT |
VK_QUEUE_COMPUTE_BIT |
VK_QUEUE_TRANSFER_BIT |
VK_QUEUE_SPARSE_BINDING_BIT,
.queueCount = 1,
.timestampValidBits = 64,
.minImageTransferGranularity = (VkExtent3D) { 1, 1, 1 },
};
idx++;
}
if (pdevice->rad_info.num_rings[RING_COMPUTE] > 0 &&
!(pdevice->instance->debug_flags & RADV_DEBUG_NO_COMPUTE_QUEUE)) {
if (*pCount > idx) {
*pQueueFamilyProperties[idx] = (VkQueueFamilyProperties) {
.queueFlags = VK_QUEUE_COMPUTE_BIT |
VK_QUEUE_TRANSFER_BIT |
VK_QUEUE_SPARSE_BINDING_BIT,
.queueCount = pdevice->rad_info.num_rings[RING_COMPUTE],
.timestampValidBits = 64,
.minImageTransferGranularity = (VkExtent3D) { 1, 1, 1 },
};
idx++;
}
}
*pCount = idx;
}
void radv_GetPhysicalDeviceQueueFamilyProperties(
VkPhysicalDevice physicalDevice,
uint32_t* pCount,
VkQueueFamilyProperties* pQueueFamilyProperties)
{
RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice);
if (!pQueueFamilyProperties) {
radv_get_physical_device_queue_family_properties(pdevice, pCount, NULL);
return;
}
VkQueueFamilyProperties *properties[] = {
pQueueFamilyProperties + 0,
pQueueFamilyProperties + 1,
pQueueFamilyProperties + 2,
};
radv_get_physical_device_queue_family_properties(pdevice, pCount, properties);
assert(*pCount <= 3);
}
void radv_GetPhysicalDeviceQueueFamilyProperties2(
VkPhysicalDevice physicalDevice,
uint32_t* pCount,
VkQueueFamilyProperties2 *pQueueFamilyProperties)
{
RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice);
if (!pQueueFamilyProperties) {
radv_get_physical_device_queue_family_properties(pdevice, pCount, NULL);
return;
}
VkQueueFamilyProperties *properties[] = {
&pQueueFamilyProperties[0].queueFamilyProperties,
&pQueueFamilyProperties[1].queueFamilyProperties,
&pQueueFamilyProperties[2].queueFamilyProperties,
};
radv_get_physical_device_queue_family_properties(pdevice, pCount, properties);
assert(*pCount <= 3);
}
void radv_GetPhysicalDeviceMemoryProperties(
VkPhysicalDevice physicalDevice,
VkPhysicalDeviceMemoryProperties *pMemoryProperties)
{
RADV_FROM_HANDLE(radv_physical_device, physical_device, physicalDevice);
*pMemoryProperties = physical_device->memory_properties;
}
static void
radv_get_memory_budget_properties(VkPhysicalDevice physicalDevice,
VkPhysicalDeviceMemoryBudgetPropertiesEXT *memoryBudget)
{
RADV_FROM_HANDLE(radv_physical_device, device, physicalDevice);
VkPhysicalDeviceMemoryProperties *memory_properties = &device->memory_properties;
uint64_t visible_vram_size = radv_get_visible_vram_size(device);
uint64_t vram_size = radv_get_vram_size(device);
uint64_t gtt_size = device->rad_info.gart_size;
uint64_t heap_budget, heap_usage;
/* For all memory heaps, the computation of budget is as follow:
* heap_budget = heap_size - global_heap_usage + app_heap_usage
*
* The Vulkan spec 1.1.97 says that the budget should include any
* currently allocated device memory.
*
* Note that the application heap usages are not really accurate (eg.
* in presence of shared buffers).
*/
for (int i = 0; i < device->memory_properties.memoryTypeCount; i++) {
uint32_t heap_index = device->memory_properties.memoryTypes[i].heapIndex;
if ((device->memory_domains[i] & RADEON_DOMAIN_VRAM) && (device->memory_flags[i] & RADEON_FLAG_NO_CPU_ACCESS)) {
heap_usage = device->ws->query_value(device->ws,
RADEON_ALLOCATED_VRAM);
heap_budget = vram_size -
MIN2(vram_size, device->ws->query_value(device->ws, RADEON_VRAM_USAGE)) +
heap_usage;
memoryBudget->heapBudget[heap_index] = heap_budget;
memoryBudget->heapUsage[heap_index] = heap_usage;
} else if (device->memory_domains[i] & RADEON_DOMAIN_VRAM) {
heap_usage = device->ws->query_value(device->ws,
RADEON_ALLOCATED_VRAM_VIS);
heap_budget = visible_vram_size -
MIN2(visible_vram_size, device->ws->query_value(device->ws, RADEON_VRAM_VIS_USAGE)) +
heap_usage;
memoryBudget->heapBudget[heap_index] = heap_budget;
memoryBudget->heapUsage[heap_index] = heap_usage;
} else {
assert(device->memory_domains[i] & RADEON_DOMAIN_GTT);
heap_usage = device->ws->query_value(device->ws,
RADEON_ALLOCATED_GTT);
heap_budget = gtt_size -
device->ws->query_value(device->ws, RADEON_GTT_USAGE) +
heap_usage;
memoryBudget->heapBudget[heap_index] = heap_budget;
memoryBudget->heapUsage[heap_index] = heap_usage;
}
}
/* The heapBudget and heapUsage values must be zero for array elements
* greater than or equal to
* VkPhysicalDeviceMemoryProperties::memoryHeapCount.
*/
for (uint32_t i = memory_properties->memoryHeapCount; i < VK_MAX_MEMORY_HEAPS; i++) {
memoryBudget->heapBudget[i] = 0;
memoryBudget->heapUsage[i] = 0;
}
}
void radv_GetPhysicalDeviceMemoryProperties2(
VkPhysicalDevice physicalDevice,
VkPhysicalDeviceMemoryProperties2 *pMemoryProperties)
{
radv_GetPhysicalDeviceMemoryProperties(physicalDevice,
&pMemoryProperties->memoryProperties);
VkPhysicalDeviceMemoryBudgetPropertiesEXT *memory_budget =
vk_find_struct(pMemoryProperties->pNext,
PHYSICAL_DEVICE_MEMORY_BUDGET_PROPERTIES_EXT);
if (memory_budget)
radv_get_memory_budget_properties(physicalDevice, memory_budget);
}
VkResult radv_GetMemoryHostPointerPropertiesEXT(
VkDevice _device,
VkExternalMemoryHandleTypeFlagBits handleType,
const void *pHostPointer,
VkMemoryHostPointerPropertiesEXT *pMemoryHostPointerProperties)
{
RADV_FROM_HANDLE(radv_device, device, _device);
switch (handleType)
{
case VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT: {
const struct radv_physical_device *physical_device = device->physical_device;
uint32_t memoryTypeBits = 0;
for (int i = 0; i < physical_device->memory_properties.memoryTypeCount; i++) {
if (physical_device->memory_domains[i] == RADEON_DOMAIN_GTT &&
!(physical_device->memory_flags[i] & RADEON_FLAG_GTT_WC)) {
memoryTypeBits = (1 << i);
break;
}
}
pMemoryHostPointerProperties->memoryTypeBits = memoryTypeBits;
return VK_SUCCESS;
}
default:
return VK_ERROR_INVALID_EXTERNAL_HANDLE;
}
}
static enum radeon_ctx_priority
radv_get_queue_global_priority(const VkDeviceQueueGlobalPriorityCreateInfoEXT *pObj)
{
/* Default to MEDIUM when a specific global priority isn't requested */
if (!pObj)
return RADEON_CTX_PRIORITY_MEDIUM;
switch(pObj->globalPriority) {
case VK_QUEUE_GLOBAL_PRIORITY_REALTIME_EXT:
return RADEON_CTX_PRIORITY_REALTIME;
case VK_QUEUE_GLOBAL_PRIORITY_HIGH_EXT:
return RADEON_CTX_PRIORITY_HIGH;
case VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT:
return RADEON_CTX_PRIORITY_MEDIUM;
case VK_QUEUE_GLOBAL_PRIORITY_LOW_EXT:
return RADEON_CTX_PRIORITY_LOW;
default:
unreachable("Illegal global priority value");
return RADEON_CTX_PRIORITY_INVALID;
}
}
static int
radv_queue_init(struct radv_device *device, struct radv_queue *queue,
uint32_t queue_family_index, int idx,
VkDeviceQueueCreateFlags flags,
const VkDeviceQueueGlobalPriorityCreateInfoEXT *global_priority)
{
queue->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
queue->device = device;
queue->queue_family_index = queue_family_index;
queue->queue_idx = idx;
queue->priority = radv_get_queue_global_priority(global_priority);
queue->flags = flags;
queue->hw_ctx = NULL;
VkResult result = device->ws->ctx_create(device->ws, queue->priority, &queue->hw_ctx);
if (result != VK_SUCCESS)
return vk_error(device->instance, result);
list_inithead(&queue->pending_submissions);
pthread_mutex_init(&queue->pending_mutex, NULL);
pthread_mutex_init(&queue->thread_mutex, NULL);
queue->thread_submission = NULL;
queue->thread_running = queue->thread_exit = false;
result = radv_create_pthread_cond(&queue->thread_cond);
if (result != VK_SUCCESS)
return vk_error(device->instance, result);
return VK_SUCCESS;
}
static void
radv_queue_finish(struct radv_queue *queue)
{
if (queue->thread_running) {
p_atomic_set(&queue->thread_exit, true);
pthread_cond_broadcast(&queue->thread_cond);
pthread_join(queue->submission_thread, NULL);
}
pthread_cond_destroy(&queue->thread_cond);
pthread_mutex_destroy(&queue->pending_mutex);
pthread_mutex_destroy(&queue->thread_mutex);
if (queue->hw_ctx)
queue->device->ws->ctx_destroy(queue->hw_ctx);
if (queue->initial_full_flush_preamble_cs)
queue->device->ws->cs_destroy(queue->initial_full_flush_preamble_cs);
if (queue->initial_preamble_cs)
queue->device->ws->cs_destroy(queue->initial_preamble_cs);
if (queue->continue_preamble_cs)
queue->device->ws->cs_destroy(queue->continue_preamble_cs);
if (queue->descriptor_bo)
queue->device->ws->buffer_destroy(queue->descriptor_bo);
if (queue->scratch_bo)
queue->device->ws->buffer_destroy(queue->scratch_bo);
if (queue->esgs_ring_bo)
queue->device->ws->buffer_destroy(queue->esgs_ring_bo);
if (queue->gsvs_ring_bo)
queue->device->ws->buffer_destroy(queue->gsvs_ring_bo);
if (queue->tess_rings_bo)
queue->device->ws->buffer_destroy(queue->tess_rings_bo);
if (queue->gds_bo)
queue->device->ws->buffer_destroy(queue->gds_bo);
if (queue->gds_oa_bo)
queue->device->ws->buffer_destroy(queue->gds_oa_bo);
if (queue->compute_scratch_bo)
queue->device->ws->buffer_destroy(queue->compute_scratch_bo);
}
static void
radv_bo_list_init(struct radv_bo_list *bo_list)
{
pthread_rwlock_init(&bo_list->rwlock, NULL);
bo_list->list.count = bo_list->capacity = 0;
bo_list->list.bos = NULL;
}
static void
radv_bo_list_finish(struct radv_bo_list *bo_list)
{
free(bo_list->list.bos);
pthread_rwlock_destroy(&bo_list->rwlock);
}
VkResult radv_bo_list_add(struct radv_device *device,
struct radeon_winsys_bo *bo)
{
struct radv_bo_list *bo_list = &device->bo_list;
if (bo->is_local)
return VK_SUCCESS;
if (unlikely(!device->use_global_bo_list))
return VK_SUCCESS;
pthread_rwlock_wrlock(&bo_list->rwlock);
if (bo_list->list.count == bo_list->capacity) {
unsigned capacity = MAX2(4, bo_list->capacity * 2);
void *data = realloc(bo_list->list.bos, capacity * sizeof(struct radeon_winsys_bo*));
if (!data) {
pthread_rwlock_unlock(&bo_list->rwlock);
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
bo_list->list.bos = (struct radeon_winsys_bo**)data;
bo_list->capacity = capacity;
}
bo_list->list.bos[bo_list->list.count++] = bo;
pthread_rwlock_unlock(&bo_list->rwlock);
return VK_SUCCESS;
}
void radv_bo_list_remove(struct radv_device *device,
struct radeon_winsys_bo *bo)
{
struct radv_bo_list *bo_list = &device->bo_list;
if (bo->is_local)
return;
if (unlikely(!device->use_global_bo_list))
return;
pthread_rwlock_wrlock(&bo_list->rwlock);
/* Loop the list backwards so we find the most recently added
* memory first. */
for(unsigned i = bo_list->list.count; i-- > 0;) {
if (bo_list->list.bos[i] == bo) {
bo_list->list.bos[i] = bo_list->list.bos[bo_list->list.count - 1];
--bo_list->list.count;
break;
}
}
pthread_rwlock_unlock(&bo_list->rwlock);
}
static void
radv_device_init_gs_info(struct radv_device *device)
{
device->gs_table_depth = ac_get_gs_table_depth(device->physical_device->rad_info.chip_class,
device->physical_device->rad_info.family);
}
static int radv_get_device_extension_index(const char *name)
{
for (unsigned i = 0; i < RADV_DEVICE_EXTENSION_COUNT; ++i) {
if (strcmp(name, radv_device_extensions[i].extensionName) == 0)
return i;
}
return -1;
}
static int
radv_get_int_debug_option(const char *name, int default_value)
{
const char *str;
int result;
str = getenv(name);
if (!str) {
result = default_value;
} else {
char *endptr;
result = strtol(str, &endptr, 0);
if (str == endptr) {
/* No digits founs. */
result = default_value;
}
}
return result;
}
static bool radv_thread_trace_enabled()
{
return radv_get_int_debug_option("RADV_THREAD_TRACE", -1) >= 0 ||
getenv("RADV_THREAD_TRACE_TRIGGER");
}
static void
radv_device_init_dispatch(struct radv_device *device)
{
const struct radv_instance *instance = device->physical_device->instance;
const struct radv_device_dispatch_table *dispatch_table_layer = NULL;
bool unchecked = instance->debug_flags & RADV_DEBUG_ALL_ENTRYPOINTS;
if (radv_thread_trace_enabled()) {
/* Use device entrypoints from the SQTT layer if enabled. */
dispatch_table_layer = &sqtt_device_dispatch_table;
}
for (unsigned i = 0; i < ARRAY_SIZE(device->dispatch.entrypoints); i++) {
/* Vulkan requires that entrypoints for extensions which have not been
* enabled must not be advertised.
*/
if (!unchecked &&
!radv_device_entrypoint_is_enabled(i, instance->apiVersion,
&instance->enabled_extensions,
&device->enabled_extensions)) {
device->dispatch.entrypoints[i] = NULL;
} else if (dispatch_table_layer &&
dispatch_table_layer->entrypoints[i]) {
device->dispatch.entrypoints[i] =
dispatch_table_layer->entrypoints[i];
} else {
device->dispatch.entrypoints[i] =
radv_device_dispatch_table.entrypoints[i];
}
}
}
static VkResult
radv_create_pthread_cond(pthread_cond_t *cond)
{
pthread_condattr_t condattr;
if (pthread_condattr_init(&condattr)) {
return VK_ERROR_INITIALIZATION_FAILED;
}
if (pthread_condattr_setclock(&condattr, CLOCK_MONOTONIC)) {
pthread_condattr_destroy(&condattr);
return VK_ERROR_INITIALIZATION_FAILED;
}
if (pthread_cond_init(cond, &condattr)) {
pthread_condattr_destroy(&condattr);
return VK_ERROR_INITIALIZATION_FAILED;
}
pthread_condattr_destroy(&condattr);
return VK_SUCCESS;
}
static VkResult
check_physical_device_features(VkPhysicalDevice physicalDevice,
const VkPhysicalDeviceFeatures *features)
{
RADV_FROM_HANDLE(radv_physical_device, physical_device, physicalDevice);
VkPhysicalDeviceFeatures supported_features;
radv_GetPhysicalDeviceFeatures(physicalDevice, &supported_features);
VkBool32 *supported_feature = (VkBool32 *)&supported_features;
VkBool32 *enabled_feature = (VkBool32 *)features;
unsigned num_features = sizeof(VkPhysicalDeviceFeatures) / sizeof(VkBool32);
for (uint32_t i = 0; i < num_features; i++) {
if (enabled_feature[i] && !supported_feature[i])
return vk_error(physical_device->instance, VK_ERROR_FEATURE_NOT_PRESENT);
}
return VK_SUCCESS;
}
static VkResult radv_device_init_border_color(struct radv_device *device)
{
device->border_color_data.bo =
device->ws->buffer_create(device->ws,
RADV_BORDER_COLOR_BUFFER_SIZE,
4096,
RADEON_DOMAIN_VRAM,
RADEON_FLAG_CPU_ACCESS |
RADEON_FLAG_READ_ONLY |
RADEON_FLAG_NO_INTERPROCESS_SHARING,
RADV_BO_PRIORITY_SHADER);
if (device->border_color_data.bo == NULL)
return vk_error(device->physical_device->instance, VK_ERROR_OUT_OF_DEVICE_MEMORY);
device->border_color_data.colors_gpu_ptr =
device->ws->buffer_map(device->border_color_data.bo);
if (!device->border_color_data.colors_gpu_ptr)
return vk_error(device->physical_device->instance, VK_ERROR_OUT_OF_DEVICE_MEMORY);
pthread_mutex_init(&device->border_color_data.mutex, NULL);
return VK_SUCCESS;
}
static void radv_device_finish_border_color(struct radv_device *device)
{
if (device->border_color_data.bo) {
device->ws->buffer_destroy(device->border_color_data.bo);
pthread_mutex_destroy(&device->border_color_data.mutex);
}
}
VkResult
_radv_device_set_lost(struct radv_device *device,
const char *file, int line,
const char *msg, ...)
{
VkResult err;
va_list ap;
p_atomic_inc(&device->lost);
va_start(ap, msg);
err = __vk_errorv(device->physical_device->instance, device,
VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT,
VK_ERROR_DEVICE_LOST, file, line, msg, ap);
va_end(ap);
return err;
}
VkResult radv_CreateDevice(
VkPhysicalDevice physicalDevice,
const VkDeviceCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkDevice* pDevice)
{
RADV_FROM_HANDLE(radv_physical_device, physical_device, physicalDevice);
VkResult result;
struct radv_device *device;
bool keep_shader_info = false;
bool robust_buffer_access = false;
bool overallocation_disallowed = false;
bool custom_border_colors = false;
/* Check enabled features */
if (pCreateInfo->pEnabledFeatures) {
result = check_physical_device_features(physicalDevice,
pCreateInfo->pEnabledFeatures);
if (result != VK_SUCCESS)
return result;
if (pCreateInfo->pEnabledFeatures->robustBufferAccess)
robust_buffer_access = true;
}
vk_foreach_struct_const(ext, pCreateInfo->pNext) {
switch (ext->sType) {
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2: {
const VkPhysicalDeviceFeatures2 *features = (const void *)ext;
result = check_physical_device_features(physicalDevice,
&features->features);
if (result != VK_SUCCESS)
return result;
if (features->features.robustBufferAccess)
robust_buffer_access = true;
break;
}
case VK_STRUCTURE_TYPE_DEVICE_MEMORY_OVERALLOCATION_CREATE_INFO_AMD: {
const VkDeviceMemoryOverallocationCreateInfoAMD *overallocation = (const void *)ext;
if (overallocation->overallocationBehavior == VK_MEMORY_OVERALLOCATION_BEHAVIOR_DISALLOWED_AMD)
overallocation_disallowed = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CUSTOM_BORDER_COLOR_FEATURES_EXT: {
const VkPhysicalDeviceCustomBorderColorFeaturesEXT *border_color_features = (const void *)ext;
custom_border_colors = border_color_features->customBorderColors;
break;
}
default:
break;
}
}
device = vk_zalloc2(&physical_device->instance->alloc, pAllocator,
sizeof(*device), 8,
VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
if (!device)
return vk_error(physical_device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
vk_device_init(&device->vk, pCreateInfo,
&physical_device->instance->alloc, pAllocator);
device->instance = physical_device->instance;
device->physical_device = physical_device;
device->ws = physical_device->ws;
for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
const char *ext_name = pCreateInfo->ppEnabledExtensionNames[i];
int index = radv_get_device_extension_index(ext_name);
if (index < 0 || !physical_device->supported_extensions.extensions[index]) {
vk_free(&device->vk.alloc, device);
return vk_error(physical_device->instance, VK_ERROR_EXTENSION_NOT_PRESENT);
}
device->enabled_extensions.extensions[index] = true;
}
radv_device_init_dispatch(device);
keep_shader_info = device->enabled_extensions.AMD_shader_info;
/* With update after bind we can't attach bo's to the command buffer
* from the descriptor set anymore, so we have to use a global BO list.
*/
device->use_global_bo_list =
(device->instance->perftest_flags & RADV_PERFTEST_BO_LIST) ||
device->enabled_extensions.EXT_descriptor_indexing ||
device->enabled_extensions.EXT_buffer_device_address ||
device->enabled_extensions.KHR_buffer_device_address;
device->robust_buffer_access = robust_buffer_access;
mtx_init(&device->shader_slab_mutex, mtx_plain);
list_inithead(&device->shader_slabs);
device->overallocation_disallowed = overallocation_disallowed;
mtx_init(&device->overallocation_mutex, mtx_plain);
radv_bo_list_init(&device->bo_list);
for (unsigned i = 0; i < pCreateInfo->queueCreateInfoCount; i++) {
const VkDeviceQueueCreateInfo *queue_create = &pCreateInfo->pQueueCreateInfos[i];
uint32_t qfi = queue_create->queueFamilyIndex;
const VkDeviceQueueGlobalPriorityCreateInfoEXT *global_priority =
vk_find_struct_const(queue_create->pNext, DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_EXT);
assert(!global_priority || device->physical_device->rad_info.has_ctx_priority);
device->queues[qfi] = vk_alloc(&device->vk.alloc,
queue_create->queueCount * sizeof(struct radv_queue), 8, VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
if (!device->queues[qfi]) {
result = VK_ERROR_OUT_OF_HOST_MEMORY;
goto fail;
}
memset(device->queues[qfi], 0, queue_create->queueCount * sizeof(struct radv_queue));
device->queue_count[qfi] = queue_create->queueCount;
for (unsigned q = 0; q < queue_create->queueCount; q++) {
result = radv_queue_init(device, &device->queues[qfi][q],
qfi, q, queue_create->flags,
global_priority);
if (result != VK_SUCCESS)
goto fail;
}
}
device->pbb_allowed = device->physical_device->rad_info.chip_class >= GFX9 &&
!(device->instance->debug_flags & RADV_DEBUG_NOBINNING);
/* Disable DFSM by default. As of 2019-09-15 Talos on Low is still 3% slower on Raven. */
device->dfsm_allowed = device->pbb_allowed &&
(device->instance->perftest_flags & RADV_PERFTEST_DFSM);
device->always_use_syncobj = device->physical_device->rad_info.has_syncobj_wait_for_submit;
/* The maximum number of scratch waves. Scratch space isn't divided
* evenly between CUs. The number is only a function of the number of CUs.
* We can decrease the constant to decrease the scratch buffer size.
*
* sctx->scratch_waves must be >= the maximum possible size of
* 1 threadgroup, so that the hw doesn't hang from being unable
* to start any.
*
* The recommended value is 4 per CU at most. Higher numbers don't
* bring much benefit, but they still occupy chip resources (think
* async compute). I've seen ~2% performance difference between 4 and 32.
*/
uint32_t max_threads_per_block = 2048;
device->scratch_waves = MAX2(32 * physical_device->rad_info.num_good_compute_units,
max_threads_per_block / 64);
device->dispatch_initiator = S_00B800_COMPUTE_SHADER_EN(1);
if (device->physical_device->rad_info.chip_class >= GFX7) {
/* If the KMD allows it (there is a KMD hw register for it),
* allow launching waves out-of-order.
*/
device->dispatch_initiator |= S_00B800_ORDER_MODE(1);
}
radv_device_init_gs_info(device);
device->tess_offchip_block_dw_size =
device->physical_device->rad_info.family == CHIP_HAWAII ? 4096 : 8192;
if (getenv("RADV_TRACE_FILE")) {
const char *filename = getenv("RADV_TRACE_FILE");
keep_shader_info = true;
if (!radv_init_trace(device))
goto fail;
fprintf(stderr, "*****************************************************************************\n");
fprintf(stderr, "* WARNING: RADV_TRACE_FILE is costly and should only be used for debugging! *\n");
fprintf(stderr, "*****************************************************************************\n");
fprintf(stderr, "Trace file will be dumped to %s\n", filename);
/* Wait for idle after every draw/dispatch to identify the
* first bad call.
*/
device->instance->debug_flags |= RADV_DEBUG_SYNC_SHADERS;
radv_dump_enabled_options(device, stderr);
}
if (radv_thread_trace_enabled()) {
fprintf(stderr, "*************************************************\n");
fprintf(stderr, "* WARNING: Thread trace support is experimental *\n");
fprintf(stderr, "*************************************************\n");
if (device->physical_device->rad_info.chip_class < GFX8) {
fprintf(stderr, "GPU hardware not supported: refer to "
"the RGP documentation for the list of "
"supported GPUs!\n");
abort();
}
/* Default buffer size set to 1MB per SE. */
device->thread_trace_buffer_size =
radv_get_int_debug_option("RADV_THREAD_TRACE_BUFFER_SIZE", 1024 * 1024);
device->thread_trace_start_frame = radv_get_int_debug_option("RADV_THREAD_TRACE", -1);
const char *trigger_file = getenv("RADV_THREAD_TRACE_TRIGGER");
if (trigger_file)
device->thread_trace_trigger_file = strdup(trigger_file);
if (!radv_thread_trace_init(device))
goto fail;
}
if (getenv("RADV_TRAP_HANDLER")) {
/* TODO: Add support for more hardware. */
assert(device->physical_device->rad_info.chip_class == GFX8);
fprintf(stderr, "**********************************************************************\n");
fprintf(stderr, "* WARNING: RADV_TRAP_HANDLER is experimental and only for debugging! *\n");
fprintf(stderr, "**********************************************************************\n");
/* To get the disassembly of the faulty shaders, we have to
* keep some shader info around.
