blob: c465a866d249e05f756709862f0211b91c4e75e2 [file] [log] [blame]
/*
* Copyright 2018 Collabora Ltd.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* on the rights to use, copy, modify, merge, publish, distribute, sub
* license, and/or sell copies of the Software, and to permit persons to whom
* the Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "nir_to_spirv.h"
#include "spirv_builder.h"
#include "nir.h"
#include "pipe/p_state.h"
#include "util/u_memory.h"
struct ntv_context {
struct spirv_builder builder;
SpvId GLSL_std_450;
gl_shader_stage stage;
SpvId inputs[PIPE_MAX_SHADER_INPUTS][4];
SpvId input_types[PIPE_MAX_SHADER_INPUTS][4];
SpvId outputs[PIPE_MAX_SHADER_OUTPUTS][4];
SpvId output_types[PIPE_MAX_SHADER_OUTPUTS][4];
SpvId ubos[128];
size_t num_ubos;
SpvId samplers[PIPE_MAX_SAMPLERS];
size_t num_samplers;
SpvId entry_ifaces[PIPE_MAX_SHADER_INPUTS * 4 + PIPE_MAX_SHADER_OUTPUTS * 4];
size_t num_entry_ifaces;
SpvId *defs;
size_t num_defs;
struct hash_table *vars;
const SpvId *block_ids;
size_t num_blocks;
bool block_started;
SpvId loop_break, loop_cont;
};
static SpvId
get_fvec_constant(struct ntv_context *ctx, int bit_size, int num_components,
const float values[]);
static SpvId
get_uvec_constant(struct ntv_context *ctx, int bit_size, int num_components,
const uint32_t values[]);
static SpvId
emit_unop(struct ntv_context *ctx, SpvOp op, SpvId type, SpvId src);
static SpvId
emit_binop(struct ntv_context *ctx, SpvOp op, SpvId type,
SpvId src0, SpvId src1);
static SpvId
emit_triop(struct ntv_context *ctx, SpvOp op, SpvId type,
SpvId src0, SpvId src1, SpvId src2);
static SpvId
get_bvec_type(struct ntv_context *ctx, int num_components)
{
SpvId bool_type = spirv_builder_type_bool(&ctx->builder);
if (num_components > 1)
return spirv_builder_type_vector(&ctx->builder, bool_type,
num_components);
assert(num_components == 1);
return bool_type;
}
static SpvId
block_label(struct ntv_context *ctx, nir_block *block)
{
assert(block->index < ctx->num_blocks);
return ctx->block_ids[block->index];
}
static SpvId
get_fvec_type(struct ntv_context *ctx, unsigned bit_size, unsigned num_components)
{
assert(bit_size == 32); // only 32-bit floats supported so far
SpvId float_type = spirv_builder_type_float(&ctx->builder, bit_size);
if (num_components > 1)
return spirv_builder_type_vector(&ctx->builder, float_type,
num_components);
assert(num_components == 1);
return float_type;
}
static SpvId
get_ivec_type(struct ntv_context *ctx, unsigned bit_size, unsigned num_components)
{
assert(bit_size == 32); // only 32-bit ints supported so far
SpvId int_type = spirv_builder_type_int(&ctx->builder, bit_size);
if (num_components > 1)
return spirv_builder_type_vector(&ctx->builder, int_type,
num_components);
assert(num_components == 1);
return int_type;
}
static SpvId
get_uvec_type(struct ntv_context *ctx, unsigned bit_size, unsigned num_components)
{
assert(bit_size == 32); // only 32-bit uints supported so far
SpvId uint_type = spirv_builder_type_uint(&ctx->builder, bit_size);
if (num_components > 1)
return spirv_builder_type_vector(&ctx->builder, uint_type,
num_components);
assert(num_components == 1);
return uint_type;
}
static SpvId
get_dest_uvec_type(struct ntv_context *ctx, nir_dest *dest)
{
return get_uvec_type(ctx, nir_dest_bit_size(*dest),
nir_dest_num_components(*dest));
}
static SpvId
get_glsl_basetype(struct ntv_context *ctx, enum glsl_base_type type)
{
switch (type) {
case GLSL_TYPE_FLOAT:
return spirv_builder_type_float(&ctx->builder, 32);
case GLSL_TYPE_INT:
return spirv_builder_type_int(&ctx->builder, 32);
case GLSL_TYPE_UINT:
return spirv_builder_type_uint(&ctx->builder, 32);
/* TODO: handle more types */
default:
unreachable("unknown GLSL type");
}
}
static SpvId
get_glsl_type(struct ntv_context *ctx, const struct glsl_type *type)
{
assert(type);
if (glsl_type_is_scalar(type))
return get_glsl_basetype(ctx, glsl_get_base_type(type));
if (glsl_type_is_vector(type))
return spirv_builder_type_vector(&ctx->builder,
get_glsl_basetype(ctx, glsl_get_base_type(type)),
glsl_get_vector_elements(type));
unreachable("we shouldn't get here, I think...");
}
static void
emit_input(struct ntv_context *ctx, struct nir_variable *var)
{
SpvId vec_type = get_glsl_type(ctx, var->type);
SpvId pointer_type = spirv_builder_type_pointer(&ctx->builder,
SpvStorageClassInput,
vec_type);
SpvId var_id = spirv_builder_emit_var(&ctx->builder, pointer_type,
SpvStorageClassInput);
if (var->name)
spirv_builder_emit_name(&ctx->builder, var_id, var->name);
if (ctx->stage == MESA_SHADER_FRAGMENT) {
switch (var->data.location) {
case VARYING_SLOT_POS:
spirv_builder_emit_builtin(&ctx->builder, var_id, SpvBuiltInFragCoord);
break;
case VARYING_SLOT_PNTC:
spirv_builder_emit_builtin(&ctx->builder, var_id, SpvBuiltInPointCoord);
break;
default:
spirv_builder_emit_location(&ctx->builder, var_id,
var->data.driver_location);
break;
}
} else {
spirv_builder_emit_location(&ctx->builder, var_id,
