blob: 8df2ee59207b7a98a26625e80ef92baffbd6e063 [file] [log] [blame]
/*
* Copyright © 2010 - 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#ifndef BRW_COMPILER_H
#define BRW_COMPILER_H
#include <stdio.h>
#include "dev/gen_device_info.h"
#include "main/macros.h"
#include "main/mtypes.h"
#include "util/ralloc.h"
#ifdef __cplusplus
extern "C" {
#endif
struct ra_regs;
struct nir_shader;
struct brw_program;
struct brw_compiler {
const struct gen_device_info *devinfo;
struct {
struct ra_regs *regs;
/**
* Array of the ra classes for the unaligned contiguous register
* block sizes used.
*/
int *classes;
/**
* Mapping for register-allocated objects in *regs to the first
* GRF for that object.
*/
uint8_t *ra_reg_to_grf;
} vec4_reg_set;
struct {
struct ra_regs *regs;
/**
* Array of the ra classes for the unaligned contiguous register
* block sizes used, indexed by register size.
*/
int classes[16];
/**
* Mapping from classes to ra_reg ranges. Each of the per-size
* classes corresponds to a range of ra_reg nodes. This array stores
* those ranges in the form of first ra_reg in each class and the
* total number of ra_reg elements in the last array element. This
* way the range of the i'th class is given by:
* [ class_to_ra_reg_range[i], class_to_ra_reg_range[i+1] )
*/
int class_to_ra_reg_range[17];
/**
* Mapping for register-allocated objects in *regs to the first
* GRF for that object.
*/
uint8_t *ra_reg_to_grf;
/**
* ra class for the aligned barycentrics we use for PLN, which doesn't
* appear in *classes.
*/
int aligned_bary_class;
} fs_reg_sets[3];
void (*shader_debug_log)(void *, const char *str, ...) PRINTFLIKE(2, 3);
void (*shader_perf_log)(void *, const char *str, ...) PRINTFLIKE(2, 3);
bool scalar_stage[MESA_ALL_SHADER_STAGES];
bool use_tcs_8_patch;
struct gl_shader_compiler_options glsl_compiler_options[MESA_ALL_SHADER_STAGES];
/**
* Apply workarounds for SIN and COS output range problems.
* This can negatively impact performance.
*/
bool precise_trig;
/**
* Is 3DSTATE_CONSTANT_*'s Constant Buffer 0 relative to Dynamic State
* Base Address? (If not, it's a normal GPU address.)
*/
bool constant_buffer_0_is_relative;
/**
* Whether or not the driver supports pull constants. If not, the compiler
* will attempt to push everything.
*/
bool supports_pull_constants;
/**
* Whether or not the driver supports NIR shader constants. This controls
* whether nir_opt_large_constants will be run.
*/
bool supports_shader_constants;
/**
* Whether or not the driver wants uniform params to be compacted by the
* back-end compiler.
*/
bool compact_params;
/**
* Whether or not the driver wants variable group size to be lowered by the
* back-end compiler.
*/
bool lower_variable_group_size;
};
/**
* We use a constant subgroup size of 32. It really only needs to be a
* maximum and, since we do SIMD32 for compute shaders in some cases, it
* needs to be at least 32. SIMD8 and SIMD16 shaders will still claim a
* subgroup size of 32 but will act as if 16 or 24 of those channels are
* disabled.
*/
#define BRW_SUBGROUP_SIZE 32
/**
* Program key structures.
*
* When drawing, we look for the currently bound shaders in the program
* cache. This is essentially a hash table lookup, and these are the keys.
*
* Sometimes OpenGL features specified as state need to be simulated via
* shader code, due to a mismatch between the API and the hardware. This
* is often referred to as "non-orthagonal state" or "NOS". We store NOS
* in the program key so it's considered when searching for a program. If
* we haven't seen a particular combination before, we have to recompile a
* new specialized version.
*
* Shader compilation should not look up state in gl_context directly, but
* instead use the copy in the program key. This guarantees recompiles will
* happen correctly.
*
* @{
*/
enum PACKED gen6_gather_sampler_wa {
WA_SIGN = 1, /* whether we need to sign extend */
WA_8BIT = 2, /* if we have an 8bit format needing wa */
WA_16BIT = 4, /* if we have a 16bit format needing wa */
};
/**
* Sampler information needed by VS, WM, and GS program cache keys.
*/
struct brw_sampler_prog_key_data {
/**
* EXT_texture_swizzle and DEPTH_TEXTURE_MODE swizzles.
*/
uint16_t swizzles[MAX_SAMPLERS];
uint32_t gl_clamp_mask[3];
/**
* For RG32F, gather4's channel select is broken.
*/
uint32_t gather_channel_quirk_mask;
/**
* Whether this sampler uses the compressed multisample surface layout.
*/
uint32_t compressed_multisample_layout_mask;
/**
* Whether this sampler is using 16x multisampling. If so fetching from
* this sampler will be handled with a different instruction, ld2dms_w
* instead of ld2dms.
*/
uint32_t msaa_16;
/**
* For Sandybridge, which shader w/a we need for gather quirks.
*/
enum gen6_gather_sampler_wa gen6_gather_wa[MAX_SAMPLERS];
/**
* Texture units that have a YUV image bound.
*/
uint32_t y_u_v_image_mask;
uint32_t y_uv_image_mask;
uint32_t yx_xuxv_image_mask;
uint32_t xy_uxvx_image_mask;
uint32_t ayuv_image_mask;
uint32_t xyuv_image_mask;
uint32_t bt709_mask;
uint32_t bt2020_mask;
/* Scale factor for each texture. */
float scale_factors[32];
};
/** An enum representing what kind of input gl_SubgroupSize is. */
enum PACKED brw_subgroup_size_type
{
BRW_SUBGROUP_SIZE_API_CONSTANT, /**< Default Vulkan behavior */
BRW_SUBGROUP_SIZE_UNIFORM, /**< OpenGL behavior */
BRW_SUBGROUP_SIZE_VARYING, /**< VK_EXT_subgroup_size_control */
/* These enums are specifically chosen so that the value of the enum is
* also the subgroup size. If any new values are added, they must respect
* this invariant.
*/
BRW_SUBGROUP_SIZE_REQUIRE_8 = 8, /**< VK_EXT_subgroup_size_control */
BRW_SUBGROUP_SIZE_REQUIRE_16 = 16, /**< VK_EXT_subgroup_size_control */
BRW_SUBGROUP_SIZE_REQUIRE_32 = 32, /**< VK_EXT_subgroup_size_control */
};
struct brw_base_prog_key {
unsigned program_string_id;
enum brw_subgroup_size_type subgroup_size_type;
struct brw_sampler_prog_key_data tex;
};
/**
* The VF can't natively handle certain types of attributes, such as GL_FIXED
* or most 10_10_10_2 types. These flags enable various VS workarounds to
* "fix" attributes at the beginning of shaders.
