blob: 2520b3035b240e6f113c13c42e21a95b802da53e [file] [log] [blame]
/**************************************************************************
*
* Copyright 2006 VMware, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
#ifndef INTEL_MIPMAP_TREE_H
#define INTEL_MIPMAP_TREE_H
#include <assert.h>
#include "intel_screen.h"
#include "intel_regions.h"
#include "GL/internal/dri_interface.h"
#ifdef __cplusplus
extern "C" {
#endif
/* A layer on top of the intel_regions code which adds:
*
* - Code to size and layout a region to hold a set of mipmaps.
* - Query to determine if a new image fits in an existing tree.
* - More refcounting
* - maybe able to remove refcounting from intel_region?
* - ?
*
* The fixed mipmap layout of intel hardware where one offset
* specifies the position of all images in a mipmap hierachy
* complicates the implementation of GL texture image commands,
* compared to hardware where each image is specified with an
* independent offset.
*
* In an ideal world, each texture object would be associated with a
* single bufmgr buffer or 2d intel_region, and all the images within
* the texture object would slot into the tree as they arrive. The
* reality can be a little messier, as images can arrive from the user
* with sizes that don't fit in the existing tree, or in an order
* where the tree layout cannot be guessed immediately.
*
* This structure encodes an idealized mipmap tree. The GL image
* commands build these where possible, otherwise store the images in
* temporary system buffers.
*/
struct intel_texture_image;
struct intel_miptree_map {
/** Bitfield of GL_MAP_READ_BIT, GL_MAP_WRITE_BIT, GL_MAP_INVALIDATE_BIT */
GLbitfield mode;
/** Region of interest for the map. */
int x, y, w, h;
/** Possibly malloced temporary buffer for the mapping. */
void *buffer;
/** Possible pointer to a temporary linear miptree for the mapping. */
struct intel_mipmap_tree *mt;
/** Pointer to the start of (map_x, map_y) returned by the mapping. */
void *ptr;
/** Stride of the mapping. */
int stride;
};
/**
* Describes the location of each texture image within a texture region.
*/
struct intel_mipmap_level
{
/** Offset to this miptree level, used in computing x_offset. */
GLuint level_x;
/** Offset to this miptree level, used in computing y_offset. */
GLuint level_y;
GLuint width;
GLuint height;
/**
* \brief Number of 2D slices in this miplevel.
*
* The exact semantics of depth varies according to the texture target:
* - For GL_TEXTURE_CUBE_MAP, depth is 6.
* - For GL_TEXTURE_2D_ARRAY, depth is the number of array slices. It is
* identical for all miplevels in the texture.
* - For GL_TEXTURE_3D, it is the texture's depth at this miplevel. Its
* value, like width and height, varies with miplevel.
* - For other texture types, depth is 1.
*/
GLuint depth;
/**
* \brief List of 2D images in this mipmap level.
*
* This may be a list of cube faces, array slices in 2D array texture, or
* layers in a 3D texture. The list's length is \c depth.
*/
struct intel_mipmap_slice {
/**
* \name Offset to slice
* \{
*
* Hardware formats are so diverse that that there is no unified way to
* compute the slice offsets, so we store them in this table.
*
* The (x, y) offset to slice \c s at level \c l relative the miptrees
* base address is
* \code
* x = mt->level[l].slice[s].x_offset
* y = mt->level[l].slice[s].y_offset
*/
GLuint x_offset;
GLuint y_offset;
/** \} */
/**
* Mapping information. Persistent for the duration of
* intel_miptree_map/unmap on this slice.
*/
struct intel_miptree_map *map;
} *slice;
};
struct intel_mipmap_tree
{
/* Effectively the key:
*/
GLenum target;
/**
* This is just the same as the gl_texture_image->TexFormat or
* gl_renderbuffer->Format.
*/
mesa_format format;
/**
* The X offset of each image in the miptree must be aligned to this. See
* the "Alignment Unit Size" section of the BSpec.
*/
unsigned int align_w;
unsigned int align_h; /**< \see align_w */
GLuint first_level;
GLuint last_level;
/**
* Level zero image dimensions. These dimensions correspond to the
* physical layout of data in memory. Accordingly, they account for the
* extra width, height, and or depth that must be allocated in order to
* accommodate multisample formats, and they account for the extra factor
* of 6 in depth that must be allocated in order to accommodate cubemap
* textures.
*/
GLuint physical_width0, physical_height0, physical_depth0;
GLuint cpp;
bool compressed;
/**
* Level zero image dimensions. These dimensions correspond to the
* logical width, height, and depth of the region as seen by client code.
* Accordingly, they do not account for the extra width, height, and/or
* depth that must be allocated in order to accommodate multisample
* formats, nor do they account for the extra factor of 6 in depth that
* must be allocated in order to accommodate cubemap textures.
*/
uint32_t logical_width0, logical_height0, logical_depth0;
/**
* For 1D array, 2D array, cube, and 2D multisampled surfaces on Gen7: true
* if the surface only contains LOD 0, and hence no space is for LOD's
* other than 0 in between array slices.