var->data.driver_location);
}
if (var->data.location_frac)
spirv_builder_emit_component(&ctx->builder, var_id,
var->data.location_frac);
if (var->data.interpolation == INTERP_MODE_FLAT)
spirv_builder_emit_decoration(&ctx->builder, var_id, SpvDecorationFlat);
assert(var->data.driver_location < PIPE_MAX_SHADER_INPUTS);
assert(var->data.location_frac < 4);
assert(ctx->inputs[var->data.driver_location][var->data.location_frac] == 0);
ctx->inputs[var->data.driver_location][var->data.location_frac] = var_id;
ctx->input_types[var->data.driver_location][var->data.location_frac] = vec_type;
assert(ctx->num_entry_ifaces < ARRAY_SIZE(ctx->entry_ifaces));
ctx->entry_ifaces[ctx->num_entry_ifaces++] = var_id;
}
static void
emit_output(struct ntv_context *ctx, struct nir_variable *var)
{
SpvId vec_type = get_glsl_type(ctx, var->type);
SpvId pointer_type = spirv_builder_type_pointer(&ctx->builder,
SpvStorageClassOutput,
vec_type);
SpvId var_id = spirv_builder_emit_var(&ctx->builder, pointer_type,
SpvStorageClassOutput);
if (var->name)
spirv_builder_emit_name(&ctx->builder, var_id, var->name);
if (ctx->stage == MESA_SHADER_VERTEX) {
switch (var->data.location) {
case VARYING_SLOT_POS:
spirv_builder_emit_builtin(&ctx->builder, var_id, SpvBuiltInPosition);
break;
case VARYING_SLOT_PSIZ:
spirv_builder_emit_builtin(&ctx->builder, var_id, SpvBuiltInPointSize);
break;
default:
spirv_builder_emit_location(&ctx->builder, var_id,
var->data.driver_location - 1);
}
} else if (ctx->stage == MESA_SHADER_FRAGMENT) {
switch (var->data.location) {
case FRAG_RESULT_DEPTH:
spirv_builder_emit_builtin(&ctx->builder, var_id, SpvBuiltInFragDepth);
break;
default:
spirv_builder_emit_location(&ctx->builder, var_id,
var->data.driver_location);
}
}
if (var->data.location_frac)
spirv_builder_emit_component(&ctx->builder, var_id,
var->data.location_frac);
assert(var->data.driver_location < PIPE_MAX_SHADER_INPUTS);
assert(var->data.location_frac < 4);
assert(ctx->outputs[var->data.driver_location][var->data.location_frac] == 0);
ctx->outputs[var->data.driver_location][var->data.location_frac] = var_id;
ctx->output_types[var->data.driver_location][var->data.location_frac] = vec_type;
assert(ctx->num_entry_ifaces < ARRAY_SIZE(ctx->entry_ifaces));
ctx->entry_ifaces[ctx->num_entry_ifaces++] = var_id;
}
static SpvDim
type_to_dim(enum glsl_sampler_dim gdim, bool *is_ms)
{
*is_ms = false;
switch (gdim) {
case GLSL_SAMPLER_DIM_1D:
return SpvDim1D;
case GLSL_SAMPLER_DIM_2D:
return SpvDim2D;
case GLSL_SAMPLER_DIM_RECT:
return SpvDimRect;
case GLSL_SAMPLER_DIM_CUBE:
return SpvDimCube;
case GLSL_SAMPLER_DIM_3D:
return SpvDim3D;
case GLSL_SAMPLER_DIM_MS:
*is_ms = true;
return SpvDim2D;
default:
fprintf(stderr, "unknown sampler type %d\n", gdim);
break;
}
return SpvDim2D;
}
static void
emit_sampler(struct ntv_context *ctx, struct nir_variable *var)
{
bool is_ms;
SpvDim dimension = type_to_dim(glsl_get_sampler_dim(var->type), &is_ms);
SpvId float_type = spirv_builder_type_float(&ctx->builder, 32);
SpvId image_type = spirv_builder_type_image(&ctx->builder, float_type,
dimension, false, glsl_sampler_type_is_array(var->type), is_ms, 1,
SpvImageFormatUnknown);
SpvId sampled_type = spirv_builder_type_sampled_image(&ctx->builder,
image_type);
SpvId pointer_type = spirv_builder_type_pointer(&ctx->builder,
SpvStorageClassUniformConstant,
sampled_type);
SpvId var_id = spirv_builder_emit_var(&ctx->builder, pointer_type,
SpvStorageClassUniformConstant);
if (var->name)
spirv_builder_emit_name(&ctx->builder, var_id, var->name);
assert(ctx->num_samplers < ARRAY_SIZE(ctx->samplers));
ctx->samplers[ctx->num_samplers++] = var_id;
spirv_builder_emit_descriptor_set(&ctx->builder, var_id,
var->data.descriptor_set);
spirv_builder_emit_binding(&ctx->builder, var_id, var->data.binding);
}
static void
emit_ubo(struct ntv_context *ctx, struct nir_variable *var)
{
uint32_t size = glsl_count_attribute_slots(var->type, false);
SpvId vec4_type = get_uvec_type(ctx, 32, 4);
SpvId array_length = spirv_builder_const_uint(&ctx->builder, 32, size);
SpvId array_type = spirv_builder_type_array(&ctx->builder, vec4_type,
array_length);
spirv_builder_emit_array_stride(&ctx->builder, array_type, 16);
// wrap UBO-array in a struct
SpvId struct_type = spirv_builder_type_struct(&ctx->builder, &array_type, 1);
if (var->name) {
char struct_name[100];
snprintf(struct_name, sizeof(struct_name), "struct_%s", var->name);
spirv_builder_emit_name(&ctx->builder, struct_type, struct_name);
}
spirv_builder_emit_decoration(&ctx->builder, struct_type,
SpvDecorationBlock);
spirv_builder_emit_member_offset(&ctx->builder, struct_type, 0, 0);
SpvId pointer_type = spirv_builder_type_pointer(&ctx->builder,
SpvStorageClassUniform,
struct_type);
SpvId var_id = spirv_builder_emit_var(&ctx->builder, pointer_type,
SpvStorageClassUniform);
if (var->name)
spirv_builder_emit_name(&ctx->builder, var_id, var->name);
assert(ctx->num_ubos < ARRAY_SIZE(ctx->ubos));
ctx->ubos[ctx->num_ubos++] = var_id;