*/
keep_shader_info = true;
if (!radv_trap_handler_init(device))
goto fail;
}
device->keep_shader_info = keep_shader_info;
result = radv_device_init_meta(device);
if (result != VK_SUCCESS)
goto fail;
radv_device_init_msaa(device);
/* If the border color extension is enabled, let's create the buffer we need. */
if (custom_border_colors) {
result = radv_device_init_border_color(device);
if (result != VK_SUCCESS)
goto fail;
}
for (int family = 0; family < RADV_MAX_QUEUE_FAMILIES; ++family) {
device->empty_cs[family] = device->ws->cs_create(device->ws, family);
if (!device->empty_cs[family])
goto fail;
switch (family) {
case RADV_QUEUE_GENERAL:
radeon_emit(device->empty_cs[family], PKT3(PKT3_CONTEXT_CONTROL, 1, 0));
radeon_emit(device->empty_cs[family], CC0_UPDATE_LOAD_ENABLES(1));
radeon_emit(device->empty_cs[family], CC1_UPDATE_SHADOW_ENABLES(1));
break;
case RADV_QUEUE_COMPUTE:
radeon_emit(device->empty_cs[family], PKT3(PKT3_NOP, 0, 0));
radeon_emit(device->empty_cs[family], 0);
break;
}
result = device->ws->cs_finalize(device->empty_cs[family]);
if (result != VK_SUCCESS)
goto fail;
}
if (device->physical_device->rad_info.chip_class >= GFX7)
cik_create_gfx_config(device);
VkPipelineCacheCreateInfo ci;
ci.sType = VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO;
ci.pNext = NULL;
ci.flags = 0;
ci.pInitialData = NULL;
ci.initialDataSize = 0;
VkPipelineCache pc;
result = radv_CreatePipelineCache(radv_device_to_handle(device),
&ci, NULL, &pc);
if (result != VK_SUCCESS)
goto fail_meta;
device->mem_cache = radv_pipeline_cache_from_handle(pc);
result = radv_create_pthread_cond(&device->timeline_cond);
if (result != VK_SUCCESS)
goto fail_mem_cache;
device->force_aniso =
MIN2(16, radv_get_int_debug_option("RADV_TEX_ANISO", -1));
if (device->force_aniso >= 0) {
fprintf(stderr, "radv: Forcing anisotropy filter to %ix\n",
1 << util_logbase2(device->force_aniso));
}
*pDevice = radv_device_to_handle(device);
return VK_SUCCESS;
fail_mem_cache:
radv_DestroyPipelineCache(radv_device_to_handle(device), pc, NULL);
fail_meta:
radv_device_finish_meta(device);
fail:
radv_bo_list_finish(&device->bo_list);
radv_thread_trace_finish(device);
free(device->thread_trace_trigger_file);
radv_trap_handler_finish(device);
if (device->trace_bo)
device->ws->buffer_destroy(device->trace_bo);
if (device->gfx_init)
device->ws->buffer_destroy(device->gfx_init);
radv_device_finish_border_color(device);
for (unsigned i = 0; i < RADV_MAX_QUEUE_FAMILIES; i++) {
for (unsigned q = 0; q < device->queue_count[i]; q++)
radv_queue_finish(&device->queues[i][q]);
if (device->queue_count[i])
vk_free(&device->vk.alloc, device->queues[i]);
}
vk_free(&device->vk.alloc, device);
return result;
}
void radv_DestroyDevice(
VkDevice _device,
const VkAllocationCallbacks* pAllocator)
{
RADV_FROM_HANDLE(radv_device, device, _device);
if (!device)
return;
if (device->trace_bo)
device->ws->buffer_destroy(device->trace_bo);
if (device->gfx_init)
device->ws->buffer_destroy(device->gfx_init);
radv_device_finish_border_color(device);
for (unsigned i = 0; i < RADV_MAX_QUEUE_FAMILIES; i++) {
for (unsigned q = 0; q < device->queue_count[i]; q++)
radv_queue_finish(&device->queues[i][q]);
if (device->queue_count[i])
vk_free(&device->vk.alloc, device->queues[i]);
if (device->empty_cs[i])
device->ws->cs_destroy(device->empty_cs[i]);
}
radv_device_finish_meta(device);
VkPipelineCache pc = radv_pipeline_cache_to_handle(device->mem_cache);
radv_DestroyPipelineCache(radv_device_to_handle(device), pc, NULL);
radv_trap_handler_finish(device);
radv_destroy_shader_slabs(device);
pthread_cond_destroy(&device->timeline_cond);
radv_bo_list_finish(&device->bo_list);
free(device->thread_trace_trigger_file);
radv_thread_trace_finish(device);
vk_free(&device->vk.alloc, device);
}
VkResult radv_EnumerateInstanceLayerProperties(
uint32_t* pPropertyCount,
VkLayerProperties* pProperties)
{
if (pProperties == NULL) {
*pPropertyCount = 0;
return VK_SUCCESS;
}
/* None supported at this time */
return vk_error(NULL, VK_ERROR_LAYER_NOT_PRESENT);
}
VkResult radv_EnumerateDeviceLayerProperties(
VkPhysicalDevice physicalDevice,
uint32_t* pPropertyCount,
VkLayerProperties* pProperties)
{
if (pProperties == NULL) {
*pPropertyCount = 0;
return VK_SUCCESS;
}
/* None supported at this time */
return vk_error(NULL, VK_ERROR_LAYER_NOT_PRESENT);
}
void radv_GetDeviceQueue2(
VkDevice _device,
const VkDeviceQueueInfo2* pQueueInfo,
VkQueue* pQueue)
{
RADV_FROM_HANDLE(radv_device, device, _device);
struct radv_queue *queue;
queue = &device->queues[pQueueInfo->queueFamilyIndex][pQueueInfo->queueIndex];
if (pQueueInfo->flags != queue->flags) {
/* From the Vulkan 1.1.70 spec:
*
* "The queue returned by vkGetDeviceQueue2 must have the same
* flags value from this structure as that used at device
* creation time in a VkDeviceQueueCreateInfo instance. If no
* matching flags were specified at device creation time then
* pQueue will return VK_NULL_HANDLE."
*/
*pQueue = VK_NULL_HANDLE;
return;
}
*pQueue = radv_queue_to_handle(queue);
}
void radv_GetDeviceQueue(
VkDevice _device,
uint32_t queueFamilyIndex,
uint32_t queueIndex,
VkQueue* pQueue)
{
const VkDeviceQueueInfo2 info = (VkDeviceQueueInfo2) {
.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_INFO_2,
.queueFamilyIndex = queueFamilyIndex,
.queueIndex = queueIndex
};
radv_GetDeviceQueue2(_device, &info, pQueue);
}
static void
fill_geom_tess_rings(struct radv_queue *queue,
uint32_t *map,
bool add_sample_positions,
uint32_t esgs_ring_size,
struct radeon_winsys_bo *esgs_ring_bo,
uint32_t gsvs_ring_size,
struct radeon_winsys_bo *gsvs_ring_bo,
uint32_t tess_factor_ring_size,
uint32_t tess_offchip_ring_offset,
uint32_t tess_offchip_ring_size,
struct radeon_winsys_bo *tess_rings_bo)
{
uint32_t *desc = &map[4];
if (esgs_ring_bo) {
uint64_t esgs_va = radv_buffer_get_va(esgs_ring_bo);
/* stride 0, num records - size, add tid, swizzle, elsize4,
index stride 64 */
desc[0] = esgs_va;
desc[1] = S_008F04_BASE_ADDRESS_HI(esgs_va >> 32) |
S_008F04_SWIZZLE_ENABLE(true);
desc[2] = esgs_ring_size;
desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) |
S_008F0C_INDEX_STRIDE(3) |
S_008F0C_ADD_TID_ENABLE(1);
if (queue->device->physical_device->rad_info.chip_class >= GFX10) {
desc[3] |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_DISABLED) |
S_008F0C_RESOURCE_LEVEL(1);
} else {
desc[3] |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32) |
S_008F0C_ELEMENT_SIZE(1);
}
/* GS entry for ES->GS ring */
/* stride 0, num records - size, elsize0,
index stride 0 */
desc[4] = esgs_va;
desc[5] = S_008F04_BASE_ADDRESS_HI(esgs_va >> 32);
desc[6] = esgs_ring_size;
desc[7] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
if (queue->device->physical_device->rad_info.chip_class >= GFX10) {
desc[7] |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_DISABLED) |
S_008F0C_RESOURCE_LEVEL(1);
} else {
desc[7] |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
}
}
desc += 8;
if (gsvs_ring_bo) {
uint64_t gsvs_va = radv_buffer_get_va(gsvs_ring_bo);
/* VS entry for GS->VS ring */
/* stride 0, num records - size, elsize0,
index stride 0 */
desc[0] = gsvs_va;
desc[1] = S_008F04_BASE_ADDRESS_HI(gsvs_va >> 32);
desc[2] = gsvs_ring_size;
desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
if (queue->device->physical_device->rad_info.chip_class >= GFX10) {
desc[3] |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_DISABLED) |
S_008F0C_RESOURCE_LEVEL(1);
} else {
desc[3] |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
}
/* stride gsvs_itemsize, num records 64
elsize 4, index stride 16 */
/* shader will patch stride and desc[2] */
desc[4] = gsvs_va;
desc[5] = S_008F04_BASE_ADDRESS_HI(gsvs_va >> 32) |
S_008F04_SWIZZLE_ENABLE(1);
desc[6] = 0;
desc[7] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) |
S_008F0C_INDEX_STRIDE(1) |
S_008F0C_ADD_TID_ENABLE(true);
if (queue->device->physical_device->rad_info.chip_class >= GFX10) {
desc[7] |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_DISABLED) |
S_008F0C_RESOURCE_LEVEL(1);
} else {
desc[7] |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32) |
S_008F0C_ELEMENT_SIZE(1);
}
}
desc += 8;
if (tess_rings_bo) {
uint64_t tess_va = radv_buffer_get_va(tess_rings_bo);
uint64_t tess_offchip_va = tess_va + tess_offchip_ring_offset;
desc[0] = tess_va;
desc[1] = S_008F04_BASE_ADDRESS_HI(tess_va >> 32);
desc[2] = tess_factor_ring_size;
desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
if (queue->device->physical_device->rad_info.chip_class >= GFX10) {
desc[3] |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
S_008F0C_RESOURCE_LEVEL(1);
} else {
desc[3] |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
}
desc[4] = tess_offchip_va;
desc[5] = S_008F04_BASE_ADDRESS_HI(tess_offchip_va >> 32);
desc[6] = tess_offchip_ring_size;
desc[7] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
if (queue->device->physical_device->rad_info.chip_class >= GFX10) {
desc[7] |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
S_008F0C_RESOURCE_LEVEL(1);
} else {
desc[7] |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
}
}
desc += 8;
if (add_sample_positions) {
/* add sample positions after all rings */
memcpy(desc, queue->device->sample_locations_1x, 8);
desc += 2;
memcpy(desc, queue->device->sample_locations_2x, 16);
desc += 4;
memcpy(desc, queue->device->sample_locations_4x, 32);
desc += 8;
memcpy(desc, queue->device->sample_locations_8x, 64);
}
}
static unsigned
radv_get_hs_offchip_param(struct radv_device *device, uint32_t *max_offchip_buffers_p)
{
bool double_offchip_buffers = device->physical_device->rad_info.chip_class >= GFX7 &&
device->physical_device->rad_info.family != CHIP_CARRIZO &&
device->physical_device->rad_info.family != CHIP_STONEY;
unsigned max_offchip_buffers_per_se = double_offchip_buffers ? 128 : 64;
unsigned max_offchip_buffers;
unsigned offchip_granularity;
unsigned hs_offchip_param;
/*
* Per RadeonSI:
* This must be one less than the maximum number due to a hw limitation.
* Various hardware bugs need thGFX7
*
* Per AMDVLK:
* Vega10 should limit max_offchip_buffers to 508 (4 * 127).
* Gfx7 should limit max_offchip_buffers to 508
* Gfx6 should limit max_offchip_buffers to 126 (2 * 63)
*
* Follow AMDVLK here.
*/
if (device->physical_device->rad_info.chip_class >= GFX10) {
max_offchip_buffers_per_se = 256;
} else if (device->physical_device->rad_info.family == CHIP_VEGA10 ||
device->physical_device->rad_info.chip_class == GFX7 ||
device->physical_device->rad_info.chip_class == GFX6)
--max_offchip_buffers_per_se;
max_offchip_buffers = max_offchip_buffers_per_se *
device->physical_device->rad_info.max_se;
/* Hawaii has a bug with offchip buffers > 256 that can be worked
* around by setting 4K granularity.
*/
if (device->tess_offchip_block_dw_size == 4096) {
assert(device->physical_device->rad_info.family == CHIP_HAWAII);
offchip_granularity = V_03093C_X_4K_DWORDS;
} else {
assert(device->tess_offchip_block_dw_size == 8192);
offchip_granularity = V_03093C_X_8K_DWORDS;
}
switch (device->physical_device->rad_info.chip_class) {
case GFX6:
max_offchip_buffers = MIN2(max_offchip_buffers, 126);
break;
case GFX7:
case GFX8:
case GFX9:
max_offchip_buffers = MIN2(max_offchip_buffers, 508);
break;
case GFX10:
break;
default:
break;
}
*max_offchip_buffers_p = max_offchip_buffers;
if (device->physical_device->rad_info.chip_class >= GFX10_3) {
hs_offchip_param = S_03093C_OFFCHIP_BUFFERING_GFX103(max_offchip_buffers - 1) |
S_03093C_OFFCHIP_GRANULARITY_GFX103(offchip_granularity);
} else if (device->physical_device->rad_info.chip_class >= GFX7) {
if (device->physical_device->rad_info.chip_class >= GFX8)
--max_offchip_buffers;
hs_offchip_param =
S_03093C_OFFCHIP_BUFFERING_GFX7(max_offchip_buffers) |
S_03093C_OFFCHIP_GRANULARITY_GFX7(offchip_granularity);
} else {
hs_offchip_param =
S_0089B0_OFFCHIP_BUFFERING(max_offchip_buffers);
}
return hs_offchip_param;
}
static void
radv_emit_gs_ring_sizes(struct radv_queue *queue, struct radeon_cmdbuf *cs,
struct radeon_winsys_bo *esgs_ring_bo,
uint32_t esgs_ring_size,
struct radeon_winsys_bo *gsvs_ring_bo,
uint32_t gsvs_ring_size)
{
if (!esgs_ring_bo && !gsvs_ring_bo)
return;
if (esgs_ring_bo)
radv_cs_add_buffer(queue->device->ws, cs, esgs_ring_bo);
if (gsvs_ring_bo)
radv_cs_add_buffer(queue->device->ws, cs, gsvs_ring_bo);
if (queue->device->physical_device->rad_info.chip_class >= GFX7) {
radeon_set_uconfig_reg_seq(cs, R_030900_VGT_ESGS_RING_SIZE, 2);
radeon_emit(cs, esgs_ring_size >> 8);
radeon_emit(cs, gsvs_ring_size >> 8);
} else {
radeon_set_config_reg_seq(cs, R_0088C8_VGT_ESGS_RING_SIZE, 2);
radeon_emit(cs, esgs_ring_size >> 8);
radeon_emit(cs, gsvs_ring_size >> 8);
}
}
static void
radv_emit_tess_factor_ring(struct radv_queue *queue, struct radeon_cmdbuf *cs,
unsigned hs_offchip_param, unsigned tf_ring_size,
struct radeon_winsys_bo *tess_rings_bo)
{
uint64_t tf_va;
if (!tess_rings_bo)
return;
tf_va = radv_buffer_get_va(tess_rings_bo);
radv_cs_add_buffer(queue->device->ws, cs, tess_rings_bo);
if (queue->device->physical_device->rad_info.chip_class >= GFX7) {
radeon_set_uconfig_reg(cs, R_030938_VGT_TF_RING_SIZE,
S_030938_SIZE(tf_ring_size / 4));
radeon_set_uconfig_reg(cs, R_030940_VGT_TF_MEMORY_BASE,
tf_va >> 8);
if (queue->device->physical_device->rad_info.chip_class >= GFX10) {
radeon_set_uconfig_reg(cs, R_030984_VGT_TF_MEMORY_BASE_HI_UMD,
S_030984_BASE_HI(tf_va >> 40));
} else if (queue->device->physical_device->rad_info.chip_class == GFX9) {
radeon_set_uconfig_reg(cs, R_030944_VGT_TF_MEMORY_BASE_HI,
S_030944_BASE_HI(tf_va >> 40));
}
radeon_set_uconfig_reg(cs, R_03093C_VGT_HS_OFFCHIP_PARAM,
hs_offchip_param);
} else {
radeon_set_config_reg(cs, R_008988_VGT_TF_RING_SIZE,
S_008988_SIZE(tf_ring_size / 4));
radeon_set_config_reg(cs, R_0089B8_VGT_TF_MEMORY_BASE,
tf_va >> 8);
radeon_set_config_reg(cs, R_0089B0_VGT_HS_OFFCHIP_PARAM,
hs_offchip_param);
}
}
static void
radv_emit_graphics_scratch(struct radv_queue *queue, struct radeon_cmdbuf *cs,
uint32_t size_per_wave, uint32_t waves,
struct radeon_winsys_bo *scratch_bo)
{
if (queue->queue_family_index != RADV_QUEUE_GENERAL)
return;
if (!scratch_bo)
return;
radv_cs_add_buffer(queue->device->ws, cs, scratch_bo);
radeon_set_context_reg(cs, R_0286E8_SPI_TMPRING_SIZE,
S_0286E8_WAVES(waves) |
S_0286E8_WAVESIZE(round_up_u32(size_per_wave, 1024)));
}
static void
radv_emit_compute_scratch(struct radv_queue *queue, struct radeon_cmdbuf *cs,
uint32_t size_per_wave, uint32_t waves,
struct radeon_winsys_bo *compute_scratch_bo)
{
uint64_t scratch_va;
if (!compute_scratch_bo)
return;
scratch_va = radv_buffer_get_va(compute_scratch_bo);
radv_cs_add_buffer(queue->device->ws, cs, compute_scratch_bo);
radeon_set_sh_reg_seq(cs, R_00B900_COMPUTE_USER_DATA_0, 2);
radeon_emit(cs, scratch_va);
radeon_emit(cs, S_008F04_BASE_ADDRESS_HI(scratch_va >> 32) |
S_008F04_SWIZZLE_ENABLE(1));
radeon_set_sh_reg(cs, R_00B860_COMPUTE_TMPRING_SIZE,
S_00B860_WAVES(waves) |
S_00B860_WAVESIZE(round_up_u32(size_per_wave, 1024)));
}
static void
radv_emit_global_shader_pointers(struct radv_queue *queue,
struct radeon_cmdbuf *cs,
struct radeon_winsys_bo *descriptor_bo)
{
uint64_t va;
if (!descriptor_bo)
return;
va = radv_buffer_get_va(descriptor_bo);
radv_cs_add_buffer(queue->device->ws, cs, descriptor_bo);
if (queue->device->physical_device->rad_info.chip_class >= GFX10) {
uint32_t regs[] = {R_00B030_SPI_SHADER_USER_DATA_PS_0,
R_00B130_SPI_SHADER_USER_DATA_VS_0,
R_00B208_SPI_SHADER_USER_DATA_ADDR_LO_GS,
R_00B408_SPI_SHADER_USER_DATA_ADDR_LO_HS};
for (int i = 0; i < ARRAY_SIZE(regs); ++i) {
radv_emit_shader_pointer(queue->device, cs, regs[i],
va, true);
}
} else if (queue->device->physical_device->rad_info.chip_class == GFX9) {
uint32_t regs[] = {R_00B030_SPI_SHADER_USER_DATA_PS_0,
R_00B130_SPI_SHADER_USER_DATA_VS_0,
R_00B208_SPI_SHADER_USER_DATA_ADDR_LO_GS,
R_00B408_SPI_SHADER_USER_DATA_ADDR_LO_HS};
for (int i = 0; i < ARRAY_SIZE(regs); ++i) {
radv_emit_shader_pointer(queue->device, cs, regs[i],
va, true);
}
} else {
uint32_t regs[] = {R_00B030_SPI_SHADER_USER_DATA_PS_0,
R_00B130_SPI_SHADER_USER_DATA_VS_0,
R_00B230_SPI_SHADER_USER_DATA_GS_0,
R_00B330_SPI_SHADER_USER_DATA_ES_0,
R_00B430_SPI_SHADER_USER_DATA_HS_0,
R_00B530_SPI_SHADER_USER_DATA_LS_0};
for (int i = 0; i < ARRAY_SIZE(regs); ++i) {
radv_emit_shader_pointer(queue->device, cs, regs[i],
va, true);
}
}
}
static void
radv_emit_trap_handler(struct radv_queue *queue,
struct radeon_cmdbuf *cs,
struct radeon_winsys_bo *tma_bo)
{
struct radv_device *device = queue->device;
struct radeon_winsys_bo *tba_bo;
uint64_t tba_va, tma_va;
if (!device->trap_handler_shader || !tma_bo)
return;
tba_bo = device->trap_handler_shader->bo;
tba_va = radv_buffer_get_va(tba_bo) + device->trap_handler_shader->bo_offset;
tma_va = radv_buffer_get_va(tma_bo);
radv_cs_add_buffer(queue->device->ws, cs, tba_bo);
radv_cs_add_buffer(queue->device->ws, cs, tma_bo);
if (queue->queue_family_index == RADV_QUEUE_GENERAL) {
uint32_t regs[] = {R_00B000_SPI_SHADER_TBA_LO_PS,
R_00B100_SPI_SHADER_TBA_LO_VS,
R_00B200_SPI_SHADER_TBA_LO_GS,
R_00B300_SPI_SHADER_TBA_LO_ES,
R_00B400_SPI_SHADER_TBA_LO_HS,
R_00B500_SPI_SHADER_TBA_LO_LS};
for (int i = 0; i < ARRAY_SIZE(regs); ++i) {
radeon_set_sh_reg_seq(cs, regs[i], 4);
radeon_emit(cs, tba_va >> 8);
radeon_emit(cs, tba_va >> 40);
radeon_emit(cs, tma_va >> 8);
radeon_emit(cs, tma_va >> 40);
}
} else {
radeon_set_sh_reg_seq(cs, R_00B838_COMPUTE_TBA_LO, 4);
radeon_emit(cs, tba_va >> 8);
radeon_emit(cs, tba_va >> 40);
radeon_emit(cs, tma_va >> 8);
radeon_emit(cs, tma_va >> 40);
}
}
static void
radv_init_graphics_state(struct radeon_cmdbuf *cs, struct radv_queue *queue)
{
struct radv_device *device = queue->device;
if (device->gfx_init) {
uint64_t va = radv_buffer_get_va(device->gfx_init);
radeon_emit(cs, PKT3(PKT3_INDIRECT_BUFFER_CIK, 2, 0));
radeon_emit(cs, va);
radeon_emit(cs, va >> 32);
radeon_emit(cs, device->gfx_init_size_dw & 0xffff);
radv_cs_add_buffer(device->ws, cs, device->gfx_init);
} else {
si_emit_graphics(device, cs);
}
}
static void
radv_init_compute_state(struct radeon_cmdbuf *cs, struct radv_queue *queue)
{
si_emit_compute(queue->device, cs);
}
static VkResult
radv_get_preamble_cs(struct radv_queue *queue,
uint32_t scratch_size_per_wave,
uint32_t scratch_waves,
uint32_t compute_scratch_size_per_wave,
uint32_t compute_scratch_waves,
uint32_t esgs_ring_size,
uint32_t gsvs_ring_size,
bool needs_tess_rings,
bool needs_gds,
bool needs_gds_oa,
bool needs_sample_positions,
struct radeon_cmdbuf **initial_full_flush_preamble_cs,
struct radeon_cmdbuf **initial_preamble_cs,
struct radeon_cmdbuf **continue_preamble_cs)
{
struct radeon_winsys_bo *scratch_bo = NULL;
struct radeon_winsys_bo *descriptor_bo = NULL;
struct radeon_winsys_bo *compute_scratch_bo = NULL;
struct radeon_winsys_bo *esgs_ring_bo = NULL;
struct radeon_winsys_bo *gsvs_ring_bo = NULL;
struct radeon_winsys_bo *tess_rings_bo = NULL;
struct radeon_winsys_bo *gds_bo = NULL;
struct radeon_winsys_bo *gds_oa_bo = NULL;
struct radeon_cmdbuf *dest_cs[3] = {0};
bool add_tess_rings = false, add_gds = false, add_gds_oa = false, add_sample_positions = false;
unsigned tess_factor_ring_size = 0, tess_offchip_ring_size = 0;
unsigned max_offchip_buffers;
unsigned hs_offchip_param = 0;
unsigned tess_offchip_ring_offset;
uint32_t ring_bo_flags = RADEON_FLAG_NO_CPU_ACCESS | RADEON_FLAG_NO_INTERPROCESS_SHARING;
if (!queue->has_tess_rings) {
if (needs_tess_rings)
add_tess_rings = true;
}
if (!queue->has_gds) {
if (needs_gds)
add_gds = true;
}
if (!queue->has_gds_oa) {
if (needs_gds_oa)
add_gds_oa = true;
}
if (!queue->has_sample_positions) {
if (needs_sample_positions)
add_sample_positions = true;
}
tess_factor_ring_size = 32768 * queue->device->physical_device->rad_info.max_se;
hs_offchip_param = radv_get_hs_offchip_param(queue->device,
&max_offchip_buffers);
tess_offchip_ring_offset = align(tess_factor_ring_size, 64 * 1024);
tess_offchip_ring_size = max_offchip_buffers *
queue->device->tess_offchip_block_dw_size * 4;
scratch_size_per_wave = MAX2(scratch_size_per_wave, queue->scratch_size_per_wave);
if (scratch_size_per_wave)
scratch_waves = MIN2(scratch_waves, UINT32_MAX / scratch_size_per_wave);
else
scratch_waves = 0;
compute_scratch_size_per_wave = MAX2(compute_scratch_size_per_wave, queue->compute_scratch_size_per_wave);
if (compute_scratch_size_per_wave)
compute_scratch_waves = MIN2(compute_scratch_waves, UINT32_MAX / compute_scratch_size_per_wave);
else
compute_scratch_waves = 0;
if (scratch_size_per_wave <= queue->scratch_size_per_wave &&
scratch_waves <= queue->scratch_waves &&
compute_scratch_size_per_wave <= queue->compute_scratch_size_per_wave &&
compute_scratch_waves <= queue->compute_scratch_waves &&
esgs_ring_size <= queue->esgs_ring_size &&
gsvs_ring_size <= queue->gsvs_ring_size &&
!add_tess_rings && !add_gds && !add_gds_oa && !add_sample_positions &&
queue->initial_preamble_cs) {
*initial_full_flush_preamble_cs = queue->initial_full_flush_preamble_cs;
*initial_preamble_cs = queue->initial_preamble_cs;
*continue_preamble_cs = queue->continue_preamble_cs;
if (!scratch_size_per_wave && !compute_scratch_size_per_wave &&
!esgs_ring_size && !gsvs_ring_size && !needs_tess_rings &&
!needs_gds && !needs_gds_oa && !needs_sample_positions)
*continue_preamble_cs = NULL;
return VK_SUCCESS;
}
uint32_t scratch_size = scratch_size_per_wave * scratch_waves;
uint32_t queue_scratch_size = queue->scratch_size_per_wave * queue->scratch_waves;
if (scratch_size > queue_scratch_size) {
scratch_bo = queue->device->ws->buffer_create(queue->device->ws,
scratch_size,
4096,
RADEON_DOMAIN_VRAM,
ring_bo_flags,
RADV_BO_PRIORITY_SCRATCH);
if (!scratch_bo)
goto fail;
} else
scratch_bo = queue->scratch_bo;
uint32_t compute_scratch_size = compute_scratch_size_per_wave * compute_scratch_waves;
uint32_t compute_queue_scratch_size = queue->compute_scratch_size_per_wave * queue->compute_scratch_waves;
if (compute_scratch_size > compute_queue_scratch_size) {
compute_scratch_bo = queue->device->ws->buffer_create(queue->device->ws,
compute_scratch_size,
4096,
RADEON_DOMAIN_VRAM,
ring_bo_flags,
RADV_BO_PRIORITY_SCRATCH);
if (!compute_scratch_bo)
goto fail;
} else
compute_scratch_bo = queue->compute_scratch_bo;
if (esgs_ring_size > queue->esgs_ring_size) {
esgs_ring_bo = queue->device->ws->buffer_create(queue->device->ws,
esgs_ring_size,
4096,
RADEON_DOMAIN_VRAM,
ring_bo_flags,
RADV_BO_PRIORITY_SCRATCH);
if (!esgs_ring_bo)
goto fail;
} else {
esgs_ring_bo = queue->esgs_ring_bo;
esgs_ring_size = queue->esgs_ring_size;
}
if (gsvs_ring_size > queue->gsvs_ring_size) {
gsvs_ring_bo = queue->device->ws->buffer_create(queue->device->ws,
gsvs_ring_size,
4096,
RADEON_DOMAIN_VRAM,
ring_bo_flags,
RADV_BO_PRIORITY_SCRATCH);
if (!gsvs_ring_bo)
goto fail;
} else {
gsvs_ring_bo = queue->gsvs_ring_bo;
gsvs_ring_size = queue->gsvs_ring_size;
}
if (add_tess_rings) {
tess_rings_bo = queue->device->ws->buffer_create(queue->device->ws,
tess_offchip_ring_offset + tess_offchip_ring_size,
256,
RADEON_DOMAIN_VRAM,
ring_bo_flags,
RADV_BO_PRIORITY_SCRATCH);
if (!tess_rings_bo)
goto fail;
} else {
tess_rings_bo = queue->tess_rings_bo;
}
if (add_gds) {
assert(queue->device->physical_device->rad_info.chip_class >= GFX10);
/* 4 streamout GDS counters.