*/
#define BRW_ATTRIB_WA_COMPONENT_MASK 7 /* mask for GL_FIXED scale channel count */
#define BRW_ATTRIB_WA_NORMALIZE 8 /* normalize in shader */
#define BRW_ATTRIB_WA_BGRA 16 /* swap r/b channels in shader */
#define BRW_ATTRIB_WA_SIGN 32 /* interpret as signed in shader */
#define BRW_ATTRIB_WA_SCALE 64 /* interpret as scaled in shader */
/**
* OpenGL attribute slots fall in [0, VERT_ATTRIB_MAX - 1] with the range
* [VERT_ATTRIB_GENERIC0, VERT_ATTRIB_MAX - 1] reserved for up to 16 user
* input vertex attributes. In Vulkan, we expose up to 28 user vertex input
* attributes that are mapped to slots also starting at VERT_ATTRIB_GENERIC0.
*/
#define MAX_GL_VERT_ATTRIB VERT_ATTRIB_MAX
#define MAX_VK_VERT_ATTRIB (VERT_ATTRIB_GENERIC0 + 28)
/** The program key for Vertex Shaders. */
struct brw_vs_prog_key {
struct brw_base_prog_key base;
/**
* Per-attribute workaround flags
*
* For each attribute, a combination of BRW_ATTRIB_WA_*.
*
* For OpenGL, where we expose a maximum of 16 user input atttributes
* we only need up to VERT_ATTRIB_MAX slots, however, in Vulkan
* slots preceding VERT_ATTRIB_GENERIC0 are unused and we can
* expose up to 28 user input vertex attributes that are mapped to slots
* starting at VERT_ATTRIB_GENERIC0, so this array needs to be large
* enough to hold this many slots.
*/
uint8_t gl_attrib_wa_flags[MAX2(MAX_GL_VERT_ATTRIB, MAX_VK_VERT_ATTRIB)];
bool copy_edgeflag:1;
bool clamp_vertex_color:1;
/**
* How many user clipping planes are being uploaded to the vertex shader as
* push constants.
*
* These are used for lowering legacy gl_ClipVertex/gl_Position clipping to
* clip distances.
*/
unsigned nr_userclip_plane_consts:4;
/**
* For pre-Gen6 hardware, a bitfield indicating which texture coordinates
* are going to be replaced with point coordinates (as a consequence of a
* call to glTexEnvi(GL_POINT_SPRITE, GL_COORD_REPLACE, GL_TRUE)). Because
* our SF thread requires exact matching between VS outputs and FS inputs,
* these texture coordinates will need to be unconditionally included in
* the VUE, even if they aren't written by the vertex shader.
*/
uint8_t point_coord_replace;
};
/** The program key for Tessellation Control Shaders. */
struct brw_tcs_prog_key
{
struct brw_base_prog_key base;
GLenum tes_primitive_mode;
unsigned input_vertices;
/** A bitfield of per-patch outputs written. */
uint32_t patch_outputs_written;
/** A bitfield of per-vertex outputs written. */
uint64_t outputs_written;
bool quads_workaround;
};
/** The program key for Tessellation Evaluation Shaders. */
struct brw_tes_prog_key
{
struct brw_base_prog_key base;
/** A bitfield of per-patch inputs read. */
uint32_t patch_inputs_read;
/** A bitfield of per-vertex inputs read. */
uint64_t inputs_read;
/**
* How many user clipping planes are being uploaded to the tessellation
* evaluation shader as push constants.
*
* These are used for lowering legacy gl_ClipVertex/gl_Position clipping to
* clip distances.
*/
unsigned nr_userclip_plane_consts:4;
};
/** The program key for Geometry Shaders. */
struct brw_gs_prog_key
{
struct brw_base_prog_key base;
/**
* How many user clipping planes are being uploaded to the geometry shader
* as push constants.
*
* These are used for lowering legacy gl_ClipVertex/gl_Position clipping to
* clip distances.
*/
unsigned nr_userclip_plane_consts:4;
};
enum brw_sf_primitive {
BRW_SF_PRIM_POINTS = 0,
BRW_SF_PRIM_LINES = 1,
BRW_SF_PRIM_TRIANGLES = 2,
BRW_SF_PRIM_UNFILLED_TRIS = 3,
};
struct brw_sf_prog_key {
uint64_t attrs;
bool contains_flat_varying;
unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
uint8_t point_sprite_coord_replace;
enum brw_sf_primitive primitive:2;
bool do_twoside_color:1;
bool frontface_ccw:1;
bool do_point_sprite:1;
bool do_point_coord:1;
bool sprite_origin_lower_left:1;
bool userclip_active:1;
};
enum brw_clip_mode {
BRW_CLIP_MODE_NORMAL = 0,
BRW_CLIP_MODE_CLIP_ALL = 1,
BRW_CLIP_MODE_CLIP_NON_REJECTED = 2,
BRW_CLIP_MODE_REJECT_ALL = 3,
BRW_CLIP_MODE_ACCEPT_ALL = 4,
BRW_CLIP_MODE_KERNEL_CLIP = 5,
};
enum brw_clip_fill_mode {
BRW_CLIP_FILL_MODE_LINE = 0,
BRW_CLIP_FILL_MODE_POINT = 1,
BRW_CLIP_FILL_MODE_FILL = 2,
BRW_CLIP_FILL_MODE_CULL = 3,
};
/* Note that if unfilled primitives are being emitted, we have to fix
* up polygon offset and flatshading at this point:
*/
struct brw_clip_prog_key {
uint64_t attrs;
bool contains_flat_varying;
bool contains_noperspective_varying;
unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
unsigned primitive:4;
unsigned nr_userclip:4;
bool pv_first:1;
bool do_unfilled:1;
enum brw_clip_fill_mode fill_cw:2; /* includes cull information */
enum brw_clip_fill_mode fill_ccw:2; /* includes cull information */
bool offset_cw:1;
bool offset_ccw:1;
bool copy_bfc_cw:1;
bool copy_bfc_ccw:1;
enum brw_clip_mode clip_mode:3;
float offset_factor;
float offset_units;
float offset_clamp;
};
/* A big lookup table is used to figure out which and how many
* additional regs will inserted before the main payload in the WM
* program execution. These mainly relate to depth and stencil
* processing and the early-depth-test optimization.
