blob: c2219bf09b42e56483ff38792cfc11b96d3c62d6 [file] [log] [blame]
/*
* Copyright 2013 Advanced Micro Devices, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* on the rights to use, copy, modify, merge, publish, distribute, sub
* license, and/or sell copies of the Software, and to permit persons to whom
* the Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
/* Resource binding slots and sampler states (each described with 8 or
* 4 dwords) are stored in lists in memory which is accessed by shaders
* using scalar load instructions.
*
* This file is responsible for managing such lists. It keeps a copy of all
* descriptors in CPU memory and re-uploads a whole list if some slots have
* been changed.
*
* This code is also reponsible for updating shader pointers to those lists.
*
* Note that CP DMA can't be used for updating the lists, because a GPU hang
* could leave the list in a mid-IB state and the next IB would get wrong
* descriptors and the whole context would be unusable at that point.
* (Note: The register shadowing can't be used due to the same reason)
*
* Also, uploading descriptors to newly allocated memory doesn't require
* a KCACHE flush.
*
*
* Possible scenarios for one 16 dword image+sampler slot:
*
* | Image | w/ FMASK | Buffer | NULL
* [ 0: 3] Image[0:3] | Image[0:3] | Null[0:3] | Null[0:3]
* [ 4: 7] Image[4:7] | Image[4:7] | Buffer[0:3] | 0
* [ 8:11] Null[0:3] | Fmask[0:3] | Null[0:3] | Null[0:3]
* [12:15] Sampler[0:3] | Fmask[4:7] | Sampler[0:3] | Sampler[0:3]
*
* FMASK implies MSAA, therefore no sampler state.
* Sampler states are never unbound except when FMASK is bound.
*/
#include "si_pipe.h"
#include "si_compute.h"
#include "si_build_pm4.h"
#include "sid.h"
#include "util/format/u_format.h"
#include "util/hash_table.h"
#include "util/u_idalloc.h"
#include "util/u_memory.h"
#include "util/u_upload_mgr.h"
/* NULL image and buffer descriptor for textures (alpha = 1) and images
* (alpha = 0).
*
* For images, all fields must be zero except for the swizzle, which
* supports arbitrary combinations of 0s and 1s. The texture type must be
* any valid type (e.g. 1D). If the texture type isn't set, the hw hangs.
*
* For buffers, all fields must be zero. If they are not, the hw hangs.
*
* This is the only reason why the buffer descriptor must be in words [4:7].
*/
static uint32_t null_texture_descriptor[8] = {
0, 0, 0, S_008F1C_DST_SEL_W(V_008F1C_SQ_SEL_1) | S_008F1C_TYPE(V_008F1C_SQ_RSRC_IMG_1D)
/* the rest must contain zeros, which is also used by the buffer
* descriptor */
};
static uint32_t null_image_descriptor[8] = {
0, 0, 0, S_008F1C_TYPE(V_008F1C_SQ_RSRC_IMG_1D)
/* the rest must contain zeros, which is also used by the buffer
* descriptor */
};
static uint64_t si_desc_extract_buffer_address(const uint32_t *desc)
{
uint64_t va = desc[0] | ((uint64_t)G_008F04_BASE_ADDRESS_HI(desc[1]) << 32);
/* Sign-extend the 48-bit address. */
va <<= 16;
va = (int64_t)va >> 16;
return va;
}
static void si_init_descriptor_list(uint32_t *desc_list, unsigned element_dw_size,
unsigned num_elements, const uint32_t *null_descriptor)
{
int i;
/* Initialize the array to NULL descriptors if the element size is 8. */
if (null_descriptor) {
assert(element_dw_size % 8 == 0);
for (i = 0; i < num_elements * element_dw_size / 8; i++)
memcpy(desc_list + i * 8, null_descriptor, 8 * 4);
}
}
static void si_init_descriptors(struct si_descriptors *desc, short shader_userdata_rel_index,
unsigned element_dw_size, unsigned num_elements)
{
desc->list = CALLOC(num_elements, element_dw_size * 4);
desc->element_dw_size = element_dw_size;
desc->num_elements = num_elements;
desc->shader_userdata_offset = shader_userdata_rel_index * 4;
desc->slot_index_to_bind_directly = -1;
}
static void si_release_descriptors(struct si_descriptors *desc)
{
si_resource_reference(&desc->buffer, NULL);
FREE(desc->list);
}
static bool si_upload_descriptors(struct si_context *sctx, struct si_descriptors *desc)
{
unsigned slot_size = desc->element_dw_size * 4;
unsigned first_slot_offset = desc->first_active_slot * slot_size;
unsigned upload_size = desc->num_active_slots * slot_size;
/* Skip the upload if no shader is using the descriptors. dirty_mask
* will stay dirty and the descriptors will be uploaded when there is
* a shader using them.