* We need 256B (64 dw) of GDS, otherwise streamout hangs.
*/
gds_bo = queue->device->ws->buffer_create(queue->device->ws,
256, 4,
RADEON_DOMAIN_GDS,
ring_bo_flags,
RADV_BO_PRIORITY_SCRATCH);
if (!gds_bo)
goto fail;
} else {
gds_bo = queue->gds_bo;
}
if (add_gds_oa) {
assert(queue->device->physical_device->rad_info.chip_class >= GFX10);
gds_oa_bo = queue->device->ws->buffer_create(queue->device->ws,
4, 1,
RADEON_DOMAIN_OA,
ring_bo_flags,
RADV_BO_PRIORITY_SCRATCH);
if (!gds_oa_bo)
goto fail;
} else {
gds_oa_bo = queue->gds_oa_bo;
}
if (scratch_bo != queue->scratch_bo ||
esgs_ring_bo != queue->esgs_ring_bo ||
gsvs_ring_bo != queue->gsvs_ring_bo ||
tess_rings_bo != queue->tess_rings_bo ||
add_sample_positions) {
uint32_t size = 0;
if (gsvs_ring_bo || esgs_ring_bo ||
tess_rings_bo || add_sample_positions) {
size = 112; /* 2 dword + 2 padding + 4 dword * 6 */
if (add_sample_positions)
size += 128; /* 64+32+16+8 = 120 bytes */
}
else if (scratch_bo)
size = 8; /* 2 dword */
descriptor_bo = queue->device->ws->buffer_create(queue->device->ws,
size,
4096,
RADEON_DOMAIN_VRAM,
RADEON_FLAG_CPU_ACCESS |
RADEON_FLAG_NO_INTERPROCESS_SHARING |
RADEON_FLAG_READ_ONLY,
RADV_BO_PRIORITY_DESCRIPTOR);
if (!descriptor_bo)
goto fail;
} else
descriptor_bo = queue->descriptor_bo;
if (descriptor_bo != queue->descriptor_bo) {
uint32_t *map = (uint32_t*)queue->device->ws->buffer_map(descriptor_bo);
if (!map)
goto fail;
if (scratch_bo) {
uint64_t scratch_va = radv_buffer_get_va(scratch_bo);
uint32_t rsrc1 = S_008F04_BASE_ADDRESS_HI(scratch_va >> 32) |
S_008F04_SWIZZLE_ENABLE(1);
map[0] = scratch_va;
map[1] = rsrc1;
}
if (esgs_ring_bo || gsvs_ring_bo || tess_rings_bo || add_sample_positions)
fill_geom_tess_rings(queue, map, add_sample_positions,
esgs_ring_size, esgs_ring_bo,
gsvs_ring_size, gsvs_ring_bo,
tess_factor_ring_size,
tess_offchip_ring_offset,
tess_offchip_ring_size,
tess_rings_bo);
queue->device->ws->buffer_unmap(descriptor_bo);
}
for(int i = 0; i < 3; ++i) {
enum rgp_flush_bits sqtt_flush_bits = 0;
struct radeon_cmdbuf *cs = NULL;
cs = queue->device->ws->cs_create(queue->device->ws,
queue->queue_family_index ? RING_COMPUTE : RING_GFX);
if (!cs)
goto fail;
dest_cs[i] = cs;
if (scratch_bo)
radv_cs_add_buffer(queue->device->ws, cs, scratch_bo);
/* Emit initial configuration. */
switch (queue->queue_family_index) {
case RADV_QUEUE_GENERAL:
radv_init_graphics_state(cs, queue);
break;
case RADV_QUEUE_COMPUTE:
radv_init_compute_state(cs, queue);
break;
case RADV_QUEUE_TRANSFER:
break;
}
if (esgs_ring_bo || gsvs_ring_bo || tess_rings_bo) {
radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
radeon_emit(cs, EVENT_TYPE(V_028A90_VS_PARTIAL_FLUSH) | EVENT_INDEX(4));
radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
radeon_emit(cs, EVENT_TYPE(V_028A90_VGT_FLUSH) | EVENT_INDEX(0));
}
radv_emit_gs_ring_sizes(queue, cs, esgs_ring_bo, esgs_ring_size,
gsvs_ring_bo, gsvs_ring_size);
radv_emit_tess_factor_ring(queue, cs, hs_offchip_param,
tess_factor_ring_size, tess_rings_bo);
radv_emit_global_shader_pointers(queue, cs, descriptor_bo);
radv_emit_compute_scratch(queue, cs, compute_scratch_size_per_wave,
compute_scratch_waves, compute_scratch_bo);
radv_emit_graphics_scratch(queue, cs, scratch_size_per_wave,
scratch_waves, scratch_bo);
radv_emit_trap_handler(queue, cs, queue->device->tma_bo);
if (gds_bo)
radv_cs_add_buffer(queue->device->ws, cs, gds_bo);
if (gds_oa_bo)
radv_cs_add_buffer(queue->device->ws, cs, gds_oa_bo);
if (queue->device->trace_bo)
radv_cs_add_buffer(queue->device->ws, cs, queue->device->trace_bo);
if (queue->device->border_color_data.bo)
radv_cs_add_buffer(queue->device->ws, cs,
queue->device->border_color_data.bo);
if (i == 0) {
si_cs_emit_cache_flush(cs,
queue->device->physical_device->rad_info.chip_class,
NULL, 0,
queue->queue_family_index == RING_COMPUTE &&
queue->device->physical_device->rad_info.chip_class >= GFX7,
(queue->queue_family_index == RADV_QUEUE_COMPUTE ? RADV_CMD_FLAG_CS_PARTIAL_FLUSH : (RADV_CMD_FLAG_CS_PARTIAL_FLUSH | RADV_CMD_FLAG_PS_PARTIAL_FLUSH)) |
RADV_CMD_FLAG_INV_ICACHE |
RADV_CMD_FLAG_INV_SCACHE |
RADV_CMD_FLAG_INV_VCACHE |
RADV_CMD_FLAG_INV_L2 |
RADV_CMD_FLAG_START_PIPELINE_STATS, &sqtt_flush_bits, 0);
} else if (i == 1) {
si_cs_emit_cache_flush(cs,
queue->device->physical_device->rad_info.chip_class,
NULL, 0,
queue->queue_family_index == RING_COMPUTE &&
queue->device->physical_device->rad_info.chip_class >= GFX7,
RADV_CMD_FLAG_INV_ICACHE |
RADV_CMD_FLAG_INV_SCACHE |
RADV_CMD_FLAG_INV_VCACHE |
RADV_CMD_FLAG_INV_L2 |
RADV_CMD_FLAG_START_PIPELINE_STATS, &sqtt_flush_bits, 0);
}
if (queue->device->ws->cs_finalize(cs) != VK_SUCCESS)
goto fail;
}
if (queue->initial_full_flush_preamble_cs)
queue->device->ws->cs_destroy(queue->initial_full_flush_preamble_cs);
if (queue->initial_preamble_cs)
queue->device->ws->cs_destroy(queue->initial_preamble_cs);
if (queue->continue_preamble_cs)
queue->device->ws->cs_destroy(queue->continue_preamble_cs);
queue->initial_full_flush_preamble_cs = dest_cs[0];
queue->initial_preamble_cs = dest_cs[1];
queue->continue_preamble_cs = dest_cs[2];
if (scratch_bo != queue->scratch_bo) {
if (queue->scratch_bo)
queue->device->ws->buffer_destroy(queue->scratch_bo);
queue->scratch_bo = scratch_bo;
}
queue->scratch_size_per_wave = scratch_size_per_wave;
queue->scratch_waves = scratch_waves;
if (compute_scratch_bo != queue->compute_scratch_bo) {
if (queue->compute_scratch_bo)
queue->device->ws->buffer_destroy(queue->compute_scratch_bo);
queue->compute_scratch_bo = compute_scratch_bo;
}
queue->compute_scratch_size_per_wave = compute_scratch_size_per_wave;
queue->compute_scratch_waves = compute_scratch_waves;
if (esgs_ring_bo != queue->esgs_ring_bo) {
if (queue->esgs_ring_bo)
queue->device->ws->buffer_destroy(queue->esgs_ring_bo);
queue->esgs_ring_bo = esgs_ring_bo;
queue->esgs_ring_size = esgs_ring_size;
}
if (gsvs_ring_bo != queue->gsvs_ring_bo) {
if (queue->gsvs_ring_bo)
queue->device->ws->buffer_destroy(queue->gsvs_ring_bo);
queue->gsvs_ring_bo = gsvs_ring_bo;
queue->gsvs_ring_size = gsvs_ring_size;
}
if (tess_rings_bo != queue->tess_rings_bo) {
queue->tess_rings_bo = tess_rings_bo;
queue->has_tess_rings = true;
}
if (gds_bo != queue->gds_bo) {
queue->gds_bo = gds_bo;
queue->has_gds = true;
}
if (gds_oa_bo != queue->gds_oa_bo) {
queue->gds_oa_bo = gds_oa_bo;
queue->has_gds_oa = true;
}
if (descriptor_bo != queue->descriptor_bo) {
if (queue->descriptor_bo)
queue->device->ws->buffer_destroy(queue->descriptor_bo);
queue->descriptor_bo = descriptor_bo;
}
if (add_sample_positions)
queue->has_sample_positions = true;
*initial_full_flush_preamble_cs = queue->initial_full_flush_preamble_cs;
*initial_preamble_cs = queue->initial_preamble_cs;
*continue_preamble_cs = queue->continue_preamble_cs;
if (!scratch_size && !compute_scratch_size && !esgs_ring_size && !gsvs_ring_size)
*continue_preamble_cs = NULL;
return VK_SUCCESS;
fail:
for (int i = 0; i < ARRAY_SIZE(dest_cs); ++i)
if (dest_cs[i])
queue->device->ws->cs_destroy(dest_cs[i]);
if (descriptor_bo && descriptor_bo != queue->descriptor_bo)
queue->device->ws->buffer_destroy(descriptor_bo);
if (scratch_bo && scratch_bo != queue->scratch_bo)
queue->device->ws->buffer_destroy(scratch_bo);
if (compute_scratch_bo && compute_scratch_bo != queue->compute_scratch_bo)
queue->device->ws->buffer_destroy(compute_scratch_bo);
if (esgs_ring_bo && esgs_ring_bo != queue->esgs_ring_bo)
queue->device->ws->buffer_destroy(esgs_ring_bo);
if (gsvs_ring_bo && gsvs_ring_bo != queue->gsvs_ring_bo)
queue->device->ws->buffer_destroy(gsvs_ring_bo);
if (tess_rings_bo && tess_rings_bo != queue->tess_rings_bo)
queue->device->ws->buffer_destroy(tess_rings_bo);
if (gds_bo && gds_bo != queue->gds_bo)
queue->device->ws->buffer_destroy(gds_bo);
if (gds_oa_bo && gds_oa_bo != queue->gds_oa_bo)
queue->device->ws->buffer_destroy(gds_oa_bo);
return vk_error(queue->device->instance, VK_ERROR_OUT_OF_DEVICE_MEMORY);
}
static VkResult radv_alloc_sem_counts(struct radv_device *device,
struct radv_winsys_sem_counts *counts,
int num_sems,
struct radv_semaphore_part **sems,
const uint64_t *timeline_values,
VkFence _fence,
bool is_signal)
{
int syncobj_idx = 0, non_reset_idx = 0, sem_idx = 0, timeline_idx = 0;
if (num_sems == 0 && _fence == VK_NULL_HANDLE)
return VK_SUCCESS;
for (uint32_t i = 0; i < num_sems; i++) {
switch(sems[i]->kind) {
case RADV_SEMAPHORE_SYNCOBJ:
counts->syncobj_count++;
counts->syncobj_reset_count++;
break;
case RADV_SEMAPHORE_WINSYS:
counts->sem_count++;
break;
case RADV_SEMAPHORE_NONE:
break;
case RADV_SEMAPHORE_TIMELINE:
counts->syncobj_count++;
break;
case RADV_SEMAPHORE_TIMELINE_SYNCOBJ:
counts->timeline_syncobj_count++;
break;
}
}
if (_fence != VK_NULL_HANDLE) {
RADV_FROM_HANDLE(radv_fence, fence, _fence);
struct radv_fence_part *part =
fence->temporary.kind != RADV_FENCE_NONE ?
&fence->temporary : &fence->permanent;
if (part->kind == RADV_FENCE_SYNCOBJ)
counts->syncobj_count++;
}
if (counts->syncobj_count || counts->timeline_syncobj_count) {
counts->points = (uint64_t *)malloc(
sizeof(*counts->syncobj) * counts->syncobj_count +
(sizeof(*counts->syncobj) + sizeof(*counts->points)) * counts->timeline_syncobj_count);
if (!counts->points)
return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
counts->syncobj = (uint32_t*)(counts->points + counts->timeline_syncobj_count);
}
if (counts->sem_count) {
counts->sem = (struct radeon_winsys_sem **)malloc(sizeof(struct radeon_winsys_sem *) * counts->sem_count);
if (!counts->sem) {
free(counts->syncobj);
return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
}
}
non_reset_idx = counts->syncobj_reset_count;
for (uint32_t i = 0; i < num_sems; i++) {
switch(sems[i]->kind) {
case RADV_SEMAPHORE_NONE:
unreachable("Empty semaphore");
break;
case RADV_SEMAPHORE_SYNCOBJ:
counts->syncobj[syncobj_idx++] = sems[i]->syncobj;
break;
case RADV_SEMAPHORE_WINSYS:
counts->sem[sem_idx++] = sems[i]->ws_sem;
break;
case RADV_SEMAPHORE_TIMELINE: {
pthread_mutex_lock(&sems[i]->timeline.mutex);
struct radv_timeline_point *point = NULL;
if (is_signal) {
point = radv_timeline_add_point_locked(device, &sems[i]->timeline, timeline_values[i]);
} else {
point = radv_timeline_find_point_at_least_locked(device, &sems[i]->timeline, timeline_values[i]);
}
pthread_mutex_unlock(&sems[i]->timeline.mutex);
if (point) {
counts->syncobj[non_reset_idx++] = point->syncobj;
} else {
/* Explicitly remove the semaphore so we might not find
* a point later post-submit. */
sems[i] = NULL;
}
break;
}
case RADV_SEMAPHORE_TIMELINE_SYNCOBJ:
counts->syncobj[counts->syncobj_count + timeline_idx] = sems[i]->syncobj;
counts->points[timeline_idx] = timeline_values[i];
++timeline_idx;
break;
}
}
if (_fence != VK_NULL_HANDLE) {
RADV_FROM_HANDLE(radv_fence, fence, _fence);
struct radv_fence_part *part =
fence->temporary.kind != RADV_FENCE_NONE ?
&fence->temporary : &fence->permanent;
if (part->kind == RADV_FENCE_SYNCOBJ)
counts->syncobj[non_reset_idx++] = part->syncobj;
}
assert(MAX2(syncobj_idx, non_reset_idx) <= counts->syncobj_count);
counts->syncobj_count = MAX2(syncobj_idx, non_reset_idx);
return VK_SUCCESS;
}
static void
radv_free_sem_info(struct radv_winsys_sem_info *sem_info)
{
free(sem_info->wait.points);
free(sem_info->wait.sem);
free(sem_info->signal.points);
free(sem_info->signal.sem);
}
static void radv_free_temp_syncobjs(struct radv_device *device,
int num_sems,
struct radv_semaphore_part *sems)
{
for (uint32_t i = 0; i < num_sems; i++) {
radv_destroy_semaphore_part(device, sems + i);
}
}
static VkResult
radv_alloc_sem_info(struct radv_device *device,
struct radv_winsys_sem_info *sem_info,
int num_wait_sems,
struct radv_semaphore_part **wait_sems,
const uint64_t *wait_values,
int num_signal_sems,
struct radv_semaphore_part **signal_sems,
const uint64_t *signal_values,
VkFence fence)
{
VkResult ret;
memset(sem_info, 0, sizeof(*sem_info));
ret = radv_alloc_sem_counts(device, &sem_info->wait, num_wait_sems, wait_sems, wait_values, VK_NULL_HANDLE, false);
if (ret)
return ret;
ret = radv_alloc_sem_counts(device, &sem_info->signal, num_signal_sems, signal_sems, signal_values, fence, true);
if (ret)
radv_free_sem_info(sem_info);
/* caller can override these */
sem_info->cs_emit_wait = true;
sem_info->cs_emit_signal = true;
return ret;
}
static void
radv_finalize_timelines(struct radv_device *device,
uint32_t num_wait_sems,
struct radv_semaphore_part **wait_sems,
const uint64_t *wait_values,
uint32_t num_signal_sems,
struct radv_semaphore_part **signal_sems,
const uint64_t *signal_values,
struct list_head *processing_list)
{
for (uint32_t i = 0; i < num_wait_sems; ++i) {
if (wait_sems[i] && wait_sems[i]->kind == RADV_SEMAPHORE_TIMELINE) {
pthread_mutex_lock(&wait_sems[i]->timeline.mutex);
struct radv_timeline_point *point =
radv_timeline_find_point_at_least_locked(device, &wait_sems[i]->timeline, wait_values[i]);
point->wait_count -= 2;
pthread_mutex_unlock(&wait_sems[i]->timeline.mutex);
}
}
for (uint32_t i = 0; i < num_signal_sems; ++i) {
if (signal_sems[i] && signal_sems[i]->kind == RADV_SEMAPHORE_TIMELINE) {
pthread_mutex_lock(&signal_sems[i]->timeline.mutex);
struct radv_timeline_point *point =
radv_timeline_find_point_at_least_locked(device, &signal_sems[i]->timeline, signal_values[i]);
signal_sems[i]->timeline.highest_submitted =
MAX2(signal_sems[i]->timeline.highest_submitted, point->value);
point->wait_count -= 2;
radv_timeline_trigger_waiters_locked(&signal_sems[i]->timeline, processing_list);
pthread_mutex_unlock(&signal_sems[i]->timeline.mutex);
} else if (signal_sems[i] && signal_sems[i]->kind == RADV_SEMAPHORE_TIMELINE_SYNCOBJ) {
signal_sems[i]->timeline_syncobj.max_point =
MAX2(signal_sems[i]->timeline_syncobj.max_point, signal_values[i]);
}
}
}
static VkResult
radv_sparse_buffer_bind_memory(struct radv_device *device,
const VkSparseBufferMemoryBindInfo *bind)
{
RADV_FROM_HANDLE(radv_buffer, buffer, bind->buffer);
VkResult result;
for (uint32_t i = 0; i < bind->bindCount; ++i) {
struct radv_device_memory *mem = NULL;
if (bind->pBinds[i].memory != VK_NULL_HANDLE)
mem = radv_device_memory_from_handle(bind->pBinds[i].memory);
result = device->ws->buffer_virtual_bind(buffer->bo,
bind->pBinds[i].resourceOffset,
bind->pBinds[i].size,
mem ? mem->bo : NULL,
bind->pBinds[i].memoryOffset);
if (result != VK_SUCCESS)
return result;
}
return VK_SUCCESS;
}
static VkResult
radv_sparse_image_opaque_bind_memory(struct radv_device *device,
const VkSparseImageOpaqueMemoryBindInfo *bind)
{
RADV_FROM_HANDLE(radv_image, image, bind->image);
VkResult result;
for (uint32_t i = 0; i < bind->bindCount; ++i) {
struct radv_device_memory *mem = NULL;
if (bind->pBinds[i].memory != VK_NULL_HANDLE)
mem = radv_device_memory_from_handle(bind->pBinds[i].memory);
result = device->ws->buffer_virtual_bind(image->bo,
bind->pBinds[i].resourceOffset,
bind->pBinds[i].size,
mem ? mem->bo : NULL,
bind->pBinds[i].memoryOffset);
if (result != VK_SUCCESS)
return result;
}
return VK_SUCCESS;
}
static VkResult
radv_get_preambles(struct radv_queue *queue,
const VkCommandBuffer *cmd_buffers,
uint32_t cmd_buffer_count,
struct radeon_cmdbuf **initial_full_flush_preamble_cs,
struct radeon_cmdbuf **initial_preamble_cs,
struct radeon_cmdbuf **continue_preamble_cs)
{
uint32_t scratch_size_per_wave = 0, waves_wanted = 0;
uint32_t compute_scratch_size_per_wave = 0, compute_waves_wanted = 0;
uint32_t esgs_ring_size = 0, gsvs_ring_size = 0;
bool tess_rings_needed = false;
bool gds_needed = false;
bool gds_oa_needed = false;
bool sample_positions_needed = false;
for (uint32_t j = 0; j < cmd_buffer_count; j++) {
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer,
cmd_buffers[j]);
scratch_size_per_wave = MAX2(scratch_size_per_wave, cmd_buffer->scratch_size_per_wave_needed);
waves_wanted = MAX2(waves_wanted, cmd_buffer->scratch_waves_wanted);
compute_scratch_size_per_wave = MAX2(compute_scratch_size_per_wave,
cmd_buffer->compute_scratch_size_per_wave_needed);
compute_waves_wanted = MAX2(compute_waves_wanted,
cmd_buffer->compute_scratch_waves_wanted);
esgs_ring_size = MAX2(esgs_ring_size, cmd_buffer->esgs_ring_size_needed);
gsvs_ring_size = MAX2(gsvs_ring_size, cmd_buffer->gsvs_ring_size_needed);
tess_rings_needed |= cmd_buffer->tess_rings_needed;
gds_needed |= cmd_buffer->gds_needed;
gds_oa_needed |= cmd_buffer->gds_oa_needed;
sample_positions_needed |= cmd_buffer->sample_positions_needed;
}
return radv_get_preamble_cs(queue, scratch_size_per_wave, waves_wanted,
compute_scratch_size_per_wave, compute_waves_wanted,
esgs_ring_size, gsvs_ring_size, tess_rings_needed,
gds_needed, gds_oa_needed, sample_positions_needed,
initial_full_flush_preamble_cs,
initial_preamble_cs, continue_preamble_cs);
}
struct radv_deferred_queue_submission {
struct radv_queue *queue;
VkCommandBuffer *cmd_buffers;
uint32_t cmd_buffer_count;
/* Sparse bindings that happen on a queue. */
VkSparseBufferMemoryBindInfo *buffer_binds;
uint32_t buffer_bind_count;
VkSparseImageOpaqueMemoryBindInfo *image_opaque_binds;
uint32_t image_opaque_bind_count;
bool flush_caches;
VkShaderStageFlags wait_dst_stage_mask;
struct radv_semaphore_part **wait_semaphores;
uint32_t wait_semaphore_count;
struct radv_semaphore_part **signal_semaphores;
uint32_t signal_semaphore_count;
VkFence fence;
uint64_t *wait_values;
uint64_t *signal_values;
struct radv_semaphore_part *temporary_semaphore_parts;
uint32_t temporary_semaphore_part_count;
struct list_head queue_pending_list;
uint32_t submission_wait_count;
struct radv_timeline_waiter *wait_nodes;
struct list_head processing_list;
};
struct radv_queue_submission {
const VkCommandBuffer *cmd_buffers;
uint32_t cmd_buffer_count;
/* Sparse bindings that happen on a queue. */
const VkSparseBufferMemoryBindInfo *buffer_binds;
uint32_t buffer_bind_count;
const VkSparseImageOpaqueMemoryBindInfo *image_opaque_binds;
uint32_t image_opaque_bind_count;
bool flush_caches;
VkPipelineStageFlags wait_dst_stage_mask;
const VkSemaphore *wait_semaphores;
uint32_t wait_semaphore_count;
const VkSemaphore *signal_semaphores;
uint32_t signal_semaphore_count;
VkFence fence;
const uint64_t *wait_values;
uint32_t wait_value_count;
const uint64_t *signal_values;
uint32_t signal_value_count;
};
static VkResult
radv_queue_trigger_submission(struct radv_deferred_queue_submission *submission,
uint32_t decrement,
struct list_head *processing_list);
static VkResult
radv_create_deferred_submission(struct radv_queue *queue,
const struct radv_queue_submission *submission,
struct radv_deferred_queue_submission **out)
{
struct radv_deferred_queue_submission *deferred = NULL;
size_t size = sizeof(struct radv_deferred_queue_submission);
uint32_t temporary_count = 0;
for (uint32_t i = 0; i < submission->wait_semaphore_count; ++i) {
RADV_FROM_HANDLE(radv_semaphore, semaphore, submission->wait_semaphores[i]);
if (semaphore->temporary.kind != RADV_SEMAPHORE_NONE)
++temporary_count;
}
size += submission->cmd_buffer_count * sizeof(VkCommandBuffer);
size += submission->buffer_bind_count * sizeof(VkSparseBufferMemoryBindInfo);
size += submission->image_opaque_bind_count * sizeof(VkSparseImageOpaqueMemoryBindInfo);
size += submission->wait_semaphore_count * sizeof(struct radv_semaphore_part *);
size += temporary_count * sizeof(struct radv_semaphore_part);
size += submission->signal_semaphore_count * sizeof(struct radv_semaphore_part *);
size += submission->wait_value_count * sizeof(uint64_t);
size += submission->signal_value_count * sizeof(uint64_t);
size += submission->wait_semaphore_count * sizeof(struct radv_timeline_waiter);
deferred = calloc(1, size);
if (!deferred)
return VK_ERROR_OUT_OF_HOST_MEMORY;
deferred->queue = queue;
deferred->cmd_buffers = (void*)(deferred + 1);
deferred->cmd_buffer_count = submission->cmd_buffer_count;
if (submission->cmd_buffer_count) {
memcpy(deferred->cmd_buffers, submission->cmd_buffers,
submission->cmd_buffer_count * sizeof(*deferred->cmd_buffers));
}
deferred->buffer_binds = (void*)(deferred->cmd_buffers + submission->cmd_buffer_count);
deferred->buffer_bind_count = submission->buffer_bind_count;
if (submission->buffer_bind_count) {
memcpy(deferred->buffer_binds, submission->buffer_binds,
submission->buffer_bind_count * sizeof(*deferred->buffer_binds));
}
deferred->image_opaque_binds = (void*)(deferred->buffer_binds + submission->buffer_bind_count);
deferred->image_opaque_bind_count = submission->image_opaque_bind_count;
if (submission->image_opaque_bind_count) {
memcpy(deferred->image_opaque_binds, submission->image_opaque_binds,
submission->image_opaque_bind_count * sizeof(*deferred->image_opaque_binds));
}
deferred->flush_caches = submission->flush_caches;
deferred->wait_dst_stage_mask = submission->wait_dst_stage_mask;
deferred->wait_semaphores = (void*)(deferred->image_opaque_binds + deferred->image_opaque_bind_count);
deferred->wait_semaphore_count = submission->wait_semaphore_count;
deferred->signal_semaphores = (void*)(deferred->wait_semaphores + deferred->wait_semaphore_count);
deferred->signal_semaphore_count = submission->signal_semaphore_count;
deferred->fence = submission->fence;
deferred->temporary_semaphore_parts = (void*)(deferred->signal_semaphores + deferred->signal_semaphore_count);
deferred->temporary_semaphore_part_count = temporary_count;
uint32_t temporary_idx = 0;
for (uint32_t i = 0; i < submission->wait_semaphore_count; ++i) {
RADV_FROM_HANDLE(radv_semaphore, semaphore, submission->wait_semaphores[i]);
if (semaphore->temporary.kind != RADV_SEMAPHORE_NONE) {
deferred->wait_semaphores[i] = &deferred->temporary_semaphore_parts[temporary_idx];
deferred->temporary_semaphore_parts[temporary_idx] = semaphore->temporary;
semaphore->temporary.kind = RADV_SEMAPHORE_NONE;
++temporary_idx;
} else
deferred->wait_semaphores[i] = &semaphore->permanent;
}
for (uint32_t i = 0; i < submission->signal_semaphore_count; ++i) {
RADV_FROM_HANDLE(radv_semaphore, semaphore, submission->signal_semaphores[i]);
if (semaphore->temporary.kind != RADV_SEMAPHORE_NONE) {
deferred->signal_semaphores[i] = &semaphore->temporary;
} else {
deferred->signal_semaphores[i] = &semaphore->permanent;
}
}
deferred->wait_values = (void*)(deferred->temporary_semaphore_parts + temporary_count);
if (submission->wait_value_count) {
memcpy(deferred->wait_values, submission->wait_values, submission->wait_value_count * sizeof(uint64_t));
}
deferred->signal_values = deferred->wait_values + submission->wait_value_count;
if (submission->signal_value_count) {
memcpy(deferred->signal_values, submission->signal_values, submission->signal_value_count * sizeof(uint64_t));
}
deferred->wait_nodes = (void*)(deferred->signal_values + submission->signal_value_count);
/* This is worst-case. radv_queue_enqueue_submission will fill in further, but this
* ensure the submission is not accidentally triggered early when adding wait timelines. */
deferred->submission_wait_count = 1 + submission->wait_semaphore_count;
*out = deferred;
return VK_SUCCESS;
}
static VkResult
radv_queue_enqueue_submission(struct radv_deferred_queue_submission *submission,
struct list_head *processing_list)
{
uint32_t wait_cnt = 0;
struct radv_timeline_waiter *waiter = submission->wait_nodes;
for (uint32_t i = 0; i < submission->wait_semaphore_count; ++i) {
if (submission->wait_semaphores[i]->kind == RADV_SEMAPHORE_TIMELINE) {
pthread_mutex_lock(&submission->wait_semaphores[i]->timeline.mutex);
if (submission->wait_semaphores[i]->timeline.highest_submitted < submission->wait_values[i]) {
++wait_cnt;
waiter->value = submission->wait_values[i];
waiter->submission = submission;
list_addtail(&waiter->list, &submission->wait_semaphores[i]->timeline.waiters);
++waiter;
}
pthread_mutex_unlock(&submission->wait_semaphores[i]->timeline.mutex);
}
}
pthread_mutex_lock(&submission->queue->pending_mutex);
bool is_first = list_is_empty(&submission->queue->pending_submissions);
list_addtail(&submission->queue_pending_list, &submission->queue->pending_submissions);
pthread_mutex_unlock(&submission->queue->pending_mutex);
/* If there is already a submission in the queue, that will decrement the counter by 1 when
* submitted, but if the queue was empty, we decrement ourselves as there is no previous
* submission. */
uint32_t decrement = submission->wait_semaphore_count - wait_cnt + (is_first ? 1 : 0);
/* if decrement is zero, then we don't have a refcounted reference to the
* submission anymore, so it is not safe to access the submission. */
if (!decrement)
return VK_SUCCESS;
return radv_queue_trigger_submission(submission, decrement, processing_list);
}
static void
radv_queue_submission_update_queue(struct radv_deferred_queue_submission *submission,
struct list_head *processing_list)
{
pthread_mutex_lock(&submission->queue->pending_mutex);
list_del(&submission->queue_pending_list);
/* trigger the next submission in the queue. */
if (!list_is_empty(&submission->queue->pending_submissions)) {
struct radv_deferred_queue_submission *next_submission =
list_first_entry(&submission->queue->pending_submissions,
struct radv_deferred_queue_submission,
queue_pending_list);
radv_queue_trigger_submission(next_submission, 1, processing_list);
}
pthread_mutex_unlock(&submission->queue->pending_mutex);
pthread_cond_broadcast(&submission->queue->device->timeline_cond);
}
static VkResult
radv_queue_submit_deferred(struct radv_deferred_queue_submission *submission,
struct list_head *processing_list)
{
RADV_FROM_HANDLE(radv_fence, fence, submission->fence);
struct radv_queue *queue = submission->queue;
struct radeon_winsys_ctx *ctx = queue->hw_ctx;
uint32_t max_cs_submission = queue->device->trace_bo ? 1 : RADV_MAX_IBS_PER_SUBMIT;
struct radeon_winsys_fence *base_fence = NULL;
bool do_flush = submission->flush_caches || submission->wait_dst_stage_mask;
bool can_patch = true;
uint32_t advance;
struct radv_winsys_sem_info sem_info;
VkResult result;
struct radeon_cmdbuf *initial_preamble_cs = NULL;
struct radeon_cmdbuf *initial_flush_preamble_cs = NULL;
struct radeon_cmdbuf *continue_preamble_cs = NULL;
if (fence) {
/* Under most circumstances, out fences won't be temporary.