*/
enum brw_wm_iz_bits {
BRW_WM_IZ_PS_KILL_ALPHATEST_BIT = 0x1,
BRW_WM_IZ_PS_COMPUTES_DEPTH_BIT = 0x2,
BRW_WM_IZ_DEPTH_WRITE_ENABLE_BIT = 0x4,
BRW_WM_IZ_DEPTH_TEST_ENABLE_BIT = 0x8,
BRW_WM_IZ_STENCIL_WRITE_ENABLE_BIT = 0x10,
BRW_WM_IZ_STENCIL_TEST_ENABLE_BIT = 0x20,
BRW_WM_IZ_BIT_MAX = 0x40
};
enum brw_wm_aa_enable {
BRW_WM_AA_NEVER,
BRW_WM_AA_SOMETIMES,
BRW_WM_AA_ALWAYS
};
/** The program key for Fragment/Pixel Shaders. */
struct brw_wm_prog_key {
struct brw_base_prog_key base;
/* Some collection of BRW_WM_IZ_* */
uint8_t iz_lookup;
bool stats_wm:1;
bool flat_shade:1;
unsigned nr_color_regions:5;
bool alpha_test_replicate_alpha:1;
bool alpha_to_coverage:1;
bool clamp_fragment_color:1;
bool persample_interp:1;
bool multisample_fbo:1;
bool frag_coord_adds_sample_pos:1;
enum brw_wm_aa_enable line_aa:2;
bool high_quality_derivatives:1;
bool force_dual_color_blend:1;
bool coherent_fb_fetch:1;
bool ignore_sample_mask_out:1;
uint8_t color_outputs_valid;
uint64_t input_slots_valid;
GLenum alpha_test_func; /* < For Gen4/5 MRT alpha test */
float alpha_test_ref;
};
struct brw_cs_prog_key {
struct brw_base_prog_key base;
};
/* brw_any_prog_key is any of the keys that map to an API stage */
union brw_any_prog_key {
struct brw_base_prog_key base;
struct brw_vs_prog_key vs;
struct brw_tcs_prog_key tcs;
struct brw_tes_prog_key tes;
struct brw_gs_prog_key gs;
struct brw_wm_prog_key wm;
struct brw_cs_prog_key cs;
};
/*
* Image metadata structure as laid out in the shader parameter
* buffer. Entries have to be 16B-aligned for the vec4 back-end to be
* able to use them. That's okay because the padding and any unused
* entries [most of them except when we're doing untyped surface
* access] will be removed by the uniform packing pass.
*/
#define BRW_IMAGE_PARAM_OFFSET_OFFSET 0
#define BRW_IMAGE_PARAM_SIZE_OFFSET 4
#define BRW_IMAGE_PARAM_STRIDE_OFFSET 8
#define BRW_IMAGE_PARAM_TILING_OFFSET 12
#define BRW_IMAGE_PARAM_SWIZZLING_OFFSET 16
#define BRW_IMAGE_PARAM_SIZE 20
struct brw_image_param {
/** Offset applied to the X and Y surface coordinates. */
uint32_t offset[2];
/** Surface X, Y and Z dimensions. */
uint32_t size[3];
/** X-stride in bytes, Y-stride in pixels, horizontal slice stride in
* pixels, vertical slice stride in pixels.
*/
uint32_t stride[4];
/** Log2 of the tiling modulus in the X, Y and Z dimension. */
uint32_t tiling[3];
/**
* Right shift to apply for bit 6 address swizzling. Two different
* swizzles can be specified and will be applied one after the other. The
* resulting address will be:
*
* addr' = addr ^ ((1 << 6) & ((addr >> swizzling[0]) ^
* (addr >> swizzling[1])))
*
* Use \c 0xff if any of the swizzles is not required.
*/
uint32_t swizzling[2];
};
/** Max number of render targets in a shader */
#define BRW_MAX_DRAW_BUFFERS 8
/**
* Max number of binding table entries used for stream output.
*
* From the OpenGL 3.0 spec, table 6.44 (Transform Feedback State), the
* minimum value of MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS is 64.
*
* On Gen6, the size of transform feedback data is limited not by the number
* of components but by the number of binding table entries we set aside. We
* use one binding table entry for a float, one entry for a vector, and one
* entry per matrix column. Since the only way we can communicate our
* transform feedback capabilities to the client is via
* MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS, we need to plan for the
* worst case, in which all the varyings are floats, so we use up one binding
* table entry per component. Therefore we need to set aside at least 64
* binding table entries for use by transform feedback.
*
* Note: since we don't currently pack varyings, it is currently impossible
* for the client to actually use up all of these binding table entries--if
* all of their varyings were floats, they would run out of varying slots and
* fail to link. But that's a bug, so it seems prudent to go ahead and
* allocate the number of binding table entries we will need once the bug is
* fixed.
*/
#define BRW_MAX_SOL_BINDINGS 64
/**
* Binding table index for the first gen6 SOL binding.
*/
#define BRW_GEN6_SOL_BINDING_START 0
/**
* Stride in bytes between shader_time entries.
*
* We separate entries by a cacheline to reduce traffic between EUs writing to
* different entries.
