blob: 457c41632caae93b0b4d4810521559ab082bf23c [file] [log] [blame]
/**************************************************************************
*
* Copyright 2007 VMware, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
/*
* Authors:
* Brian Paul
*/
#include "main/imports.h"
#include "main/image.h"
#include "main/bufferobj.h"
#include "main/dlist.h"
#include "main/macros.h"
#include "main/pbo.h"
#include "program/program.h"
#include "program/prog_print.h"
#include "st_context.h"
#include "st_atom.h"
#include "st_atom_constbuf.h"
#include "st_draw.h"
#include "st_program.h"
#include "st_cb_bitmap.h"
#include "st_sampler_view.h"
#include "st_texture.h"
#include "pipe/p_context.h"
#include "pipe/p_defines.h"
#include "pipe/p_shader_tokens.h"
#include "util/u_inlines.h"
#include "util/u_simple_shaders.h"
#include "util/u_upload_mgr.h"
#include "program/prog_instruction.h"
#include "cso_cache/cso_context.h"
/**
* glBitmaps are drawn as textured quads. The user's bitmap pattern
* is stored in a texture image. An alpha8 texture format is used.
* The fragment shader samples a bit (texel) from the texture, then
* discards the fragment if the bit is off.
*
* Note that we actually store the inverse image of the bitmap to
* simplify the fragment program. An "on" bit gets stored as texel=0x0
* and an "off" bit is stored as texel=0xff. Then we kill the
* fragment if the negated texel value is less than zero.
*/
/**
* The bitmap cache attempts to accumulate multiple glBitmap calls in a
* buffer which is then rendered en mass upon a flush, state change, etc.
* A wide, short buffer is used to target the common case of a series
* of glBitmap calls being used to draw text.
*/
static GLboolean UseBitmapCache = GL_TRUE;
#define BITMAP_CACHE_WIDTH 512
#define BITMAP_CACHE_HEIGHT 32
struct bitmap_cache
{
/** Window pos to render the cached image */
GLint xpos, ypos;
/** Bounds of region used in window coords */
GLint xmin, ymin, xmax, ymax;
GLfloat color[4];
/** Bitmap's Z position */
GLfloat zpos;
struct pipe_resource *texture;
struct pipe_transfer *trans;
GLboolean empty;
/** An I8 texture image: */
ubyte *buffer;
};
/** Epsilon for Z comparisons */
#define Z_EPSILON 1e-06
/**
* Copy user-provide bitmap bits into texture buffer, expanding
* bits into texels.
* "On" bits will set texels to 0x0.
* "Off" bits will not modify texels.
* Note that the image is actually going to be upside down in
* the texture. We deal with that with texcoords.
*/
static void
unpack_bitmap(struct st_context *st,
GLint px, GLint py, GLsizei width, GLsizei height,
const struct gl_pixelstore_attrib *unpack,
const GLubyte *bitmap,
ubyte *destBuffer, uint destStride)
{
destBuffer += py * destStride + px;
_mesa_expand_bitmap(width, height, unpack, bitmap,
destBuffer, destStride, 0x0);
}
/**
* Create a texture which represents a bitmap image.
*/
static struct pipe_resource *
make_bitmap_texture(struct gl_context *ctx, GLsizei width, GLsizei height,
const struct gl_pixelstore_attrib *unpack,
const GLubyte *bitmap)
{
struct st_context *st = st_context(ctx);
struct pipe_context *pipe = st->pipe;
struct pipe_transfer *transfer;
ubyte *dest;
struct pipe_resource *pt;
/* PBO source... */
bitmap = _mesa_map_pbo_source(ctx, unpack, bitmap);
if (!bitmap) {
return NULL;
}
/**
* Create texture to hold bitmap pattern.