* However, the spec does allow it for opaque_fd.
*
* From the Vulkan 1.0.53 spec:
*
* "If the import is temporary, the implementation must
* restore the semaphore to its prior permanent state after
* submitting the next semaphore wait operation."
*/
struct radv_fence_part *part =
fence->temporary.kind != RADV_FENCE_NONE ?
&fence->temporary : &fence->permanent;
if (part->kind == RADV_FENCE_WINSYS)
base_fence = part->fence;
}
result = radv_get_preambles(queue, submission->cmd_buffers,
submission->cmd_buffer_count,
&initial_preamble_cs,
&initial_flush_preamble_cs,
&continue_preamble_cs);
if (result != VK_SUCCESS)
goto fail;
result = radv_alloc_sem_info(queue->device,
&sem_info,
submission->wait_semaphore_count,
submission->wait_semaphores,
submission->wait_values,
submission->signal_semaphore_count,
submission->signal_semaphores,
submission->signal_values,
submission->fence);
if (result != VK_SUCCESS)
goto fail;
for (uint32_t i = 0; i < submission->buffer_bind_count; ++i) {
result = radv_sparse_buffer_bind_memory(queue->device,
submission->buffer_binds + i);
if (result != VK_SUCCESS)
goto fail;
}
for (uint32_t i = 0; i < submission->image_opaque_bind_count; ++i) {
result = radv_sparse_image_opaque_bind_memory(queue->device,
submission->image_opaque_binds + i);
if (result != VK_SUCCESS)
goto fail;
}
if (!submission->cmd_buffer_count) {
result = queue->device->ws->cs_submit(ctx, queue->queue_idx,
&queue->device->empty_cs[queue->queue_family_index],
1, NULL, NULL,
&sem_info, NULL,
false, base_fence);
if (result != VK_SUCCESS)
goto fail;
} else {
struct radeon_cmdbuf **cs_array = malloc(sizeof(struct radeon_cmdbuf *) *
(submission->cmd_buffer_count));
for (uint32_t j = 0; j < submission->cmd_buffer_count; j++) {
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, submission->cmd_buffers[j]);
assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
cs_array[j] = cmd_buffer->cs;
if ((cmd_buffer->usage_flags & VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT))
can_patch = false;
cmd_buffer->status = RADV_CMD_BUFFER_STATUS_PENDING;
}
for (uint32_t j = 0; j < submission->cmd_buffer_count; j += advance) {
struct radeon_cmdbuf *initial_preamble = (do_flush && !j) ? initial_flush_preamble_cs : initial_preamble_cs;
const struct radv_winsys_bo_list *bo_list = NULL;
advance = MIN2(max_cs_submission,
submission->cmd_buffer_count - j);
if (queue->device->trace_bo)
*queue->device->trace_id_ptr = 0;
sem_info.cs_emit_wait = j == 0;
sem_info.cs_emit_signal = j + advance == submission->cmd_buffer_count;
if (unlikely(queue->device->use_global_bo_list)) {
pthread_rwlock_rdlock(&queue->device->bo_list.rwlock);
bo_list = &queue->device->bo_list.list;
}
result = queue->device->ws->cs_submit(ctx, queue->queue_idx, cs_array + j,
advance, initial_preamble, continue_preamble_cs,
&sem_info, bo_list,
can_patch, base_fence);
if (unlikely(queue->device->use_global_bo_list))
pthread_rwlock_unlock(&queue->device->bo_list.rwlock);
if (result != VK_SUCCESS)
goto fail;
if (queue->device->trace_bo) {
radv_check_gpu_hangs(queue, cs_array[j]);
}
if (queue->device->tma_bo) {
radv_check_trap_handler(queue);
}
}
free(cs_array);
}
radv_free_temp_syncobjs(queue->device,
submission->temporary_semaphore_part_count,
submission->temporary_semaphore_parts);
radv_finalize_timelines(queue->device,
submission->wait_semaphore_count,
submission->wait_semaphores,
submission->wait_values,
submission->signal_semaphore_count,
submission->signal_semaphores,
submission->signal_values,
processing_list);
/* Has to happen after timeline finalization to make sure the
* condition variable is only triggered when timelines and queue have
* been updated. */
radv_queue_submission_update_queue(submission, processing_list);
radv_free_sem_info(&sem_info);
free(submission);
return VK_SUCCESS;
fail:
if (result != VK_SUCCESS && result != VK_ERROR_DEVICE_LOST) {
/* When something bad happened during the submission, such as
* an out of memory issue, it might be hard to recover from
* this inconsistent state. To avoid this sort of problem, we
* assume that we are in a really bad situation and return
* VK_ERROR_DEVICE_LOST to ensure the clients do not attempt
* to submit the same job again to this device.
*/
result = radv_device_set_lost(queue->device, "vkQueueSubmit() failed");
}
radv_free_temp_syncobjs(queue->device,
submission->temporary_semaphore_part_count,
submission->temporary_semaphore_parts);
free(submission);
return result;
}
static VkResult
radv_process_submissions(struct list_head *processing_list)
{
while(!list_is_empty(processing_list)) {
struct radv_deferred_queue_submission *submission =
list_first_entry(processing_list, struct radv_deferred_queue_submission, processing_list);
list_del(&submission->processing_list);
VkResult result = radv_queue_submit_deferred(submission, processing_list);
if (result != VK_SUCCESS)
return result;
}
return VK_SUCCESS;
}
static VkResult
wait_for_submission_timelines_available(struct radv_deferred_queue_submission *submission,
uint64_t timeout)
{
struct radv_device *device = submission->queue->device;
uint32_t syncobj_count = 0;
uint32_t syncobj_idx = 0;
for (uint32_t i = 0; i < submission->wait_semaphore_count; ++i) {
if (submission->wait_semaphores[i]->kind != RADV_SEMAPHORE_TIMELINE_SYNCOBJ)
continue;
if (submission->wait_semaphores[i]->timeline_syncobj.max_point >= submission->wait_values[i])
continue;
++syncobj_count;
}
if (!syncobj_count)
return VK_SUCCESS;
uint64_t *points = malloc((sizeof(uint64_t) + sizeof(uint32_t)) * syncobj_count);
if (!points)
return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
uint32_t *syncobj = (uint32_t*)(points + syncobj_count);
for (uint32_t i = 0; i < submission->wait_semaphore_count; ++i) {
if (submission->wait_semaphores[i]->kind != RADV_SEMAPHORE_TIMELINE_SYNCOBJ)
continue;
if (submission->wait_semaphores[i]->timeline_syncobj.max_point >= submission->wait_values[i])
continue;
syncobj[syncobj_idx] = submission->wait_semaphores[i]->syncobj;
points[syncobj_idx] = submission->wait_values[i];
++syncobj_idx;
}
bool success = device->ws->wait_timeline_syncobj(device->ws, syncobj, points, syncobj_idx, true, true, timeout);
free(points);
return success ? VK_SUCCESS : VK_TIMEOUT;
}
static void* radv_queue_submission_thread_run(void *q)
{
struct radv_queue *queue = q;
pthread_mutex_lock(&queue->thread_mutex);
while (!p_atomic_read(&queue->thread_exit)) {
struct radv_deferred_queue_submission *submission = queue->thread_submission;
struct list_head processing_list;
VkResult result = VK_SUCCESS;
if (!submission) {
pthread_cond_wait(&queue->thread_cond, &queue->thread_mutex);
continue;
}
pthread_mutex_unlock(&queue->thread_mutex);
/* Wait at most 5 seconds so we have a chance to notice shutdown when
* a semaphore never gets signaled. If it takes longer we just retry
* the wait next iteration. */
result = wait_for_submission_timelines_available(submission,
radv_get_absolute_timeout(5000000000));
if (result != VK_SUCCESS) {
pthread_mutex_lock(&queue->thread_mutex);
continue;
}
/* The lock isn't held but nobody will add one until we finish
* the current submission. */
p_atomic_set(&queue->thread_submission, NULL);
list_inithead(&processing_list);
list_addtail(&submission->processing_list, &processing_list);
result = radv_process_submissions(&processing_list);
pthread_mutex_lock(&queue->thread_mutex);
}
pthread_mutex_unlock(&queue->thread_mutex);
return NULL;
}
static VkResult
radv_queue_trigger_submission(struct radv_deferred_queue_submission *submission,
uint32_t decrement,
struct list_head *processing_list)
{
struct radv_queue *queue = submission->queue;
int ret;
if (p_atomic_add_return(&submission->submission_wait_count, -decrement))
return VK_SUCCESS;
if (wait_for_submission_timelines_available(submission, radv_get_absolute_timeout(0)) == VK_SUCCESS) {
list_addtail(&submission->processing_list, processing_list);
return VK_SUCCESS;
}
pthread_mutex_lock(&queue->thread_mutex);
/* A submission can only be ready for the thread if it doesn't have
* any predecessors in the same queue, so there can only be one such
* submission at a time. */
assert(queue->thread_submission == NULL);
/* Only start the thread on demand to save resources for the many games
* which only use binary semaphores. */
if (!queue->thread_running) {
ret = pthread_create(&queue->submission_thread, NULL,
radv_queue_submission_thread_run, queue);
if (ret) {
pthread_mutex_unlock(&queue->thread_mutex);
return vk_errorf(queue->device->instance,
VK_ERROR_DEVICE_LOST,
"Failed to start submission thread");
}
queue->thread_running = true;
}
queue->thread_submission = submission;
pthread_mutex_unlock(&queue->thread_mutex);
pthread_cond_signal(&queue->thread_cond);
return VK_SUCCESS;
}
static VkResult radv_queue_submit(struct radv_queue *queue,
const struct radv_queue_submission *submission)
{
struct radv_deferred_queue_submission *deferred = NULL;
VkResult result = radv_create_deferred_submission(queue, submission, &deferred);
if (result != VK_SUCCESS)
return result;
struct list_head processing_list;
list_inithead(&processing_list);
result = radv_queue_enqueue_submission(deferred, &processing_list);
if (result != VK_SUCCESS) {
/* If anything is in the list we leak. */
assert(list_is_empty(&processing_list));
return result;
}
return radv_process_submissions(&processing_list);
}
bool
radv_queue_internal_submit(struct radv_queue *queue, struct radeon_cmdbuf *cs)
{
struct radeon_winsys_ctx *ctx = queue->hw_ctx;
struct radv_winsys_sem_info sem_info;
VkResult result;
result = radv_alloc_sem_info(queue->device, &sem_info, 0, NULL, 0, 0,
0, NULL, VK_NULL_HANDLE);
if (result != VK_SUCCESS)
return false;
result = queue->device->ws->cs_submit(ctx, queue->queue_idx, &cs, 1,
NULL, NULL, &sem_info, NULL,
false, NULL);
radv_free_sem_info(&sem_info);
if (result != VK_SUCCESS)
return false;
return true;
}
/* Signals fence as soon as all the work currently put on queue is done. */
static VkResult radv_signal_fence(struct radv_queue *queue,
VkFence fence)
{
return radv_queue_submit(queue, &(struct radv_queue_submission) {
.fence = fence
});
}
static bool radv_submit_has_effects(const VkSubmitInfo *info)
{
return info->commandBufferCount ||
info->waitSemaphoreCount ||
info->signalSemaphoreCount;
}
VkResult radv_QueueSubmit(
VkQueue _queue,
uint32_t submitCount,
const VkSubmitInfo* pSubmits,
VkFence fence)
{
RADV_FROM_HANDLE(radv_queue, queue, _queue);
VkResult result;
uint32_t fence_idx = 0;
bool flushed_caches = false;
if (radv_device_is_lost(queue->device))
return VK_ERROR_DEVICE_LOST;
if (fence != VK_NULL_HANDLE) {
for (uint32_t i = 0; i < submitCount; ++i)
if (radv_submit_has_effects(pSubmits + i))
fence_idx = i;
} else
fence_idx = UINT32_MAX;
for (uint32_t i = 0; i < submitCount; i++) {
if (!radv_submit_has_effects(pSubmits + i) && fence_idx != i)
continue;
VkPipelineStageFlags wait_dst_stage_mask = 0;
for (unsigned j = 0; j < pSubmits[i].waitSemaphoreCount; ++j) {
wait_dst_stage_mask |= pSubmits[i].pWaitDstStageMask[j];
}
const VkTimelineSemaphoreSubmitInfo *timeline_info =
vk_find_struct_const(pSubmits[i].pNext, TIMELINE_SEMAPHORE_SUBMIT_INFO);
result = radv_queue_submit(queue, &(struct radv_queue_submission) {
.cmd_buffers = pSubmits[i].pCommandBuffers,
.cmd_buffer_count = pSubmits[i].commandBufferCount,
.wait_dst_stage_mask = wait_dst_stage_mask,
.flush_caches = !flushed_caches,
.wait_semaphores = pSubmits[i].pWaitSemaphores,
.wait_semaphore_count = pSubmits[i].waitSemaphoreCount,
.signal_semaphores = pSubmits[i].pSignalSemaphores,
.signal_semaphore_count = pSubmits[i].signalSemaphoreCount,
.fence = i == fence_idx ? fence : VK_NULL_HANDLE,
.wait_values = timeline_info ? timeline_info->pWaitSemaphoreValues : NULL,
.wait_value_count = timeline_info && timeline_info->pWaitSemaphoreValues ? timeline_info->waitSemaphoreValueCount : 0,
.signal_values = timeline_info ? timeline_info->pSignalSemaphoreValues : NULL,
.signal_value_count = timeline_info && timeline_info->pSignalSemaphoreValues ? timeline_info->signalSemaphoreValueCount : 0,
});
if (result != VK_SUCCESS)
return result;
flushed_caches = true;
}
if (fence != VK_NULL_HANDLE && !submitCount) {
result = radv_signal_fence(queue, fence);
if (result != VK_SUCCESS)
return result;
}
return VK_SUCCESS;
}
static const char *
radv_get_queue_family_name(struct radv_queue *queue)
{
switch (queue->queue_family_index) {
case RADV_QUEUE_GENERAL:
return "graphics";
case RADV_QUEUE_COMPUTE:
return "compute";
case RADV_QUEUE_TRANSFER:
return "transfer";
default:
unreachable("Unknown queue family");
}
}
VkResult radv_QueueWaitIdle(
VkQueue _queue)
{
RADV_FROM_HANDLE(radv_queue, queue, _queue);
if (radv_device_is_lost(queue->device))
return VK_ERROR_DEVICE_LOST;
pthread_mutex_lock(&queue->pending_mutex);
while (!list_is_empty(&queue->pending_submissions)) {
pthread_cond_wait(&queue->device->timeline_cond, &queue->pending_mutex);
}
pthread_mutex_unlock(&queue->pending_mutex);
if (!queue->device->ws->ctx_wait_idle(queue->hw_ctx,
radv_queue_family_to_ring(queue->queue_family_index),
queue->queue_idx)) {
return radv_device_set_lost(queue->device,
"Failed to wait for a '%s' queue "
"to be idle. GPU hang ?",
radv_get_queue_family_name(queue));
}
return VK_SUCCESS;
}
VkResult radv_DeviceWaitIdle(
VkDevice _device)
{
RADV_FROM_HANDLE(radv_device, device, _device);
for (unsigned i = 0; i < RADV_MAX_QUEUE_FAMILIES; i++) {
for (unsigned q = 0; q < device->queue_count[i]; q++) {
VkResult result =
radv_QueueWaitIdle(radv_queue_to_handle(&device->queues[i][q]));
if (result != VK_SUCCESS)
return result;
}
}
return VK_SUCCESS;
}
VkResult radv_EnumerateInstanceExtensionProperties(
const char* pLayerName,
uint32_t* pPropertyCount,
VkExtensionProperties* pProperties)
{
VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
for (int i = 0; i < RADV_INSTANCE_EXTENSION_COUNT; i++) {
if (radv_instance_extensions_supported.extensions[i]) {
vk_outarray_append(&out, prop) {
*prop = radv_instance_extensions[i];
}
}
}
return vk_outarray_status(&out);
}
VkResult radv_EnumerateDeviceExtensionProperties(
VkPhysicalDevice physicalDevice,
const char* pLayerName,
uint32_t* pPropertyCount,
VkExtensionProperties* pProperties)
{
RADV_FROM_HANDLE(radv_physical_device, device, physicalDevice);
VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
for (int i = 0; i < RADV_DEVICE_EXTENSION_COUNT; i++) {
if (device->supported_extensions.extensions[i]) {
vk_outarray_append(&out, prop) {
*prop = radv_device_extensions[i];
}
}
}
return vk_outarray_status(&out);
}
PFN_vkVoidFunction radv_GetInstanceProcAddr(
VkInstance _instance,
const char* pName)
{
RADV_FROM_HANDLE(radv_instance, instance, _instance);
/* The Vulkan 1.0 spec for vkGetInstanceProcAddr has a table of exactly
* when we have to return valid function pointers, NULL, or it's left
* undefined. See the table for exact details.
*/
if (pName == NULL)
return NULL;
#define LOOKUP_RADV_ENTRYPOINT(entrypoint) \
if (strcmp(pName, "vk" #entrypoint) == 0) \
return (PFN_vkVoidFunction)radv_##entrypoint
LOOKUP_RADV_ENTRYPOINT(EnumerateInstanceExtensionProperties);
LOOKUP_RADV_ENTRYPOINT(EnumerateInstanceLayerProperties);
LOOKUP_RADV_ENTRYPOINT(EnumerateInstanceVersion);
LOOKUP_RADV_ENTRYPOINT(CreateInstance);
/* GetInstanceProcAddr() can also be called with a NULL instance.
* See https://gitlab.khronos.org/vulkan/vulkan/issues/2057
*/
LOOKUP_RADV_ENTRYPOINT(GetInstanceProcAddr);
#undef LOOKUP_RADV_ENTRYPOINT
if (instance == NULL)
return NULL;
int idx = radv_get_instance_entrypoint_index(pName);
if (idx >= 0)
return instance->dispatch.entrypoints[idx];
idx = radv_get_physical_device_entrypoint_index(pName);
if (idx >= 0)
return instance->physical_device_dispatch.entrypoints[idx];
idx = radv_get_device_entrypoint_index(pName);
if (idx >= 0)
return instance->device_dispatch.entrypoints[idx];
return NULL;
}
/* The loader wants us to expose a second GetInstanceProcAddr function
* to work around certain LD_PRELOAD issues seen in apps.