spirv_builder_emit_descriptor_set(&ctx->builder, var_id,
var->data.descriptor_set);
spirv_builder_emit_binding(&ctx->builder, var_id, var->data.binding);
}
static void
emit_uniform(struct ntv_context *ctx, struct nir_variable *var)
{
if (glsl_type_is_sampler(var->type))
emit_sampler(ctx, var);
else if (var->interface_type)
emit_ubo(ctx, var);
}
static SpvId
get_src_uint_ssa(struct ntv_context *ctx, const nir_ssa_def *ssa)
{
assert(ssa->index < ctx->num_defs);
assert(ctx->defs[ssa->index] != 0);
return ctx->defs[ssa->index];
}
static SpvId
get_var_from_reg(struct ntv_context *ctx, nir_register *reg)
{
struct hash_entry *he = _mesa_hash_table_search(ctx->vars, reg);
if (!he) {
SpvId type = get_uvec_type(ctx, reg->bit_size, reg->num_components);
SpvId pointer_type = spirv_builder_type_pointer(&ctx->builder,
SpvStorageClassFunction,
type);
SpvId var = spirv_builder_emit_var(&ctx->builder, pointer_type,
SpvStorageClassFunction);
he = _mesa_hash_table_insert(ctx->vars, reg, (void *)(intptr_t)var);
}
return (SpvId)(intptr_t)he->data;
}
static SpvId
get_src_uint_reg(struct ntv_context *ctx, const nir_reg_src *reg)
{
assert(reg->reg);
assert(!reg->indirect);
assert(!reg->base_offset);
SpvId var = get_var_from_reg(ctx, reg->reg);
SpvId type = get_uvec_type(ctx, reg->reg->bit_size, reg->reg->num_components);
return spirv_builder_emit_load(&ctx->builder, type, var);
}
static SpvId
get_src_uint(struct ntv_context *ctx, nir_src *src)
{
if (src->is_ssa)
return get_src_uint_ssa(ctx, src->ssa);
else
return get_src_uint_reg(ctx, &src->reg);
}
static SpvId
get_alu_src_uint(struct ntv_context *ctx, nir_alu_instr *alu, unsigned src)
{
assert(!alu->src[src].negate);
assert(!alu->src[src].abs);
SpvId def = get_src_uint(ctx, &alu->src[src].src);
unsigned used_channels = 0;
bool need_swizzle = false;
for (unsigned i = 0; i < NIR_MAX_VEC_COMPONENTS; i++) {
if (!nir_alu_instr_channel_used(alu, src, i))
continue;
used_channels++;
if (alu->src[src].swizzle[i] != i)
need_swizzle = true;
}
assert(used_channels != 0);
unsigned live_channels = nir_src_num_components(alu->src[src].src);
if (used_channels != live_channels)
need_swizzle = true;
if (!need_swizzle)
return def;
int bit_size = nir_src_bit_size(alu->src[src].src);
SpvId uint_type = spirv_builder_type_uint(&ctx->builder, bit_size);
if (used_channels == 1) {
uint32_t indices[] = { alu->src[src].swizzle[0] };
return spirv_builder_emit_composite_extract(&ctx->builder, uint_type,
def, indices,
ARRAY_SIZE(indices));
} else if (live_channels == 1) {
SpvId uvec_type = spirv_builder_type_vector(&ctx->builder, uint_type,
used_channels);
SpvId constituents[NIR_MAX_VEC_COMPONENTS];
for (unsigned i = 0; i < used_channels; ++i)
constituents[i] = def;
return spirv_builder_emit_composite_construct(&ctx->builder, uvec_type,
constituents,
used_channels);
} else {
SpvId uvec_type = spirv_builder_type_vector(&ctx->builder, uint_type,
used_channels);
uint32_t components[NIR_MAX_VEC_COMPONENTS];
size_t num_components = 0;
for (unsigned i = 0; i < NIR_MAX_VEC_COMPONENTS; i++) {
if (!nir_alu_instr_channel_used(alu, src, i))
continue;
components[num_components++] = alu->src[src].swizzle[i];
}
return spirv_builder_emit_vector_shuffle(&ctx->builder, uvec_type,
def, def, components, num_components);
}
}
static void
store_ssa_def_uint(struct ntv_context *ctx, nir_ssa_def *ssa, SpvId result)
{
assert(result != 0);
assert(ssa->index < ctx->num_defs);
ctx->defs[ssa->index] = result;
}
static SpvId
bvec_to_uvec(struct ntv_context *ctx, SpvId value, unsigned num_components)
{
SpvId otype = get_uvec_type(ctx, 32, num_components);
uint32_t zeros[4] = { 0, 0, 0, 0 };
uint32_t ones[4] = { 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff };
SpvId zero = get_uvec_constant(ctx, 32, num_components, zeros);
SpvId one = get_uvec_constant(ctx, 32, num_components, ones);
return emit_triop(ctx, SpvOpSelect, otype, value, one, zero);
}
static SpvId
uvec_to_bvec(struct ntv_context *ctx, SpvId value, unsigned num_components)
{
SpvId type = get_bvec_type(ctx, num_components);
uint32_t zeros[NIR_MAX_VEC_COMPONENTS] = { 0 };
SpvId zero = get_uvec_constant(ctx, 32, num_components, zeros);
return emit_binop(ctx, SpvOpINotEqual, type, value, zero);
}
static SpvId
bitcast_to_uvec(struct ntv_context *ctx, SpvId value, unsigned bit_size,
unsigned num_components)
{
SpvId type = get_uvec_type(ctx, bit_size, num_components);
return emit_unop(ctx, SpvOpBitcast, type, value);
}
static SpvId
bitcast_to_ivec(struct ntv_context *ctx, SpvId value, unsigned bit_size,
unsigned num_components)
{
SpvId type = get_ivec_type(ctx, bit_size, num_components);
return emit_unop(ctx, SpvOpBitcast, type, value);
}
static SpvId
bitcast_to_fvec(struct ntv_context *ctx, SpvId value, unsigned bit_size,
unsigned num_components)
{
SpvId type = get_fvec_type(ctx, bit_size, num_components);
return emit_unop(ctx, SpvOpBitcast, type, value);
}
static void
store_reg_def(struct ntv_context *ctx, nir_reg_dest *reg, SpvId result)