*/
pt = st_texture_create(st, st->internal_target, st->bitmap.tex_format,
0, width, height, 1, 1, 0,
PIPE_BIND_SAMPLER_VIEW);
if (!pt) {
_mesa_unmap_pbo_source(ctx, unpack);
return NULL;
}
dest = pipe_transfer_map(st->pipe, pt, 0, 0,
PIPE_TRANSFER_WRITE,
0, 0, width, height, &transfer);
/* Put image into texture transfer */
memset(dest, 0xff, height * transfer->stride);
unpack_bitmap(st, 0, 0, width, height, unpack, bitmap,
dest, transfer->stride);
_mesa_unmap_pbo_source(ctx, unpack);
/* Release transfer */
pipe_transfer_unmap(pipe, transfer);
return pt;
}
/**
* Setup pipeline state prior to rendering the bitmap textured quad.
*/
static void
setup_render_state(struct gl_context *ctx,
struct pipe_sampler_view *sv,
const GLfloat *color,
bool atlas)
{
struct st_context *st = st_context(ctx);
struct cso_context *cso = st->cso_context;
struct st_fp_variant *fpv;
struct st_fp_variant_key key;
memset(&key, 0, sizeof(key));
key.st = st->has_shareable_shaders ? NULL : st;
key.bitmap = GL_TRUE;
key.clamp_color = st->clamp_frag_color_in_shader &&
ctx->Color._ClampFragmentColor;
fpv = st_get_fp_variant(st, st->fp, &key);
/* As an optimization, Mesa's fragment programs will sometimes get the
* primary color from a statevar/constant rather than a varying variable.
* when that's the case, we need to ensure that we use the 'color'
* parameter and not the current attribute color (which may have changed
* through glRasterPos and state validation.
* So, we force the proper color here. Not elegant, but it works.
*/
{
GLfloat colorSave[4];
COPY_4V(colorSave, ctx->Current.Attrib[VERT_ATTRIB_COLOR0]);
COPY_4V(ctx->Current.Attrib[VERT_ATTRIB_COLOR0], color);
st_upload_constants(st, st->fp->Base.Parameters, MESA_SHADER_FRAGMENT);
COPY_4V(ctx->Current.Attrib[VERT_ATTRIB_COLOR0], colorSave);
}
cso_save_state(cso, (CSO_BIT_RASTERIZER |
CSO_BIT_FRAGMENT_SAMPLERS |
CSO_BIT_FRAGMENT_SAMPLER_VIEWS |
CSO_BIT_VIEWPORT |
CSO_BIT_STREAM_OUTPUTS |
CSO_BIT_VERTEX_ELEMENTS |
CSO_BIT_AUX_VERTEX_BUFFER_SLOT |
CSO_BITS_ALL_SHADERS));
/* rasterizer state: just scissor */
st->bitmap.rasterizer.scissor = ctx->Scissor.EnableFlags & 1;
cso_set_rasterizer(cso, &st->bitmap.rasterizer);
/* fragment shader state: TEX lookup program */
cso_set_fragment_shader_handle(cso, fpv->driver_shader);
/* vertex shader state: position + texcoord pass-through */
cso_set_vertex_shader_handle(cso, st->bitmap.vs);
/* disable other shaders */
cso_set_tessctrl_shader_handle(cso, NULL);
cso_set_tesseval_shader_handle(cso, NULL);
cso_set_geometry_shader_handle(cso, NULL);
/* user samplers, plus our bitmap sampler */
{
struct pipe_sampler_state *samplers[PIPE_MAX_SAMPLERS];
uint num = MAX2(fpv->bitmap_sampler + 1,
st->state.num_samplers[PIPE_SHADER_FRAGMENT]);
uint i;
for (i = 0; i < st->state.num_samplers[PIPE_SHADER_FRAGMENT]; i++) {
samplers[i] = &st->state.samplers[PIPE_SHADER_FRAGMENT][i];
}
if (atlas)
samplers[fpv->bitmap_sampler] = &st->bitmap.atlas_sampler;
else
samplers[fpv->bitmap_sampler] = &st->bitmap.sampler;
cso_set_samplers(cso, PIPE_SHADER_FRAGMENT, num,
(const struct pipe_sampler_state **) samplers);
}
/* user textures, plus the bitmap texture */
{
struct pipe_sampler_view *sampler_views[PIPE_MAX_SAMPLERS];
uint num = MAX2(fpv->bitmap_sampler + 1,
st->state.num_sampler_views[PIPE_SHADER_FRAGMENT]);
memcpy(sampler_views, st->state.sampler_views[PIPE_SHADER_FRAGMENT],
sizeof(sampler_views));
sampler_views[fpv->bitmap_sampler] = sv;
cso_set_sampler_views(cso, PIPE_SHADER_FRAGMENT, num, sampler_views);
}
/* viewport state: viewport matching window dims */
cso_set_viewport_dims(cso, st->state.framebuffer.width,
st->state.framebuffer.height,
st->state.fb_orientation == Y_0_TOP);
cso_set_vertex_elements(cso, 3, st->util_velems);
cso_set_stream_outputs(st->cso_context, 0, NULL, NULL);
}
/**
* Restore pipeline state after rendering the bitmap textured quad.