*/
PUBLIC
VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
VkInstance instance,
const char* pName);
PUBLIC
VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
VkInstance instance,
const char* pName)
{
return radv_GetInstanceProcAddr(instance, pName);
}
PUBLIC
VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetPhysicalDeviceProcAddr(
VkInstance _instance,
const char* pName);
PUBLIC
VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetPhysicalDeviceProcAddr(
VkInstance _instance,
const char* pName)
{
RADV_FROM_HANDLE(radv_instance, instance, _instance);
if (!pName || !instance)
return NULL;
int idx = radv_get_physical_device_entrypoint_index(pName);
if (idx < 0)
return NULL;
return instance->physical_device_dispatch.entrypoints[idx];
}
PFN_vkVoidFunction radv_GetDeviceProcAddr(
VkDevice _device,
const char* pName)
{
RADV_FROM_HANDLE(radv_device, device, _device);
if (!device || !pName)
return NULL;
int idx = radv_get_device_entrypoint_index(pName);
if (idx < 0)
return NULL;
return device->dispatch.entrypoints[idx];
}
bool radv_get_memory_fd(struct radv_device *device,
struct radv_device_memory *memory,
int *pFD)
{
struct radeon_bo_metadata metadata;
if (memory->image) {
if (memory->image->tiling != VK_IMAGE_TILING_LINEAR)
radv_init_metadata(device, memory->image, &metadata);
device->ws->buffer_set_metadata(memory->bo, &metadata);
}
return device->ws->buffer_get_fd(device->ws, memory->bo,
pFD);
}
void
radv_free_memory(struct radv_device *device,
const VkAllocationCallbacks* pAllocator,
struct radv_device_memory *mem)
{
if (mem == NULL)
return;
#if RADV_SUPPORT_ANDROID_HARDWARE_BUFFER
if (mem->android_hardware_buffer)
AHardwareBuffer_release(mem->android_hardware_buffer);
#endif
if (mem->bo) {
if (device->overallocation_disallowed) {
mtx_lock(&device->overallocation_mutex);
device->allocated_memory_size[mem->heap_index] -= mem->alloc_size;
mtx_unlock(&device->overallocation_mutex);
}
radv_bo_list_remove(device, mem->bo);
device->ws->buffer_destroy(mem->bo);
mem->bo = NULL;
}
vk_object_base_finish(&mem->base);
vk_free2(&device->vk.alloc, pAllocator, mem);
}
static VkResult radv_alloc_memory(struct radv_device *device,
const VkMemoryAllocateInfo* pAllocateInfo,
const VkAllocationCallbacks* pAllocator,
VkDeviceMemory* pMem)
{
struct radv_device_memory *mem;
VkResult result;
enum radeon_bo_domain domain;
uint32_t flags = 0;
assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
const VkImportMemoryFdInfoKHR *import_info =
vk_find_struct_const(pAllocateInfo->pNext, IMPORT_MEMORY_FD_INFO_KHR);
const VkMemoryDedicatedAllocateInfo *dedicate_info =
vk_find_struct_const(pAllocateInfo->pNext, MEMORY_DEDICATED_ALLOCATE_INFO);
const VkExportMemoryAllocateInfo *export_info =
vk_find_struct_const(pAllocateInfo->pNext, EXPORT_MEMORY_ALLOCATE_INFO);
const struct VkImportAndroidHardwareBufferInfoANDROID *ahb_import_info =
vk_find_struct_const(pAllocateInfo->pNext,
IMPORT_ANDROID_HARDWARE_BUFFER_INFO_ANDROID);
const VkImportMemoryHostPointerInfoEXT *host_ptr_info =
vk_find_struct_const(pAllocateInfo->pNext, IMPORT_MEMORY_HOST_POINTER_INFO_EXT);
const struct wsi_memory_allocate_info *wsi_info =
vk_find_struct_const(pAllocateInfo->pNext, WSI_MEMORY_ALLOCATE_INFO_MESA);
if (pAllocateInfo->allocationSize == 0 && !ahb_import_info &&
!(export_info && (export_info->handleTypes & VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID))) {
/* Apparently, this is allowed */
*pMem = VK_NULL_HANDLE;
return VK_SUCCESS;
}
mem = vk_zalloc2(&device->vk.alloc, pAllocator, sizeof(*mem), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (mem == NULL)
return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
vk_object_base_init(&device->vk, &mem->base,
VK_OBJECT_TYPE_DEVICE_MEMORY);
if (wsi_info && wsi_info->implicit_sync)
flags |= RADEON_FLAG_IMPLICIT_SYNC;
if (dedicate_info) {
mem->image = radv_image_from_handle(dedicate_info->image);
mem->buffer = radv_buffer_from_handle(dedicate_info->buffer);
} else {
mem->image = NULL;
mem->buffer = NULL;
}
float priority_float = 0.5;
const struct VkMemoryPriorityAllocateInfoEXT *priority_ext =
vk_find_struct_const(pAllocateInfo->pNext,
MEMORY_PRIORITY_ALLOCATE_INFO_EXT);
if (priority_ext)
priority_float = priority_ext->priority;
unsigned priority = MIN2(RADV_BO_PRIORITY_APPLICATION_MAX - 1,
(int)(priority_float * RADV_BO_PRIORITY_APPLICATION_MAX));
mem->user_ptr = NULL;
mem->bo = NULL;
#if RADV_SUPPORT_ANDROID_HARDWARE_BUFFER
mem->android_hardware_buffer = NULL;
#endif
if (ahb_import_info) {
result = radv_import_ahb_memory(device, mem, priority, ahb_import_info);
if (result != VK_SUCCESS)
goto fail;
} else if(export_info && (export_info->handleTypes & VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID)) {
result = radv_create_ahb_memory(device, mem, priority, pAllocateInfo);
if (result != VK_SUCCESS)
goto fail;
} else if (import_info) {
assert(import_info->handleType ==
VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
import_info->handleType ==
VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
mem->bo = device->ws->buffer_from_fd(device->ws, import_info->fd,
priority, NULL);
if (!mem->bo) {
result = VK_ERROR_INVALID_EXTERNAL_HANDLE;
goto fail;
} else {
close(import_info->fd);
}
if (mem->image && mem->image->plane_count == 1 &&
!vk_format_is_depth_or_stencil(mem->image->vk_format)) {
struct radeon_bo_metadata metadata;
device->ws->buffer_get_metadata(mem->bo, &metadata);
struct radv_image_create_info create_info = {
.no_metadata_planes = true,
.bo_metadata = &metadata
};
/* This gives a basic ability to import radeonsi images
* that don't have DCC. This is not guaranteed by any
* spec and can be removed after we support modifiers. */
result = radv_image_create_layout(device, create_info, mem->image);
if (result != VK_SUCCESS) {
device->ws->buffer_destroy(mem->bo);
goto fail;
}
}
} else if (host_ptr_info) {
assert(host_ptr_info->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT);
mem->bo = device->ws->buffer_from_ptr(device->ws, host_ptr_info->pHostPointer,
pAllocateInfo->allocationSize,
priority);
if (!mem->bo) {
result = VK_ERROR_INVALID_EXTERNAL_HANDLE;
goto fail;
} else {
mem->user_ptr = host_ptr_info->pHostPointer;
}
} else {
uint64_t alloc_size = align_u64(pAllocateInfo->allocationSize, 4096);
uint32_t heap_index;
heap_index = device->physical_device->memory_properties.memoryTypes[pAllocateInfo->memoryTypeIndex].heapIndex;
domain = device->physical_device->memory_domains[pAllocateInfo->memoryTypeIndex];
flags |= device->physical_device->memory_flags[pAllocateInfo->memoryTypeIndex];
if (!dedicate_info && !import_info && (!export_info || !export_info->handleTypes)) {
flags |= RADEON_FLAG_NO_INTERPROCESS_SHARING;
if (device->use_global_bo_list) {
flags |= RADEON_FLAG_PREFER_LOCAL_BO;
}
}
if (device->overallocation_disallowed) {
uint64_t total_size =
device->physical_device->memory_properties.memoryHeaps[heap_index].size;
mtx_lock(&device->overallocation_mutex);
if (device->allocated_memory_size[heap_index] + alloc_size > total_size) {
mtx_unlock(&device->overallocation_mutex);
result = VK_ERROR_OUT_OF_DEVICE_MEMORY;
goto fail;
}
device->allocated_memory_size[heap_index] += alloc_size;
mtx_unlock(&device->overallocation_mutex);
}
mem->bo = device->ws->buffer_create(device->ws, alloc_size, device->physical_device->rad_info.max_alignment,
domain, flags, priority);
if (!mem->bo) {
if (device->overallocation_disallowed) {
mtx_lock(&device->overallocation_mutex);
device->allocated_memory_size[heap_index] -= alloc_size;
mtx_unlock(&device->overallocation_mutex);
}
result = VK_ERROR_OUT_OF_DEVICE_MEMORY;
goto fail;
}
mem->heap_index = heap_index;
mem->alloc_size = alloc_size;
}
if (!wsi_info) {
result = radv_bo_list_add(device, mem->bo);
if (result != VK_SUCCESS)
goto fail;
}
*pMem = radv_device_memory_to_handle(mem);
return VK_SUCCESS;
fail:
radv_free_memory(device, pAllocator,mem);
return result;
}
VkResult radv_AllocateMemory(
VkDevice _device,
const VkMemoryAllocateInfo* pAllocateInfo,
const VkAllocationCallbacks* pAllocator,
VkDeviceMemory* pMem)
{
RADV_FROM_HANDLE(radv_device, device, _device);
return radv_alloc_memory(device, pAllocateInfo, pAllocator, pMem);
}
void radv_FreeMemory(
VkDevice _device,
VkDeviceMemory _mem,
const VkAllocationCallbacks* pAllocator)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_device_memory, mem, _mem);
radv_free_memory(device, pAllocator, mem);
}
VkResult radv_MapMemory(
VkDevice _device,
VkDeviceMemory _memory,
VkDeviceSize offset,
VkDeviceSize size,
VkMemoryMapFlags flags,
void** ppData)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_device_memory, mem, _memory);
if (mem == NULL) {
*ppData = NULL;
return VK_SUCCESS;
}
if (mem->user_ptr)
*ppData = mem->user_ptr;
else
*ppData = device->ws->buffer_map(mem->bo);
if (*ppData) {
*ppData += offset;
return VK_SUCCESS;
}
return vk_error(device->instance, VK_ERROR_MEMORY_MAP_FAILED);
}
void radv_UnmapMemory(
VkDevice _device,
VkDeviceMemory _memory)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_device_memory, mem, _memory);
if (mem == NULL)
return;
if (mem->user_ptr == NULL)
device->ws->buffer_unmap(mem->bo);
}
VkResult radv_FlushMappedMemoryRanges(
VkDevice _device,
uint32_t memoryRangeCount,
const VkMappedMemoryRange* pMemoryRanges)
{
return VK_SUCCESS;
}
VkResult radv_InvalidateMappedMemoryRanges(
VkDevice _device,
uint32_t memoryRangeCount,
const VkMappedMemoryRange* pMemoryRanges)
{
return VK_SUCCESS;
}
void radv_GetBufferMemoryRequirements(
VkDevice _device,
VkBuffer _buffer,
VkMemoryRequirements* pMemoryRequirements)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_buffer, buffer, _buffer);
pMemoryRequirements->memoryTypeBits = (1u << device->physical_device->memory_properties.memoryTypeCount) - 1;
if (buffer->flags & VK_BUFFER_CREATE_SPARSE_BINDING_BIT)
pMemoryRequirements->alignment = 4096;
else
pMemoryRequirements->alignment = 16;
pMemoryRequirements->size = align64(buffer->size, pMemoryRequirements->alignment);
}
void radv_GetBufferMemoryRequirements2(
VkDevice device,
const VkBufferMemoryRequirementsInfo2 *pInfo,
VkMemoryRequirements2 *pMemoryRequirements)
{
radv_GetBufferMemoryRequirements(device, pInfo->buffer,
&pMemoryRequirements->memoryRequirements);
vk_foreach_struct(ext, pMemoryRequirements->pNext) {
switch (ext->sType) {
case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
VkMemoryDedicatedRequirements *req =
(VkMemoryDedicatedRequirements *) ext;
req->requiresDedicatedAllocation = false;
req->prefersDedicatedAllocation = req->requiresDedicatedAllocation;
break;
}
default:
break;
}
}
}
void radv_GetImageMemoryRequirements(
VkDevice _device,
VkImage _image,
VkMemoryRequirements* pMemoryRequirements)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_image, image, _image);
pMemoryRequirements->memoryTypeBits = (1u << device->physical_device->memory_properties.memoryTypeCount) - 1;
pMemoryRequirements->size = image->size;
pMemoryRequirements->alignment = image->alignment;
}
void radv_GetImageMemoryRequirements2(
VkDevice device,
const VkImageMemoryRequirementsInfo2 *pInfo,
VkMemoryRequirements2 *pMemoryRequirements)
{
radv_GetImageMemoryRequirements(device, pInfo->image,
&pMemoryRequirements->memoryRequirements);
RADV_FROM_HANDLE(radv_image, image, pInfo->image);
vk_foreach_struct(ext, pMemoryRequirements->pNext) {
switch (ext->sType) {
case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
VkMemoryDedicatedRequirements *req =
(VkMemoryDedicatedRequirements *) ext;
req->requiresDedicatedAllocation = image->shareable &&
image->tiling != VK_IMAGE_TILING_LINEAR;
req->prefersDedicatedAllocation = req->requiresDedicatedAllocation;
break;
}
default:
break;
}
}
}
void radv_GetImageSparseMemoryRequirements(
VkDevice device,
VkImage image,
uint32_t* pSparseMemoryRequirementCount,
VkSparseImageMemoryRequirements* pSparseMemoryRequirements)
{
stub();
}
void radv_GetImageSparseMemoryRequirements2(
VkDevice device,
const VkImageSparseMemoryRequirementsInfo2 *pInfo,
uint32_t* pSparseMemoryRequirementCount,
VkSparseImageMemoryRequirements2 *pSparseMemoryRequirements)
{
stub();
}
void radv_GetDeviceMemoryCommitment(
VkDevice device,
VkDeviceMemory memory,
VkDeviceSize* pCommittedMemoryInBytes)
{
*pCommittedMemoryInBytes = 0;
}
VkResult radv_BindBufferMemory2(VkDevice device,
uint32_t bindInfoCount,
const VkBindBufferMemoryInfo *pBindInfos)
{
for (uint32_t i = 0; i < bindInfoCount; ++i) {
RADV_FROM_HANDLE(radv_device_memory, mem, pBindInfos[i].memory);
RADV_FROM_HANDLE(radv_buffer, buffer, pBindInfos[i].buffer);
if (mem) {
buffer->bo = mem->bo;
buffer->offset = pBindInfos[i].memoryOffset;
} else {
buffer->bo = NULL;
}
}
return VK_SUCCESS;
}
VkResult radv_BindBufferMemory(
VkDevice device,
VkBuffer buffer,
VkDeviceMemory memory,
VkDeviceSize memoryOffset)
{
const VkBindBufferMemoryInfo info = {
.sType = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO,
.buffer = buffer,
.memory = memory,
.memoryOffset = memoryOffset
};
return radv_BindBufferMemory2(device, 1, &info);
}
VkResult radv_BindImageMemory2(VkDevice device,
uint32_t bindInfoCount,
const VkBindImageMemoryInfo *pBindInfos)
{
for (uint32_t i = 0; i < bindInfoCount; ++i) {
RADV_FROM_HANDLE(radv_device_memory, mem, pBindInfos[i].memory);
RADV_FROM_HANDLE(radv_image, image, pBindInfos[i].image);
if (mem) {
image->bo = mem->bo;
image->offset = pBindInfos[i].memoryOffset;
} else {
image->bo = NULL;
image->offset = 0;
}
}
return VK_SUCCESS;
}
VkResult radv_BindImageMemory(
VkDevice device,
VkImage image,
VkDeviceMemory memory,
VkDeviceSize memoryOffset)
{
const VkBindImageMemoryInfo info = {
.sType = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO,
.image = image,
.memory = memory,
.memoryOffset = memoryOffset
};
return radv_BindImageMemory2(device, 1, &info);
}
static bool radv_sparse_bind_has_effects(const VkBindSparseInfo *info)
{
return info->bufferBindCount ||
info->imageOpaqueBindCount ||
info->imageBindCount ||
info->waitSemaphoreCount ||
info->signalSemaphoreCount;
}
VkResult radv_QueueBindSparse(
VkQueue _queue,
uint32_t bindInfoCount,
const VkBindSparseInfo* pBindInfo,
VkFence fence)
{
RADV_FROM_HANDLE(radv_queue, queue, _queue);
VkResult result;
uint32_t fence_idx = 0;
if (radv_device_is_lost(queue->device))
return VK_ERROR_DEVICE_LOST;
if (fence != VK_NULL_HANDLE) {
for (uint32_t i = 0; i < bindInfoCount; ++i)
if (radv_sparse_bind_has_effects(pBindInfo + i))
fence_idx = i;
} else
fence_idx = UINT32_MAX;
for (uint32_t i = 0; i < bindInfoCount; ++i) {
if (i != fence_idx && !radv_sparse_bind_has_effects(pBindInfo + i))
continue;
const VkTimelineSemaphoreSubmitInfo *timeline_info =
vk_find_struct_const(pBindInfo[i].pNext, TIMELINE_SEMAPHORE_SUBMIT_INFO);
VkResult result = radv_queue_submit(queue, &(struct radv_queue_submission) {
.buffer_binds = pBindInfo[i].pBufferBinds,
.buffer_bind_count = pBindInfo[i].bufferBindCount,
.image_opaque_binds = pBindInfo[i].pImageOpaqueBinds,
.image_opaque_bind_count = pBindInfo[i].imageOpaqueBindCount,
.wait_semaphores = pBindInfo[i].pWaitSemaphores,
.wait_semaphore_count = pBindInfo[i].waitSemaphoreCount,
.signal_semaphores = pBindInfo[i].pSignalSemaphores,
.signal_semaphore_count = pBindInfo[i].signalSemaphoreCount,
.fence = i == fence_idx ? fence : VK_NULL_HANDLE,
.wait_values = timeline_info ? timeline_info->pWaitSemaphoreValues : NULL,
.wait_value_count = timeline_info && timeline_info->pWaitSemaphoreValues ? timeline_info->waitSemaphoreValueCount : 0,
.signal_values = timeline_info ? timeline_info->pSignalSemaphoreValues : NULL,
.signal_value_count = timeline_info && timeline_info->pSignalSemaphoreValues ? timeline_info->signalSemaphoreValueCount : 0,
});
if (result != VK_SUCCESS)
return result;
}
if (fence != VK_NULL_HANDLE && !bindInfoCount) {
result = radv_signal_fence(queue, fence);
if (result != VK_SUCCESS)
return result;
}
return VK_SUCCESS;
}
static void
radv_destroy_fence_part(struct radv_device *device,
struct radv_fence_part *part)
{
switch (part->kind) {
case RADV_FENCE_NONE:
break;
case RADV_FENCE_WINSYS:
device->ws->destroy_fence(part->fence);
break;
case RADV_FENCE_SYNCOBJ:
device->ws->destroy_syncobj(device->ws, part->syncobj);
break;
default:
unreachable("Invalid fence type");
}
part->kind = RADV_FENCE_NONE;
}
static void
radv_destroy_fence(struct radv_device *device,
const VkAllocationCallbacks *pAllocator,
struct radv_fence *fence)
{
radv_destroy_fence_part(device, &fence->temporary);
radv_destroy_fence_part(device, &fence->permanent);
vk_object_base_finish(&fence->base);
vk_free2(&device->vk.alloc, pAllocator, fence);
}
VkResult radv_CreateFence(
VkDevice _device,
const VkFenceCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkFence* pFence)
{
RADV_FROM_HANDLE(radv_device, device, _device);
const VkExportFenceCreateInfo *export =
vk_find_struct_const(pCreateInfo->pNext, EXPORT_FENCE_CREATE_INFO);
VkExternalFenceHandleTypeFlags handleTypes =
export ? export->handleTypes : 0;
struct radv_fence *fence;
fence = vk_zalloc2(&device->vk.alloc, pAllocator, sizeof(*fence), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (!fence)
return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
vk_object_base_init(&device->vk, &fence->base, VK_OBJECT_TYPE_FENCE);
if (device->always_use_syncobj || handleTypes) {
fence->permanent.kind = RADV_FENCE_SYNCOBJ;
bool create_signaled = false;
if (pCreateInfo->flags & VK_FENCE_CREATE_SIGNALED_BIT)
create_signaled = true;
int ret = device->ws->create_syncobj(device->ws, create_signaled,
&fence->permanent.syncobj);
if (ret) {
radv_destroy_fence(device, pAllocator, fence);
return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
}
} else {
fence->permanent.kind = RADV_FENCE_WINSYS;
fence->permanent.fence = device->ws->create_fence();
if (!fence->permanent.fence) {
vk_free2(&device->vk.alloc, pAllocator, fence);
radv_destroy_fence(device, pAllocator, fence);
return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
}
if (pCreateInfo->flags & VK_FENCE_CREATE_SIGNALED_BIT)
device->ws->signal_fence(fence->permanent.fence);
}
*pFence = radv_fence_to_handle(fence);
return VK_SUCCESS;
}
void radv_DestroyFence(
VkDevice _device,
VkFence _fence,
const VkAllocationCallbacks* pAllocator)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_fence, fence, _fence);
if (!fence)
return;
radv_destroy_fence(device, pAllocator, fence);
}
static bool radv_all_fences_plain_and_submitted(struct radv_device *device,
uint32_t fenceCount, const VkFence *pFences)
{
for (uint32_t i = 0; i < fenceCount; ++i) {
RADV_FROM_HANDLE(radv_fence, fence, pFences[i]);
struct radv_fence_part *part =
fence->temporary.kind != RADV_FENCE_NONE ?
&fence->temporary : &fence->permanent;
if (part->kind != RADV_FENCE_WINSYS ||
!device->ws->is_fence_waitable(part->fence))
return false;
}
return true;
}
static bool radv_all_fences_syncobj(uint32_t fenceCount, const VkFence *pFences)
{
for (uint32_t i = 0; i < fenceCount; ++i) {
RADV_FROM_HANDLE(radv_fence, fence, pFences[i]);
struct radv_fence_part *part =
fence->temporary.kind != RADV_FENCE_NONE ?
&fence->temporary : &fence->permanent;
if (part->kind != RADV_FENCE_SYNCOBJ)
return false;
}
return true;
}
VkResult radv_WaitForFences(
VkDevice _device,
uint32_t fenceCount,
const VkFence* pFences,
VkBool32 waitAll,
uint64_t timeout)
{
RADV_FROM_HANDLE(radv_device, device, _device);
if (radv_device_is_lost(device))
return VK_ERROR_DEVICE_LOST;
timeout = radv_get_absolute_timeout(timeout);
if (device->always_use_syncobj &&
radv_all_fences_syncobj(fenceCount, pFences))
{
uint32_t *handles = malloc(sizeof(uint32_t) * fenceCount);
if (!handles)
return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
for (uint32_t i = 0; i < fenceCount; ++i) {
RADV_FROM_HANDLE(radv_fence, fence, pFences[i]);
struct radv_fence_part *part =
fence->temporary.kind != RADV_FENCE_NONE ?
&fence->temporary : &fence->permanent;
assert(part->kind == RADV_FENCE_SYNCOBJ);
handles[i] = part->syncobj;
}
bool success = device->ws->wait_syncobj(device->ws, handles, fenceCount, waitAll, timeout);
free(handles);
return success ? VK_SUCCESS : VK_TIMEOUT;
}
if (!waitAll && fenceCount > 1) {
/* Not doing this by default for waitAll, due to needing to allocate twice. */
if (device->physical_device->rad_info.drm_minor >= 10 && radv_all_fences_plain_and_submitted(device, fenceCount, pFences)) {
uint32_t wait_count = 0;
struct radeon_winsys_fence **fences = malloc(sizeof(struct radeon_winsys_fence *) * fenceCount);
if (!fences)
return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
for (uint32_t i = 0; i < fenceCount; ++i) {
RADV_FROM_HANDLE(radv_fence, fence, pFences[i]);
struct radv_fence_part *part =
fence->temporary.kind != RADV_FENCE_NONE ?
&fence->temporary : &fence->permanent;
assert(part->kind == RADV_FENCE_WINSYS);
if (device->ws->fence_wait(device->ws, part->fence, false, 0)) {
free(fences);
return VK_SUCCESS;
}
fences[wait_count++] = part->fence;
}
bool success = device->ws->fences_wait(device->ws, fences, wait_count,
waitAll, timeout - radv_get_current_time());
free(fences);
return success ? VK_SUCCESS : VK_TIMEOUT;
}
while(radv_get_current_time() <= timeout) {
for (uint32_t i = 0; i < fenceCount; ++i) {
if (radv_GetFenceStatus(_device, pFences[i]) == VK_SUCCESS)
return VK_SUCCESS;
}
}
return VK_TIMEOUT;
}
for (uint32_t i = 0; i < fenceCount; ++i) {
RADV_FROM_HANDLE(radv_fence, fence, pFences[i]);
bool expired = false;
struct radv_fence_part *part =
fence->temporary.kind != RADV_FENCE_NONE ?
&fence->temporary : &fence->permanent;
switch (part->kind) {
case RADV_FENCE_NONE:
break;
case RADV_FENCE_WINSYS:
if (!device->ws->is_fence_waitable(part->fence)) {
while (!device->ws->is_fence_waitable(part->fence) &&
radv_get_current_time() <= timeout)
/* Do nothing */;
}
expired = device->ws->fence_wait(device->ws,
part->fence,
true, timeout);
if (!expired)
return VK_TIMEOUT;
break;
case RADV_FENCE_SYNCOBJ:
if (!device->ws->wait_syncobj(device->ws,
&part->syncobj, 1, true,
timeout))
return VK_TIMEOUT;
break;
default:
unreachable("Invalid fence type");
}
}
return VK_SUCCESS;
}
VkResult radv_ResetFences(VkDevice _device,
uint32_t fenceCount,
const VkFence *pFences)
{
RADV_FROM_HANDLE(radv_device, device, _device);
for (unsigned i = 0; i < fenceCount; ++i) {
RADV_FROM_HANDLE(radv_fence, fence, pFences[i]);
/* From the Vulkan 1.0.53 spec:
*
* "If any member of pFences currently has its payload
* imported with temporary permanence, that fence’s prior
* permanent payload is irst restored. The remaining
* operations described therefore operate on the restored
* payload."
*/
if (fence->temporary.kind != RADV_FENCE_NONE)
radv_destroy_fence_part(device, &fence->temporary);
struct radv_fence_part *part = &fence->permanent;
switch (part->kind) {
case RADV_FENCE_WINSYS:
device->ws->reset_fence(part->fence);
break;
case RADV_FENCE_SYNCOBJ:
device->ws->reset_syncobj(device->ws, part->syncobj);
break;
default:
unreachable("Invalid fence type");
}
}
return VK_SUCCESS;
}
VkResult radv_GetFenceStatus(VkDevice _device, VkFence _fence)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_fence, fence, _fence);
struct radv_fence_part *part =
fence->temporary.kind != RADV_FENCE_NONE ?