{
SpvId var = get_var_from_reg(ctx, reg->reg);
assert(var);
spirv_builder_emit_store(&ctx->builder, var, result);
}
static void
store_dest_uint(struct ntv_context *ctx, nir_dest *dest, SpvId result)
{
if (dest->is_ssa)
store_ssa_def_uint(ctx, &dest->ssa, result);
else
store_reg_def(ctx, &dest->reg, result);
}
static void
store_dest(struct ntv_context *ctx, nir_dest *dest, SpvId result, nir_alu_type type)
{
unsigned num_components = nir_dest_num_components(*dest);
unsigned bit_size = nir_dest_bit_size(*dest);
switch (nir_alu_type_get_base_type(type)) {
case nir_type_bool:
assert(bit_size == 1);
result = bvec_to_uvec(ctx, result, num_components);
break;
case nir_type_uint:
break; /* nothing to do! */
case nir_type_int:
case nir_type_float:
result = bitcast_to_uvec(ctx, result, bit_size, num_components);
break;
default:
unreachable("unsupported nir_alu_type");
}
store_dest_uint(ctx, dest, result);
}
static SpvId
emit_unop(struct ntv_context *ctx, SpvOp op, SpvId type, SpvId src)
{
return spirv_builder_emit_unop(&ctx->builder, op, type, src);
}
static SpvId
emit_binop(struct ntv_context *ctx, SpvOp op, SpvId type,
SpvId src0, SpvId src1)
{
return spirv_builder_emit_binop(&ctx->builder, op, type, src0, src1);
}
static SpvId
emit_triop(struct ntv_context *ctx, SpvOp op, SpvId type,
SpvId src0, SpvId src1, SpvId src2)
{
return spirv_builder_emit_triop(&ctx->builder, op, type, src0, src1, src2);
}
static SpvId
emit_builtin_unop(struct ntv_context *ctx, enum GLSLstd450 op, SpvId type,
SpvId src)
{
SpvId args[] = { src };
return spirv_builder_emit_ext_inst(&ctx->builder, type, ctx->GLSL_std_450,
op, args, ARRAY_SIZE(args));
}
static SpvId
emit_builtin_binop(struct ntv_context *ctx, enum GLSLstd450 op, SpvId type,
SpvId src0, SpvId src1)
{
SpvId args[] = { src0, src1 };
return spirv_builder_emit_ext_inst(&ctx->builder, type, ctx->GLSL_std_450,
op, args, ARRAY_SIZE(args));
}
static SpvId
get_fvec_constant(struct ntv_context *ctx, int bit_size, int num_components,
const float values[])
{
assert(bit_size == 32);
if (num_components > 1) {
SpvId components[num_components];
for (int i = 0; i < num_components; i++)
components[i] = spirv_builder_const_float(&ctx->builder, bit_size,
values[i]);
SpvId type = get_fvec_type(ctx, bit_size, num_components);
return spirv_builder_const_composite(&ctx->builder, type, components,
num_components);
}
assert(num_components == 1);
return spirv_builder_const_float(&ctx->builder, bit_size, values[0]);
}
static SpvId
get_uvec_constant(struct ntv_context *ctx, int bit_size, int num_components,
const uint32_t values[])
{
assert(bit_size == 32);
if (num_components > 1) {
SpvId components[num_components];
for (int i = 0; i < num_components; i++)
components[i] = spirv_builder_const_uint(&ctx->builder, bit_size,
values[i]);
SpvId type = get_uvec_type(ctx, bit_size, num_components);
return spirv_builder_const_composite(&ctx->builder, type, components,
num_components);
}
assert(num_components == 1);
return spirv_builder_const_uint(&ctx->builder, bit_size, values[0]);
}
static inline unsigned
alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
{
if (nir_op_infos[instr->op].input_sizes[src] > 0)
return nir_op_infos[instr->op].input_sizes[src];
if (instr->dest.dest.is_ssa)
return instr->dest.dest.ssa.num_components;
else
return instr->dest.dest.reg.reg->num_components;
}
static SpvId
get_alu_src(struct ntv_context *ctx, nir_alu_instr *alu, unsigned src)
{
SpvId uint_value = get_alu_src_uint(ctx, alu, src);
unsigned num_components = alu_instr_src_components(alu, src);
unsigned bit_size = nir_src_bit_size(alu->src[src].src);
nir_alu_type type = nir_op_infos[alu->op].input_types[src];
switch (nir_alu_type_get_base_type(type)) {
case nir_type_bool:
assert(bit_size == 1);
return uvec_to_bvec(ctx, uint_value, num_components);
case nir_type_int:
return bitcast_to_ivec(ctx, uint_value, bit_size, num_components);
case nir_type_uint:
return uint_value;
case nir_type_float:
return bitcast_to_fvec(ctx, uint_value, bit_size, num_components);
default:
unreachable("unknown nir_alu_type");
}
}
static void
store_alu_result(struct ntv_context *ctx, nir_alu_instr *alu, SpvId result)
{
assert(!alu->dest.saturate);
return store_dest(ctx, &alu->dest.dest, result, nir_op_infos[alu->op].output_type);
}
static SpvId
get_dest_type(struct ntv_context *ctx, nir_dest *dest, nir_alu_type type)
{
unsigned num_components = nir_dest_num_components(*dest);
unsigned bit_size = nir_dest_bit_size(*dest);
switch (nir_alu_type_get_base_type(type)) {
case nir_type_bool:
return get_bvec_type(ctx, num_components);
case nir_type_int:
return get_ivec_type(ctx, bit_size, num_components);
case nir_type_uint:
return get_uvec_type(ctx, bit_size, num_components);
case nir_type_float:
return get_fvec_type(ctx, bit_size, num_components);
default:
unreachable("unsupported nir_alu_type");
}
}
static void
emit_alu(struct ntv_context *ctx, nir_alu_instr *alu)
{
SpvId src[nir_op_infos[alu->op].num_inputs];
