blob: 41e94fb50408db41471f997b8bc368e13153fa79 [file] [log] [blame]
/*
* Copyright © 2011 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "compiler/nir/nir.h"
#include "brw_context.h"
#include "brw_state.h"
#include "brw_defines.h"
#include "brw_util.h"
#include "main/macros.h"
#include "main/fbobject.h"
#include "intel_batchbuffer.h"
static void
upload_sbe(struct brw_context *brw)
{
struct gl_context *ctx = &brw->ctx;
/* BRW_NEW_FS_PROG_DATA */
const struct brw_wm_prog_data *wm_prog_data =
brw_wm_prog_data(brw->wm.base.prog_data);
uint32_t num_outputs = wm_prog_data->num_varying_inputs;
uint16_t attr_overrides[VARYING_SLOT_MAX];
uint32_t urb_entry_read_length;
uint32_t urb_entry_read_offset;
uint32_t point_sprite_enables;
int sbe_cmd_length;
uint32_t dw1 =
GEN7_SBE_SWIZZLE_ENABLE |
num_outputs << GEN7_SBE_NUM_OUTPUTS_SHIFT;
uint32_t dw4 = 0;
uint32_t dw5 = 0;
/* _NEW_BUFFERS */
bool render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer);
/* _NEW_POINT
*
* Window coordinates in an FBO are inverted, which means point
* sprite origin must be inverted.
*/
if ((ctx->Point.SpriteOrigin == GL_LOWER_LEFT) != render_to_fbo)
dw1 |= GEN6_SF_POINT_SPRITE_LOWERLEFT;
else
dw1 |= GEN6_SF_POINT_SPRITE_UPPERLEFT;
/* _NEW_POINT | _NEW_LIGHT | _NEW_PROGRAM,
* BRW_NEW_FS_PROG_DATA | BRW_NEW_FRAGMENT_PROGRAM |
* BRW_NEW_GS_PROG_DATA | BRW_NEW_PRIMITIVE | BRW_NEW_TES_PROG_DATA |
* BRW_NEW_VUE_MAP_GEOM_OUT
*/
calculate_attr_overrides(brw, attr_overrides,
&point_sprite_enables,
&urb_entry_read_length,
&urb_entry_read_offset);
/* Typically, the URB entry read length and offset should be programmed in
* 3DSTATE_VS and 3DSTATE_GS; SBE inherits it from the last active stage
* which produces geometry. However, we don't know the proper value until
* we call calculate_attr_overrides().
*
* To fit with our existing code, we override the inherited values and
* specify it here directly, as we did on previous generations.
*/
dw1 |=
urb_entry_read_length << GEN7_SBE_URB_ENTRY_READ_LENGTH_SHIFT |
urb_entry_read_offset << GEN8_SBE_URB_ENTRY_READ_OFFSET_SHIFT |
GEN8_SBE_FORCE_URB_ENTRY_READ_LENGTH |
GEN8_SBE_FORCE_URB_ENTRY_READ_OFFSET;
if (brw->gen == 8) {
sbe_cmd_length = 4;
} else {
sbe_cmd_length = 6;
/* prepare the active component dwords */
int input_index = 0;
for (int attr = 0; attr < VARYING_SLOT_MAX; attr++) {
if (!(brw->fragment_program->info.inputs_read &
BITFIELD64_BIT(attr))) {
continue;
}
assert(input_index < 32);
if (input_index < 16)
dw4 |= (GEN9_SBE_ACTIVE_COMPONENT_XYZW << (input_index << 1));
else
dw5 |= (GEN9_SBE_ACTIVE_COMPONENT_XYZW << ((input_index - 16) << 1));