*/
if (!upload_size)
return true;
/* If there is just one active descriptor, bind it directly. */
if ((int)desc->first_active_slot == desc->slot_index_to_bind_directly &&
desc->num_active_slots == 1) {
uint32_t *descriptor = &desc->list[desc->slot_index_to_bind_directly * desc->element_dw_size];
/* The buffer is already in the buffer list. */
si_resource_reference(&desc->buffer, NULL);
desc->gpu_list = NULL;
desc->gpu_address = si_desc_extract_buffer_address(descriptor);
si_mark_atom_dirty(sctx, &sctx->atoms.s.shader_pointers);
return true;
}
uint32_t *ptr;
unsigned buffer_offset;
u_upload_alloc(sctx->b.const_uploader, first_slot_offset, upload_size,
si_optimal_tcc_alignment(sctx, upload_size), &buffer_offset,
(struct pipe_resource **)&desc->buffer, (void **)&ptr);
if (!desc->buffer) {
desc->gpu_address = 0;
return false; /* skip the draw call */
}
util_memcpy_cpu_to_le32(ptr, (char *)desc->list + first_slot_offset, upload_size);
desc->gpu_list = ptr - first_slot_offset / 4;
radeon_add_to_buffer_list(sctx, sctx->gfx_cs, desc->buffer, RADEON_USAGE_READ,
RADEON_PRIO_DESCRIPTORS);
/* The shader pointer should point to slot 0. */
buffer_offset -= first_slot_offset;
desc->gpu_address = desc->buffer->gpu_address + buffer_offset;
assert(desc->buffer->flags & RADEON_FLAG_32BIT);
assert((desc->buffer->gpu_address >> 32) == sctx->screen->info.address32_hi);
assert((desc->gpu_address >> 32) == sctx->screen->info.address32_hi);
si_mark_atom_dirty(sctx, &sctx->atoms.s.shader_pointers);
return true;
}
static void
si_add_descriptors_to_bo_list(struct si_context *sctx, struct si_descriptors *desc)
{
if (!desc->buffer)
return;
radeon_add_to_buffer_list(sctx, sctx->gfx_cs, desc->buffer, RADEON_USAGE_READ,
RADEON_PRIO_DESCRIPTORS);
}
/* SAMPLER VIEWS */
static inline enum radeon_bo_priority si_get_sampler_view_priority(struct si_resource *res)
{
if (res->b.b.target == PIPE_BUFFER)
return RADEON_PRIO_SAMPLER_BUFFER;
if (res->b.b.nr_samples > 1)
return RADEON_PRIO_SAMPLER_TEXTURE_MSAA;
return RADEON_PRIO_SAMPLER_TEXTURE;
}
static struct si_descriptors *si_sampler_and_image_descriptors(struct si_context *sctx,
unsigned shader)
{
return &sctx->descriptors[si_sampler_and_image_descriptors_idx(shader)];
}
static void si_release_sampler_views(struct si_samplers *samplers)
{
int i;
for (i = 0; i < ARRAY_SIZE(samplers->views); i++) {
pipe_sampler_view_reference(&samplers->views[i], NULL);
}
}
static void si_sampler_view_add_buffer(struct si_context *sctx, struct pipe_resource *resource,
enum radeon_bo_usage usage, bool is_stencil_sampler,
bool check_mem)
{
struct si_texture *tex = (struct si_texture *)resource;
enum radeon_bo_priority priority;
if (!resource)
return;
/* Use the flushed depth texture if direct sampling is unsupported. */
if (resource->target != PIPE_BUFFER && tex->is_depth &&
!si_can_sample_zs(tex, is_stencil_sampler))
tex = tex->flushed_depth_texture;
priority = si_get_sampler_view_priority(&tex->buffer);
radeon_add_to_gfx_buffer_list_check_mem(sctx, &tex->buffer, usage, priority, check_mem);
if (resource->target == PIPE_BUFFER)
return;
/* Add separate DCC. */
if (tex->dcc_separate_buffer) {
radeon_add_to_gfx_buffer_list_check_mem(sctx, tex->dcc_separate_buffer, usage,
RADEON_PRIO_SEPARATE_META, check_mem);
}
}
static void si_sampler_views_begin_new_cs(struct si_context *sctx, struct si_samplers *samplers)
{
unsigned mask = samplers->enabled_mask;
/* Add buffers to the CS. */
while (mask) {
int i = u_bit_scan(&mask);
struct si_sampler_view *sview = (struct si_sampler_view *)samplers->views[i];
si_sampler_view_add_buffer(sctx, sview->base.texture, RADEON_USAGE_READ,
sview->is_stencil_sampler, false);
}
}
static bool si_sampler_views_check_encrypted(struct si_context *sctx, struct si_samplers *samplers,
unsigned samplers_declared)
{
unsigned mask = samplers->enabled_mask & samplers_declared;
/* Verify if a samplers uses an encrypted resource */
while (mask) {
int i = u_bit_scan(&mask);
struct si_sampler_view *sview = (struct si_sampler_view *)samplers->views[i];
struct si_resource *res = si_resource(sview->base.texture);
if (res->flags & RADEON_FLAG_ENCRYPTED)
return true;
}
return false;
}
/* Set buffer descriptor fields that can be changed by reallocations. */
static void si_set_buf_desc_address(struct si_resource *buf, uint64_t offset, uint32_t *state)
{
uint64_t va = buf->gpu_address + offset;
state[0] = va;
state[1] &= C_008F04_BASE_ADDRESS_HI;
state[1] |= S_008F04_BASE_ADDRESS_HI(va >> 32);
}
/* Set texture descriptor fields that can be changed by reallocations.
*
* \param tex texture
* \param base_level_info information of the level of BASE_ADDRESS
* \param base_level the level of BASE_ADDRESS
* \param first_level pipe_sampler_view.u.tex.first_level
* \param block_width util_format_get_blockwidth()
* \param is_stencil select between separate Z & Stencil
* \param state descriptor to update
*/
void si_set_mutable_tex_desc_fields(struct si_screen *sscreen, struct si_texture *tex,
const struct legacy_surf_level *base_level_info,
unsigned base_level, unsigned first_level, unsigned block_width,
bool is_stencil, bool force_dcc_off, uint32_t *state)
{
uint64_t va, meta_va = 0;
if (tex->is_depth && !si_can_sample_zs(tex, is_stencil)) {
tex = tex->flushed_depth_texture;
is_stencil = false;
}
va = tex->buffer.gpu_address;
if (sscreen->info.chip_class >= GFX9) {
/* Only stencil_offset needs to be added here. */
if (is_stencil)
va += tex->surface.u.gfx9.stencil_offset;
else
va += tex->surface.u.gfx9.surf_offset;
} else {
va += base_level_info->offset;
}
state[0] = va >> 8;
state[1] &= C_008F14_BASE_ADDRESS_HI;
state[1] |= S_008F14_BASE_ADDRESS_HI(va >> 40);
/* Only macrotiled modes can set tile swizzle.
* GFX9 doesn't use (legacy) base_level_info.