*/
static void
restore_render_state(struct gl_context *ctx)
{
struct st_context *st = st_context(ctx);
struct cso_context *cso = st->cso_context;
cso_restore_state(cso);
}
/**
* Render a glBitmap by drawing a textured quad
*/
static void
draw_bitmap_quad(struct gl_context *ctx, GLint x, GLint y, GLfloat z,
GLsizei width, GLsizei height,
struct pipe_sampler_view *sv,
const GLfloat *color)
{
struct st_context *st = st_context(ctx);
struct pipe_context *pipe = st->pipe;
const float fb_width = (float) st->state.framebuffer.width;
const float fb_height = (float) st->state.framebuffer.height;
const float x0 = (float) x;
const float x1 = (float) (x + width);
const float y0 = (float) y;
const float y1 = (float) (y + height);
float sLeft = 0.0f, sRight = 1.0f;
float tTop = 0.0f, tBot = 1.0f - tTop;
const float clip_x0 = x0 / fb_width * 2.0f - 1.0f;
const float clip_y0 = y0 / fb_height * 2.0f - 1.0f;
const float clip_x1 = x1 / fb_width * 2.0f - 1.0f;
const float clip_y1 = y1 / fb_height * 2.0f - 1.0f;
/* limit checks */
{
/* XXX if the bitmap is larger than the max texture size, break
* it up into chunks.
*/
GLuint maxSize = 1 << (pipe->screen->get_param(pipe->screen,
PIPE_CAP_MAX_TEXTURE_2D_LEVELS) - 1);
assert(width <= (GLsizei) maxSize);
assert(height <= (GLsizei) maxSize);
}
setup_render_state(ctx, sv, color, false);
/* convert Z from [0,1] to [-1,-1] to match viewport Z scale/bias */
z = z * 2.0f - 1.0f;
if (sv->texture->target == PIPE_TEXTURE_RECT) {
/* use non-normalized texcoords */
sRight = (float) width;
tBot = (float) height;
}
if (!st_draw_quad(st, clip_x0, clip_y0, clip_x1, clip_y1, z,
sLeft, tBot, sRight, tTop, color, 0)) {
_mesa_error(ctx, GL_OUT_OF_MEMORY, "glBitmap");
}
restore_render_state(ctx);
/* We uploaded modified constants, need to invalidate them. */
st->dirty |= ST_NEW_FS_CONSTANTS;
}
static void
reset_cache(struct st_context *st)
{
struct bitmap_cache *cache = st->bitmap.cache;
/*memset(cache->buffer, 0xff, sizeof(cache->buffer));*/
cache->empty = GL_TRUE;
cache->xmin = 1000000;
cache->xmax = -1000000;
cache->ymin = 1000000;
cache->ymax = -1000000;
assert(!cache->texture);
/* allocate a new texture */
cache->texture = st_texture_create(st, st->internal_target,
st->bitmap.tex_format, 0,
BITMAP_CACHE_WIDTH, BITMAP_CACHE_HEIGHT,
1, 1, 0,
PIPE_BIND_SAMPLER_VIEW);
}
/** Print bitmap image to stdout (debug) */
static void
print_cache(const struct bitmap_cache *cache)
{
int i, j, k;
for (i = 0; i < BITMAP_CACHE_HEIGHT; i++) {
k = BITMAP_CACHE_WIDTH * (BITMAP_CACHE_HEIGHT - i - 1);
for (j = 0; j < BITMAP_CACHE_WIDTH; j++) {
if (cache->buffer[k])
printf("X");
else
printf(" ");
k++;
}
printf("\n");
}
}
/**
* Create gallium pipe_transfer object for the bitmap cache.