*
* Corresponds to the surface_array_spacing bit in gen7_surface_state.
*/
bool array_spacing_lod0;
/* Derived from the above:
*/
GLuint total_width;
GLuint total_height;
/* Includes image offset tables:
*/
struct intel_mipmap_level level[MAX_TEXTURE_LEVELS];
/* The data is held here:
*/
struct intel_region *region;
/* Offset into region bo where miptree starts:
*/
uint32_t offset;
/* These are also refcounted:
*/
GLuint refcount;
};
enum intel_miptree_tiling_mode {
INTEL_MIPTREE_TILING_ANY,
INTEL_MIPTREE_TILING_Y,
INTEL_MIPTREE_TILING_NONE,
};
struct intel_mipmap_tree *intel_miptree_create(struct intel_context *intel,
GLenum target,
mesa_format format,
GLuint first_level,
GLuint last_level,
GLuint width0,
GLuint height0,
GLuint depth0,
bool expect_accelerated_upload,
enum intel_miptree_tiling_mode);
struct intel_mipmap_tree *
intel_miptree_create_layout(struct intel_context *intel,
GLenum target,
mesa_format format,
GLuint first_level,
GLuint last_level,
GLuint width0,
GLuint height0,
GLuint depth0);
struct intel_mipmap_tree *
intel_miptree_create_for_bo(struct intel_context *intel,
drm_intel_bo *bo,
mesa_format format,
uint32_t offset,
uint32_t width,
uint32_t height,
int pitch,
uint32_t tiling);
struct intel_mipmap_tree*
intel_miptree_create_for_dri2_buffer(struct intel_context *intel,
unsigned dri_attachment,
mesa_format format,
struct intel_region *region);
struct intel_mipmap_tree*
intel_miptree_create_for_image_buffer(struct intel_context *intel,
enum __DRIimageBufferMask buffer_type,
mesa_format format,
uint32_t num_samples,
struct intel_region *region);
/**
* Create a miptree appropriate as the storage for a non-texture renderbuffer.
* The miptree has the following properties:
* - The target is GL_TEXTURE_2D.
* - There are no levels other than the base level 0.
* - Depth is 1.
*/
struct intel_mipmap_tree*
intel_miptree_create_for_renderbuffer(struct intel_context *intel,
mesa_format format,
uint32_t width,
uint32_t height);
/** \brief Assert that the level and layer are valid for the miptree. */
static inline void
intel_miptree_check_level_layer(struct intel_mipmap_tree *mt,
uint32_t level,
uint32_t layer)
{
(void) mt;
(void) level;
(void) layer;
assert(level >= mt->first_level);
assert(level <= mt->last_level);
assert(layer < mt->level[level].depth);
}
int intel_miptree_pitch_align (struct intel_context *intel,
struct intel_mipmap_tree *mt,
uint32_t tiling,
int pitch);
void intel_miptree_reference(struct intel_mipmap_tree **dst,
struct intel_mipmap_tree *src);
void intel_miptree_release(struct intel_mipmap_tree **mt);
/* Check if an image fits an existing mipmap tree layout
*/
bool intel_miptree_match_image(struct intel_mipmap_tree *mt,
struct gl_texture_image *image);
void
intel_miptree_get_image_offset(struct intel_mipmap_tree *mt,
GLuint level, GLuint slice,
GLuint *x, GLuint *y);
void
intel_miptree_get_dimensions_for_image(struct gl_texture_image *image,
int *width, int *height, int *depth);
uint32_t
intel_miptree_get_tile_offsets(struct intel_mipmap_tree *mt,
GLuint level, GLuint slice,
uint32_t *tile_x,
uint32_t *tile_y);
void intel_miptree_set_level_info(struct intel_mipmap_tree *mt,
GLuint level,
GLuint x, GLuint y,
GLuint w, GLuint h, GLuint d);
void intel_miptree_set_image_offset(struct intel_mipmap_tree *mt,
GLuint level,
GLuint img, GLuint x, GLuint y);
void
intel_miptree_copy_teximage(struct intel_context *intel,
struct intel_texture_image *intelImage,
struct intel_mipmap_tree *dst_mt, bool invalidate);
/**\}*/
/* i915_mipmap_tree.c:
*/
void i915_miptree_layout(struct intel_mipmap_tree *mt);
void i945_miptree_layout(struct intel_mipmap_tree *mt);
void *intel_miptree_map_raw(struct intel_context *intel,
struct intel_mipmap_tree *mt);
void intel_miptree_unmap_raw(struct intel_mipmap_tree *mt);
void
intel_miptree_map(struct intel_context *intel,
struct intel_mipmap_tree *mt,
unsigned int level,
unsigned int slice,
unsigned int x,
unsigned int y,
unsigned int w,
unsigned int h,
GLbitfield mode,
void **out_ptr,
int *out_stride);
void
intel_miptree_unmap(struct intel_context *intel,
struct intel_mipmap_tree *mt,
unsigned int level,
unsigned int slice);
#ifdef __cplusplus
}
#endif
#endif