*/
if (sscreen->info.chip_class >= GFX9 || base_level_info->mode == RADEON_SURF_MODE_2D)
state[0] |= tex->surface.tile_swizzle;
if (sscreen->info.chip_class >= GFX8) {
state[6] &= C_008F28_COMPRESSION_EN;
if (!force_dcc_off && vi_dcc_enabled(tex, first_level)) {
meta_va =
(!tex->dcc_separate_buffer ? tex->buffer.gpu_address : 0) + tex->surface.dcc_offset;
if (sscreen->info.chip_class == GFX8) {
meta_va += base_level_info->dcc_offset;
assert(base_level_info->mode == RADEON_SURF_MODE_2D);
}
unsigned dcc_tile_swizzle = tex->surface.tile_swizzle << 8;
dcc_tile_swizzle &= tex->surface.dcc_alignment - 1;
meta_va |= dcc_tile_swizzle;
} else if (vi_tc_compat_htile_enabled(tex, first_level,
is_stencil ? PIPE_MASK_S : PIPE_MASK_Z)) {
meta_va = tex->buffer.gpu_address + tex->surface.htile_offset;
}
if (meta_va)
state[6] |= S_008F28_COMPRESSION_EN(1);
}
if (sscreen->info.chip_class >= GFX8 && sscreen->info.chip_class <= GFX9)
state[7] = meta_va >> 8;
if (sscreen->info.chip_class >= GFX10) {
state[3] &= C_00A00C_SW_MODE;
if (is_stencil) {
state[3] |= S_00A00C_SW_MODE(tex->surface.u.gfx9.stencil.swizzle_mode);
} else {
state[3] |= S_00A00C_SW_MODE(tex->surface.u.gfx9.surf.swizzle_mode);
}
state[6] &= C_00A018_META_DATA_ADDRESS_LO & C_00A018_META_PIPE_ALIGNED;
if (meta_va) {
struct gfx9_surf_meta_flags meta = {
.rb_aligned = 1,
.pipe_aligned = 1,
};
if (tex->surface.dcc_offset)
meta = tex->surface.u.gfx9.dcc;
state[6] |= S_00A018_META_PIPE_ALIGNED(meta.pipe_aligned) |
S_00A018_META_DATA_ADDRESS_LO(meta_va >> 8);
}
state[7] = meta_va >> 16;
} else if (sscreen->info.chip_class == GFX9) {
state[3] &= C_008F1C_SW_MODE;
state[4] &= C_008F20_PITCH;
if (is_stencil) {
state[3] |= S_008F1C_SW_MODE(tex->surface.u.gfx9.stencil.swizzle_mode);
state[4] |= S_008F20_PITCH(tex->surface.u.gfx9.stencil.epitch);
} else {
uint16_t epitch = tex->surface.u.gfx9.surf.epitch;
if (tex->buffer.b.b.format == PIPE_FORMAT_R8G8_R8B8_UNORM &&
block_width == 1) {
/* epitch is patched in ac_surface for sdma/vcn blocks to get
* a value expressed in elements unit.
* But here the texture is used with block_width == 1 so we
* need epitch in pixel units.
*/
epitch = (epitch + 1) / tex->surface.blk_w - 1;
}
state[3] |= S_008F1C_SW_MODE(tex->surface.u.gfx9.surf.swizzle_mode);
state[4] |= S_008F20_PITCH(epitch);
}
state[5] &=
C_008F24_META_DATA_ADDRESS & C_008F24_META_PIPE_ALIGNED & C_008F24_META_RB_ALIGNED;
if (meta_va) {
struct gfx9_surf_meta_flags meta = {
.rb_aligned = 1,
.pipe_aligned = 1,
};
if (tex->surface.dcc_offset)
meta = tex->surface.u.gfx9.dcc;
state[5] |= S_008F24_META_DATA_ADDRESS(meta_va >> 40) |
S_008F24_META_PIPE_ALIGNED(meta.pipe_aligned) |
S_008F24_META_RB_ALIGNED(meta.rb_aligned);
}
} else {
/* GFX6-GFX8 */
unsigned pitch = base_level_info->nblk_x * block_width;
unsigned index = si_tile_mode_index(tex, base_level, is_stencil);
state[3] &= C_008F1C_TILING_INDEX;
state[3] |= S_008F1C_TILING_INDEX(index);
state[4] &= C_008F20_PITCH;
state[4] |= S_008F20_PITCH(pitch - 1);
}
}
static void si_set_sampler_state_desc(struct si_sampler_state *sstate,
struct si_sampler_view *sview, struct si_texture *tex,
uint32_t *desc)
{
if (sview && sview->is_integer)
memcpy(desc, sstate->integer_val, 4 * 4);
else if (tex && tex->upgraded_depth && (!sview || !sview->is_stencil_sampler))
memcpy(desc, sstate->upgraded_depth_val, 4 * 4);
else
memcpy(desc, sstate->val, 4 * 4);
}
static void si_set_sampler_view_desc(struct si_context *sctx, struct si_sampler_view *sview,
struct si_sampler_state *sstate, uint32_t *desc)
{
struct pipe_sampler_view *view = &sview->base;
struct si_texture *tex = (struct si_texture *)view->texture;
bool is_buffer = tex->buffer.b.b.target == PIPE_BUFFER;
if (unlikely(!is_buffer && sview->dcc_incompatible)) {
if (vi_dcc_enabled(tex, view->u.tex.first_level))
if (!si_texture_disable_dcc(sctx, tex))
si_decompress_dcc(sctx, tex);
sview->dcc_incompatible = false;
}
assert(tex); /* views with texture == NULL aren't supported */
memcpy(desc, sview->state, 8 * 4);
if (is_buffer) {
si_set_buf_desc_address(&tex->buffer, sview->base.u.buf.offset, desc + 4);
} else {
bool is_separate_stencil = tex->db_compatible && sview->is_stencil_sampler;
si_set_mutable_tex_desc_fields(sctx->screen, tex, sview->base_level_info, sview->base_level,
sview->base.u.tex.first_level, sview->block_width,
is_separate_stencil, false, desc);
}
if (!is_buffer && tex->surface.fmask_size) {
memcpy(desc + 8, sview->fmask_state, 8 * 4);
} else {
/* Disable FMASK and bind sampler state in [12:15]. */
memcpy(desc + 8, null_texture_descriptor, 4 * 4);
if (sstate)
si_set_sampler_state_desc(sstate, sview, is_buffer ? NULL : tex, desc + 12);
}
}
static bool color_needs_decompression(struct si_texture *tex)
{
return tex->surface.fmask_size ||
(tex->dirty_level_mask && (tex->cmask_buffer || tex->surface.dcc_offset));
}
static bool depth_needs_decompression(struct si_texture *tex)
{
/* If the depth/stencil texture is TC-compatible, no decompression
* will be done. The decompression function will only flush DB caches
* to make it coherent with shaders. That's necessary because the driver
* doesn't flush DB caches in any other case.