*/
static void
create_cache_trans(struct st_context *st)
{
struct pipe_context *pipe = st->pipe;
struct bitmap_cache *cache = st->bitmap.cache;
if (cache->trans)
return;
/* Map the texture transfer.
* Subsequent glBitmap calls will write into the texture image.
*/
cache->buffer = pipe_transfer_map(pipe, cache->texture, 0, 0,
PIPE_TRANSFER_WRITE, 0, 0,
BITMAP_CACHE_WIDTH,
BITMAP_CACHE_HEIGHT, &cache->trans);
/* init image to all 0xff */
memset(cache->buffer, 0xff, cache->trans->stride * BITMAP_CACHE_HEIGHT);
}
/**
* If there's anything in the bitmap cache, draw/flush it now.
*/
void
st_flush_bitmap_cache(struct st_context *st)
{
struct bitmap_cache *cache = st->bitmap.cache;
if (cache && !cache->empty) {
struct pipe_context *pipe = st->pipe;
struct pipe_sampler_view *sv;
assert(cache->xmin <= cache->xmax);
if (0)
printf("flush bitmap, size %d x %d at %d, %d\n",
cache->xmax - cache->xmin,
cache->ymax - cache->ymin,
cache->xpos, cache->ypos);
/* The texture transfer has been mapped until now.
* So unmap and release the texture transfer before drawing.
*/
if (cache->trans && cache->buffer) {
if (0)
print_cache(cache);
pipe_transfer_unmap(pipe, cache->trans);
cache->buffer = NULL;
cache->trans = NULL;
}
sv = st_create_texture_sampler_view(st->pipe, cache->texture);
if (sv) {
draw_bitmap_quad(st->ctx,
cache->xpos,
cache->ypos,
cache->zpos,
BITMAP_CACHE_WIDTH, BITMAP_CACHE_HEIGHT,
sv,
cache->color);
pipe_sampler_view_reference(&sv, NULL);
}
/* release/free the texture */
pipe_resource_reference(&cache->texture, NULL);
reset_cache(st);
}
}
/**
* Try to accumulate this glBitmap call in the bitmap cache.
* \return GL_TRUE for success, GL_FALSE if bitmap is too large, etc.
*/
static GLboolean
accum_bitmap(struct gl_context *ctx,
GLint x, GLint y, GLsizei width, GLsizei height,
const struct gl_pixelstore_attrib *unpack,
const GLubyte *bitmap )
{
struct st_context *st = ctx->st;
struct bitmap_cache *cache = st->bitmap.cache;
int px = -999, py = -999;
const GLfloat z = ctx->Current.RasterPos[2];
if (width > BITMAP_CACHE_WIDTH ||
height > BITMAP_CACHE_HEIGHT)
return GL_FALSE; /* too big to cache */
if (!cache->empty) {
px = x - cache->xpos; /* pos in buffer */
py = y - cache->ypos;
if (px < 0 || px + width > BITMAP_CACHE_WIDTH ||
py < 0 || py + height > BITMAP_CACHE_HEIGHT ||
!TEST_EQ_4V(ctx->Current.RasterColor, cache->color) ||
((fabs(z - cache->zpos) > Z_EPSILON))) {
/* This bitmap would extend beyond cache bounds, or the bitmap
* color is changing
* so flush and continue.