&fence->temporary : &fence->permanent;
if (radv_device_is_lost(device))
return VK_ERROR_DEVICE_LOST;
switch (part->kind) {
case RADV_FENCE_NONE:
break;
case RADV_FENCE_WINSYS:
if (!device->ws->fence_wait(device->ws, part->fence, false, 0))
return VK_NOT_READY;
break;
case RADV_FENCE_SYNCOBJ: {
bool success = device->ws->wait_syncobj(device->ws,
&part->syncobj, 1, true, 0);
if (!success)
return VK_NOT_READY;
break;
}
default:
unreachable("Invalid fence type");
}
return VK_SUCCESS;
}
// Queue semaphore functions
static void
radv_create_timeline(struct radv_timeline *timeline, uint64_t value)
{
timeline->highest_signaled = value;
timeline->highest_submitted = value;
list_inithead(&timeline->points);
list_inithead(&timeline->free_points);
list_inithead(&timeline->waiters);
pthread_mutex_init(&timeline->mutex, NULL);
}
static void
radv_destroy_timeline(struct radv_device *device,
struct radv_timeline *timeline)
{
list_for_each_entry_safe(struct radv_timeline_point, point,
&timeline->free_points, list) {
list_del(&point->list);
device->ws->destroy_syncobj(device->ws, point->syncobj);
free(point);
}
list_for_each_entry_safe(struct radv_timeline_point, point,
&timeline->points, list) {
list_del(&point->list);
device->ws->destroy_syncobj(device->ws, point->syncobj);
free(point);
}
pthread_mutex_destroy(&timeline->mutex);
}
static void
radv_timeline_gc_locked(struct radv_device *device,
struct radv_timeline *timeline)
{
list_for_each_entry_safe(struct radv_timeline_point, point,
&timeline->points, list) {
if (point->wait_count || point->value > timeline->highest_submitted)
return;
if (device->ws->wait_syncobj(device->ws, &point->syncobj, 1, true, 0)) {
timeline->highest_signaled = point->value;
list_del(&point->list);
list_add(&point->list, &timeline->free_points);
}
}
}
static struct radv_timeline_point *
radv_timeline_find_point_at_least_locked(struct radv_device *device,
struct radv_timeline *timeline,
uint64_t p)
{
radv_timeline_gc_locked(device, timeline);
if (p <= timeline->highest_signaled)
return NULL;
list_for_each_entry(struct radv_timeline_point, point,
&timeline->points, list) {
if (point->value >= p) {
++point->wait_count;
return point;
}
}
return NULL;
}
static struct radv_timeline_point *
radv_timeline_add_point_locked(struct radv_device *device,
struct radv_timeline *timeline,
uint64_t p)
{
radv_timeline_gc_locked(device, timeline);
struct radv_timeline_point *ret = NULL;
struct radv_timeline_point *prev = NULL;
int r;
if (p <= timeline->highest_signaled)
return NULL;
list_for_each_entry(struct radv_timeline_point, point,
&timeline->points, list) {
if (point->value == p) {
return NULL;
}
if (point->value < p)
prev = point;
}
if (list_is_empty(&timeline->free_points)) {
ret = malloc(sizeof(struct radv_timeline_point));
r = device->ws->create_syncobj(device->ws, false, &ret->syncobj);
if (r) {
free(ret);
return NULL;
}
} else {
ret = list_first_entry(&timeline->free_points, struct radv_timeline_point, list);
list_del(&ret->list);
device->ws->reset_syncobj(device->ws, ret->syncobj);
}
ret->value = p;
ret->wait_count = 1;
if (prev) {
list_add(&ret->list, &prev->list);
} else {
list_addtail(&ret->list, &timeline->points);
}
return ret;
}
static VkResult
radv_timeline_wait(struct radv_device *device,
struct radv_timeline *timeline,
uint64_t value,
uint64_t abs_timeout)
{
pthread_mutex_lock(&timeline->mutex);
while(timeline->highest_submitted < value) {
struct timespec abstime;
timespec_from_nsec(&abstime, abs_timeout);
pthread_cond_timedwait(&device->timeline_cond, &timeline->mutex, &abstime);
if (radv_get_current_time() >= abs_timeout && timeline->highest_submitted < value) {
pthread_mutex_unlock(&timeline->mutex);
return VK_TIMEOUT;
}
}
struct radv_timeline_point *point = radv_timeline_find_point_at_least_locked(device, timeline, value);
pthread_mutex_unlock(&timeline->mutex);
if (!point)
return VK_SUCCESS;
bool success = device->ws->wait_syncobj(device->ws, &point->syncobj, 1, true, abs_timeout);
pthread_mutex_lock(&timeline->mutex);
point->wait_count--;
pthread_mutex_unlock(&timeline->mutex);
return success ? VK_SUCCESS : VK_TIMEOUT;
}
static void
radv_timeline_trigger_waiters_locked(struct radv_timeline *timeline,
struct list_head *processing_list)
{
list_for_each_entry_safe(struct radv_timeline_waiter, waiter,
&timeline->waiters, list) {
if (waiter->value > timeline->highest_submitted)
continue;
radv_queue_trigger_submission(waiter->submission, 1, processing_list);
list_del(&waiter->list);
}
}
static
void radv_destroy_semaphore_part(struct radv_device *device,
struct radv_semaphore_part *part)
{
switch(part->kind) {
case RADV_SEMAPHORE_NONE:
break;
case RADV_SEMAPHORE_WINSYS:
device->ws->destroy_sem(part->ws_sem);
break;
case RADV_SEMAPHORE_TIMELINE:
radv_destroy_timeline(device, &part->timeline);
break;
case RADV_SEMAPHORE_SYNCOBJ:
case RADV_SEMAPHORE_TIMELINE_SYNCOBJ:
device->ws->destroy_syncobj(device->ws, part->syncobj);
break;
}
part->kind = RADV_SEMAPHORE_NONE;
}
static VkSemaphoreTypeKHR
radv_get_semaphore_type(const void *pNext, uint64_t *initial_value)
{
const VkSemaphoreTypeCreateInfo *type_info =
vk_find_struct_const(pNext, SEMAPHORE_TYPE_CREATE_INFO);
if (!type_info)
return VK_SEMAPHORE_TYPE_BINARY;
if (initial_value)
*initial_value = type_info->initialValue;
return type_info->semaphoreType;
}
static void
radv_destroy_semaphore(struct radv_device *device,
const VkAllocationCallbacks *pAllocator,
struct radv_semaphore *sem)
{
radv_destroy_semaphore_part(device, &sem->temporary);
radv_destroy_semaphore_part(device, &sem->permanent);
vk_object_base_finish(&sem->base);
vk_free2(&device->vk.alloc, pAllocator, sem);
}
VkResult radv_CreateSemaphore(
VkDevice _device,
const VkSemaphoreCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkSemaphore* pSemaphore)
{
RADV_FROM_HANDLE(radv_device, device, _device);
const VkExportSemaphoreCreateInfo *export =
vk_find_struct_const(pCreateInfo->pNext, EXPORT_SEMAPHORE_CREATE_INFO);
VkExternalSemaphoreHandleTypeFlags handleTypes =
export ? export->handleTypes : 0;
uint64_t initial_value = 0;
VkSemaphoreTypeKHR type = radv_get_semaphore_type(pCreateInfo->pNext, &initial_value);
struct radv_semaphore *sem = vk_alloc2(&device->vk.alloc, pAllocator,
sizeof(*sem), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (!sem)
return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
vk_object_base_init(&device->vk, &sem->base,
VK_OBJECT_TYPE_SEMAPHORE);
sem->temporary.kind = RADV_SEMAPHORE_NONE;
sem->permanent.kind = RADV_SEMAPHORE_NONE;
if (type == VK_SEMAPHORE_TYPE_TIMELINE &&
device->physical_device->rad_info.has_timeline_syncobj) {
int ret = device->ws->create_syncobj(device->ws, false, &sem->permanent.syncobj);
if (ret) {
radv_destroy_semaphore(device, pAllocator, sem);
return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
}
device->ws->signal_syncobj(device->ws, sem->permanent.syncobj, initial_value);
sem->permanent.timeline_syncobj.max_point = initial_value;
sem->permanent.kind = RADV_SEMAPHORE_TIMELINE_SYNCOBJ;
} else if (type == VK_SEMAPHORE_TYPE_TIMELINE) {
radv_create_timeline(&sem->permanent.timeline, initial_value);
sem->permanent.kind = RADV_SEMAPHORE_TIMELINE;
} else if (device->always_use_syncobj || handleTypes) {
assert (device->physical_device->rad_info.has_syncobj);
int ret = device->ws->create_syncobj(device->ws, false,
&sem->permanent.syncobj);
if (ret) {
radv_destroy_semaphore(device, pAllocator, sem);
return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
}
sem->permanent.kind = RADV_SEMAPHORE_SYNCOBJ;
} else {
sem->permanent.ws_sem = device->ws->create_sem(device->ws);
if (!sem->permanent.ws_sem) {
radv_destroy_semaphore(device, pAllocator, sem);
return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
}
sem->permanent.kind = RADV_SEMAPHORE_WINSYS;
}
*pSemaphore = radv_semaphore_to_handle(sem);
return VK_SUCCESS;
}
void radv_DestroySemaphore(
VkDevice _device,
VkSemaphore _semaphore,
const VkAllocationCallbacks* pAllocator)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_semaphore, sem, _semaphore);
if (!_semaphore)
return;
radv_destroy_semaphore(device, pAllocator, sem);
}
VkResult
radv_GetSemaphoreCounterValue(VkDevice _device,
VkSemaphore _semaphore,
uint64_t* pValue)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_semaphore, semaphore, _semaphore);
if (radv_device_is_lost(device))
return VK_ERROR_DEVICE_LOST;
struct radv_semaphore_part *part =
semaphore->temporary.kind != RADV_SEMAPHORE_NONE ? &semaphore->temporary : &semaphore->permanent;
switch (part->kind) {
case RADV_SEMAPHORE_TIMELINE: {
pthread_mutex_lock(&part->timeline.mutex);
radv_timeline_gc_locked(device, &part->timeline);
*pValue = part->timeline.highest_signaled;
pthread_mutex_unlock(&part->timeline.mutex);
return VK_SUCCESS;
}
case RADV_SEMAPHORE_TIMELINE_SYNCOBJ: {
return device->ws->query_syncobj(device->ws, part->syncobj, pValue);
}
case RADV_SEMAPHORE_NONE:
case RADV_SEMAPHORE_SYNCOBJ:
case RADV_SEMAPHORE_WINSYS:
unreachable("Invalid semaphore type");
}
unreachable("Unhandled semaphore type");
}
static VkResult
radv_wait_timelines(struct radv_device *device,
const VkSemaphoreWaitInfo* pWaitInfo,
uint64_t abs_timeout)
{
if ((pWaitInfo->flags & VK_SEMAPHORE_WAIT_ANY_BIT_KHR) && pWaitInfo->semaphoreCount > 1) {
for (;;) {
for(uint32_t i = 0; i < pWaitInfo->semaphoreCount; ++i) {
RADV_FROM_HANDLE(radv_semaphore, semaphore, pWaitInfo->pSemaphores[i]);
VkResult result = radv_timeline_wait(device, &semaphore->permanent.timeline, pWaitInfo->pValues[i], 0);
if (result == VK_SUCCESS)
return VK_SUCCESS;
}
if (radv_get_current_time() > abs_timeout)
return VK_TIMEOUT;
}
}
for(uint32_t i = 0; i < pWaitInfo->semaphoreCount; ++i) {
RADV_FROM_HANDLE(radv_semaphore, semaphore, pWaitInfo->pSemaphores[i]);
VkResult result = radv_timeline_wait(device, &semaphore->permanent.timeline, pWaitInfo->pValues[i], abs_timeout);
if (result != VK_SUCCESS)
return result;
}
return VK_SUCCESS;
}
VkResult
radv_WaitSemaphores(VkDevice _device,
const VkSemaphoreWaitInfo* pWaitInfo,
uint64_t timeout)
{
RADV_FROM_HANDLE(radv_device, device, _device);
if (radv_device_is_lost(device))
return VK_ERROR_DEVICE_LOST;
uint64_t abs_timeout = radv_get_absolute_timeout(timeout);
if (radv_semaphore_from_handle(pWaitInfo->pSemaphores[0])->permanent.kind == RADV_SEMAPHORE_TIMELINE)
return radv_wait_timelines(device, pWaitInfo, abs_timeout);
if (pWaitInfo->semaphoreCount > UINT32_MAX / sizeof(uint32_t))
return vk_errorf(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY, "semaphoreCount integer overflow");
bool wait_all = !(pWaitInfo->flags & VK_SEMAPHORE_WAIT_ANY_BIT_KHR);
uint32_t *handles = malloc(sizeof(*handles) * pWaitInfo->semaphoreCount);
if (!handles)
return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
for (uint32_t i = 0; i < pWaitInfo->semaphoreCount; ++i) {
RADV_FROM_HANDLE(radv_semaphore, semaphore, pWaitInfo->pSemaphores[i]);
handles[i] = semaphore->permanent.syncobj;
}
bool success = device->ws->wait_timeline_syncobj(device->ws, handles, pWaitInfo->pValues,
pWaitInfo->semaphoreCount, wait_all, false,
abs_timeout);
free(handles);
return success ? VK_SUCCESS : VK_TIMEOUT;
}
VkResult
radv_SignalSemaphore(VkDevice _device,
const VkSemaphoreSignalInfo* pSignalInfo)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_semaphore, semaphore, pSignalInfo->semaphore);
struct radv_semaphore_part *part =
semaphore->temporary.kind != RADV_SEMAPHORE_NONE ? &semaphore->temporary : &semaphore->permanent;
switch(part->kind) {
case RADV_SEMAPHORE_TIMELINE: {
pthread_mutex_lock(&part->timeline.mutex);
radv_timeline_gc_locked(device, &part->timeline);
part->timeline.highest_submitted = MAX2(part->timeline.highest_submitted, pSignalInfo->value);
part->timeline.highest_signaled = MAX2(part->timeline.highest_signaled, pSignalInfo->value);
struct list_head processing_list;
list_inithead(&processing_list);
radv_timeline_trigger_waiters_locked(&part->timeline, &processing_list);
pthread_mutex_unlock(&part->timeline.mutex);
VkResult result = radv_process_submissions(&processing_list);
/* This needs to happen after radv_process_submissions, so
* that any submitted submissions that are now unblocked get
* processed before we wake the application. This way we
* ensure that any binary semaphores that are now unblocked
* are usable by the application. */
pthread_cond_broadcast(&device->timeline_cond);
return result;
}
case RADV_SEMAPHORE_TIMELINE_SYNCOBJ: {
part->timeline_syncobj.max_point = MAX2(part->timeline_syncobj.max_point, pSignalInfo->value);
device->ws->signal_syncobj(device->ws, part->syncobj, pSignalInfo->value);
break;
}
case RADV_SEMAPHORE_NONE:
case RADV_SEMAPHORE_SYNCOBJ:
case RADV_SEMAPHORE_WINSYS:
unreachable("Invalid semaphore type");
}
return VK_SUCCESS;
}
static void radv_destroy_event(struct radv_device *device,
const VkAllocationCallbacks* pAllocator,
struct radv_event *event)
{
if (event->bo)
device->ws->buffer_destroy(event->bo);
vk_object_base_finish(&event->base);
vk_free2(&device->vk.alloc, pAllocator, event);
}
VkResult radv_CreateEvent(
VkDevice _device,
const VkEventCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkEvent* pEvent)
{
RADV_FROM_HANDLE(radv_device, device, _device);
struct radv_event *event = vk_alloc2(&device->vk.alloc, pAllocator,
sizeof(*event), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (!event)
return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
vk_object_base_init(&device->vk, &event->base, VK_OBJECT_TYPE_EVENT);
event->bo = device->ws->buffer_create(device->ws, 8, 8,
RADEON_DOMAIN_GTT,
RADEON_FLAG_VA_UNCACHED | RADEON_FLAG_CPU_ACCESS | RADEON_FLAG_NO_INTERPROCESS_SHARING,
RADV_BO_PRIORITY_FENCE);
if (!event->bo) {
radv_destroy_event(device, pAllocator, event);
return vk_error(device->instance, VK_ERROR_OUT_OF_DEVICE_MEMORY);
}
event->map = (uint64_t*)device->ws->buffer_map(event->bo);
if (!event->map) {
radv_destroy_event(device, pAllocator, event);
return vk_error(device->instance, VK_ERROR_OUT_OF_DEVICE_MEMORY);
}
*pEvent = radv_event_to_handle(event);
return VK_SUCCESS;
}
void radv_DestroyEvent(
VkDevice _device,
VkEvent _event,
const VkAllocationCallbacks* pAllocator)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_event, event, _event);
if (!event)
return;
radv_destroy_event(device, pAllocator, event);
}
VkResult radv_GetEventStatus(
VkDevice _device,
VkEvent _event)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_event, event, _event);
if (radv_device_is_lost(device))
return VK_ERROR_DEVICE_LOST;
if (*event->map == 1)
return VK_EVENT_SET;
return VK_EVENT_RESET;
}
VkResult radv_SetEvent(
VkDevice _device,
VkEvent _event)
{
RADV_FROM_HANDLE(radv_event, event, _event);
*event->map = 1;
return VK_SUCCESS;
}
VkResult radv_ResetEvent(
VkDevice _device,
VkEvent _event)
{
RADV_FROM_HANDLE(radv_event, event, _event);
*event->map = 0;
return VK_SUCCESS;
}
static void
radv_destroy_buffer(struct radv_device *device,
const VkAllocationCallbacks *pAllocator,
struct radv_buffer *buffer)
{
if ((buffer->flags & VK_BUFFER_CREATE_SPARSE_BINDING_BIT) && buffer->bo)
device->ws->buffer_destroy(buffer->bo);
vk_object_base_finish(&buffer->base);
vk_free2(&device->vk.alloc, pAllocator, buffer);
}
VkResult radv_CreateBuffer(
VkDevice _device,
const VkBufferCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkBuffer* pBuffer)
{
RADV_FROM_HANDLE(radv_device, device, _device);
struct radv_buffer *buffer;
if (pCreateInfo->size > RADV_MAX_MEMORY_ALLOCATION_SIZE)
return VK_ERROR_OUT_OF_DEVICE_MEMORY;
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
buffer = vk_alloc2(&device->vk.alloc, pAllocator, sizeof(*buffer), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (buffer == NULL)
return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
vk_object_base_init(&device->vk, &buffer->base, VK_OBJECT_TYPE_BUFFER);
buffer->size = pCreateInfo->size;
buffer->usage = pCreateInfo->usage;
buffer->bo = NULL;
buffer->offset = 0;
buffer->flags = pCreateInfo->flags;
buffer->shareable = vk_find_struct_const(pCreateInfo->pNext,
EXTERNAL_MEMORY_BUFFER_CREATE_INFO) != NULL;
if (pCreateInfo->flags & VK_BUFFER_CREATE_SPARSE_BINDING_BIT) {
buffer->bo = device->ws->buffer_create(device->ws,
align64(buffer->size, 4096),
4096, 0, RADEON_FLAG_VIRTUAL,
RADV_BO_PRIORITY_VIRTUAL);
if (!buffer->bo) {
radv_destroy_buffer(device, pAllocator, buffer);
return vk_error(device->instance, VK_ERROR_OUT_OF_DEVICE_MEMORY);
}
}
*pBuffer = radv_buffer_to_handle(buffer);
return VK_SUCCESS;
}
void radv_DestroyBuffer(
VkDevice _device,
VkBuffer _buffer,
const VkAllocationCallbacks* pAllocator)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_buffer, buffer, _buffer);
if (!buffer)
return;
radv_destroy_buffer(device, pAllocator, buffer);
}
VkDeviceAddress radv_GetBufferDeviceAddress(
VkDevice device,
const VkBufferDeviceAddressInfo* pInfo)
{
RADV_FROM_HANDLE(radv_buffer, buffer, pInfo->buffer);
return radv_buffer_get_va(buffer->bo) + buffer->offset;
}
uint64_t radv_GetBufferOpaqueCaptureAddress(VkDevice device,
const VkBufferDeviceAddressInfo* pInfo)
{
return 0;
}
uint64_t radv_GetDeviceMemoryOpaqueCaptureAddress(VkDevice device,
const VkDeviceMemoryOpaqueCaptureAddressInfo* pInfo)
{
return 0;
}
static inline unsigned
si_tile_mode_index(const struct radv_image_plane *plane, unsigned level, bool stencil)
{
if (stencil)
return plane->surface.u.legacy.stencil_tiling_index[level];
else
return plane->surface.u.legacy.tiling_index[level];
}
static uint32_t radv_surface_max_layer_count(struct radv_image_view *iview)
{
return iview->type == VK_IMAGE_VIEW_TYPE_3D ? iview->extent.depth : (iview->base_layer + iview->layer_count);
}
static uint32_t
radv_init_dcc_control_reg(struct radv_device *device,
struct radv_image_view *iview)
{
unsigned max_uncompressed_block_size = V_028C78_MAX_BLOCK_SIZE_256B;
unsigned min_compressed_block_size = V_028C78_MIN_BLOCK_SIZE_32B;
unsigned max_compressed_block_size;
unsigned independent_128b_blocks;
unsigned independent_64b_blocks;
if (!radv_dcc_enabled(iview->image, iview->base_mip))
return 0;
if (!device->physical_device->rad_info.has_dedicated_vram) {
/* amdvlk: [min-compressed-block-size] should be set to 32 for
* dGPU and 64 for APU because all of our APUs to date use
* DIMMs which have a request granularity size of 64B while all
* other chips have a 32B request size.
*/
min_compressed_block_size = V_028C78_MIN_BLOCK_SIZE_64B;
}
if (device->physical_device->rad_info.chip_class >= GFX10) {
max_compressed_block_size = V_028C78_MAX_BLOCK_SIZE_128B;
independent_64b_blocks = 0;
independent_128b_blocks = 1;
} else {
independent_128b_blocks = 0;
if (iview->image->info.samples > 1) {
if (iview->image->planes[0].surface.bpe == 1)
max_uncompressed_block_size = V_028C78_MAX_BLOCK_SIZE_64B;
else if (iview->image->planes[0].surface.bpe == 2)
max_uncompressed_block_size = V_028C78_MAX_BLOCK_SIZE_128B;
}
if (iview->image->usage & (VK_IMAGE_USAGE_SAMPLED_BIT |
VK_IMAGE_USAGE_TRANSFER_SRC_BIT |
VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT)) {
/* If this DCC image is potentially going to be used in texture
* fetches, we need some special settings.
*/
independent_64b_blocks = 1;
max_compressed_block_size = V_028C78_MAX_BLOCK_SIZE_64B;
} else {
/* MAX_UNCOMPRESSED_BLOCK_SIZE must be >=
* MAX_COMPRESSED_BLOCK_SIZE. Set MAX_COMPRESSED_BLOCK_SIZE as
* big as possible for better compression state.
*/
independent_64b_blocks = 0;
max_compressed_block_size = max_uncompressed_block_size;
}
}
return S_028C78_MAX_UNCOMPRESSED_BLOCK_SIZE(max_uncompressed_block_size) |
S_028C78_MAX_COMPRESSED_BLOCK_SIZE(max_compressed_block_size) |
S_028C78_MIN_COMPRESSED_BLOCK_SIZE(min_compressed_block_size) |
S_028C78_INDEPENDENT_64B_BLOCKS(independent_64b_blocks) |
S_028C78_INDEPENDENT_128B_BLOCKS(independent_128b_blocks);
}
void
radv_initialise_color_surface(struct radv_device *device,
struct radv_color_buffer_info *cb,
struct radv_image_view *iview)
{
const struct vk_format_description *desc;
unsigned ntype, format, swap, endian;
unsigned blend_clamp = 0, blend_bypass = 0;
uint64_t va;
const struct radv_image_plane *plane = &iview->image->planes[iview->plane_id];
const struct radeon_surf *surf = &plane->surface;
desc = vk_format_description(iview->vk_format);
memset(cb, 0, sizeof(*cb));
/* Intensity is implemented as Red, so treat it that way. */
cb->cb_color_attrib = S_028C74_FORCE_DST_ALPHA_1(desc->swizzle[3] == VK_SWIZZLE_1);
va = radv_buffer_get_va(iview->bo) + iview->image->offset + plane->offset;
cb->cb_color_base = va >> 8;
if (device->physical_device->rad_info.chip_class >= GFX9) {
if (device->physical_device->rad_info.chip_class >= GFX10) {
cb->cb_color_attrib3 |= S_028EE0_COLOR_SW_MODE(surf->u.gfx9.surf.swizzle_mode) |
S_028EE0_FMASK_SW_MODE(surf->u.gfx9.fmask.swizzle_mode) |
S_028EE0_CMASK_PIPE_ALIGNED(1) |
S_028EE0_DCC_PIPE_ALIGNED(surf->u.gfx9.dcc.pipe_aligned);
} else {
struct gfx9_surf_meta_flags meta = {
.rb_aligned = 1,
.pipe_aligned = 1,
};
if (surf->dcc_offset)
meta = surf->u.gfx9.dcc;
cb->cb_color_attrib |= S_028C74_COLOR_SW_MODE(surf->u.gfx9.surf.swizzle_mode) |
S_028C74_FMASK_SW_MODE(surf->u.gfx9.fmask.swizzle_mode) |
S_028C74_RB_ALIGNED(meta.rb_aligned) |
S_028C74_PIPE_ALIGNED(meta.pipe_aligned);
cb->cb_mrt_epitch = S_0287A0_EPITCH(surf->u.gfx9.surf.epitch);
}
cb->cb_color_base += surf->u.gfx9.surf_offset >> 8;
cb->cb_color_base |= surf->tile_swizzle;
} else {
const struct legacy_surf_level *level_info = &surf->u.legacy.level[iview->base_mip];
unsigned pitch_tile_max, slice_tile_max, tile_mode_index;
cb->cb_color_base += level_info->offset >> 8;
if (level_info->mode == RADEON_SURF_MODE_2D)
cb->cb_color_base |= surf->tile_swizzle;
pitch_tile_max = level_info->nblk_x / 8 - 1;
slice_tile_max = (level_info->nblk_x * level_info->nblk_y) / 64 - 1;
tile_mode_index = si_tile_mode_index(plane, iview->base_mip, false);
cb->cb_color_pitch = S_028C64_TILE_MAX(pitch_tile_max);
cb->cb_color_slice = S_028C68_TILE_MAX(slice_tile_max);
cb->cb_color_cmask_slice = surf->u.legacy.cmask_slice_tile_max;
cb->cb_color_attrib |= S_028C74_TILE_MODE_INDEX(tile_mode_index);
if (radv_image_has_fmask(iview->image)) {
if (device->physical_device->rad_info.chip_class >= GFX7)
cb->cb_color_pitch |= S_028C64_FMASK_TILE_MAX(surf->u.legacy.fmask.pitch_in_pixels / 8 - 1);
cb->cb_color_attrib |= S_028C74_FMASK_TILE_MODE_INDEX(surf->u.legacy.fmask.tiling_index);
cb->cb_color_fmask_slice = S_028C88_TILE_MAX(surf->u.legacy.fmask.slice_tile_max);
} else {
/* This must be set for fast clear to work without FMASK. */
if (device->physical_device->rad_info.chip_class >= GFX7)
cb->cb_color_pitch |= S_028C64_FMASK_TILE_MAX(pitch_tile_max);
cb->cb_color_attrib |= S_028C74_FMASK_TILE_MODE_INDEX(tile_mode_index);
cb->cb_color_fmask_slice = S_028C88_TILE_MAX(slice_tile_max);
}
}
/* CMASK variables */
va = radv_buffer_get_va(iview->bo) + iview->image->offset;
va += surf->cmask_offset;
cb->cb_color_cmask = va >> 8;
va = radv_buffer_get_va(iview->bo) + iview->image->offset;
va += surf->dcc_offset;
if (radv_dcc_enabled(iview->image, iview->base_mip) &&
device->physical_device->rad_info.chip_class <= GFX8)
va += plane->surface.u.legacy.level[iview->base_mip].dcc_offset;
unsigned dcc_tile_swizzle = surf->tile_swizzle;
dcc_tile_swizzle &= (surf->dcc_alignment - 1) >> 8;
cb->cb_dcc_base = va >> 8;
cb->cb_dcc_base |= dcc_tile_swizzle;
/* GFX10 field has the same base shift as the GFX6 field. */
uint32_t max_slice = radv_surface_max_layer_count(iview) - 1;
cb->cb_color_view = S_028C6C_SLICE_START(iview->base_layer) |
S_028C6C_SLICE_MAX_GFX10(max_slice);
if (iview->image->info.samples > 1) {
unsigned log_samples = util_logbase2(iview->image->info.samples);
cb->cb_color_attrib |= S_028C74_NUM_SAMPLES(log_samples) |
S_028C74_NUM_FRAGMENTS(log_samples);
}
if (radv_image_has_fmask(iview->image)) {
va = radv_buffer_get_va(iview->bo) + iview->image->offset + surf->fmask_offset;
cb->cb_color_fmask = va >> 8;
cb->cb_color_fmask |= surf->fmask_tile_swizzle;
} else {
cb->cb_color_fmask = cb->cb_color_base;
}
ntype = radv_translate_color_numformat(iview->vk_format,
desc,
vk_format_get_first_non_void_channel(iview->vk_format));
format = radv_translate_colorformat(iview->vk_format);
if (format == V_028C70_COLOR_INVALID || ntype == ~0u)
radv_finishme("Illegal color\n");
swap = radv_translate_colorswap(iview->vk_format, false);
endian = radv_colorformat_endian_swap(format);
/* blend clamp should be set for all NORM/SRGB types */
if (ntype == V_028C70_NUMBER_UNORM ||
ntype == V_028C70_NUMBER_SNORM ||
ntype == V_028C70_NUMBER_SRGB)
blend_clamp = 1;
/* set blend bypass according to docs if SINT/UINT or
8/24 COLOR variants */
if (ntype == V_028C70_NUMBER_UINT || ntype == V_028C70_NUMBER_SINT ||
format == V_028C70_COLOR_8_24 || format == V_028C70_COLOR_24_8 ||
format == V_028C70_COLOR_X24_8_32_FLOAT) {
blend_clamp = 0;
blend_bypass = 1;
}
#if 0
if ((ntype == V_028C70_NUMBER_UINT || ntype == V_028C70_NUMBER_SINT) &&
(format == V_028C70_COLOR_8 ||
format == V_028C70_COLOR_8_8 ||
format == V_028C70_COLOR_8_8_8_8))
->color_is_int8 = true;
#endif
cb->cb_color_info = S_028C70_FORMAT(format) |
S_028C70_COMP_SWAP(swap) |
S_028C70_BLEND_CLAMP(blend_clamp) |
S_028C70_BLEND_BYPASS(blend_bypass) |
S_028C70_SIMPLE_FLOAT(1) |
S_028C70_ROUND_MODE(ntype != V_028C70_NUMBER_UNORM &&
ntype != V_028C70_NUMBER_SNORM &&
ntype != V_028C70_NUMBER_SRGB &&
format != V_028C70_COLOR_8_24 &&
format != V_028C70_COLOR_24_8) |
S_028C70_NUMBER_TYPE(ntype) |
S_028C70_ENDIAN(endian);
if (radv_image_has_fmask(iview->image)) {
cb->cb_color_info |= S_028C70_COMPRESSION(1);
if (device->physical_device->rad_info.chip_class == GFX6) {
unsigned fmask_bankh = util_logbase2(surf->u.legacy.fmask.bankh);
cb->cb_color_attrib |= S_028C74_FMASK_BANK_HEIGHT(fmask_bankh);
}
if (radv_image_is_tc_compat_cmask(iview->image)) {
/* Allow the texture block to read FMASK directly
* without decompressing it. This bit must be cleared
* when performing FMASK_DECOMPRESS or DCC_COMPRESS,
* otherwise the operation doesn't happen.