*/
return tex->db_compatible;
}
static void si_set_sampler_view(struct si_context *sctx, unsigned shader, unsigned slot,
struct pipe_sampler_view *view, bool disallow_early_out)
{
struct si_samplers *samplers = &sctx->samplers[shader];
struct si_sampler_view *sview = (struct si_sampler_view *)view;
struct si_descriptors *descs = si_sampler_and_image_descriptors(sctx, shader);
unsigned desc_slot = si_get_sampler_slot(slot);
uint32_t *desc = descs->list + desc_slot * 16;
if (samplers->views[slot] == view && !disallow_early_out)
return;
if (view) {
struct si_texture *tex = (struct si_texture *)view->texture;
si_set_sampler_view_desc(sctx, sview, samplers->sampler_states[slot], desc);
if (tex->buffer.b.b.target == PIPE_BUFFER) {
tex->buffer.bind_history |= PIPE_BIND_SAMPLER_VIEW;
samplers->needs_depth_decompress_mask &= ~(1u << slot);
samplers->needs_color_decompress_mask &= ~(1u << slot);
} else {
if (depth_needs_decompression(tex)) {
samplers->needs_depth_decompress_mask |= 1u << slot;
} else {
samplers->needs_depth_decompress_mask &= ~(1u << slot);
}
if (color_needs_decompression(tex)) {
samplers->needs_color_decompress_mask |= 1u << slot;
} else {
samplers->needs_color_decompress_mask &= ~(1u << slot);
}
if (vi_dcc_enabled(tex, view->u.tex.first_level) &&
p_atomic_read(&tex->framebuffers_bound))
sctx->need_check_render_feedback = true;
}
pipe_sampler_view_reference(&samplers->views[slot], view);
samplers->enabled_mask |= 1u << slot;
/* Since this can flush, it must be done after enabled_mask is
* updated. */
si_sampler_view_add_buffer(sctx, view->texture, RADEON_USAGE_READ, sview->is_stencil_sampler,
true);
} else {
pipe_sampler_view_reference(&samplers->views[slot], NULL);
memcpy(desc, null_texture_descriptor, 8 * 4);
/* Only clear the lower dwords of FMASK. */
memcpy(desc + 8, null_texture_descriptor, 4 * 4);
/* Re-set the sampler state if we are transitioning from FMASK. */
if (samplers->sampler_states[slot])
si_set_sampler_state_desc(samplers->sampler_states[slot], NULL, NULL, desc + 12);
samplers->enabled_mask &= ~(1u << slot);
samplers->needs_depth_decompress_mask &= ~(1u << slot);
samplers->needs_color_decompress_mask &= ~(1u << slot);
}
sctx->descriptors_dirty |= 1u << si_sampler_and_image_descriptors_idx(shader);
}
static void si_update_shader_needs_decompress_mask(struct si_context *sctx, unsigned shader)
{
struct si_samplers *samplers = &sctx->samplers[shader];
unsigned shader_bit = 1 << shader;
if (samplers->needs_depth_decompress_mask || samplers->needs_color_decompress_mask ||
sctx->images[shader].needs_color_decompress_mask)
sctx->shader_needs_decompress_mask |= shader_bit;
else
sctx->shader_needs_decompress_mask &= ~shader_bit;
}
static void si_set_sampler_views(struct pipe_context *ctx, enum pipe_shader_type shader,
unsigned start, unsigned count, struct pipe_sampler_view **views)
{
struct si_context *sctx = (struct si_context *)ctx;
int i;
if (!count || shader >= SI_NUM_SHADERS)
return;
if (views) {
for (i = 0; i < count; i++)
si_set_sampler_view(sctx, shader, start + i, views[i], false);
} else {
for (i = 0; i < count; i++)
si_set_sampler_view(sctx, shader, start + i, NULL, false);
}
si_update_shader_needs_decompress_mask(sctx, shader);
}
static void si_samplers_update_needs_color_decompress_mask(struct si_samplers *samplers)
{
unsigned mask = samplers->enabled_mask;
while (mask) {
int i = u_bit_scan(&mask);
struct pipe_resource *res = samplers->views[i]->texture;
if (res && res->target != PIPE_BUFFER) {
struct si_texture *tex = (struct si_texture *)res;
if (color_needs_decompression(tex)) {
samplers->needs_color_decompress_mask |= 1u << i;
} else {
samplers->needs_color_decompress_mask &= ~(1u << i);
}
}
}
}
/* IMAGE VIEWS */
static void si_release_image_views(struct si_images *images)
{
unsigned i;
for (i = 0; i < SI_NUM_IMAGES; ++i) {
struct pipe_image_view *view = &images->views[i];
pipe_resource_reference(&view->resource, NULL);
}
}
static void si_image_views_begin_new_cs(struct si_context *sctx, struct si_images *images)
{
uint mask = images->enabled_mask;
/* Add buffers to the CS. */
while (mask) {
int i = u_bit_scan(&mask);
struct pipe_image_view *view = &images->views[i];
assert(view->resource);
si_sampler_view_add_buffer(sctx, view->resource, RADEON_USAGE_READWRITE, false, false);
}
}
static bool si_image_views_check_encrypted(struct si_context *sctx, struct si_images *images,
unsigned images_declared)
{
uint mask = images->enabled_mask & images_declared;
while (mask) {
int i = u_bit_scan(&mask);
struct pipe_image_view *view = &images->views[i];
assert(view->resource);