for (unsigned i = 0; i < nir_op_infos[alu->op].num_inputs; i++)
src[i] = get_alu_src(ctx, alu, i);
SpvId dest_type = get_dest_type(ctx, &alu->dest.dest,
nir_op_infos[alu->op].output_type);
unsigned bit_size = nir_dest_bit_size(alu->dest.dest);
unsigned num_components = nir_dest_num_components(alu->dest.dest);
SpvId result = 0;
switch (alu->op) {
case nir_op_mov:
assert(nir_op_infos[alu->op].num_inputs == 1);
result = src[0];
break;
#define UNOP(nir_op, spirv_op) \
case nir_op: \
assert(nir_op_infos[alu->op].num_inputs == 1); \
result = emit_unop(ctx, spirv_op, dest_type, src[0]); \
break;
#define BUILTIN_UNOP(nir_op, spirv_op) \
case nir_op: \
assert(nir_op_infos[alu->op].num_inputs == 1); \
result = emit_builtin_unop(ctx, spirv_op, dest_type, src[0]); \
break;
UNOP(nir_op_fneg, SpvOpFNegate)
UNOP(nir_op_fddx, SpvOpDPdx)
UNOP(nir_op_fddy, SpvOpDPdy)
BUILTIN_UNOP(nir_op_fabs, GLSLstd450FAbs)
BUILTIN_UNOP(nir_op_fsqrt, GLSLstd450Sqrt)
BUILTIN_UNOP(nir_op_frsq, GLSLstd450InverseSqrt)
BUILTIN_UNOP(nir_op_flog2, GLSLstd450Log2)
BUILTIN_UNOP(nir_op_fexp2, GLSLstd450Exp2)
BUILTIN_UNOP(nir_op_ffract, GLSLstd450Fract)
BUILTIN_UNOP(nir_op_ffloor, GLSLstd450Floor)
BUILTIN_UNOP(nir_op_fceil, GLSLstd450Ceil)
BUILTIN_UNOP(nir_op_ftrunc, GLSLstd450Trunc)
BUILTIN_UNOP(nir_op_fround_even, GLSLstd450RoundEven)
BUILTIN_UNOP(nir_op_fsign, GLSLstd450FSign)
BUILTIN_UNOP(nir_op_fsin, GLSLstd450Sin)
BUILTIN_UNOP(nir_op_fcos, GLSLstd450Cos)
case nir_op_frcp: {
assert(nir_op_infos[alu->op].num_inputs == 1);
float one[4] = { 1, 1, 1, 1 };
src[1] = src[0];
src[0] = get_fvec_constant(ctx, bit_size, num_components, one);
result = emit_binop(ctx, SpvOpFDiv, dest_type, src[0], src[1]);
}
break;
#undef UNOP
#undef BUILTIN_UNOP
#define BINOP(nir_op, spirv_op) \
case nir_op: \
assert(nir_op_infos[alu->op].num_inputs == 2); \
result = emit_binop(ctx, spirv_op, dest_type, src[0], src[1]); \
break;
#define BUILTIN_BINOP(nir_op, spirv_op) \
case nir_op: \
assert(nir_op_infos[alu->op].num_inputs == 2); \
result = emit_builtin_binop(ctx, spirv_op, dest_type, src[0], src[1]); \
break;
BINOP(nir_op_iadd, SpvOpIAdd)
BINOP(nir_op_isub, SpvOpISub)
BINOP(nir_op_imul, SpvOpIMul)
BINOP(nir_op_fadd, SpvOpFAdd)
BINOP(nir_op_fsub, SpvOpFSub)
BINOP(nir_op_fmul, SpvOpFMul)
BINOP(nir_op_fmod, SpvOpFMod)
BINOP(nir_op_flt, SpvOpFUnordLessThan)
BINOP(nir_op_fge, SpvOpFUnordGreaterThanEqual)
BUILTIN_BINOP(nir_op_fmin, GLSLstd450FMin)
BUILTIN_BINOP(nir_op_fmax, GLSLstd450FMax)
#undef BINOP
#undef BUILTIN_BINOP
case nir_op_fdot2:
case nir_op_fdot3:
case nir_op_fdot4:
assert(nir_op_infos[alu->op].num_inputs == 2);
result = emit_binop(ctx, SpvOpDot, dest_type, src[0], src[1]);
break;
case nir_op_seq:
case nir_op_sne:
case nir_op_slt:
case nir_op_sge: {
assert(nir_op_infos[alu->op].num_inputs == 2);
int num_components = nir_dest_num_components(alu->dest.dest);
SpvId bool_type = get_bvec_type(ctx, num_components);
SpvId zero = spirv_builder_const_float(&ctx->builder, 32, 0.0f);
SpvId one = spirv_builder_const_float(&ctx->builder, 32, 1.0f);
if (num_components > 1) {
SpvId zero_comps[num_components], one_comps[num_components];
for (int i = 0; i < num_components; i++) {
zero_comps[i] = zero;
one_comps[i] = one;
}
zero = spirv_builder_const_composite(&ctx->builder, dest_type,
zero_comps, num_components);
one = spirv_builder_const_composite(&ctx->builder, dest_type,
one_comps, num_components);
}
SpvOp op;
switch (alu->op) {
case nir_op_seq: op = SpvOpFOrdEqual; break;
case nir_op_sne: op = SpvOpFOrdNotEqual; break;
case nir_op_slt: op = SpvOpFOrdLessThan; break;
case nir_op_sge: op = SpvOpFOrdGreaterThanEqual; break;
default: unreachable("unexpected op");
}
result = emit_binop(ctx, op, bool_type, src[0], src[1]);
result = emit_triop(ctx, SpvOpSelect, dest_type, result, one, zero);
}
break;
case nir_op_fcsel: {
assert(nir_op_infos[alu->op].num_inputs == 3);
int num_components = nir_dest_num_components(alu->dest.dest);
SpvId bool_type = get_bvec_type(ctx, num_components);
float zero[4] = { 0, 0, 0, 0 };
SpvId cmp = get_fvec_constant(ctx, nir_src_bit_size(alu->src[0].src),
num_components, zero);
result = emit_binop(ctx, SpvOpFOrdGreaterThan, bool_type, src[0], cmp);
result = emit_triop(ctx, SpvOpSelect, dest_type, result, src[1], src[2]);
}
break;
case nir_op_vec2:
case nir_op_vec3:
case nir_op_vec4: {
int num_inputs = nir_op_infos[alu->op].num_inputs;
assert(2 <= num_inputs && num_inputs <= 4);
result = spirv_builder_emit_composite_construct(&ctx->builder, dest_type,
src, num_inputs);
}
break;
default:
fprintf(stderr, "emit_alu: not implemented (%s)\n",
nir_op_infos[alu->op].name);
unreachable("unsupported opcode");
return;
}
store_alu_result(ctx, alu, result);
}
static void
emit_load_const(struct ntv_context *ctx, nir_load_const_instr *load_const)
{
uint32_t values[NIR_MAX_VEC_COMPONENTS];
for (int i = 0; i < load_const->def.num_components; ++i)
values[i] = load_const->value[i].u32;
SpvId constant = get_uvec_constant(ctx, load_const->def.bit_size,