*/
cb->cb_color_info |= S_028C70_FMASK_COMPRESS_1FRAG_ONLY(1);
/* Set CMASK into a tiling format that allows the
* texture block to read it.
*/
cb->cb_color_info |= S_028C70_CMASK_ADDR_TYPE(2);
}
}
if (radv_image_has_cmask(iview->image) &&
!(device->instance->debug_flags & RADV_DEBUG_NO_FAST_CLEARS))
cb->cb_color_info |= S_028C70_FAST_CLEAR(1);
if (radv_dcc_enabled(iview->image, iview->base_mip))
cb->cb_color_info |= S_028C70_DCC_ENABLE(1);
cb->cb_dcc_control = radv_init_dcc_control_reg(device, iview);
/* This must be set for fast clear to work without FMASK. */
if (!radv_image_has_fmask(iview->image) &&
device->physical_device->rad_info.chip_class == GFX6) {
unsigned bankh = util_logbase2(surf->u.legacy.bankh);
cb->cb_color_attrib |= S_028C74_FMASK_BANK_HEIGHT(bankh);
}
if (device->physical_device->rad_info.chip_class >= GFX9) {
const struct vk_format_description *format_desc = vk_format_description(iview->image->vk_format);
unsigned mip0_depth = iview->image->type == VK_IMAGE_TYPE_3D ?
(iview->extent.depth - 1) : (iview->image->info.array_size - 1);
unsigned width = iview->extent.width / (iview->plane_id ? format_desc->width_divisor : 1);
unsigned height = iview->extent.height / (iview->plane_id ? format_desc->height_divisor : 1);
if (device->physical_device->rad_info.chip_class >= GFX10) {
cb->cb_color_view |= S_028C6C_MIP_LEVEL_GFX10(iview->base_mip);
cb->cb_color_attrib3 |= S_028EE0_MIP0_DEPTH(mip0_depth) |
S_028EE0_RESOURCE_TYPE(surf->u.gfx9.resource_type) |
S_028EE0_RESOURCE_LEVEL(1);
} else {
cb->cb_color_view |= S_028C6C_MIP_LEVEL_GFX9(iview->base_mip);
cb->cb_color_attrib |= S_028C74_MIP0_DEPTH(mip0_depth) |
S_028C74_RESOURCE_TYPE(surf->u.gfx9.resource_type);
}
cb->cb_color_attrib2 = S_028C68_MIP0_WIDTH(width - 1) |
S_028C68_MIP0_HEIGHT(height - 1) |
S_028C68_MAX_MIP(iview->image->info.levels - 1);
}
}
static unsigned
radv_calc_decompress_on_z_planes(struct radv_device *device,
struct radv_image_view *iview)
{
unsigned max_zplanes = 0;
assert(radv_image_is_tc_compat_htile(iview->image));
if (device->physical_device->rad_info.chip_class >= GFX9) {
/* Default value for 32-bit depth surfaces. */
max_zplanes = 4;
if (iview->vk_format == VK_FORMAT_D16_UNORM &&
iview->image->info.samples > 1)
max_zplanes = 2;
max_zplanes = max_zplanes + 1;
} else {
if (iview->vk_format == VK_FORMAT_D16_UNORM) {
/* Do not enable Z plane compression for 16-bit depth
* surfaces because isn't supported on GFX8. Only
* 32-bit depth surfaces are supported by the hardware.
* This allows to maintain shader compatibility and to
* reduce the number of depth decompressions.
*/
max_zplanes = 1;
} else {
if (iview->image->info.samples <= 1)
max_zplanes = 5;
else if (iview->image->info.samples <= 4)
max_zplanes = 3;
else
max_zplanes = 2;
}
}
return max_zplanes;
}
void
radv_initialise_ds_surface(struct radv_device *device,
struct radv_ds_buffer_info *ds,
struct radv_image_view *iview)
{
unsigned level = iview->base_mip;
unsigned format, stencil_format;
uint64_t va, s_offs, z_offs;
bool stencil_only = false;
const struct radv_image_plane *plane = &iview->image->planes[0];
const struct radeon_surf *surf = &plane->surface;
assert(vk_format_get_plane_count(iview->image->vk_format) == 1);
memset(ds, 0, sizeof(*ds));
switch (iview->image->vk_format) {
case VK_FORMAT_D24_UNORM_S8_UINT:
case VK_FORMAT_X8_D24_UNORM_PACK32:
ds->pa_su_poly_offset_db_fmt_cntl = S_028B78_POLY_OFFSET_NEG_NUM_DB_BITS(-24);
ds->offset_scale = 2.0f;
break;
case VK_FORMAT_D16_UNORM:
case VK_FORMAT_D16_UNORM_S8_UINT:
ds->pa_su_poly_offset_db_fmt_cntl = S_028B78_POLY_OFFSET_NEG_NUM_DB_BITS(-16);
ds->offset_scale = 4.0f;
break;
case VK_FORMAT_D32_SFLOAT:
case VK_FORMAT_D32_SFLOAT_S8_UINT:
ds->pa_su_poly_offset_db_fmt_cntl = S_028B78_POLY_OFFSET_NEG_NUM_DB_BITS(-23) |
S_028B78_POLY_OFFSET_DB_IS_FLOAT_FMT(1);
ds->offset_scale = 1.0f;
break;
case VK_FORMAT_S8_UINT:
stencil_only = true;
break;
default:
break;
}
format = radv_translate_dbformat(iview->image->vk_format);
stencil_format = surf->has_stencil ?
V_028044_STENCIL_8 : V_028044_STENCIL_INVALID;
uint32_t max_slice = radv_surface_max_layer_count(iview) - 1;
ds->db_depth_view = S_028008_SLICE_START(iview->base_layer) |
S_028008_SLICE_MAX(max_slice);
if (device->physical_device->rad_info.chip_class >= GFX10) {
ds->db_depth_view |= S_028008_SLICE_START_HI(iview->base_layer >> 11) |
S_028008_SLICE_MAX_HI(max_slice >> 11);
}
ds->db_htile_data_base = 0;
ds->db_htile_surface = 0;
va = radv_buffer_get_va(iview->bo) + iview->image->offset;
s_offs = z_offs = va;
if (device->physical_device->rad_info.chip_class >= GFX9) {
assert(surf->u.gfx9.surf_offset == 0);
s_offs += surf->u.gfx9.stencil_offset;
ds->db_z_info = S_028038_FORMAT(format) |
S_028038_NUM_SAMPLES(util_logbase2(iview->image->info.samples)) |
S_028038_SW_MODE(surf->u.gfx9.surf.swizzle_mode) |
S_028038_MAXMIP(iview->image->info.levels - 1) |
S_028038_ZRANGE_PRECISION(1);
ds->db_stencil_info = S_02803C_FORMAT(stencil_format) |
S_02803C_SW_MODE(surf->u.gfx9.stencil.swizzle_mode);
if (device->physical_device->rad_info.chip_class == GFX9) {
ds->db_z_info2 = S_028068_EPITCH(surf->u.gfx9.surf.epitch);
ds->db_stencil_info2 = S_02806C_EPITCH(surf->u.gfx9.stencil.epitch);
}
ds->db_depth_view |= S_028008_MIPID(level);
ds->db_depth_size = S_02801C_X_MAX(iview->image->info.width - 1) |
S_02801C_Y_MAX(iview->image->info.height - 1);
if (radv_htile_enabled(iview->image, level)) {
ds->db_z_info |= S_028038_TILE_SURFACE_ENABLE(1);
if (radv_image_is_tc_compat_htile(iview->image)) {
unsigned max_zplanes =
radv_calc_decompress_on_z_planes(device, iview);
ds->db_z_info |= S_028038_DECOMPRESS_ON_N_ZPLANES(max_zplanes);
if (device->physical_device->rad_info.chip_class >= GFX10) {
ds->db_z_info |= S_028040_ITERATE_FLUSH(1);
ds->db_stencil_info |= S_028044_ITERATE_FLUSH(1);
} else {
ds->db_z_info |= S_028038_ITERATE_FLUSH(1);
ds->db_stencil_info |= S_02803C_ITERATE_FLUSH(1);
}
}
if (!surf->has_stencil)
/* Use all of the htile_buffer for depth if there's no stencil. */
ds->db_stencil_info |= S_02803C_TILE_STENCIL_DISABLE(1);
va = radv_buffer_get_va(iview->bo) + iview->image->offset +
surf->htile_offset;
ds->db_htile_data_base = va >> 8;
ds->db_htile_surface = S_028ABC_FULL_CACHE(1) |
S_028ABC_PIPE_ALIGNED(1);
if (device->physical_device->rad_info.chip_class == GFX9) {
ds->db_htile_surface |= S_028ABC_RB_ALIGNED(1);
}
}
} else {
const struct legacy_surf_level *level_info = &surf->u.legacy.level[level];
if (stencil_only)
level_info = &surf->u.legacy.stencil_level[level];
z_offs += surf->u.legacy.level[level].offset;
s_offs += surf->u.legacy.stencil_level[level].offset;
ds->db_depth_info = S_02803C_ADDR5_SWIZZLE_MASK(!radv_image_is_tc_compat_htile(iview->image));
ds->db_z_info = S_028040_FORMAT(format) | S_028040_ZRANGE_PRECISION(1);
ds->db_stencil_info = S_028044_FORMAT(stencil_format);
if (iview->image->info.samples > 1)
ds->db_z_info |= S_028040_NUM_SAMPLES(util_logbase2(iview->image->info.samples));
if (device->physical_device->rad_info.chip_class >= GFX7) {
struct radeon_info *info = &device->physical_device->rad_info;
unsigned tiling_index = surf->u.legacy.tiling_index[level];
unsigned stencil_index = surf->u.legacy.stencil_tiling_index[level];
unsigned macro_index = surf->u.legacy.macro_tile_index;
unsigned tile_mode = info->si_tile_mode_array[tiling_index];
unsigned stencil_tile_mode = info->si_tile_mode_array[stencil_index];
unsigned macro_mode = info->cik_macrotile_mode_array[macro_index];
if (stencil_only)
tile_mode = stencil_tile_mode;
ds->db_depth_info |=
S_02803C_ARRAY_MODE(G_009910_ARRAY_MODE(tile_mode)) |
S_02803C_PIPE_CONFIG(G_009910_PIPE_CONFIG(tile_mode)) |
S_02803C_BANK_WIDTH(G_009990_BANK_WIDTH(macro_mode)) |
S_02803C_BANK_HEIGHT(G_009990_BANK_HEIGHT(macro_mode)) |
S_02803C_MACRO_TILE_ASPECT(G_009990_MACRO_TILE_ASPECT(macro_mode)) |
S_02803C_NUM_BANKS(G_009990_NUM_BANKS(macro_mode));
ds->db_z_info |= S_028040_TILE_SPLIT(G_009910_TILE_SPLIT(tile_mode));
ds->db_stencil_info |= S_028044_TILE_SPLIT(G_009910_TILE_SPLIT(stencil_tile_mode));
} else {
unsigned tile_mode_index = si_tile_mode_index(&iview->image->planes[0], level, false);
ds->db_z_info |= S_028040_TILE_MODE_INDEX(tile_mode_index);
tile_mode_index = si_tile_mode_index(&iview->image->planes[0], level, true);
ds->db_stencil_info |= S_028044_TILE_MODE_INDEX(tile_mode_index);
if (stencil_only)
ds->db_z_info |= S_028040_TILE_MODE_INDEX(tile_mode_index);
}
ds->db_depth_size = S_028058_PITCH_TILE_MAX((level_info->nblk_x / 8) - 1) |
S_028058_HEIGHT_TILE_MAX((level_info->nblk_y / 8) - 1);
ds->db_depth_slice = S_02805C_SLICE_TILE_MAX((level_info->nblk_x * level_info->nblk_y) / 64 - 1);
if (radv_htile_enabled(iview->image, level)) {
ds->db_z_info |= S_028040_TILE_SURFACE_ENABLE(1);
if (!surf->has_stencil &&
!radv_image_is_tc_compat_htile(iview->image))
/* Use all of the htile_buffer for depth if there's no stencil. */
ds->db_stencil_info |= S_028044_TILE_STENCIL_DISABLE(1);
va = radv_buffer_get_va(iview->bo) + iview->image->offset +
surf->htile_offset;
ds->db_htile_data_base = va >> 8;
ds->db_htile_surface = S_028ABC_FULL_CACHE(1);
if (radv_image_is_tc_compat_htile(iview->image)) {
unsigned max_zplanes =
radv_calc_decompress_on_z_planes(device, iview);
ds->db_htile_surface |= S_028ABC_TC_COMPATIBLE(1);
ds->db_z_info |= S_028040_DECOMPRESS_ON_N_ZPLANES(max_zplanes);
}
}
}
ds->db_z_read_base = ds->db_z_write_base = z_offs >> 8;
ds->db_stencil_read_base = ds->db_stencil_write_base = s_offs >> 8;
}
VkResult radv_CreateFramebuffer(
VkDevice _device,
const VkFramebufferCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkFramebuffer* pFramebuffer)
{
RADV_FROM_HANDLE(radv_device, device, _device);
struct radv_framebuffer *framebuffer;
const VkFramebufferAttachmentsCreateInfo *imageless_create_info =
vk_find_struct_const(pCreateInfo->pNext,
FRAMEBUFFER_ATTACHMENTS_CREATE_INFO);
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
size_t size = sizeof(*framebuffer);
if (!imageless_create_info)
size += sizeof(struct radv_image_view*) * pCreateInfo->attachmentCount;
framebuffer = vk_alloc2(&device->vk.alloc, pAllocator, size, 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (framebuffer == NULL)
return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
vk_object_base_init(&device->vk, &framebuffer->base,
VK_OBJECT_TYPE_FRAMEBUFFER);
framebuffer->attachment_count = pCreateInfo->attachmentCount;
framebuffer->width = pCreateInfo->width;
framebuffer->height = pCreateInfo->height;
framebuffer->layers = pCreateInfo->layers;
if (imageless_create_info) {
for (unsigned i = 0; i < imageless_create_info->attachmentImageInfoCount; ++i) {
const VkFramebufferAttachmentImageInfo *attachment =
imageless_create_info->pAttachmentImageInfos + i;
framebuffer->width = MIN2(framebuffer->width, attachment->width);
framebuffer->height = MIN2(framebuffer->height, attachment->height);
framebuffer->layers = MIN2(framebuffer->layers, attachment->layerCount);
}
} else {
for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
VkImageView _iview = pCreateInfo->pAttachments[i];
struct radv_image_view *iview = radv_image_view_from_handle(_iview);
framebuffer->attachments[i] = iview;
framebuffer->width = MIN2(framebuffer->width, iview->extent.width);
framebuffer->height = MIN2(framebuffer->height, iview->extent.height);
framebuffer->layers = MIN2(framebuffer->layers, radv_surface_max_layer_count(iview));
}
}
*pFramebuffer = radv_framebuffer_to_handle(framebuffer);
return VK_SUCCESS;
}
void radv_DestroyFramebuffer(
VkDevice _device,
VkFramebuffer _fb,
const VkAllocationCallbacks* pAllocator)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_framebuffer, fb, _fb);
if (!fb)
return;
vk_object_base_finish(&fb->base);
vk_free2(&device->vk.alloc, pAllocator, fb);
}
static unsigned radv_tex_wrap(VkSamplerAddressMode address_mode)
{
switch (address_mode) {
case VK_SAMPLER_ADDRESS_MODE_REPEAT:
return V_008F30_SQ_TEX_WRAP;
case VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT:
return V_008F30_SQ_TEX_MIRROR;
case VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE:
return V_008F30_SQ_TEX_CLAMP_LAST_TEXEL;
case VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER:
return V_008F30_SQ_TEX_CLAMP_BORDER;
case VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE:
return V_008F30_SQ_TEX_MIRROR_ONCE_LAST_TEXEL;
default:
unreachable("illegal tex wrap mode");
break;
}
}
static unsigned
radv_tex_compare(VkCompareOp op)
{
switch (op) {
case VK_COMPARE_OP_NEVER:
return V_008F30_SQ_TEX_DEPTH_COMPARE_NEVER;
case VK_COMPARE_OP_LESS:
return V_008F30_SQ_TEX_DEPTH_COMPARE_LESS;
case VK_COMPARE_OP_EQUAL:
return V_008F30_SQ_TEX_DEPTH_COMPARE_EQUAL;
case VK_COMPARE_OP_LESS_OR_EQUAL:
return V_008F30_SQ_TEX_DEPTH_COMPARE_LESSEQUAL;
case VK_COMPARE_OP_GREATER:
return V_008F30_SQ_TEX_DEPTH_COMPARE_GREATER;
case VK_COMPARE_OP_NOT_EQUAL:
return V_008F30_SQ_TEX_DEPTH_COMPARE_NOTEQUAL;
case VK_COMPARE_OP_GREATER_OR_EQUAL:
return V_008F30_SQ_TEX_DEPTH_COMPARE_GREATEREQUAL;
case VK_COMPARE_OP_ALWAYS:
return V_008F30_SQ_TEX_DEPTH_COMPARE_ALWAYS;
default:
unreachable("illegal compare mode");
break;
}
}
static unsigned
radv_tex_filter(VkFilter filter, unsigned max_ansio)
{
switch (filter) {
case VK_FILTER_NEAREST:
return (max_ansio > 1 ? V_008F38_SQ_TEX_XY_FILTER_ANISO_POINT :
V_008F38_SQ_TEX_XY_FILTER_POINT);
case VK_FILTER_LINEAR:
return (max_ansio > 1 ? V_008F38_SQ_TEX_XY_FILTER_ANISO_BILINEAR :
V_008F38_SQ_TEX_XY_FILTER_BILINEAR);
case VK_FILTER_CUBIC_IMG:
default:
fprintf(stderr, "illegal texture filter");
return 0;
}
}
static unsigned
radv_tex_mipfilter(VkSamplerMipmapMode mode)
{
switch (mode) {
case VK_SAMPLER_MIPMAP_MODE_NEAREST:
return V_008F38_SQ_TEX_Z_FILTER_POINT;
case VK_SAMPLER_MIPMAP_MODE_LINEAR:
return V_008F38_SQ_TEX_Z_FILTER_LINEAR;
default:
return V_008F38_SQ_TEX_Z_FILTER_NONE;
}
}
static unsigned
radv_tex_bordercolor(VkBorderColor bcolor)
{
switch (bcolor) {
case VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK:
case VK_BORDER_COLOR_INT_TRANSPARENT_BLACK:
return V_008F3C_SQ_TEX_BORDER_COLOR_TRANS_BLACK;
case VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK:
case VK_BORDER_COLOR_INT_OPAQUE_BLACK:
return V_008F3C_SQ_TEX_BORDER_COLOR_OPAQUE_BLACK;
case VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE:
case VK_BORDER_COLOR_INT_OPAQUE_WHITE:
return V_008F3C_SQ_TEX_BORDER_COLOR_OPAQUE_WHITE;
case VK_BORDER_COLOR_FLOAT_CUSTOM_EXT:
case VK_BORDER_COLOR_INT_CUSTOM_EXT:
return V_008F3C_SQ_TEX_BORDER_COLOR_REGISTER;
default:
break;
}
return 0;
}
static unsigned
radv_tex_aniso_filter(unsigned filter)
{
if (filter < 2)
return 0;
if (filter < 4)
return 1;
if (filter < 8)
return 2;
if (filter < 16)
return 3;
return 4;
}
static unsigned
radv_tex_filter_mode(VkSamplerReductionMode mode)
{
switch (mode) {
case VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_EXT:
return V_008F30_SQ_IMG_FILTER_MODE_BLEND;
case VK_SAMPLER_REDUCTION_MODE_MIN_EXT:
return V_008F30_SQ_IMG_FILTER_MODE_MIN;
case VK_SAMPLER_REDUCTION_MODE_MAX_EXT:
return V_008F30_SQ_IMG_FILTER_MODE_MAX;
default:
break;
}
return 0;
}
static uint32_t
radv_get_max_anisotropy(struct radv_device *device,
const VkSamplerCreateInfo *pCreateInfo)
{
if (device->force_aniso >= 0)
return device->force_aniso;
if (pCreateInfo->anisotropyEnable &&
pCreateInfo->maxAnisotropy > 1.0f)
return (uint32_t)pCreateInfo->maxAnisotropy;
return 0;
}
static inline int S_FIXED(float value, unsigned frac_bits)
{
return value * (1 << frac_bits);
}
static uint32_t radv_register_border_color(struct radv_device *device,
VkClearColorValue value)
{
uint32_t slot;
pthread_mutex_lock(&device->border_color_data.mutex);
for (slot = 0; slot < RADV_BORDER_COLOR_COUNT; slot++) {
if (!device->border_color_data.used[slot]) {
/* Copy to the GPU wrt endian-ness. */
util_memcpy_cpu_to_le32(&device->border_color_data.colors_gpu_ptr[slot],
&value,
sizeof(VkClearColorValue));
device->border_color_data.used[slot] = true;
break;
}
}
pthread_mutex_unlock(&device->border_color_data.mutex);
return slot;
}
static void radv_unregister_border_color(struct radv_device *device,
uint32_t slot)
{
pthread_mutex_lock(&device->border_color_data.mutex);
device->border_color_data.used[slot] = false;
pthread_mutex_unlock(&device->border_color_data.mutex);
}
static void
radv_init_sampler(struct radv_device *device,
struct radv_sampler *sampler,
const VkSamplerCreateInfo *pCreateInfo)
{
uint32_t max_aniso = radv_get_max_anisotropy(device, pCreateInfo);
uint32_t max_aniso_ratio = radv_tex_aniso_filter(max_aniso);
bool compat_mode = device->physical_device->rad_info.chip_class == GFX8 ||
device->physical_device->rad_info.chip_class == GFX9;
unsigned filter_mode = V_008F30_SQ_IMG_FILTER_MODE_BLEND;
unsigned depth_compare_func = V_008F30_SQ_TEX_DEPTH_COMPARE_NEVER;
bool trunc_coord = pCreateInfo->minFilter == VK_FILTER_NEAREST && pCreateInfo->magFilter == VK_FILTER_NEAREST;
bool uses_border_color = pCreateInfo->addressModeU == VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER ||
pCreateInfo->addressModeV == VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER ||
pCreateInfo->addressModeW == VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER;
VkBorderColor border_color = uses_border_color ? pCreateInfo->borderColor : VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK;
uint32_t border_color_ptr;
const struct VkSamplerReductionModeCreateInfo *sampler_reduction =
vk_find_struct_const(pCreateInfo->pNext,
SAMPLER_REDUCTION_MODE_CREATE_INFO);
if (sampler_reduction)
filter_mode = radv_tex_filter_mode(sampler_reduction->reductionMode);
if (pCreateInfo->compareEnable)
depth_compare_func = radv_tex_compare(pCreateInfo->compareOp);
sampler->border_color_slot = RADV_BORDER_COLOR_COUNT;
if (border_color == VK_BORDER_COLOR_FLOAT_CUSTOM_EXT || border_color == VK_BORDER_COLOR_INT_CUSTOM_EXT) {
const VkSamplerCustomBorderColorCreateInfoEXT *custom_border_color =
vk_find_struct_const(pCreateInfo->pNext,
SAMPLER_CUSTOM_BORDER_COLOR_CREATE_INFO_EXT);
assert(custom_border_color);
sampler->border_color_slot =
radv_register_border_color(device, custom_border_color->customBorderColor);
/* Did we fail to find a slot? */
if (sampler->border_color_slot == RADV_BORDER_COLOR_COUNT) {
fprintf(stderr, "WARNING: no free border color slots, defaulting to TRANS_BLACK.\n");
border_color = VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK;
}
}
/* If we don't have a custom color, set the ptr to 0 */
border_color_ptr = sampler->border_color_slot != RADV_BORDER_COLOR_COUNT
? sampler->border_color_slot
: 0;
sampler->state[0] = (S_008F30_CLAMP_X(radv_tex_wrap(pCreateInfo->addressModeU)) |
S_008F30_CLAMP_Y(radv_tex_wrap(pCreateInfo->addressModeV)) |
S_008F30_CLAMP_Z(radv_tex_wrap(pCreateInfo->addressModeW)) |
S_008F30_MAX_ANISO_RATIO(max_aniso_ratio) |
S_008F30_DEPTH_COMPARE_FUNC(depth_compare_func) |
S_008F30_FORCE_UNNORMALIZED(pCreateInfo->unnormalizedCoordinates ? 1 : 0) |
S_008F30_ANISO_THRESHOLD(max_aniso_ratio >> 1) |
S_008F30_ANISO_BIAS(max_aniso_ratio) |
S_008F30_DISABLE_CUBE_WRAP(0) |
S_008F30_COMPAT_MODE(compat_mode) |
S_008F30_FILTER_MODE(filter_mode) |
S_008F30_TRUNC_COORD(trunc_coord));
sampler->state[1] = (S_008F34_MIN_LOD(S_FIXED(CLAMP(pCreateInfo->minLod, 0, 15), 8)) |
S_008F34_MAX_LOD(S_FIXED(CLAMP(pCreateInfo->maxLod, 0, 15), 8)) |
S_008F34_PERF_MIP(max_aniso_ratio ? max_aniso_ratio + 6 : 0));
sampler->state[2] = (S_008F38_LOD_BIAS(S_FIXED(CLAMP(pCreateInfo->mipLodBias, -16, 16), 8)) |
S_008F38_XY_MAG_FILTER(radv_tex_filter(pCreateInfo->magFilter, max_aniso)) |
S_008F38_XY_MIN_FILTER(radv_tex_filter(pCreateInfo->minFilter, max_aniso)) |
S_008F38_MIP_FILTER(radv_tex_mipfilter(pCreateInfo->mipmapMode)) |
S_008F38_MIP_POINT_PRECLAMP(0));
sampler->state[3] = (S_008F3C_BORDER_COLOR_PTR(border_color_ptr) |
S_008F3C_BORDER_COLOR_TYPE(radv_tex_bordercolor(border_color)));
if (device->physical_device->rad_info.chip_class >= GFX10) {
sampler->state[2] |= S_008F38_ANISO_OVERRIDE_GFX10(1);
} else {
sampler->state[2] |=
S_008F38_DISABLE_LSB_CEIL(device->physical_device->rad_info.chip_class <= GFX8) |
S_008F38_FILTER_PREC_FIX(1) |
S_008F38_ANISO_OVERRIDE_GFX8(device->physical_device->rad_info.chip_class >= GFX8);
}
}
VkResult radv_CreateSampler(
VkDevice _device,
const VkSamplerCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkSampler* pSampler)
{
RADV_FROM_HANDLE(radv_device, device, _device);
struct radv_sampler *sampler;
const struct VkSamplerYcbcrConversionInfo *ycbcr_conversion =
vk_find_struct_const(pCreateInfo->pNext,
SAMPLER_YCBCR_CONVERSION_INFO);
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO);
sampler = vk_alloc2(&device->vk.alloc, pAllocator, sizeof(*sampler), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (!sampler)
return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
vk_object_base_init(&device->vk, &sampler->base,
VK_OBJECT_TYPE_SAMPLER);
radv_init_sampler(device, sampler, pCreateInfo);
sampler->ycbcr_sampler = ycbcr_conversion ? radv_sampler_ycbcr_conversion_from_handle(ycbcr_conversion->conversion): NULL;
*pSampler = radv_sampler_to_handle(sampler);
return VK_SUCCESS;
}
void radv_DestroySampler(
VkDevice _device,
VkSampler _sampler,
const VkAllocationCallbacks* pAllocator)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_sampler, sampler, _sampler);
if (!sampler)
return;
if (sampler->border_color_slot != RADV_BORDER_COLOR_COUNT)
radv_unregister_border_color(device, sampler->border_color_slot);
vk_object_base_finish(&sampler->base);
vk_free2(&device->vk.alloc, pAllocator, sampler);
}
/* vk_icd.h does not declare this function, so we declare it here to
* suppress Wmissing-prototypes.