*/
st_flush_bitmap_cache(st);
}
}
if (cache->empty) {
/* Initialize. Center bitmap vertically in the buffer. */
px = 0;
py = (BITMAP_CACHE_HEIGHT - height) / 2;
cache->xpos = x;
cache->ypos = y - py;
cache->zpos = z;
cache->empty = GL_FALSE;
COPY_4FV(cache->color, ctx->Current.RasterColor);
}
assert(px != -999);
assert(py != -999);
if (x < cache->xmin)
cache->xmin = x;
if (y < cache->ymin)
cache->ymin = y;
if (x + width > cache->xmax)
cache->xmax = x + width;
if (y + height > cache->ymax)
cache->ymax = y + height;
/* create the transfer if needed */
create_cache_trans(st);
/* PBO source... */
bitmap = _mesa_map_pbo_source(ctx, unpack, bitmap);
if (!bitmap) {
return FALSE;
}
unpack_bitmap(st, px, py, width, height, unpack, bitmap,
cache->buffer, BITMAP_CACHE_WIDTH);
_mesa_unmap_pbo_source(ctx, unpack);
return GL_TRUE; /* accumulated */
}
/**
* One-time init for drawing bitmaps.
*/
static void
init_bitmap_state(struct st_context *st)
{
struct pipe_context *pipe = st->pipe;
struct pipe_screen *screen = pipe->screen;
/* This function should only be called once */
assert(st->bitmap.cache == NULL);
assert(st->internal_target == PIPE_TEXTURE_2D ||
st->internal_target == PIPE_TEXTURE_RECT);
/* alloc bitmap cache object */
st->bitmap.cache = ST_CALLOC_STRUCT(bitmap_cache);
/* init sampler state once */
memset(&st->bitmap.sampler, 0, sizeof(st->bitmap.sampler));
st->bitmap.sampler.wrap_s = PIPE_TEX_WRAP_CLAMP;
st->bitmap.sampler.wrap_t = PIPE_TEX_WRAP_CLAMP;
st->bitmap.sampler.wrap_r = PIPE_TEX_WRAP_CLAMP;
st->bitmap.sampler.min_img_filter = PIPE_TEX_FILTER_NEAREST;
st->bitmap.sampler.min_mip_filter = PIPE_TEX_MIPFILTER_NONE;
st->bitmap.sampler.mag_img_filter = PIPE_TEX_FILTER_NEAREST;
st->bitmap.sampler.normalized_coords = st->internal_target == PIPE_TEXTURE_2D;
st->bitmap.atlas_sampler = st->bitmap.sampler;
st->bitmap.atlas_sampler.normalized_coords = 0;
/* init baseline rasterizer state once */
memset(&st->bitmap.rasterizer, 0, sizeof(st->bitmap.rasterizer));
st->bitmap.rasterizer.half_pixel_center = 1;
st->bitmap.rasterizer.bottom_edge_rule = 1;
st->bitmap.rasterizer.depth_clip = 1;
/* find a usable texture format */
if (screen->is_format_supported(screen, PIPE_FORMAT_I8_UNORM,
st->internal_target, 0,
PIPE_BIND_SAMPLER_VIEW)) {
st->bitmap.tex_format = PIPE_FORMAT_I8_UNORM;
}
else if (screen->is_format_supported(screen, PIPE_FORMAT_A8_UNORM,
st->internal_target, 0,
PIPE_BIND_SAMPLER_VIEW)) {
st->bitmap.tex_format = PIPE_FORMAT_A8_UNORM;
}
else if (screen->is_format_supported(screen, PIPE_FORMAT_L8_UNORM,
st->internal_target, 0,
PIPE_BIND_SAMPLER_VIEW)) {
st->bitmap.tex_format = PIPE_FORMAT_L8_UNORM;
}
else {
/* XXX support more formats */
assert(0);
}
/* Create the vertex shader */
{
const uint semantic_names[] = { TGSI_SEMANTIC_POSITION,