*/
#define BRW_SHADER_TIME_STRIDE 64
struct brw_ubo_range
{
uint16_t block;
uint8_t start;
uint8_t length;
};
/* We reserve the first 2^16 values for builtins */
#define BRW_PARAM_IS_BUILTIN(param) (((param) & 0xffff0000) == 0)
enum brw_param_builtin {
BRW_PARAM_BUILTIN_ZERO,
BRW_PARAM_BUILTIN_CLIP_PLANE_0_X,
BRW_PARAM_BUILTIN_CLIP_PLANE_0_Y,
BRW_PARAM_BUILTIN_CLIP_PLANE_0_Z,
BRW_PARAM_BUILTIN_CLIP_PLANE_0_W,
BRW_PARAM_BUILTIN_CLIP_PLANE_1_X,
BRW_PARAM_BUILTIN_CLIP_PLANE_1_Y,
BRW_PARAM_BUILTIN_CLIP_PLANE_1_Z,
BRW_PARAM_BUILTIN_CLIP_PLANE_1_W,
BRW_PARAM_BUILTIN_CLIP_PLANE_2_X,
BRW_PARAM_BUILTIN_CLIP_PLANE_2_Y,
BRW_PARAM_BUILTIN_CLIP_PLANE_2_Z,
BRW_PARAM_BUILTIN_CLIP_PLANE_2_W,
BRW_PARAM_BUILTIN_CLIP_PLANE_3_X,
BRW_PARAM_BUILTIN_CLIP_PLANE_3_Y,
BRW_PARAM_BUILTIN_CLIP_PLANE_3_Z,
BRW_PARAM_BUILTIN_CLIP_PLANE_3_W,
BRW_PARAM_BUILTIN_CLIP_PLANE_4_X,
BRW_PARAM_BUILTIN_CLIP_PLANE_4_Y,
BRW_PARAM_BUILTIN_CLIP_PLANE_4_Z,
BRW_PARAM_BUILTIN_CLIP_PLANE_4_W,
BRW_PARAM_BUILTIN_CLIP_PLANE_5_X,
BRW_PARAM_BUILTIN_CLIP_PLANE_5_Y,
BRW_PARAM_BUILTIN_CLIP_PLANE_5_Z,
BRW_PARAM_BUILTIN_CLIP_PLANE_5_W,
BRW_PARAM_BUILTIN_CLIP_PLANE_6_X,
BRW_PARAM_BUILTIN_CLIP_PLANE_6_Y,
BRW_PARAM_BUILTIN_CLIP_PLANE_6_Z,
BRW_PARAM_BUILTIN_CLIP_PLANE_6_W,
BRW_PARAM_BUILTIN_CLIP_PLANE_7_X,
BRW_PARAM_BUILTIN_CLIP_PLANE_7_Y,
BRW_PARAM_BUILTIN_CLIP_PLANE_7_Z,
BRW_PARAM_BUILTIN_CLIP_PLANE_7_W,
BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X,
BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_Y,
BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_Z,
BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_W,
BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_X,
BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_Y,
BRW_PARAM_BUILTIN_PATCH_VERTICES_IN,
BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_X,
BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_Y,
BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_Z,
BRW_PARAM_BUILTIN_SUBGROUP_ID,
BRW_PARAM_BUILTIN_WORK_GROUP_SIZE_X,
BRW_PARAM_BUILTIN_WORK_GROUP_SIZE_Y,
BRW_PARAM_BUILTIN_WORK_GROUP_SIZE_Z,
};
#define BRW_PARAM_BUILTIN_CLIP_PLANE(idx, comp) \
(BRW_PARAM_BUILTIN_CLIP_PLANE_0_X + ((idx) << 2) + (comp))
#define BRW_PARAM_BUILTIN_IS_CLIP_PLANE(param) \
((param) >= BRW_PARAM_BUILTIN_CLIP_PLANE_0_X && \
(param) <= BRW_PARAM_BUILTIN_CLIP_PLANE_7_W)
#define BRW_PARAM_BUILTIN_CLIP_PLANE_IDX(param) \
(((param) - BRW_PARAM_BUILTIN_CLIP_PLANE_0_X) >> 2)
#define BRW_PARAM_BUILTIN_CLIP_PLANE_COMP(param) \
(((param) - BRW_PARAM_BUILTIN_CLIP_PLANE_0_X) & 0x3)
struct brw_stage_prog_data {
struct {
/** size of our binding table. */
uint32_t size_bytes;
/** @{
* surface indices for the various groups of surfaces
*/
uint32_t pull_constants_start;
uint32_t texture_start;
uint32_t gather_texture_start;
uint32_t ubo_start;
uint32_t ssbo_start;
uint32_t image_start;
uint32_t shader_time_start;
uint32_t plane_start[3];
/** @} */
} binding_table;
struct brw_ubo_range ubo_ranges[4];
GLuint nr_params; /**< number of float params/constants */
GLuint nr_pull_params;
/* zero_push_reg is a bitfield which indicates what push registers (if any)
* should be zeroed by SW at the start of the shader. The corresponding
* push_reg_mask_param specifies the param index (in 32-bit units) where
* the actual runtime 64-bit mask will be pushed. The shader will zero
* push reg i if
*
* reg_used & zero_push_reg & ~*push_reg_mask_param & (1ull << i)
*
* If this field is set, brw_compiler::compact_params must be false.
*/
uint64_t zero_push_reg;
unsigned push_reg_mask_param;
unsigned curb_read_length;
unsigned total_scratch;
unsigned total_shared;
unsigned program_size;
/** Does this program pull from any UBO or other constant buffers? */
bool has_ubo_pull;
/**
* Register where the thread expects to find input data from the URB
* (typically uniforms, followed by vertex or fragment attributes).
*/
unsigned dispatch_grf_start_reg;
bool use_alt_mode; /**< Use ALT floating point mode? Otherwise, IEEE. */
/* 32-bit identifiers for all push/pull parameters. These can be anything
* the driver wishes them to be; the core of the back-end compiler simply
* re-arranges them. The one restriction is that the bottom 2^16 values
* are reserved for builtins defined in the brw_param_builtin enum defined
* above.
*/
uint32_t *param;
uint32_t *pull_param;
/* Whether shader uses atomic operations. */
bool uses_atomic_load_store;
};
static inline uint32_t *
brw_stage_prog_data_add_params(struct brw_stage_prog_data *prog_data,
unsigned nr_new_params)
{
unsigned old_nr_params = prog_data->nr_params;
prog_data->nr_params += nr_new_params;
prog_data->param = reralloc(ralloc_parent(prog_data->param),
prog_data->param, uint32_t,
prog_data->nr_params);
return prog_data->param + old_nr_params;
}
enum brw_barycentric_mode {
BRW_BARYCENTRIC_PERSPECTIVE_PIXEL = 0,
BRW_BARYCENTRIC_PERSPECTIVE_CENTROID = 1,
BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE = 2,
BRW_BARYCENTRIC_NONPERSPECTIVE_PIXEL = 3,
BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID = 4,
BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE = 5,
BRW_BARYCENTRIC_MODE_COUNT = 6
};
#define BRW_BARYCENTRIC_NONPERSPECTIVE_BITS \
((1 << BRW_BARYCENTRIC_NONPERSPECTIVE_PIXEL) | \
(1 << BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID) | \
(1 << BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE))
enum brw_pixel_shader_computed_depth_mode {
BRW_PSCDEPTH_OFF = 0, /* PS does not compute depth */
BRW_PSCDEPTH_ON = 1, /* PS computes depth; no guarantee about value */
BRW_PSCDEPTH_ON_GE = 2, /* PS guarantees output depth >= source depth */
BRW_PSCDEPTH_ON_LE = 3, /* PS guarantees output depth <= source depth */
};
/* Data about a particular attempt to compile a program. Note that
* there can be many of these, each in a different GL state
* corresponding to a different brw_wm_prog_key struct, with different
* compiled programs.
*/
struct brw_wm_prog_data {
struct brw_stage_prog_data base;
GLuint num_varying_inputs;
uint8_t reg_blocks_8;
uint8_t reg_blocks_16;
uint8_t reg_blocks_32;
uint8_t dispatch_grf_start_reg_16;
uint8_t dispatch_grf_start_reg_32;
uint32_t prog_offset_16;
uint32_t prog_offset_32;
struct {
/** @{
* surface indices the WM-specific surfaces
*/
uint32_t render_target_read_start;
/** @} */
} binding_table;
uint8_t computed_depth_mode;
bool computed_stencil;
bool early_fragment_tests;
bool post_depth_coverage;
bool inner_coverage;
bool dispatch_8;
bool dispatch_16;
bool dispatch_32;
bool dual_src_blend;
bool persample_dispatch;
bool uses_pos_offset;
bool uses_omask;
bool uses_kill;
bool uses_src_depth;
bool uses_src_w;
bool uses_sample_mask;
bool has_render_target_reads;
bool has_side_effects;
bool pulls_bary;
bool contains_flat_varying;
bool contains_noperspective_varying;
/**
* Mask of which interpolation modes are required by the fragment shader.