load_const->def.num_components,
values);
store_ssa_def_uint(ctx, &load_const->def, constant);
}
static void
emit_load_input(struct ntv_context *ctx, nir_intrinsic_instr *intr)
{
nir_const_value *const_offset = nir_src_as_const_value(intr->src[0]);
if (const_offset) {
int driver_location = (int)nir_intrinsic_base(intr) + const_offset->u32;
assert(driver_location < PIPE_MAX_SHADER_INPUTS);
int location_frac = nir_intrinsic_component(intr);
assert(location_frac < 4);
SpvId ptr = ctx->inputs[driver_location][location_frac];
SpvId type = ctx->input_types[driver_location][location_frac];
assert(ptr && type);
SpvId result = spirv_builder_emit_load(&ctx->builder, type, ptr);
unsigned num_components = nir_dest_num_components(intr->dest);
unsigned bit_size = nir_dest_bit_size(intr->dest);
result = bitcast_to_uvec(ctx, result, bit_size, num_components);
store_dest_uint(ctx, &intr->dest, result);
} else
unreachable("input-addressing not yet supported");
}
static void
emit_load_ubo(struct ntv_context *ctx, nir_intrinsic_instr *intr)
{
nir_const_value *const_block_index = nir_src_as_const_value(intr->src[0]);
assert(const_block_index); // no dynamic indexing for now
assert(const_block_index->u32 == 0); // we only support the default UBO for now
nir_const_value *const_offset = nir_src_as_const_value(intr->src[1]);
if (const_offset) {
SpvId uvec4_type = get_uvec_type(ctx, 32, 4);
SpvId pointer_type = spirv_builder_type_pointer(&ctx->builder,
SpvStorageClassUniform,
uvec4_type);
unsigned idx = const_offset->u32;
SpvId member = spirv_builder_const_uint(&ctx->builder, 32, 0);
SpvId offset = spirv_builder_const_uint(&ctx->builder, 32, idx);
SpvId offsets[] = { member, offset };
SpvId ptr = spirv_builder_emit_access_chain(&ctx->builder, pointer_type,
ctx->ubos[0], offsets,
ARRAY_SIZE(offsets));
SpvId result = spirv_builder_emit_load(&ctx->builder, uvec4_type, ptr);
SpvId type = get_dest_uvec_type(ctx, &intr->dest);
unsigned num_components = nir_dest_num_components(intr->dest);
if (num_components == 1) {
uint32_t components[] = { 0 };
result = spirv_builder_emit_composite_extract(&ctx->builder,
type,
result, components,
1);
} else if (num_components < 4) {
SpvId constituents[num_components];
SpvId uint_type = spirv_builder_type_uint(&ctx->builder, 32);
for (uint32_t i = 0; i < num_components; ++i)
constituents[i] = spirv_builder_emit_composite_extract(&ctx->builder,
uint_type,
result, &i,
1);
result = spirv_builder_emit_composite_construct(&ctx->builder,
type,
constituents,
num_components);
}
store_dest_uint(ctx, &intr->dest, result);
} else
unreachable("uniform-addressing not yet supported");
}
static void
emit_store_output(struct ntv_context *ctx, nir_intrinsic_instr *intr)
{
nir_const_value *const_offset = nir_src_as_const_value(intr->src[1]);
if (const_offset) {
int driver_location = (int)nir_intrinsic_base(intr) + const_offset->u32;
assert(driver_location < PIPE_MAX_SHADER_OUTPUTS);
int location_frac = nir_intrinsic_component(intr);
assert(location_frac < 4);
SpvId ptr = ctx->outputs[driver_location][location_frac];
assert(ptr > 0);
SpvId src = get_src_uint(ctx, &intr->src[0]);
SpvId spirv_type = ctx->output_types[driver_location][location_frac];
SpvId result = emit_unop(ctx, SpvOpBitcast, spirv_type, src);
spirv_builder_emit_store(&ctx->builder, ptr, result);
} else
unreachable("output-addressing not yet supported");
}
static void
emit_discard(struct ntv_context *ctx, nir_intrinsic_instr *intr)
{
assert(ctx->block_started);
spirv_builder_emit_kill(&ctx->builder);
/* discard is weird in NIR, so let's just create an unreachable block after
it and hope that the vulkan driver will DCE any instructinos in it. */
spirv_builder_label(&ctx->builder, spirv_builder_new_id(&ctx->builder));
}
static void
emit_intrinsic(struct ntv_context *ctx, nir_intrinsic_instr *intr)
{
switch (intr->intrinsic) {
case nir_intrinsic_load_input:
emit_load_input(ctx, intr);
break;
case nir_intrinsic_load_ubo:
emit_load_ubo(ctx, intr);
break;
case nir_intrinsic_store_output:
emit_store_output(ctx, intr);
break;
case nir_intrinsic_discard:
emit_discard(ctx, intr);
break;
default:
fprintf(stderr, "emit_intrinsic: not implemented (%s)\n",
nir_intrinsic_infos[intr->intrinsic].name);
unreachable("unsupported intrinsic");
}
}
static void
emit_undef(struct ntv_context *ctx, nir_ssa_undef_instr *undef)
{
SpvId type = get_uvec_type(ctx, undef->def.bit_size,
undef->def.num_components);
store_ssa_def_uint(ctx, &undef->def,
spirv_builder_emit_undef(&ctx->builder, type));
}
static SpvId
get_src_float(struct ntv_context *ctx, nir_src *src)
{
SpvId def = get_src_uint(ctx, src);
unsigned num_components = nir_src_num_components(*src);
unsigned bit_size = nir_src_bit_size(*src);
return bitcast_to_fvec(ctx, def, bit_size, num_components);
}
static void
emit_tex(struct ntv_context *ctx, nir_tex_instr *tex)
{
assert(tex->op == nir_texop_tex);
assert(nir_alu_type_get_base_type(tex->dest_type) == nir_type_float);