++input_index;
}
}
BEGIN_BATCH(sbe_cmd_length);
OUT_BATCH(_3DSTATE_SBE << 16 | (sbe_cmd_length - 2));
OUT_BATCH(dw1);
OUT_BATCH(point_sprite_enables);
OUT_BATCH(wm_prog_data->flat_inputs);
if (sbe_cmd_length >= 6) {
OUT_BATCH(dw4);
OUT_BATCH(dw5);
}
ADVANCE_BATCH();
BEGIN_BATCH(11);
OUT_BATCH(_3DSTATE_SBE_SWIZ << 16 | (11 - 2));
/* Output DWords 1 through 8: */
for (int i = 0; i < 8; i++) {
OUT_BATCH(attr_overrides[i * 2] | attr_overrides[i * 2 + 1] << 16);
}
OUT_BATCH(0); /* wrapshortest enables 0-7 */
OUT_BATCH(0); /* wrapshortest enables 8-15 */
ADVANCE_BATCH();
}
const struct brw_tracked_state gen8_sbe_state = {
.dirty = {
.mesa = _NEW_BUFFERS |
_NEW_LIGHT |
_NEW_POINT |
_NEW_POLYGON |
_NEW_PROGRAM,
.brw = BRW_NEW_BLORP |
BRW_NEW_CONTEXT |
BRW_NEW_FRAGMENT_PROGRAM |
BRW_NEW_FS_PROG_DATA |
BRW_NEW_GS_PROG_DATA |
BRW_NEW_TES_PROG_DATA |
BRW_NEW_VUE_MAP_GEOM_OUT,
},
.emit = upload_sbe,
};
static void
upload_sf(struct brw_context *brw)
{
struct gl_context *ctx = &brw->ctx;
uint32_t dw1 = 0, dw2 = 0, dw3 = 0;
float point_size;
dw1 = GEN6_SF_STATISTICS_ENABLE;
if (brw->sf.viewport_transform_enable)
dw1 |= GEN6_SF_VIEWPORT_TRANSFORM_ENABLE;
/* _NEW_LINE */
uint32_t line_width_u3_7 = brw_get_line_width(brw);
if (brw->gen >= 9 || brw->is_cherryview) {
dw1 |= line_width_u3_7 << GEN9_SF_LINE_WIDTH_SHIFT;
} else {
dw2 |= line_width_u3_7 << GEN6_SF_LINE_WIDTH_SHIFT;
}
if (ctx->Line.SmoothFlag) {
dw2 |= GEN6_SF_LINE_END_CAP_WIDTH_1_0;
}
/* _NEW_POINT - Clamp to ARB_point_parameters user limits */
point_size = CLAMP(ctx->Point.Size, ctx->Point.MinSize, ctx->Point.MaxSize);
/* Clamp to the hardware limits and convert to fixed point */
dw3 |= U_FIXED(CLAMP(point_size, 0.125f, 255.875f), 3);
/* _NEW_PROGRAM | _NEW_POINT, BRW_NEW_VUE_MAP_GEOM_OUT */
if (use_state_point_size(brw))
dw3 |= GEN6_SF_USE_STATE_POINT_WIDTH;
/* _NEW_POINT | _NEW_MULTISAMPLE */
if ((ctx->Point.SmoothFlag || _mesa_is_multisample_enabled(ctx)) &&
!ctx->Point.PointSprite) {
dw3 |= GEN8_SF_SMOOTH_POINT_ENABLE;
}
dw3 |= GEN6_SF_LINE_AA_MODE_TRUE;
/* _NEW_LIGHT */
if (ctx->Light.ProvokingVertex != GL_FIRST_VERTEX_CONVENTION) {
dw3 |= (2 << GEN6_SF_TRI_PROVOKE_SHIFT) |
(2 << GEN6_SF_TRIFAN_PROVOKE_SHIFT) |
(1 << GEN6_SF_LINE_PROVOKE_SHIFT);
} else {
dw3 |= (1 << GEN6_SF_TRIFAN_PROVOKE_SHIFT);
}
BEGIN_BATCH(4);
OUT_BATCH(_3DSTATE_SF << 16 | (4 - 2));
OUT_BATCH(dw1);
OUT_BATCH(dw2);
OUT_BATCH(dw3);
ADVANCE_BATCH();
}
const struct brw_tracked_state gen8_sf_state = {
.dirty = {
.mesa = _NEW_LIGHT |
_NEW_PROGRAM |
_NEW_LINE |
_NEW_MULTISAMPLE |
_NEW_POINT,
.brw = BRW_NEW_BLORP |
BRW_NEW_CONTEXT |