* Used in hardware setup on gen6+.
*/
uint32_t barycentric_interp_modes;
/**
* Mask of which FS inputs are marked flat by the shader source. This is
* needed for setting up 3DSTATE_SF/SBE.
*/
uint32_t flat_inputs;
/**
* The FS inputs
*/
uint64_t inputs;
/* Mapping of VUE slots to interpolation modes.
* Used by the Gen4-5 clip/sf/wm stages.
*/
unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
/**
* Map from gl_varying_slot to the position within the FS setup data
* payload where the varying's attribute vertex deltas should be delivered.
* For varying slots that are not used by the FS, the value is -1.
*/
int urb_setup[VARYING_SLOT_MAX];
/**
* Cache structure into the urb_setup array above that contains the
* attribute numbers of active varyings out of urb_setup.
* The actual count is stored in urb_setup_attribs_count.
*/
uint8_t urb_setup_attribs[VARYING_SLOT_MAX];
uint8_t urb_setup_attribs_count;
};
/** Returns the SIMD width corresponding to a given KSP index
*
* The "Variable Pixel Dispatch" table in the PRM (which can be found, for
* example in Vol. 7 of the SKL PRM) has a mapping from dispatch widths to
* kernel start pointer (KSP) indices that is based on what dispatch widths
* are enabled. This function provides, effectively, the reverse mapping.
*
* If the given KSP is valid with respect to the SIMD8/16/32 enables, a SIMD
* width of 8, 16, or 32 is returned. If the KSP is invalid, 0 is returned.
*/
static inline unsigned
brw_fs_simd_width_for_ksp(unsigned ksp_idx, bool simd8_enabled,
bool simd16_enabled, bool simd32_enabled)
{
/* This function strictly ignores contiguous dispatch */
switch (ksp_idx) {
case 0:
return simd8_enabled ? 8 :
(simd16_enabled && !simd32_enabled) ? 16 :
(simd32_enabled && !simd16_enabled) ? 32 : 0;
case 1:
return (simd32_enabled && (simd16_enabled || simd8_enabled)) ? 32 : 0;
case 2:
return (simd16_enabled && (simd32_enabled || simd8_enabled)) ? 16 : 0;
default:
unreachable("Invalid KSP index");
}
}
#define brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx) \
brw_fs_simd_width_for_ksp((ksp_idx), (wm_state)._8PixelDispatchEnable, \
(wm_state)._16PixelDispatchEnable, \
(wm_state)._32PixelDispatchEnable)
#define brw_wm_state_has_ksp(wm_state, ksp_idx) \
(brw_wm_state_simd_width_for_ksp((wm_state), (ksp_idx)) != 0)
static inline uint32_t
_brw_wm_prog_data_prog_offset(const struct brw_wm_prog_data *prog_data,
unsigned simd_width)
{
switch (simd_width) {
case 8: return 0;
case 16: return prog_data->prog_offset_16;
case 32: return prog_data->prog_offset_32;
default: return 0;
}
}
#define brw_wm_prog_data_prog_offset(prog_data, wm_state, ksp_idx) \
_brw_wm_prog_data_prog_offset(prog_data, \
brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
static inline uint8_t
_brw_wm_prog_data_dispatch_grf_start_reg(const struct brw_wm_prog_data *prog_data,
unsigned simd_width)
{
switch (simd_width) {
case 8: return prog_data->base.dispatch_grf_start_reg;
case 16: return prog_data->dispatch_grf_start_reg_16;
case 32: return prog_data->dispatch_grf_start_reg_32;
default: return 0;
}
}
#define brw_wm_prog_data_dispatch_grf_start_reg(prog_data, wm_state, ksp_idx) \
_brw_wm_prog_data_dispatch_grf_start_reg(prog_data, \
brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
static inline uint8_t
_brw_wm_prog_data_reg_blocks(const struct brw_wm_prog_data *prog_data,
unsigned simd_width)
{
switch (simd_width) {
case 8: return prog_data->reg_blocks_8;
case 16: return prog_data->reg_blocks_16;
case 32: return prog_data->reg_blocks_32;
default: return 0;
}
}
#define brw_wm_prog_data_reg_blocks(prog_data, wm_state, ksp_idx) \
_brw_wm_prog_data_reg_blocks(prog_data, \
brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
struct brw_push_const_block {
unsigned dwords; /* Dword count, not reg aligned */
unsigned regs;
unsigned size; /* Bytes, register aligned */
};
struct brw_cs_prog_data {
struct brw_stage_prog_data base;
unsigned local_size[3];
unsigned slm_size;
/* Program offsets for the 8/16/32 SIMD variants. Multiple variants are
* kept when using variable group size, and the right one can only be
* decided at dispatch time.
*/
unsigned prog_offset[3];
/* Bitmask indicating which program offsets are valid. */
unsigned prog_mask;
/* Bitmask indicating which programs have spilled. */
unsigned prog_spilled;
bool uses_barrier;
bool uses_num_work_groups;
struct {
struct brw_push_const_block cross_thread;
struct brw_push_const_block per_thread;
} push;
struct {
/** @{
* surface indices the CS-specific surfaces
*/
uint32_t work_groups_start;
/** @} */
} binding_table;
};
static inline uint32_t
brw_cs_prog_data_prog_offset(const struct brw_cs_prog_data *prog_data,
unsigned dispatch_width)
{
assert(dispatch_width == 8 ||
dispatch_width == 16 ||
dispatch_width == 32);
const unsigned index = dispatch_width / 16;
assert(prog_data->prog_mask & (1 << index));
return prog_data->prog_offset[index];
}
/**
* Enum representing the i965-specific vertex results that don't correspond
* exactly to any element of gl_varying_slot. The values of this enum are
* assigned such that they don't conflict with gl_varying_slot.
*/
typedef enum
{
BRW_VARYING_SLOT_NDC = VARYING_SLOT_MAX,
BRW_VARYING_SLOT_PAD,
/**
* Technically this is not a varying but just a placeholder that
* compile_sf_prog() inserts into its VUE map to cause the gl_PointCoord
* builtin variable to be compiled correctly. see compile_sf_prog() for
* more info.