assert(tex->texture_index == tex->sampler_index);
bool has_proj = false;
SpvId coord = 0, proj;
unsigned coord_components;
for (unsigned i = 0; i < tex->num_srcs; i++) {
switch (tex->src[i].src_type) {
case nir_tex_src_coord:
coord = get_src_float(ctx, &tex->src[i].src);
coord_components = nir_src_num_components(tex->src[i].src);
break;
case nir_tex_src_projector:
has_proj = true;
proj = get_src_float(ctx, &tex->src[i].src);
assert(nir_src_num_components(tex->src[i].src) == 1);
break;
default:
fprintf(stderr, "texture source: %d\n", tex->src[i].src_type);
unreachable("unknown texture source");
}
}
bool is_ms;
SpvDim dimension = type_to_dim(tex->sampler_dim, &is_ms);
SpvId float_type = spirv_builder_type_float(&ctx->builder, 32);
SpvId image_type = spirv_builder_type_image(&ctx->builder, float_type,
dimension, false, tex->is_array, is_ms, 1,
SpvImageFormatUnknown);
SpvId sampled_type = spirv_builder_type_sampled_image(&ctx->builder,
image_type);
assert(tex->texture_index < ctx->num_samplers);
SpvId load = spirv_builder_emit_load(&ctx->builder, sampled_type,
ctx->samplers[tex->texture_index]);
SpvId dest_type = get_dest_type(ctx, &tex->dest, tex->dest_type);
SpvId result;
if (has_proj) {
SpvId constituents[coord_components + 1];
SpvId float_type = spirv_builder_type_float(&ctx->builder, 32);
for (uint32_t i = 0; i < coord_components; ++i)
constituents[i] = spirv_builder_emit_composite_extract(&ctx->builder,
float_type,
coord,
&i, 1);
constituents[coord_components++] = proj;
SpvId vec_type = get_fvec_type(ctx, 32, coord_components);
SpvId merged = spirv_builder_emit_composite_construct(&ctx->builder,
vec_type,
constituents,
coord_components);
result = spirv_builder_emit_image_sample_proj_implicit_lod(&ctx->builder,
dest_type,
load,
merged);
} else
result = spirv_builder_emit_image_sample_implicit_lod(&ctx->builder,
dest_type, load,
coord);
spirv_builder_emit_decoration(&ctx->builder, result,
SpvDecorationRelaxedPrecision);
store_dest(ctx, &tex->dest, result, tex->dest_type);
}
static void
start_block(struct ntv_context *ctx, SpvId label)
{
/* terminate previous block if needed */
if (ctx->block_started)
spirv_builder_emit_branch(&ctx->builder, label);
/* start new block */
spirv_builder_label(&ctx->builder, label);
ctx->block_started = true;
}
static void
branch(struct ntv_context *ctx, SpvId label)
{
assert(ctx->block_started);
spirv_builder_emit_branch(&ctx->builder, label);
ctx->block_started = false;
}
static void
branch_conditional(struct ntv_context *ctx, SpvId condition, SpvId then_id,
SpvId else_id)
{
assert(ctx->block_started);
spirv_builder_emit_branch_conditional(&ctx->builder, condition,
then_id, else_id);
ctx->block_started = false;
}
static void
emit_jump(struct ntv_context *ctx, nir_jump_instr *jump)
{
switch (jump->type) {
case nir_jump_break:
assert(ctx->loop_break);
branch(ctx, ctx->loop_break);
break;
case nir_jump_continue:
assert(ctx->loop_cont);
branch(ctx, ctx->loop_cont);
break;
default:
unreachable("Unsupported jump type\n");
}
}
static void
emit_block(struct ntv_context *ctx, struct nir_block *block)
{
start_block(ctx, block_label(ctx, block));
nir_foreach_instr(instr, block) {
switch (instr->type) {
case nir_instr_type_alu:
emit_alu(ctx, nir_instr_as_alu(instr));
break;
case nir_instr_type_intrinsic:
emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
break;
case nir_instr_type_load_const:
emit_load_const(ctx, nir_instr_as_load_const(instr));
break;
case nir_instr_type_ssa_undef:
emit_undef(ctx, nir_instr_as_ssa_undef(instr));
break;
case nir_instr_type_tex:
emit_tex(ctx, nir_instr_as_tex(instr));
break;
case nir_instr_type_phi:
unreachable("nir_instr_type_phi not supported");
break;
case nir_instr_type_jump:
emit_jump(ctx, nir_instr_as_jump(instr));
break;
case nir_instr_type_call:
unreachable("nir_instr_type_call not supported");
break;
case nir_instr_type_parallel_copy:
unreachable("nir_instr_type_parallel_copy not supported");
break;
case nir_instr_type_deref:
unreachable("nir_instr_type_deref not supported");
break;
}
}
}
static void
emit_cf_list(struct ntv_context *ctx, struct exec_list *list);
static SpvId
get_src_bool(struct ntv_context *ctx, nir_src *src)
{
SpvId def = get_src_uint(ctx, src);
assert(nir_src_bit_size(*src) == 32);
unsigned num_components = nir_src_num_components(*src);
return uvec_to_bvec(ctx, def, num_components);
}
static void
emit_if(struct ntv_context *ctx, nir_if *if_stmt)
{
SpvId condition = get_src_bool(ctx, &if_stmt->condition);
SpvId header_id = spirv_builder_new_id(&ctx->builder);
SpvId then_id = block_label(ctx, nir_if_first_then_block(if_stmt));
SpvId endif_id = spirv_builder_new_id(&ctx->builder);
SpvId else_id = endif_id;
bool has_else = !exec_list_is_empty(&if_stmt->else_list);
if (has_else) {
assert(nir_if_first_else_block(if_stmt)->index < ctx->num_blocks);
else_id = block_label(ctx, nir_if_first_else_block(if_stmt));
}
/* create a header-block */
start_block(ctx, header_id);