struct si_texture *tex = (struct si_texture *)view->resource;
if (tex->buffer.flags & RADEON_FLAG_ENCRYPTED)
return true;
}
return false;
}
static void si_disable_shader_image(struct si_context *ctx, unsigned shader, unsigned slot)
{
struct si_images *images = &ctx->images[shader];
if (images->enabled_mask & (1u << slot)) {
struct si_descriptors *descs = si_sampler_and_image_descriptors(ctx, shader);
unsigned desc_slot = si_get_image_slot(slot);
pipe_resource_reference(&images->views[slot].resource, NULL);
images->needs_color_decompress_mask &= ~(1 << slot);
memcpy(descs->list + desc_slot * 8, null_image_descriptor, 8 * 4);
images->enabled_mask &= ~(1u << slot);
ctx->descriptors_dirty |= 1u << si_sampler_and_image_descriptors_idx(shader);
}
}
static void si_mark_image_range_valid(const struct pipe_image_view *view)
{
struct si_resource *res = si_resource(view->resource);
if (res->b.b.target != PIPE_BUFFER)
return;
util_range_add(&res->b.b, &res->valid_buffer_range, view->u.buf.offset,
view->u.buf.offset + view->u.buf.size);
}
static void si_set_shader_image_desc(struct si_context *ctx, const struct pipe_image_view *view,
bool skip_decompress, uint32_t *desc, uint32_t *fmask_desc)
{
struct si_screen *screen = ctx->screen;
struct si_resource *res;
res = si_resource(view->resource);
if (res->b.b.target == PIPE_BUFFER || view->shader_access & SI_IMAGE_ACCESS_AS_BUFFER) {
if (view->access & PIPE_IMAGE_ACCESS_WRITE)
si_mark_image_range_valid(view);
si_make_buffer_descriptor(screen, res, view->format, view->u.buf.offset, view->u.buf.size,
desc);
si_set_buf_desc_address(res, view->u.buf.offset, desc + 4);
} else {
static const unsigned char swizzle[4] = {0, 1, 2, 3};
struct si_texture *tex = (struct si_texture *)res;
unsigned level = view->u.tex.level;
unsigned width, height, depth, hw_level;
bool uses_dcc = vi_dcc_enabled(tex, level);
unsigned access = view->access;
assert(!tex->is_depth);
assert(fmask_desc || tex->surface.fmask_offset == 0);
if (uses_dcc && !skip_decompress &&
!(access & SI_IMAGE_ACCESS_DCC_OFF) &&
(access & PIPE_IMAGE_ACCESS_WRITE ||
!vi_dcc_formats_compatible(screen, res->b.b.format, view->format))) {
/* If DCC can't be disabled, at least decompress it.
* The decompression is relatively cheap if the surface
* has been decompressed already.
*/
if (!si_texture_disable_dcc(ctx, tex))
si_decompress_dcc(ctx, tex);
}
if (ctx->chip_class >= GFX9) {
/* Always set the base address. The swizzle modes don't
* allow setting mipmap level offsets as the base.
*/
width = res->b.b.width0;
height = res->b.b.height0;
depth = res->b.b.depth0;
hw_level = level;
} else {
/* Always force the base level to the selected level.
*
* This is required for 3D textures, where otherwise
* selecting a single slice for non-layered bindings
* fails. It doesn't hurt the other targets.
*/
width = u_minify(res->b.b.width0, level);
height = u_minify(res->b.b.height0, level);
depth = u_minify(res->b.b.depth0, level);
hw_level = 0;
}
screen->make_texture_descriptor(
screen, tex, false, res->b.b.target, view->format, swizzle, hw_level, hw_level,
view->u.tex.first_layer, view->u.tex.last_layer, width, height, depth, desc, fmask_desc);
si_set_mutable_tex_desc_fields(screen, tex, &tex->surface.u.legacy.level[level], level, level,
util_format_get_blockwidth(view->format), false,
view->access & SI_IMAGE_ACCESS_DCC_OFF, desc);
}
}
static void si_set_shader_image(struct si_context *ctx, unsigned shader, unsigned slot,
const struct pipe_image_view *view, bool skip_decompress)
{
struct si_images *images = &ctx->images[shader];
struct si_descriptors *descs = si_sampler_and_image_descriptors(ctx, shader);
struct si_resource *res;
if (!view || !view->resource) {
si_disable_shader_image(ctx, shader, slot);
return;
}
res = si_resource(view->resource);
si_set_shader_image_desc(ctx, view, skip_decompress, descs->list + si_get_image_slot(slot) * 8,
descs->list + si_get_image_slot(slot + SI_NUM_IMAGES) * 8);
if (&images->views[slot] != view)
util_copy_image_view(&images->views[slot], view);
if (res->b.b.target == PIPE_BUFFER || view->shader_access & SI_IMAGE_ACCESS_AS_BUFFER) {
images->needs_color_decompress_mask &= ~(1 << slot);
res->bind_history |= PIPE_BIND_SHADER_IMAGE;
} else {
struct si_texture *tex = (struct si_texture *)res;
unsigned level = view->u.tex.level;
if (color_needs_decompression(tex)) {
images->needs_color_decompress_mask |= 1 << slot;
} else {
images->needs_color_decompress_mask &= ~(1 << slot);
}
if (vi_dcc_enabled(tex, level) && p_atomic_read(&tex->framebuffers_bound))
ctx->need_check_render_feedback = true;
}