*/
BRW_VARYING_SLOT_PNTC,
BRW_VARYING_SLOT_COUNT
} brw_varying_slot;
/**
* We always program SF to start reading at an offset of 1 (2 varying slots)
* from the start of the vertex URB entry. This causes it to skip:
* - VARYING_SLOT_PSIZ and BRW_VARYING_SLOT_NDC on gen4-5
* - VARYING_SLOT_PSIZ and VARYING_SLOT_POS on gen6+
*/
#define BRW_SF_URB_ENTRY_READ_OFFSET 1
/**
* Bitmask indicating which fragment shader inputs represent varyings (and
* hence have to be delivered to the fragment shader by the SF/SBE stage).
*/
#define BRW_FS_VARYING_INPUT_MASK \
(BITFIELD64_RANGE(0, VARYING_SLOT_MAX) & \
~VARYING_BIT_POS & ~VARYING_BIT_FACE)
/**
* Data structure recording the relationship between the gl_varying_slot enum
* and "slots" within the vertex URB entry (VUE). A "slot" is defined as a
* single octaword within the VUE (128 bits).
*
* Note that each BRW register contains 256 bits (2 octawords), so when
* accessing the VUE in URB_NOSWIZZLE mode, each register corresponds to two
* consecutive VUE slots. When accessing the VUE in URB_INTERLEAVED mode (as
* in a vertex shader), each register corresponds to a single VUE slot, since
* it contains data for two separate vertices.
*/
struct brw_vue_map {
/**
* Bitfield representing all varying slots that are (a) stored in this VUE
* map, and (b) actually written by the shader. Does not include any of
* the additional varying slots defined in brw_varying_slot.
*/
uint64_t slots_valid;
/**
* Is this VUE map for a separate shader pipeline?
*
* Separable programs (GL_ARB_separate_shader_objects) can be mixed and matched
* without the linker having a chance to dead code eliminate unused varyings.
*
* This means that we have to use a fixed slot layout, based on the output's
* location field, rather than assigning slots in a compact contiguous block.
*/
bool separate;
/**
* Map from gl_varying_slot value to VUE slot. For gl_varying_slots that are
* not stored in a slot (because they are not written, or because
* additional processing is applied before storing them in the VUE), the
* value is -1.
*/
signed char varying_to_slot[VARYING_SLOT_TESS_MAX];
/**
* Map from VUE slot to gl_varying_slot value. For slots that do not
* directly correspond to a gl_varying_slot, the value comes from
* brw_varying_slot.
*
* For slots that are not in use, the value is BRW_VARYING_SLOT_PAD.
*/
signed char slot_to_varying[VARYING_SLOT_TESS_MAX];
/**
* Total number of VUE slots in use
*/
int num_slots;
/**
* Number of per-patch VUE slots. Only valid for tessellation control
* shader outputs and tessellation evaluation shader inputs.
*/
int num_per_patch_slots;
/**
* Number of per-vertex VUE slots. Only valid for tessellation control
* shader outputs and tessellation evaluation shader inputs.
*/
int num_per_vertex_slots;
};
void brw_print_vue_map(FILE *fp, const struct brw_vue_map *vue_map);
/**
* Convert a VUE slot number into a byte offset within the VUE.
*/
static inline GLuint brw_vue_slot_to_offset(GLuint slot)
{
return 16*slot;
}
/**
* Convert a vertex output (brw_varying_slot) into a byte offset within the
* VUE.
*/
static inline
GLuint brw_varying_to_offset(const struct brw_vue_map *vue_map, GLuint varying)
{
return brw_vue_slot_to_offset(vue_map->varying_to_slot[varying]);
}
void brw_compute_vue_map(const struct gen_device_info *devinfo,
struct brw_vue_map *vue_map,
uint64_t slots_valid,
bool separate_shader,
uint32_t pos_slots);
void brw_compute_tess_vue_map(struct brw_vue_map *const vue_map,
uint64_t slots_valid,
uint32_t is_patch);
/* brw_interpolation_map.c */
void brw_setup_vue_interpolation(struct brw_vue_map *vue_map,
struct nir_shader *nir,
struct brw_wm_prog_data *prog_data);
enum shader_dispatch_mode {
DISPATCH_MODE_4X1_SINGLE = 0,
DISPATCH_MODE_4X2_DUAL_INSTANCE = 1,
DISPATCH_MODE_4X2_DUAL_OBJECT = 2,
DISPATCH_MODE_SIMD8 = 3,
DISPATCH_MODE_TCS_SINGLE_PATCH = 0,
DISPATCH_MODE_TCS_8_PATCH = 2,
};
/**
* @defgroup Tessellator parameter enumerations.
*
* These correspond to the hardware values in 3DSTATE_TE, and are provided
* as part of the tessellation evaluation shader.
*
* @{
*/
enum brw_tess_partitioning {
BRW_TESS_PARTITIONING_INTEGER = 0,
BRW_TESS_PARTITIONING_ODD_FRACTIONAL = 1,
BRW_TESS_PARTITIONING_EVEN_FRACTIONAL = 2,
};
enum brw_tess_output_topology {
BRW_TESS_OUTPUT_TOPOLOGY_POINT = 0,
BRW_TESS_OUTPUT_TOPOLOGY_LINE = 1,
BRW_TESS_OUTPUT_TOPOLOGY_TRI_CW = 2,
BRW_TESS_OUTPUT_TOPOLOGY_TRI_CCW = 3,
};
enum brw_tess_domain {
BRW_TESS_DOMAIN_QUAD = 0,
BRW_TESS_DOMAIN_TRI = 1,
BRW_TESS_DOMAIN_ISOLINE = 2,
};
/** @} */
struct brw_vue_prog_data {
struct brw_stage_prog_data base;
struct brw_vue_map vue_map;
/** Should the hardware deliver input VUE handles for URB pull loads? */
bool include_vue_handles;
GLuint urb_read_length;
GLuint total_grf;
uint32_t clip_distance_mask;
uint32_t cull_distance_mask;
/* Used for calculating urb partitions. In the VS, this is the size of the
* URB entry used for both input and output to the thread. In the GS, this
* is the size of the URB entry used for output.
*/
GLuint urb_entry_size;
enum shader_dispatch_mode dispatch_mode;
};
struct brw_vs_prog_data {
struct brw_vue_prog_data base;
GLbitfield64 inputs_read;
GLbitfield64 double_inputs_read;
unsigned nr_attribute_slots;
bool uses_vertexid;
bool uses_instanceid;
bool uses_is_indexed_draw;
bool uses_firstvertex;
bool uses_baseinstance;
bool uses_drawid;
};
struct brw_tcs_prog_data
{
struct brw_vue_prog_data base;
/** Should the non-SINGLE_PATCH payload provide primitive ID? */
bool include_primitive_id;
/** Number vertices in output patch */
int instances;
/** Track patch count threshold */
int patch_count_threshold;
};
struct brw_tes_prog_data
{
struct brw_vue_prog_data base;
enum brw_tess_partitioning partitioning;
enum brw_tess_output_topology output_topology;
enum brw_tess_domain domain;
};
struct brw_gs_prog_data
{
struct brw_vue_prog_data base;
unsigned vertices_in;
/**
* Size of an output vertex, measured in HWORDS (32 bytes).