*/
PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t *pSupportedVersion);
PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t *pSupportedVersion)
{
/* For the full details on loader interface versioning, see
* <https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md>.
* What follows is a condensed summary, to help you navigate the large and
* confusing official doc.
*
* - Loader interface v0 is incompatible with later versions. We don't
* support it.
*
* - In loader interface v1:
* - The first ICD entrypoint called by the loader is
* vk_icdGetInstanceProcAddr(). The ICD must statically expose this
* entrypoint.
* - The ICD must statically expose no other Vulkan symbol unless it is
* linked with -Bsymbolic.
* - Each dispatchable Vulkan handle created by the ICD must be
* a pointer to a struct whose first member is VK_LOADER_DATA. The
* ICD must initialize VK_LOADER_DATA.loadMagic to ICD_LOADER_MAGIC.
* - The loader implements vkCreate{PLATFORM}SurfaceKHR() and
* vkDestroySurfaceKHR(). The ICD must be capable of working with
* such loader-managed surfaces.
*
* - Loader interface v2 differs from v1 in:
* - The first ICD entrypoint called by the loader is
* vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must
* statically expose this entrypoint.
*
* - Loader interface v3 differs from v2 in:
* - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(),
* vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR,
* because the loader no longer does so.
*/
*pSupportedVersion = MIN2(*pSupportedVersion, 4u);
return VK_SUCCESS;
}
VkResult radv_GetMemoryFdKHR(VkDevice _device,
const VkMemoryGetFdInfoKHR *pGetFdInfo,
int *pFD)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_device_memory, memory, pGetFdInfo->memory);
assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR);
/* At the moment, we support only the below handle types. */
assert(pGetFdInfo->handleType ==
VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
pGetFdInfo->handleType ==
VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
bool ret = radv_get_memory_fd(device, memory, pFD);
if (ret == false)
return vk_error(device->instance, VK_ERROR_OUT_OF_DEVICE_MEMORY);
return VK_SUCCESS;
}
static uint32_t radv_compute_valid_memory_types_attempt(struct radv_physical_device *dev,
enum radeon_bo_domain domains,
enum radeon_bo_flag flags,
enum radeon_bo_flag ignore_flags)
{
/* Don't count GTT/CPU as relevant:
*
* - We're not fully consistent between the two.
* - Sometimes VRAM gets VRAM|GTT.
*/
const enum radeon_bo_domain relevant_domains = RADEON_DOMAIN_VRAM |
RADEON_DOMAIN_GDS |
RADEON_DOMAIN_OA;
uint32_t bits = 0;
for (unsigned i = 0; i < dev->memory_properties.memoryTypeCount; ++i) {
if ((domains & relevant_domains) != (dev->memory_domains[i] & relevant_domains))
continue;
if ((flags & ~ignore_flags) != (dev->memory_flags[i] & ~ignore_flags))
continue;
bits |= 1u << i;
}
return bits;
}
static uint32_t radv_compute_valid_memory_types(struct radv_physical_device *dev,
enum radeon_bo_domain domains,
enum radeon_bo_flag flags)
{
enum radeon_bo_flag ignore_flags = ~(RADEON_FLAG_NO_CPU_ACCESS | RADEON_FLAG_GTT_WC);
uint32_t bits = radv_compute_valid_memory_types_attempt(dev, domains, flags, ignore_flags);
if (!bits) {
ignore_flags |= RADEON_FLAG_NO_CPU_ACCESS;
bits = radv_compute_valid_memory_types_attempt(dev, domains, flags, ignore_flags);
}
return bits;
}
VkResult radv_GetMemoryFdPropertiesKHR(VkDevice _device,
VkExternalMemoryHandleTypeFlagBits handleType,
int fd,
VkMemoryFdPropertiesKHR *pMemoryFdProperties)
{
RADV_FROM_HANDLE(radv_device, device, _device);
switch (handleType) {
case VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT: {
enum radeon_bo_domain domains;
enum radeon_bo_flag flags;
if (!device->ws->buffer_get_flags_from_fd(device->ws, fd, &domains, &flags))
return vk_error(device->instance, VK_ERROR_INVALID_EXTERNAL_HANDLE);
pMemoryFdProperties->memoryTypeBits = radv_compute_valid_memory_types(device->physical_device, domains, flags);
return VK_SUCCESS;
}
default:
/* The valid usage section for this function says:
*
* "handleType must not be one of the handle types defined as
* opaque."
*
* So opaque handle types fall into the default "unsupported" case.
*/
return vk_error(device->instance, VK_ERROR_INVALID_EXTERNAL_HANDLE);
}
}
static VkResult radv_import_opaque_fd(struct radv_device *device,
int fd,
uint32_t *syncobj)
{
uint32_t syncobj_handle = 0;
int ret = device->ws->import_syncobj(device->ws, fd, &syncobj_handle);
if (ret != 0)
return vk_error(device->instance, VK_ERROR_INVALID_EXTERNAL_HANDLE);
if (*syncobj)
device->ws->destroy_syncobj(device->ws, *syncobj);
*syncobj = syncobj_handle;
close(fd);
return VK_SUCCESS;
}
static VkResult radv_import_sync_fd(struct radv_device *device,
int fd,
uint32_t *syncobj)
{
/* If we create a syncobj we do it locally so that if we have an error, we don't
* leave a syncobj in an undetermined state in the fence. */
uint32_t syncobj_handle = *syncobj;
if (!syncobj_handle) {
bool create_signaled = fd == -1 ? true : false;
int ret = device->ws->create_syncobj(device->ws, create_signaled,
&syncobj_handle);
if (ret) {
return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
}
} else {
if (fd == -1)
device->ws->signal_syncobj(device->ws, syncobj_handle, 0);
}
if (fd != -1) {
int ret = device->ws->import_syncobj_from_sync_file(device->ws, syncobj_handle, fd);
if (ret)
return vk_error(device->instance, VK_ERROR_INVALID_EXTERNAL_HANDLE);
close(fd);
}
*syncobj = syncobj_handle;
return VK_SUCCESS;
}
VkResult radv_ImportSemaphoreFdKHR(VkDevice _device,
const VkImportSemaphoreFdInfoKHR *pImportSemaphoreFdInfo)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_semaphore, sem, pImportSemaphoreFdInfo->semaphore);
VkResult result;
struct radv_semaphore_part *dst = NULL;
bool timeline = sem->permanent.kind == RADV_SEMAPHORE_TIMELINE_SYNCOBJ;
if (pImportSemaphoreFdInfo->flags & VK_SEMAPHORE_IMPORT_TEMPORARY_BIT) {
assert(!timeline);
dst = &sem->temporary;
} else {
dst = &sem->permanent;
}
uint32_t syncobj = (dst->kind == RADV_SEMAPHORE_SYNCOBJ ||
dst->kind == RADV_SEMAPHORE_TIMELINE_SYNCOBJ) ? dst->syncobj : 0;
switch(pImportSemaphoreFdInfo->handleType) {
case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT:
result = radv_import_opaque_fd(device, pImportSemaphoreFdInfo->fd, &syncobj);
break;
case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT:
assert(!timeline);
result = radv_import_sync_fd(device, pImportSemaphoreFdInfo->fd, &syncobj);
break;
default:
unreachable("Unhandled semaphore handle type");
}
if (result == VK_SUCCESS) {
dst->syncobj = syncobj;
dst->kind = RADV_SEMAPHORE_SYNCOBJ;
if (timeline) {
dst->kind = RADV_SEMAPHORE_TIMELINE_SYNCOBJ;
dst->timeline_syncobj.max_point = 0;
}
}
return result;
}
VkResult radv_GetSemaphoreFdKHR(VkDevice _device,
const VkSemaphoreGetFdInfoKHR *pGetFdInfo,
int *pFd)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_semaphore, sem, pGetFdInfo->semaphore);
int ret;
uint32_t syncobj_handle;
if (sem->temporary.kind != RADV_SEMAPHORE_NONE) {
assert(sem->temporary.kind == RADV_SEMAPHORE_SYNCOBJ ||
sem->temporary.kind == RADV_SEMAPHORE_TIMELINE_SYNCOBJ);
syncobj_handle = sem->temporary.syncobj;
} else {
assert(sem->permanent.kind == RADV_SEMAPHORE_SYNCOBJ ||
sem->permanent.kind == RADV_SEMAPHORE_TIMELINE_SYNCOBJ);
syncobj_handle = sem->permanent.syncobj;
}
switch(pGetFdInfo->handleType) {
case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT:
ret = device->ws->export_syncobj(device->ws, syncobj_handle, pFd);
if (ret)
return vk_error(device->instance, VK_ERROR_TOO_MANY_OBJECTS);
break;
case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT:
ret = device->ws->export_syncobj_to_sync_file(device->ws, syncobj_handle, pFd);
if (ret)
return vk_error(device->instance, VK_ERROR_TOO_MANY_OBJECTS);
if (sem->temporary.kind != RADV_SEMAPHORE_NONE) {
radv_destroy_semaphore_part(device, &sem->temporary);
} else {
device->ws->reset_syncobj(device->ws, syncobj_handle);
}
break;
default:
unreachable("Unhandled semaphore handle type");
}
return VK_SUCCESS;
}
void radv_GetPhysicalDeviceExternalSemaphoreProperties(
VkPhysicalDevice physicalDevice,
const VkPhysicalDeviceExternalSemaphoreInfo *pExternalSemaphoreInfo,
VkExternalSemaphoreProperties *pExternalSemaphoreProperties)
{
RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice);
VkSemaphoreTypeKHR type = radv_get_semaphore_type(pExternalSemaphoreInfo->pNext, NULL);
if (type == VK_SEMAPHORE_TYPE_TIMELINE && pdevice->rad_info.has_timeline_syncobj &&
pExternalSemaphoreInfo->handleType == VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT) {
pExternalSemaphoreProperties->exportFromImportedHandleTypes = VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT;
pExternalSemaphoreProperties->compatibleHandleTypes = VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT;
pExternalSemaphoreProperties->externalSemaphoreFeatures = VK_EXTERNAL_SEMAPHORE_FEATURE_EXPORTABLE_BIT |
VK_EXTERNAL_SEMAPHORE_FEATURE_IMPORTABLE_BIT;
} else if (type == VK_SEMAPHORE_TYPE_TIMELINE) {
pExternalSemaphoreProperties->exportFromImportedHandleTypes = 0;
pExternalSemaphoreProperties->compatibleHandleTypes = 0;
pExternalSemaphoreProperties->externalSemaphoreFeatures = 0;
/* Require has_syncobj_wait_for_submit for the syncobj signal ioctl introduced at virtually the same time */
} else if (pdevice->rad_info.has_syncobj_wait_for_submit &&
(pExternalSemaphoreInfo->handleType == VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT ||
pExternalSemaphoreInfo->handleType == VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT)) {
pExternalSemaphoreProperties->exportFromImportedHandleTypes = VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT | VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT;
pExternalSemaphoreProperties->compatibleHandleTypes = VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT | VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT;
pExternalSemaphoreProperties->externalSemaphoreFeatures = VK_EXTERNAL_SEMAPHORE_FEATURE_EXPORTABLE_BIT |
VK_EXTERNAL_SEMAPHORE_FEATURE_IMPORTABLE_BIT;
} else if (pExternalSemaphoreInfo->handleType == VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT) {
pExternalSemaphoreProperties->exportFromImportedHandleTypes = VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT;
pExternalSemaphoreProperties->compatibleHandleTypes = VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT;
pExternalSemaphoreProperties->externalSemaphoreFeatures = VK_EXTERNAL_SEMAPHORE_FEATURE_EXPORTABLE_BIT |
VK_EXTERNAL_SEMAPHORE_FEATURE_IMPORTABLE_BIT;
} else {
pExternalSemaphoreProperties->exportFromImportedHandleTypes = 0;
pExternalSemaphoreProperties->compatibleHandleTypes = 0;
pExternalSemaphoreProperties->externalSemaphoreFeatures = 0;
}
}
VkResult radv_ImportFenceFdKHR(VkDevice _device,
const VkImportFenceFdInfoKHR *pImportFenceFdInfo)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_fence, fence, pImportFenceFdInfo->fence);
struct radv_fence_part *dst = NULL;
VkResult result;
if (pImportFenceFdInfo->flags & VK_FENCE_IMPORT_TEMPORARY_BIT) {
dst = &fence->temporary;
} else {
dst = &fence->permanent;
}
uint32_t syncobj = dst->kind == RADV_FENCE_SYNCOBJ ? dst->syncobj : 0;
switch(pImportFenceFdInfo->handleType) {
case VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_FD_BIT:
result = radv_import_opaque_fd(device, pImportFenceFdInfo->fd, &syncobj);
break;
case VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT:
result = radv_import_sync_fd(device, pImportFenceFdInfo->fd, &syncobj);
break;
default:
unreachable("Unhandled fence handle type");
}
if (result == VK_SUCCESS) {
dst->syncobj = syncobj;
dst->kind = RADV_FENCE_SYNCOBJ;
}
return result;
}
VkResult radv_GetFenceFdKHR(VkDevice _device,
const VkFenceGetFdInfoKHR *pGetFdInfo,
int *pFd)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_fence, fence, pGetFdInfo->fence);
int ret;
struct radv_fence_part *part =
fence->temporary.kind != RADV_FENCE_NONE ?
&fence->temporary : &fence->permanent;
switch(pGetFdInfo->handleType) {
case VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_FD_BIT:
ret = device->ws->export_syncobj(device->ws, part->syncobj, pFd);
if (ret)
return vk_error(device->instance, VK_ERROR_TOO_MANY_OBJECTS);
break;
case VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT:
ret = device->ws->export_syncobj_to_sync_file(device->ws,
part->syncobj, pFd);
if (ret)
return vk_error(device->instance, VK_ERROR_TOO_MANY_OBJECTS);
if (part == &fence->temporary) {
radv_destroy_fence_part(device, part);
} else {
device->ws->reset_syncobj(device->ws, part->syncobj);
}
break;
default:
unreachable("Unhandled fence handle type");
}
return VK_SUCCESS;
}
void radv_GetPhysicalDeviceExternalFenceProperties(
VkPhysicalDevice physicalDevice,
const VkPhysicalDeviceExternalFenceInfo *pExternalFenceInfo,
VkExternalFenceProperties *pExternalFenceProperties)
{
RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice);
if (pdevice->rad_info.has_syncobj_wait_for_submit &&
(pExternalFenceInfo->handleType == VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_FD_BIT ||
pExternalFenceInfo->handleType == VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT)) {
pExternalFenceProperties->exportFromImportedHandleTypes = VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_FD_BIT | VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT;
pExternalFenceProperties->compatibleHandleTypes = VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_FD_BIT | VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT;
pExternalFenceProperties->externalFenceFeatures = VK_EXTERNAL_FENCE_FEATURE_EXPORTABLE_BIT |
VK_EXTERNAL_SEMAPHORE_FEATURE_IMPORTABLE_BIT;
} else {
pExternalFenceProperties->exportFromImportedHandleTypes = 0;
pExternalFenceProperties->compatibleHandleTypes = 0;
pExternalFenceProperties->externalFenceFeatures = 0;
}
}
VkResult
radv_CreateDebugReportCallbackEXT(VkInstance _instance,
const VkDebugReportCallbackCreateInfoEXT* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkDebugReportCallbackEXT* pCallback)
{
RADV_FROM_HANDLE(radv_instance, instance, _instance);
return vk_create_debug_report_callback(&instance->debug_report_callbacks,
pCreateInfo, pAllocator, &instance->alloc,
pCallback);
}
void
radv_DestroyDebugReportCallbackEXT(VkInstance _instance,
VkDebugReportCallbackEXT _callback,
const VkAllocationCallbacks* pAllocator)
{
RADV_FROM_HANDLE(radv_instance, instance, _instance);
vk_destroy_debug_report_callback(&instance->debug_report_callbacks,
_callback, pAllocator, &instance->alloc);
}
void
radv_DebugReportMessageEXT(VkInstance _instance,
VkDebugReportFlagsEXT flags,
VkDebugReportObjectTypeEXT objectType,
uint64_t object,
size_t location,
int32_t messageCode,
const char* pLayerPrefix,
const char* pMessage)
{
RADV_FROM_HANDLE(radv_instance, instance, _instance);
vk_debug_report(&instance->debug_report_callbacks, flags, objectType,
object, location, messageCode, pLayerPrefix, pMessage);
}
void
radv_GetDeviceGroupPeerMemoryFeatures(
VkDevice device,
uint32_t heapIndex,
uint32_t localDeviceIndex,
uint32_t remoteDeviceIndex,
VkPeerMemoryFeatureFlags* pPeerMemoryFeatures)
{
assert(localDeviceIndex == remoteDeviceIndex);
*pPeerMemoryFeatures = VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT |
VK_PEER_MEMORY_FEATURE_COPY_DST_BIT |
VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT |
VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT;
}
static const VkTimeDomainEXT radv_time_domains[] = {
VK_TIME_DOMAIN_DEVICE_EXT,
VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT,
#ifdef CLOCK_MONOTONIC_RAW
VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT,
#endif
};
VkResult radv_GetPhysicalDeviceCalibrateableTimeDomainsEXT(
VkPhysicalDevice physicalDevice,
uint32_t *pTimeDomainCount,
VkTimeDomainEXT *pTimeDomains)
{
int d;
VK_OUTARRAY_MAKE(out, pTimeDomains, pTimeDomainCount);
for (d = 0; d < ARRAY_SIZE(radv_time_domains); d++) {
vk_outarray_append(&out, i) {
*i = radv_time_domains[d];
}
}
return vk_outarray_status(&out);
}
static uint64_t
radv_clock_gettime(clockid_t clock_id)
{
struct timespec current;
int ret;
ret = clock_gettime(clock_id, &current);
#ifdef CLOCK_MONOTONIC_RAW
if (ret < 0 && clock_id == CLOCK_MONOTONIC_RAW)
ret = clock_gettime(CLOCK_MONOTONIC, &current);
#endif
if (ret < 0)
return 0;
return (uint64_t) current.tv_sec * 1000000000ULL + current.tv_nsec;
}
VkResult radv_GetCalibratedTimestampsEXT(
VkDevice _device,
uint32_t timestampCount,
const VkCalibratedTimestampInfoEXT *pTimestampInfos,
uint64_t *pTimestamps,
uint64_t *pMaxDeviation)
{
RADV_FROM_HANDLE(radv_device, device, _device);
uint32_t clock_crystal_freq = device->physical_device->rad_info.clock_crystal_freq;
int d;
uint64_t begin, end;
uint64_t max_clock_period = 0;
#ifdef CLOCK_MONOTONIC_RAW
begin = radv_clock_gettime(CLOCK_MONOTONIC_RAW);
#else
begin = radv_clock_gettime(CLOCK_MONOTONIC);
#endif
for (d = 0; d < timestampCount; d++) {
switch (pTimestampInfos[d].timeDomain) {
case VK_TIME_DOMAIN_DEVICE_EXT:
pTimestamps[d] = device->ws->query_value(device->ws,
RADEON_TIMESTAMP);
uint64_t device_period = DIV_ROUND_UP(1000000, clock_crystal_freq);
max_clock_period = MAX2(max_clock_period, device_period);
break;
case VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT:
pTimestamps[d] = radv_clock_gettime(CLOCK_MONOTONIC);
max_clock_period = MAX2(max_clock_period, 1);
break;
#ifdef CLOCK_MONOTONIC_RAW
case VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT:
pTimestamps[d] = begin;
break;
#endif
default:
pTimestamps[d] = 0;
break;
}
}
#ifdef CLOCK_MONOTONIC_RAW
end = radv_clock_gettime(CLOCK_MONOTONIC_RAW);
#else
end = radv_clock_gettime(CLOCK_MONOTONIC);
#endif
/*
* The maximum deviation is the sum of the interval over which we
* perform the sampling and the maximum period of any sampled
* clock. That's because the maximum skew between any two sampled
* clock edges is when the sampled clock with the largest period is
* sampled at the end of that period but right at the beginning of the
* sampling interval and some other clock is sampled right at the
* begining of its sampling period and right at the end of the
* sampling interval. Let's assume the GPU has the longest clock
* period and that the application is sampling GPU and monotonic:
*
* s e
* w x y z 0 1 2 3 4 5 6 7 8 9 a b c d e f
* Raw -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
*
* g
* 0 1 2 3
* GPU -----_____-----_____-----_____-----_____
*
* m
* x y z 0 1 2 3 4 5 6 7 8 9 a b c
* Monotonic -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
*
* Interval <----------------->
* Deviation <-------------------------->
*
* s = read(raw) 2
* g = read(GPU) 1
* m = read(monotonic) 2
* e = read(raw) b
*
* We round the sample interval up by one tick to cover sampling error
* in the interval clock
*/
uint64_t sample_interval = end - begin + 1;
*pMaxDeviation = sample_interval + max_clock_period;
return VK_SUCCESS;
}
void radv_GetPhysicalDeviceMultisamplePropertiesEXT(
VkPhysicalDevice physicalDevice,
VkSampleCountFlagBits samples,
VkMultisamplePropertiesEXT* pMultisampleProperties)
{
if (samples & (VK_SAMPLE_COUNT_2_BIT |
VK_SAMPLE_COUNT_4_BIT |
VK_SAMPLE_COUNT_8_BIT)) {
pMultisampleProperties->maxSampleLocationGridSize = (VkExtent2D){ 2, 2 };
} else {
pMultisampleProperties->maxSampleLocationGridSize = (VkExtent2D){ 0, 0 };
}
}
VkResult radv_CreatePrivateDataSlotEXT(
VkDevice _device,
const VkPrivateDataSlotCreateInfoEXT* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkPrivateDataSlotEXT* pPrivateDataSlot)
{
RADV_FROM_HANDLE(radv_device, device, _device);
return vk_private_data_slot_create(&device->vk, pCreateInfo, pAllocator,
pPrivateDataSlot);
}
void radv_DestroyPrivateDataSlotEXT(
VkDevice _device,
VkPrivateDataSlotEXT privateDataSlot,
const VkAllocationCallbacks* pAllocator)
{
RADV_FROM_HANDLE(radv_device, device, _device);
vk_private_data_slot_destroy(&device->vk, privateDataSlot, pAllocator);
}
VkResult radv_SetPrivateDataEXT(
VkDevice _device,
VkObjectType objectType,
uint64_t objectHandle,
VkPrivateDataSlotEXT privateDataSlot,
uint64_t data)
{
RADV_FROM_HANDLE(radv_device, device, _device);
return vk_object_base_set_private_data(&device->vk, objectType,
objectHandle, privateDataSlot,
data);
}
void radv_GetPrivateDataEXT(
VkDevice _device,
VkObjectType objectType,
uint64_t objectHandle,
VkPrivateDataSlotEXT privateDataSlot,
uint64_t* pData)
{
RADV_FROM_HANDLE(radv_device, device, _device);
vk_object_base_get_private_data(&device->vk, objectType, objectHandle,
privateDataSlot, pData);
}