images->enabled_mask |= 1u << slot;
ctx->descriptors_dirty |= 1u << si_sampler_and_image_descriptors_idx(shader);
/* Since this can flush, it must be done after enabled_mask is updated. */
si_sampler_view_add_buffer(
ctx, &res->b.b,
(view->access & PIPE_IMAGE_ACCESS_WRITE) ? RADEON_USAGE_READWRITE : RADEON_USAGE_READ, false,
true);
}
static void si_set_shader_images(struct pipe_context *pipe, enum pipe_shader_type shader,
unsigned start_slot, unsigned count,
const struct pipe_image_view *views)
{
struct si_context *ctx = (struct si_context *)pipe;
unsigned i, slot;
assert(shader < SI_NUM_SHADERS);
if (!count)
return;
assert(start_slot + count <= SI_NUM_IMAGES);
if (views) {
for (i = 0, slot = start_slot; i < count; ++i, ++slot)
si_set_shader_image(ctx, shader, slot, &views[i], false);
} else {
for (i = 0, slot = start_slot; i < count; ++i, ++slot)
si_set_shader_image(ctx, shader, slot, NULL, false);
}
if (shader == PIPE_SHADER_COMPUTE &&
ctx->cs_shader_state.program &&
start_slot < ctx->cs_shader_state.program->sel.cs_num_images_in_user_sgprs)
ctx->compute_image_sgprs_dirty = true;
si_update_shader_needs_decompress_mask(ctx, shader);
}
static void si_images_update_needs_color_decompress_mask(struct si_images *images)
{
unsigned mask = images->enabled_mask;
while (mask) {
int i = u_bit_scan(&mask);
struct pipe_resource *res = images->views[i].resource;
if (res && res->target != PIPE_BUFFER) {
struct si_texture *tex = (struct si_texture *)res;
if (color_needs_decompression(tex)) {
images->needs_color_decompress_mask |= 1 << i;
} else {
images->needs_color_decompress_mask &= ~(1 << i);
}
}
}
}
void si_update_ps_colorbuf0_slot(struct si_context *sctx)
{
struct si_buffer_resources *buffers = &sctx->rw_buffers;
struct si_descriptors *descs = &sctx->descriptors[SI_DESCS_RW_BUFFERS];
unsigned slot = SI_PS_IMAGE_COLORBUF0;
struct pipe_surface *surf = NULL;
/* si_texture_disable_dcc can get us here again. */
if (sctx->blitter->running)
return;
/* See whether FBFETCH is used and color buffer 0 is set. */
if (sctx->ps_shader.cso && sctx->ps_shader.cso->info.uses_fbfetch &&
sctx->framebuffer.state.nr_cbufs && sctx->framebuffer.state.cbufs[0])
surf = sctx->framebuffer.state.cbufs[0];
/* Return if FBFETCH transitions from disabled to disabled. */
if (!buffers->buffers[slot] && !surf)
return;
sctx->ps_uses_fbfetch = surf != NULL;
si_update_ps_iter_samples(sctx);
if (surf) {
struct si_texture *tex = (struct si_texture *)surf->texture;
struct pipe_image_view view = {0};
assert(tex);
assert(!tex->is_depth);
/* Disable DCC, because the texture is used as both a sampler
* and color buffer.
*/
si_texture_disable_dcc(sctx, tex);
if (tex->buffer.b.b.nr_samples <= 1 && tex->cmask_buffer) {
/* Disable CMASK. */
assert(tex->cmask_buffer != &tex->buffer);
si_eliminate_fast_color_clear(sctx, tex, NULL);
si_texture_discard_cmask(sctx->screen, tex);
}
view.resource = surf->texture;
view.format = surf->format;
view.access = PIPE_IMAGE_ACCESS_READ;
view.u.tex.first_layer = surf->u.tex.first_layer;
view.u.tex.last_layer = surf->u.tex.last_layer;
view.u.tex.level = surf->u.tex.level;
/* Set the descriptor. */
uint32_t *desc = descs->list + slot * 4;
memset(desc, 0, 16 * 4);
si_set_shader_image_desc(sctx, &view, true, desc, desc + 8);
pipe_resource_reference(&buffers->buffers[slot], &tex->buffer.b.b);
radeon_add_to_buffer_list(sctx, sctx->gfx_cs, &tex->buffer, RADEON_USAGE_READ,
RADEON_PRIO_SHADER_RW_IMAGE);
buffers->enabled_mask |= 1llu << slot;
} else {
/* Clear the descriptor. */
memset(descs->list + slot * 4, 0, 8 * 4);
pipe_resource_reference(&buffers->buffers[slot], NULL);
buffers->enabled_mask &= ~(1llu << slot);
}
sctx->descriptors_dirty |= 1u << SI_DESCS_RW_BUFFERS;
}
/* SAMPLER STATES */
static void si_bind_sampler_states(struct pipe_context *ctx, enum pipe_shader_type shader,
unsigned start, unsigned count, void **states)
{
struct si_context *sctx = (struct si_context *)ctx;
struct si_samplers *samplers = &sctx->samplers[shader];
struct si_descriptors *desc = si_sampler_and_image_descriptors(sctx, shader);
struct si_sampler_state **sstates = (struct si_sampler_state **)states;
int i;
if (!count || shader >= SI_NUM_SHADERS || !sstates)
return;
for (i = 0; i < count; i++) {
unsigned slot = start + i;
unsigned desc_slot = si_get_sampler_slot(slot);
if (!sstates[i] || sstates[i] == samplers->sampler_states[slot])
continue;
#ifndef NDEBUG
assert(sstates[i]->magic == SI_SAMPLER_STATE_MAGIC);
#endif
samplers->sampler_states[slot] = sstates[i];
/* If FMASK is bound, don't overwrite it.
* The sampler state will be set after FMASK is unbound.