*/
unsigned output_vertex_size_hwords;
unsigned output_topology;
/**
* Size of the control data (cut bits or StreamID bits), in hwords (32
* bytes). 0 if there is no control data.
*/
unsigned control_data_header_size_hwords;
/**
* Format of the control data (either GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID
* if the control data is StreamID bits, or
* GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT if the control data is cut bits).
* Ignored if control_data_header_size is 0.
*/
unsigned control_data_format;
bool include_primitive_id;
/**
* The number of vertices emitted, if constant - otherwise -1.
*/
int static_vertex_count;
int invocations;
/**
* Gen6: Provoking vertex convention for odd-numbered triangles
* in tristrips.
*/
GLuint pv_first:1;
/**
* Gen6: Number of varyings that are output to transform feedback.
*/
GLuint num_transform_feedback_bindings:7; /* 0-BRW_MAX_SOL_BINDINGS */
/**
* Gen6: Map from the index of a transform feedback binding table entry to the
* gl_varying_slot that should be streamed out through that binding table
* entry.
*/
unsigned char transform_feedback_bindings[64 /* BRW_MAX_SOL_BINDINGS */];
/**
* Gen6: Map from the index of a transform feedback binding table entry to the
* swizzles that should be used when streaming out data through that
* binding table entry.
*/
unsigned char transform_feedback_swizzles[64 /* BRW_MAX_SOL_BINDINGS */];
};
struct brw_sf_prog_data {
uint32_t urb_read_length;
uint32_t total_grf;
/* Each vertex may have upto 12 attributes, 4 components each,
* except WPOS which requires only 2. (11*4 + 2) == 44 ==> 11
* rows.
*
* Actually we use 4 for each, so call it 12 rows.
*/
unsigned urb_entry_size;
};
struct brw_clip_prog_data {
uint32_t curb_read_length; /* user planes? */
uint32_t clip_mode;
uint32_t urb_read_length;
uint32_t total_grf;
};
/* brw_any_prog_data is prog_data for any stage that maps to an API stage */
union brw_any_prog_data {
struct brw_stage_prog_data base;
struct brw_vue_prog_data vue;
struct brw_vs_prog_data vs;
struct brw_tcs_prog_data tcs;
struct brw_tes_prog_data tes;
struct brw_gs_prog_data gs;
struct brw_wm_prog_data wm;
struct brw_cs_prog_data cs;
};
#define DEFINE_PROG_DATA_DOWNCAST(stage) \
static inline struct brw_##stage##_prog_data * \
brw_##stage##_prog_data(struct brw_stage_prog_data *prog_data) \
{ \
return (struct brw_##stage##_prog_data *) prog_data; \
} \
static inline const struct brw_##stage##_prog_data * \
brw_##stage##_prog_data_const(const struct brw_stage_prog_data *prog_data) \
{ \
return (const struct brw_##stage##_prog_data *) prog_data; \
}
DEFINE_PROG_DATA_DOWNCAST(vue)
DEFINE_PROG_DATA_DOWNCAST(vs)
DEFINE_PROG_DATA_DOWNCAST(tcs)
DEFINE_PROG_DATA_DOWNCAST(tes)
DEFINE_PROG_DATA_DOWNCAST(gs)
DEFINE_PROG_DATA_DOWNCAST(wm)
DEFINE_PROG_DATA_DOWNCAST(cs)
DEFINE_PROG_DATA_DOWNCAST(ff_gs)
DEFINE_PROG_DATA_DOWNCAST(clip)
DEFINE_PROG_DATA_DOWNCAST(sf)
#undef DEFINE_PROG_DATA_DOWNCAST
struct brw_compile_stats {
uint32_t dispatch_width; /**< 0 for vec4 */
uint32_t instructions;
uint32_t sends;
uint32_t loops;
uint32_t cycles;
uint32_t spills;
uint32_t fills;
};
/** @} */
struct brw_compiler *
brw_compiler_create(void *mem_ctx, const struct gen_device_info *devinfo);
/**
* Returns a compiler configuration for use with disk shader cache
*
* This value only needs to change for settings that can cause different
* program generation between two runs on the same hardware.
*
* For example, it doesn't need to be different for gen 8 and gen 9 hardware,
* but it does need to be different if INTEL_DEBUG=nocompact is or isn't used.
*/
uint64_t
brw_get_compiler_config_value(const struct brw_compiler *compiler);
unsigned
brw_prog_data_size(gl_shader_stage stage);
unsigned
brw_prog_key_size(gl_shader_stage stage);
void
brw_prog_key_set_id(union brw_any_prog_key *key, gl_shader_stage, unsigned id);
/**
* Compile a vertex shader.
*
* Returns the final assembly and the program's size.
*/
const unsigned *
brw_compile_vs(const struct brw_compiler *compiler, void *log_data,
void *mem_ctx,
const struct brw_vs_prog_key *key,
struct brw_vs_prog_data *prog_data,
struct nir_shader *shader,
int shader_time_index,
struct brw_compile_stats *stats,
char **error_str);
/**
* Compile a tessellation control shader.
*
* Returns the final assembly and the program's size.
*/
const unsigned *
brw_compile_tcs(const struct brw_compiler *compiler,
void *log_data,
void *mem_ctx,
const struct brw_tcs_prog_key *key,
struct brw_tcs_prog_data *prog_data,
struct nir_shader *nir,
int shader_time_index,
struct brw_compile_stats *stats,
char **error_str);
/**
* Compile a tessellation evaluation shader.
*
* Returns the final assembly and the program's size.
*/
const unsigned *
brw_compile_tes(const struct brw_compiler *compiler, void *log_data,
void *mem_ctx,
const struct brw_tes_prog_key *key,
const struct brw_vue_map *input_vue_map,
struct brw_tes_prog_data *prog_data,
struct nir_shader *shader,
int shader_time_index,
struct brw_compile_stats *stats,
char **error_str);
/**
* Compile a vertex shader.
*
* Returns the final assembly and the program's size.
*/
const unsigned *
brw_compile_gs(const struct brw_compiler *compiler, void *log_data,
void *mem_ctx,
const struct brw_gs_prog_key *key,
struct brw_gs_prog_data *prog_data,
struct nir_shader *shader,
struct gl_program *prog,
int shader_time_index,
struct brw_compile_stats *stats,
char **error_str);
/**
* Compile a strips and fans shader.