BRW_NEW_VUE_MAP_GEOM_OUT,
},
.emit = upload_sf,
};
static void
upload_raster(struct brw_context *brw)
{
struct gl_context *ctx = &brw->ctx;
uint32_t dw1 = 0;
/* _NEW_BUFFERS */
bool render_to_fbo = _mesa_is_user_fbo(brw->ctx.DrawBuffer);
/* _NEW_POLYGON */
if (ctx->Polygon._FrontBit == render_to_fbo)
dw1 |= GEN8_RASTER_FRONT_WINDING_CCW;
if (ctx->Polygon.CullFlag) {
switch (ctx->Polygon.CullFaceMode) {
case GL_FRONT:
dw1 |= GEN8_RASTER_CULL_FRONT;
break;
case GL_BACK:
dw1 |= GEN8_RASTER_CULL_BACK;
break;
case GL_FRONT_AND_BACK:
dw1 |= GEN8_RASTER_CULL_BOTH;
break;
default:
unreachable("not reached");
}
} else {
dw1 |= GEN8_RASTER_CULL_NONE;
}
/* _NEW_POINT */
if (ctx->Point.SmoothFlag)
dw1 |= GEN8_RASTER_SMOOTH_POINT_ENABLE;
if (_mesa_is_multisample_enabled(ctx))
dw1 |= GEN8_RASTER_API_MULTISAMPLE_ENABLE;
if (ctx->Polygon.OffsetFill)
dw1 |= GEN6_SF_GLOBAL_DEPTH_OFFSET_SOLID;
if (ctx->Polygon.OffsetLine)
dw1 |= GEN6_SF_GLOBAL_DEPTH_OFFSET_WIREFRAME;
if (ctx->Polygon.OffsetPoint)
dw1 |= GEN6_SF_GLOBAL_DEPTH_OFFSET_POINT;
switch (ctx->Polygon.FrontMode) {
case GL_FILL:
dw1 |= GEN6_SF_FRONT_SOLID;
break;
case GL_LINE:
dw1 |= GEN6_SF_FRONT_WIREFRAME;
break;
case GL_POINT:
dw1 |= GEN6_SF_FRONT_POINT;
break;
default:
unreachable("not reached");
}
switch (ctx->Polygon.BackMode) {
case GL_FILL:
dw1 |= GEN6_SF_BACK_SOLID;
break;
case GL_LINE:
dw1 |= GEN6_SF_BACK_WIREFRAME;
break;
case GL_POINT:
dw1 |= GEN6_SF_BACK_POINT;
break;
default:
unreachable("not reached");
}
/* _NEW_LINE */
if (ctx->Line.SmoothFlag)
dw1 |= GEN8_RASTER_LINE_AA_ENABLE;
/* _NEW_SCISSOR */
if (ctx->Scissor.EnableFlags)
dw1 |= GEN8_RASTER_SCISSOR_ENABLE;
/* _NEW_TRANSFORM */
if (!ctx->Transform.DepthClamp) {
if (brw->gen >= 9) {
dw1 |= GEN9_RASTER_VIEWPORT_Z_NEAR_CLIP_TEST_ENABLE |
GEN9_RASTER_VIEWPORT_Z_FAR_CLIP_TEST_ENABLE;
} else {
dw1 |= GEN8_RASTER_VIEWPORT_Z_CLIP_TEST_ENABLE;
}
}
/* BRW_NEW_CONSERVATIVE_RASTERIZATION */
if (ctx->IntelConservativeRasterization) {
if (brw->gen >= 9)
dw1 |= GEN9_RASTER_CONSERVATIVE_RASTERIZATION_ENABLE;
}
BEGIN_BATCH(5);
OUT_BATCH(_3DSTATE_RASTER << 16 | (5 - 2));
OUT_BATCH(dw1);
OUT_BATCH_F(ctx->Polygon.OffsetUnits * 2); /* constant. copied from gen4 */
OUT_BATCH_F(ctx->Polygon.OffsetFactor); /* scale */
OUT_BATCH_F(ctx->Polygon.OffsetClamp); /* global depth offset clamp */
ADVANCE_BATCH();
}
const struct brw_tracked_state gen8_raster_state = {
.dirty = {
.mesa = _NEW_BUFFERS |
_NEW_LINE |
_NEW_MULTISAMPLE |
_NEW_POINT |
_NEW_POLYGON |
_NEW_SCISSOR |
_NEW_TRANSFORM,
.brw = BRW_NEW_BLORP |
BRW_NEW_CONTEXT |
BRW_NEW_CONSERVATIVE_RASTERIZATION,
},
.emit = upload_raster,
};