*/
struct si_sampler_view *sview = (struct si_sampler_view *)samplers->views[slot];
struct si_texture *tex = NULL;
if (sview && sview->base.texture && sview->base.texture->target != PIPE_BUFFER)
tex = (struct si_texture *)sview->base.texture;
if (tex && tex->surface.fmask_size)
continue;
si_set_sampler_state_desc(sstates[i], sview, tex, desc->list + desc_slot * 16 + 12);
sctx->descriptors_dirty |= 1u << si_sampler_and_image_descriptors_idx(shader);
}
}
/* BUFFER RESOURCES */
static void si_init_buffer_resources(struct si_buffer_resources *buffers,
struct si_descriptors *descs, unsigned num_buffers,
short shader_userdata_rel_index,
enum radeon_bo_priority priority,
enum radeon_bo_priority priority_constbuf)
{
buffers->priority = priority;
buffers->priority_constbuf = priority_constbuf;
buffers->buffers = CALLOC(num_buffers, sizeof(struct pipe_resource *));
buffers->offsets = CALLOC(num_buffers, sizeof(buffers->offsets[0]));
si_init_descriptors(descs, shader_userdata_rel_index, 4, num_buffers);
}
static void si_release_buffer_resources(struct si_buffer_resources *buffers,
struct si_descriptors *descs)
{
int i;
for (i = 0; i < descs->num_elements; i++) {
pipe_resource_reference(&buffers->buffers[i], NULL);
}
FREE(buffers->buffers);
FREE(buffers->offsets);
}
static void si_buffer_resources_begin_new_cs(struct si_context *sctx,
struct si_buffer_resources *buffers)
{
uint64_t mask = buffers->enabled_mask;
/* Add buffers to the CS. */
while (mask) {
int i = u_bit_scan64(&mask);
radeon_add_to_buffer_list(
sctx, sctx->gfx_cs, si_resource(buffers->buffers[i]),
buffers->writable_mask & (1llu << i) ? RADEON_USAGE_READWRITE : RADEON_USAGE_READ,
i < SI_NUM_SHADER_BUFFERS ? buffers->priority : buffers->priority_constbuf);
}
}
static bool si_buffer_resources_check_encrypted(struct si_context *sctx,
struct si_buffer_resources *buffers)
{
uint64_t mask = buffers->enabled_mask;
while (mask) {
int i = u_bit_scan64(&mask);
/* only check for reads */
if ((buffers->writable_mask & (1llu << i)) == 0 &&
(si_resource(buffers->buffers[i])->flags & RADEON_FLAG_ENCRYPTED))
return true;
}
return false;
}
static void si_get_buffer_from_descriptors(struct si_buffer_resources *buffers,
struct si_descriptors *descs, unsigned idx,
struct pipe_resource **buf, unsigned *offset,
unsigned *size)
{
pipe_resource_reference(buf, buffers->buffers[idx]);
if (*buf) {
struct si_resource *res = si_resource(*buf);
const uint32_t *desc = descs->list + idx * 4;
uint64_t va;
*size = desc[2];
assert(G_008F04_STRIDE(desc[1]) == 0);
va = si_desc_extract_buffer_address(desc);
assert(va >= res->gpu_address && va + *size <= res->gpu_address + res->bo_size);
*offset = va - res->gpu_address;
}
}
/* VERTEX BUFFERS */
static void si_vertex_buffers_begin_new_cs(struct si_context *sctx)
{
int count = sctx->num_vertex_elements;
int i;
for (i = 0; i < count; i++) {
int vb = sctx->vertex_elements->vertex_buffer_index[i];
if (vb >= ARRAY_SIZE(sctx->vertex_buffer))
continue;
if (!sctx->vertex_buffer[vb].buffer.resource)
continue;
radeon_add_to_buffer_list(sctx, sctx->gfx_cs,
si_resource(sctx->vertex_buffer[vb].buffer.resource),
RADEON_USAGE_READ, RADEON_PRIO_VERTEX_BUFFER);
}
if (!sctx->vb_descriptors_buffer)
return;
radeon_add_to_buffer_list(sctx, sctx->gfx_cs, sctx->vb_descriptors_buffer, RADEON_USAGE_READ,
RADEON_PRIO_DESCRIPTORS);
}
bool si_upload_vertex_buffer_descriptors(struct si_context *sctx)
{
unsigned i, count = sctx->num_vertex_elements;
uint32_t *ptr;
if (!sctx->vertex_buffers_dirty || !count)
return true;
struct si_vertex_elements *velems = sctx->vertex_elements;
unsigned alloc_size = velems->vb_desc_list_alloc_size;
if (alloc_size) {
/* Vertex buffer descriptors are the only ones which are uploaded
* directly through a staging buffer and don't go through
* the fine-grained upload path.
*/
u_upload_alloc(sctx->b.const_uploader, 0, alloc_size,
si_optimal_tcc_alignment(sctx, alloc_size), &sctx->vb_descriptors_offset,
(struct pipe_resource **)&sctx->vb_descriptors_buffer, (void **)&ptr);
if (!sctx->vb_descriptors_buffer) {
sctx->vb_descriptors_offset = 0;
sctx->vb_descriptors_gpu_list = NULL;
return false;
}
sctx->vb_descriptors_gpu_list = ptr;
radeon_add_to_buffer_list(sctx, sctx->gfx_cs, sctx->vb_descriptors_buffer, RADEON_USAGE_READ,
RADEON_PRIO_DESCRIPTORS);
sctx->vertex_buffer_pointer_dirty = true;
sctx->prefetch_L2_mask |= SI_PREFETCH_VBO_DESCRIPTORS;
} else {
si_resource_reference(&sctx->vb_descriptors_buffer, NULL);
sctx->vertex_buffer_pointer_dirty = false;
sctx->prefetch_L2_mask &= ~SI_PREFETCH_VBO_DESCRIPTORS;
}
assert(count <= SI_MAX_ATTRIBS);
unsigned first_vb_use_mask = velems->first_vb_use_mask;
unsigned num_vbos_in_user_sgprs = sctx->screen->num_vbos_in_user_sgprs;
for (i = 0; i < count; i++) {
struct pipe_vertex_buffer *vb;
struct si_resource *buf;
unsigned vbo_index = velems->vertex_buffer_index[i];
uint32_t *desc = i < num_vbos_in_user_sgprs ? &sctx->vb_descriptor_user_sgprs[i * 4]
: &ptr[(i - num_vbos_in_user_sgprs) * 4];
vb = &sctx->vertex_buffer[vbo_index];
buf = si_resource(vb->buffer.resource);
if (!buf) {
memset(desc, 0, 16);
continue;
}
int64_t offset = (int64_t)((int)vb->buffer_offset) + velems->src_offset[i];
if (offset >= buf->b.b.width0) {
assert(offset < buf->b.b.width0);
memset(desc, 0, 16);
continue;
}
uint64_t va = buf->gpu_address + offset;
int64_t num_records = (int64_t)buf->b.b.width0 - offset;
if (sctx->chip_class != GFX8 && vb->stride) {