*
* This is a fixed-function shader determined entirely by the shader key and
* a VUE map.
*
* Returns the final assembly and the program's size.
*/
const unsigned *
brw_compile_sf(const struct brw_compiler *compiler,
void *mem_ctx,
const struct brw_sf_prog_key *key,
struct brw_sf_prog_data *prog_data,
struct brw_vue_map *vue_map,
unsigned *final_assembly_size);
/**
* Compile a clipper shader.
*
* This is a fixed-function shader determined entirely by the shader key and
* a VUE map.
*
* Returns the final assembly and the program's size.
*/
const unsigned *
brw_compile_clip(const struct brw_compiler *compiler,
void *mem_ctx,
const struct brw_clip_prog_key *key,
struct brw_clip_prog_data *prog_data,
struct brw_vue_map *vue_map,
unsigned *final_assembly_size);
/**
* Compile a fragment shader.
*
* Returns the final assembly and the program's size.
*/
const unsigned *
brw_compile_fs(const struct brw_compiler *compiler, void *log_data,
void *mem_ctx,
const struct brw_wm_prog_key *key,
struct brw_wm_prog_data *prog_data,
struct nir_shader *shader,
int shader_time_index8,
int shader_time_index16,
int shader_time_index32,
bool allow_spilling,
bool use_rep_send, struct brw_vue_map *vue_map,
struct brw_compile_stats *stats, /**< Array of three stats */
char **error_str);
/**
* Compile a compute shader.
*
* Returns the final assembly and the program's size.
*/
const unsigned *
brw_compile_cs(const struct brw_compiler *compiler, void *log_data,
void *mem_ctx,
const struct brw_cs_prog_key *key,
struct brw_cs_prog_data *prog_data,
const struct nir_shader *shader,
int shader_time_index,
struct brw_compile_stats *stats,
char **error_str);
void brw_debug_key_recompile(const struct brw_compiler *c, void *log,
gl_shader_stage stage,
const struct brw_base_prog_key *old_key,
const struct brw_base_prog_key *key);
static inline uint32_t
encode_slm_size(unsigned gen, uint32_t bytes)
{
uint32_t slm_size = 0;
/* Shared Local Memory is specified as powers of two, and encoded in
* INTERFACE_DESCRIPTOR_DATA with the following representations:
*
* Size | 0 kB | 1 kB | 2 kB | 4 kB | 8 kB | 16 kB | 32 kB | 64 kB |
* -------------------------------------------------------------------
* Gen7-8 | 0 | none | none | 1 | 2 | 4 | 8 | 16 |
* -------------------------------------------------------------------
* Gen9+ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
*/
assert(bytes <= 64 * 1024);
if (bytes > 0) {
/* Shared Local Memory Size is specified as powers of two. */
slm_size = util_next_power_of_two(bytes);
if (gen >= 9) {
/* Use a minimum of 1kB; turn an exponent of 10 (1024 kB) into 1. */
slm_size = ffs(MAX2(slm_size, 1024)) - 10;
} else {
/* Use a minimum of 4kB; convert to the pre-Gen9 representation. */
slm_size = MAX2(slm_size, 4096) / 4096;
}
}
return slm_size;
}
unsigned
brw_cs_push_const_total_size(const struct brw_cs_prog_data *cs_prog_data,
unsigned threads);
unsigned
brw_cs_simd_size_for_group_size(const struct gen_device_info *devinfo,
const struct brw_cs_prog_data *cs_prog_data,
unsigned group_size);
/**
* Calculate the RightExecutionMask field used in GPGPU_WALKER.
*/
static inline unsigned
brw_cs_right_mask(unsigned group_size, unsigned simd_size)
{
const uint32_t remainder = group_size & (simd_size - 1);
if (remainder > 0)
return ~0u >> (32 - remainder);
else
return ~0u >> (32 - simd_size);
}
/**
* Return true if the given shader stage is dispatched contiguously by the
* relevant fixed function starting from channel 0 of the SIMD thread, which
* implies that the dispatch mask of a thread can be assumed to have the form
* '2^n - 1' for some n.
*/
static inline bool
brw_stage_has_packed_dispatch(ASSERTED const struct gen_device_info *devinfo,
gl_shader_stage stage,
const struct brw_stage_prog_data *prog_data)
{
/* The code below makes assumptions about the hardware's thread dispatch
* behavior that could be proven wrong in future generations -- Make sure
* to do a full test run with brw_fs_test_dispatch_packing() hooked up to
* the NIR front-end before changing this assertion.
*/
assert(devinfo->gen <= 12);
switch (stage) {
case MESA_SHADER_FRAGMENT: {
/* The PSD discards subspans coming in with no lit samples, which in the
* per-pixel shading case implies that each subspan will either be fully
* lit (due to the VMask being used to allow derivative computations),
* or not dispatched at all. In per-sample dispatch mode individual
* samples from the same subspan have a fixed relative location within
* the SIMD thread, so dispatch of unlit samples cannot be avoided in
* general and we should return false.
*/
const struct brw_wm_prog_data *wm_prog_data =
(const struct brw_wm_prog_data *)prog_data;
return !wm_prog_data->persample_dispatch;
}
case MESA_SHADER_COMPUTE:
/* Compute shaders will be spawned with either a fully enabled dispatch
* mask or with whatever bottom/right execution mask was given to the
* GPGPU walker command to be used along the workgroup edges -- In both
* cases the dispatch mask is required to be tightly packed for our
* invocation index calculations to work.
*/
return true;
default:
/* Most remaining fixed functions are limited to use a packed dispatch
* mask due to the hardware representation of the dispatch mask as a
* single counter representing the number of enabled channels.
*/
return true;
}
}
/**
* Computes the first varying slot in the URB produced by the previous stage
* that is used in the next stage. We do this by testing the varying slots in
* the previous stage's vue map against the inputs read in the next stage.
*
* Note that:
*
* - Each URB offset contains two varying slots and we can only skip a
* full offset if both slots are unused, so the value we return here is always
* rounded down to the closest multiple of two.
*
* - gl_Layer and gl_ViewportIndex don't have their own varying slots, they are
* part of the vue header, so if these are read we can't skip anything.
*/
static inline int
brw_compute_first_urb_slot_required(uint64_t inputs_read,
const struct brw_vue_map *prev_stage_vue_map)
{
if ((inputs_read & (VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT)) == 0) {
for (int i = 0; i < prev_stage_vue_map->num_slots; i++) {
int varying = prev_stage_vue_map->slot_to_varying[i];
if (varying > 0 && (inputs_read & BITFIELD64_BIT(varying)) != 0)
return ROUND_DOWN_TO(i, 2);
}
}
return 0;
}
#ifdef __cplusplus
} /* extern "C" */
#endif
#endif /* BRW_COMPILER_H */