spirv_builder_emit_selection_merge(&ctx->builder, endif_id,
SpvSelectionControlMaskNone);
branch_conditional(ctx, condition, then_id, else_id);
emit_cf_list(ctx, &if_stmt->then_list);
if (has_else) {
if (ctx->block_started)
branch(ctx, endif_id);
emit_cf_list(ctx, &if_stmt->else_list);
}
start_block(ctx, endif_id);
}
static void
emit_loop(struct ntv_context *ctx, nir_loop *loop)
{
SpvId header_id = spirv_builder_new_id(&ctx->builder);
SpvId begin_id = block_label(ctx, nir_loop_first_block(loop));
SpvId break_id = spirv_builder_new_id(&ctx->builder);
SpvId cont_id = spirv_builder_new_id(&ctx->builder);
/* create a header-block */
start_block(ctx, header_id);
spirv_builder_loop_merge(&ctx->builder, break_id, cont_id, SpvLoopControlMaskNone);
branch(ctx, begin_id);
SpvId save_break = ctx->loop_break;
SpvId save_cont = ctx->loop_cont;
ctx->loop_break = break_id;
ctx->loop_cont = cont_id;
emit_cf_list(ctx, &loop->body);
ctx->loop_break = save_break;
ctx->loop_cont = save_cont;
branch(ctx, cont_id);
start_block(ctx, cont_id);
branch(ctx, header_id);
start_block(ctx, break_id);
}
static void
emit_cf_list(struct ntv_context *ctx, struct exec_list *list)
{
foreach_list_typed(nir_cf_node, node, node, list) {
switch (node->type) {
case nir_cf_node_block:
emit_block(ctx, nir_cf_node_as_block(node));
break;
case nir_cf_node_if:
emit_if(ctx, nir_cf_node_as_if(node));
break;
case nir_cf_node_loop:
emit_loop(ctx, nir_cf_node_as_loop(node));
break;
case nir_cf_node_function:
unreachable("nir_cf_node_function not supported");
break;
}
}
}
struct spirv_shader *
nir_to_spirv(struct nir_shader *s)
{
struct spirv_shader *ret = NULL;
struct ntv_context ctx = {};
switch (s->info.stage) {
case MESA_SHADER_VERTEX:
case MESA_SHADER_FRAGMENT:
case MESA_SHADER_COMPUTE:
spirv_builder_emit_cap(&ctx.builder, SpvCapabilityShader);
break;
case MESA_SHADER_TESS_CTRL:
case MESA_SHADER_TESS_EVAL:
spirv_builder_emit_cap(&ctx.builder, SpvCapabilityTessellation);
break;
case MESA_SHADER_GEOMETRY:
spirv_builder_emit_cap(&ctx.builder, SpvCapabilityGeometry);
break;
default:
unreachable("invalid stage");
}
ctx.stage = s->info.stage;
ctx.GLSL_std_450 = spirv_builder_import(&ctx.builder, "GLSL.std.450");
spirv_builder_emit_source(&ctx.builder, SpvSourceLanguageGLSL, 450);
spirv_builder_emit_mem_model(&ctx.builder, SpvAddressingModelLogical,
SpvMemoryModelGLSL450);
SpvExecutionModel exec_model;
switch (s->info.stage) {
case MESA_SHADER_VERTEX:
exec_model = SpvExecutionModelVertex;
break;
case MESA_SHADER_TESS_CTRL:
exec_model = SpvExecutionModelTessellationControl;
break;
case MESA_SHADER_TESS_EVAL:
exec_model = SpvExecutionModelTessellationEvaluation;
break;
case MESA_SHADER_GEOMETRY:
exec_model = SpvExecutionModelGeometry;
break;
case MESA_SHADER_FRAGMENT:
exec_model = SpvExecutionModelFragment;
break;
case MESA_SHADER_COMPUTE:
exec_model = SpvExecutionModelGLCompute;
break;
default:
unreachable("invalid stage");
}
SpvId type_void = spirv_builder_type_void(&ctx.builder);
SpvId type_main = spirv_builder_type_function(&ctx.builder, type_void,
NULL, 0);
SpvId entry_point = spirv_builder_new_id(&ctx.builder);
spirv_builder_emit_name(&ctx.builder, entry_point, "main");
nir_foreach_variable(var, &s->inputs)
emit_input(&ctx, var);
nir_foreach_variable(var, &s->outputs)
emit_output(&ctx, var);
nir_foreach_variable(var, &s->uniforms)
emit_uniform(&ctx, var);
spirv_builder_emit_entry_point(&ctx.builder, exec_model, entry_point,
"main", ctx.entry_ifaces,
ctx.num_entry_ifaces);
if (s->info.stage == MESA_SHADER_FRAGMENT)
spirv_builder_emit_exec_mode(&ctx.builder, entry_point,
SpvExecutionModeOriginUpperLeft);
spirv_builder_function(&ctx.builder, entry_point, type_void,
SpvFunctionControlMaskNone,
type_main);
nir_function_impl *entry = nir_shader_get_entrypoint(s);
nir_metadata_require(entry, nir_metadata_block_index);
ctx.defs = (SpvId *)malloc(sizeof(SpvId) * entry->ssa_alloc);
if (!ctx.defs)
goto fail;
ctx.num_defs = entry->ssa_alloc;
ctx.vars = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
_mesa_key_pointer_equal);
if (!ctx.vars)
goto fail;
SpvId *block_ids = (SpvId *)malloc(sizeof(SpvId) * entry->num_blocks);
if (!block_ids)
goto fail;
for (int i = 0; i < entry->num_blocks; ++i)
block_ids[i] = spirv_builder_new_id(&ctx.builder);
ctx.block_ids = block_ids;
ctx.num_blocks = entry->num_blocks;
emit_cf_list(&ctx, &entry->body);
free(ctx.defs);
spirv_builder_return(&ctx.builder); // doesn't belong here, but whatevz
spirv_builder_function_end(&ctx.builder);
size_t num_words = spirv_builder_get_num_words(&ctx.builder);
ret = CALLOC_STRUCT(spirv_shader);
if (!ret)
goto fail;
ret->words = MALLOC(sizeof(uint32_t) * num_words);
if (!ret->words)
goto fail;
ret->num_words = spirv_builder_get_words(&ctx.builder, ret->words, num_words);
assert(ret->num_words == num_words);
return ret;
fail:
if (ret)
spirv_shader_delete(ret);
return NULL;
}
void
spirv_shader_delete(struct spirv_shader *s)
{
FREE(s->words);
FREE(s);
}