TGSI_SEMANTIC_COLOR,
st->needs_texcoord_semantic ? TGSI_SEMANTIC_TEXCOORD :
TGSI_SEMANTIC_GENERIC };
const uint semantic_indexes[] = { 0, 0, 0 };
st->bitmap.vs = util_make_vertex_passthrough_shader(st->pipe, 3,
semantic_names,
semantic_indexes,
FALSE);
}
reset_cache(st);
}
/**
* Called via ctx->Driver.Bitmap()
*/
static void
st_Bitmap(struct gl_context *ctx, GLint x, GLint y,
GLsizei width, GLsizei height,
const struct gl_pixelstore_attrib *unpack, const GLubyte *bitmap )
{
struct st_context *st = st_context(ctx);
struct pipe_resource *pt;
assert(width > 0);
assert(height > 0);
st_invalidate_readpix_cache(st);
if (!st->bitmap.cache) {
init_bitmap_state(st);
}
/* We only need to validate any non-ST_NEW_CONSTANTS state. The VS we use
* for bitmap drawing uses no constants and the FS constants are
* explicitly uploaded in the draw_bitmap_quad() function.
*/
if ((st->dirty | ctx->NewDriverState) & ~ST_NEW_CONSTANTS &
ST_PIPELINE_RENDER_STATE_MASK ||
st->gfx_shaders_may_be_dirty) {
st_validate_state(st, ST_PIPELINE_RENDER);
}
if (UseBitmapCache && accum_bitmap(ctx, x, y, width, height, unpack, bitmap))
return;
pt = make_bitmap_texture(ctx, width, height, unpack, bitmap);
if (pt) {
struct pipe_sampler_view *sv =
st_create_texture_sampler_view(st->pipe, pt);
assert(pt->target == PIPE_TEXTURE_2D || pt->target == PIPE_TEXTURE_RECT);
if (sv) {
draw_bitmap_quad(ctx, x, y, ctx->Current.RasterPos[2],
width, height, sv, ctx->Current.RasterColor);
pipe_sampler_view_reference(&sv, NULL);
}
/* release/free the texture */
pipe_resource_reference(&pt, NULL);
}
}
/**
* Called via ctx->Driver.DrawAtlasBitmap()
*/
static void
st_DrawAtlasBitmaps(struct gl_context *ctx,
const struct gl_bitmap_atlas *atlas,
GLuint count, const GLubyte *ids)
{
struct st_context *st = st_context(ctx);
struct pipe_context *pipe = st->pipe;
struct st_texture_object *stObj = st_texture_object(atlas->texObj);
struct pipe_sampler_view *sv;
/* convert Z from [0,1] to [-1,-1] to match viewport Z scale/bias */
const float z = ctx->Current.RasterPos[2] * 2.0f - 1.0f;
const float *color = ctx->Current.RasterColor;
const float clip_x_scale = 2.0f / st->state.framebuffer.width;
const float clip_y_scale = 2.0f / st->state.framebuffer.height;
const unsigned num_verts = count * 4;
const unsigned num_vert_bytes = num_verts * sizeof(struct st_util_vertex);
struct st_util_vertex *verts;
struct pipe_vertex_buffer vb = {0};
unsigned i;
if (!st->bitmap.cache) {
init_bitmap_state(st);
}
st_flush_bitmap_cache(st);
st_validate_state(st, ST_PIPELINE_RENDER);
st_invalidate_readpix_cache(st);
sv = st_create_texture_sampler_view(pipe, stObj->pt);
if (!sv) {
_mesa_error(ctx, GL_OUT_OF_MEMORY, "glCallLists(bitmap text)");
return;
}
setup_render_state(ctx, sv, color, true);
vb.stride = sizeof(struct st_util_vertex);
u_upload_alloc(st->uploader, 0, num_vert_bytes, 4,
&vb.buffer_offset, &vb.buffer, (void **) &verts);
/* build quads vertex data */
for (i = 0; i < count; i++) {
const GLfloat epsilon = 0.0001F;
const struct gl_bitmap_glyph *g = &atlas->glyphs[ids[i]];
const float xmove = g->xmove, ymove = g->ymove;
const float xorig = g->xorig, yorig = g->yorig;
const float s0 = g->x, t0 = g->y;
const float s1 = s0 + g->w, t1 = t0 + g->h;
const float x0 = IFLOOR(ctx->Current.RasterPos[0] - xorig + epsilon);
const float y0 = IFLOOR(ctx->Current.RasterPos[1] - yorig + epsilon);
const float x1 = x0 + g->w, y1 = y0 + g->h;
const float clip_x0 = x0 * clip_x_scale - 1.0f;
const float clip_y0 = y0 * clip_y_scale - 1.0f;
const float clip_x1 = x1 * clip_x_scale - 1.0f;
const float clip_y1 = y1 * clip_y_scale - 1.0f;
/* lower-left corner */
verts->x = clip_x0;
verts->y = clip_y0;
verts->z = z;
verts->r = color[0];
verts->g = color[1];
verts->b = color[2];
verts->a = color[3];
verts->s = s0;
verts->t = t0;
verts++;
/* lower-right corner */
verts->x = clip_x1;
verts->y = clip_y0;
verts->z = z;
verts->r = color[0];
verts->g = color[1];
verts->b = color[2];
verts->a = color[3];
verts->s = s1;
verts->t = t0;
verts++;
/* upper-right corner */
verts->x = clip_x1;
verts->y = clip_y1;
verts->z = z;
verts->r = color[0];
verts->g = color[1];
verts->b = color[2];
verts->a = color[3];
verts->s = s1;
verts->t = t1;
verts++;
/* upper-left corner */
verts->x = clip_x0;
verts->y = clip_y1;
verts->z = z;
verts->r = color[0];
verts->g = color[1];
verts->b = color[2];
verts->a = color[3];
verts->s = s0;
verts->t = t1;
verts++;
/* Update the raster position */
ctx->Current.RasterPos[0] += xmove;
ctx->Current.RasterPos[1] += ymove;
}
u_upload_unmap(st->uploader);
cso_set_vertex_buffers(st->cso_context,
cso_get_aux_vertex_buffer_slot(st->cso_context),
1, &vb);
cso_draw_arrays(st->cso_context, PIPE_PRIM_QUADS, 0, num_verts);
restore_render_state(ctx);
pipe_resource_reference(&vb.buffer, NULL);
pipe_sampler_view_reference(&sv, NULL);
/* We uploaded modified constants, need to invalidate them. */
st->dirty |= ST_NEW_FS_CONSTANTS;
}
/** Per-context init */
void
st_init_bitmap_functions(struct dd_function_table *functions)
{
functions->Bitmap = st_Bitmap;
functions->DrawAtlasBitmaps = st_DrawAtlasBitmaps;
}
/** Per-context tear-down */
void
st_destroy_bitmap(struct st_context *st)
{
struct pipe_context *pipe = st->pipe;
struct bitmap_cache *cache = st->bitmap.cache;
if (st->bitmap.vs) {
cso_delete_vertex_shader(st->cso_context, st->bitmap.vs);
st->bitmap.vs = NULL;
}
if (cache) {
if (cache->trans && cache->buffer) {
pipe_transfer_unmap(pipe, cache->trans);
}
pipe_resource_reference(&st->bitmap.cache->texture, NULL);
free(st->bitmap.cache);
st->bitmap.cache = NULL;
}
}