/* Round up by rounding down and adding 1 */
num_records = (num_records - velems->format_size[i]) / vb->stride + 1;
}
assert(num_records >= 0 && num_records <= UINT_MAX);
uint32_t rsrc_word3 = velems->rsrc_word3[i];
/* OOB_SELECT chooses the out-of-bounds check:
* - 1: index >= NUM_RECORDS (Structured)
* - 3: offset >= NUM_RECORDS (Raw)
*/
if (sctx->chip_class >= GFX10)
rsrc_word3 |= S_008F0C_OOB_SELECT(vb->stride ? V_008F0C_OOB_SELECT_STRUCTURED
: V_008F0C_OOB_SELECT_RAW);
desc[0] = va;
desc[1] = S_008F04_BASE_ADDRESS_HI(va >> 32) | S_008F04_STRIDE(vb->stride);
desc[2] = num_records;
desc[3] = rsrc_word3;
if (first_vb_use_mask & (1 << i)) {
radeon_add_to_buffer_list(sctx, sctx->gfx_cs, si_resource(vb->buffer.resource),
RADEON_USAGE_READ, RADEON_PRIO_VERTEX_BUFFER);
}
}
/* Don't flush the const cache. It would have a very negative effect
* on performance (confirmed by testing). New descriptors are always
* uploaded to a fresh new buffer, so I don't think flushing the const
* cache is needed. */
si_mark_atom_dirty(sctx, &sctx->atoms.s.shader_pointers);
sctx->vertex_buffer_user_sgprs_dirty = num_vbos_in_user_sgprs > 0;
sctx->vertex_buffers_dirty = false;
return true;
}
/* CONSTANT BUFFERS */
static struct si_descriptors *si_const_and_shader_buffer_descriptors(struct si_context *sctx,
unsigned shader)
{
return &sctx->descriptors[si_const_and_shader_buffer_descriptors_idx(shader)];
}
void si_upload_const_buffer(struct si_context *sctx, struct si_resource **buf, const uint8_t *ptr,
unsigned size, uint32_t *const_offset)
{
void *tmp;
u_upload_alloc(sctx->b.const_uploader, 0, size, si_optimal_tcc_alignment(sctx, size),
const_offset, (struct pipe_resource **)buf, &tmp);
if (*buf)
util_memcpy_cpu_to_le32(tmp, ptr, size);
}
static void si_set_constant_buffer(struct si_context *sctx, struct si_buffer_resources *buffers,
unsigned descriptors_idx, uint slot,
const struct pipe_constant_buffer *input)
{
struct si_descriptors *descs = &sctx->descriptors[descriptors_idx];
assert(slot < descs->num_elements);
pipe_resource_reference(&buffers->buffers[slot], NULL);
/* GFX7 cannot unbind a constant buffer (S_BUFFER_LOAD is buggy
* with a NULL buffer). We need to use a dummy buffer instead. */
if (sctx->chip_class == GFX7 && (!input || (!input->buffer && !input->user_buffer)))
input = &sctx->null_const_buf;
if (input && (input->buffer || input->user_buffer)) {
struct pipe_resource *buffer = NULL;
uint64_t va;
unsigned buffer_offset;
/* Upload the user buffer if needed. */
if (input->user_buffer) {
si_upload_const_buffer(sctx, (struct si_resource **)&buffer, input->user_buffer,
input->buffer_size, &buffer_offset);
if (!buffer) {
/* Just unbind on failure. */
si_set_constant_buffer(sctx, buffers, descriptors_idx, slot, NULL);
return;
}
} else {
pipe_resource_reference(&buffer, input->buffer);
buffer_offset = input->buffer_offset;
}
va = si_resource(buffer)->gpu_address + buffer_offset;
/* Set the descriptor. */
uint32_t *desc = descs->list + slot * 4;
desc[0] = va;
desc[1] = S_008F04_BASE_ADDRESS_HI(va >> 32) | S_008F04_STRIDE(0);
desc[2] = input->buffer_size;
desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
if (sctx->chip_class >= GFX10) {
desc[3] |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) | S_008F0C_RESOURCE_LEVEL(1);
} else {
desc[3] |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
}
buffers->buffers[slot] = buffer;
buffers->offsets[slot] = buffer_offset;
radeon_add_to_gfx_buffer_list_check_mem(sctx, si_resource(buffer), RADEON_USAGE_READ,
buffers->priority_constbuf, true);
buffers->enabled_mask |= 1llu << slot;
} else {
/* Clear the descriptor. */
memset(descs->list + slot * 4, 0, sizeof(uint32_t) * 4);
buffers->enabled_mask &= ~(1llu << slot);
}
sctx->descriptors_dirty |= 1u << descriptors_idx;
}
static void si_pipe_set_constant_buffer(struct pipe_context *ctx, enum pipe_shader_type shader,
uint slot, const struct pipe_constant_buffer *input)
{
struct si_context *sctx = (struct si_context *)ctx;
if (shader >= SI_NUM_SHADERS)
return;
if (slot == 0 && input && input->buffer &&
!(si_resource(input->buffer)->flags & RADEON_FLAG_32BIT)) {
assert(!"constant buffer 0 must have a 32-bit VM address, use const_uploader");
return;
}
if (input && input->buffer)
si_resource(input->buffer)->bind_history |= PIPE_BIND_CONSTANT_BUFFER;
slot = si_get_constbuf_slot(slot);
si_set_constant_buffer(sctx, &sctx->const_and_shader_buffers[shader],
si_const_and_shader_buffer_descriptors_idx(shader), slot, input);
}
void si_get_pipe_constant_buffer(struct si_context *sctx, uint shader, uint slot,
struct pipe_constant_buffer *cbuf)
{
cbuf->user_buffer = NULL;
si_get_buffer_from_descriptors(
&sctx->const_and_shader_buffers[shader], si_const_and_shader_buffer_descriptors(sctx, shader),
si_get_constbuf_slot(slot), &cbuf->buffer, &cbuf->buffer_offset, &cbuf->buffer_size);
}
/* SHADER BUFFERS */
static void si_set_shader_buffer(struct si_context *sctx, struct si_buffer_resources *buffers,
unsigned descriptors_idx, uint slot,
const struct pipe_shader_buffer *sbuffer, bool writable,
enum radeon_bo_priority priority)
{
struct si_descriptors *descs = &sctx->descriptors[descriptors_idx];
uint32_t *desc = descs->list + slot * 4;
if (!sbuffer || !sbuffer->buffer) {
pipe_resource_reference(&buffers->buffers[slot], NULL);
memset(desc, 0, sizeof(uint32_t) * 4);
buffers->enabled_mask &= ~(1llu << slot);
buffers->writable_mask &= ~(1llu << slot);
sctx->descriptors_dirty |= 1u << descriptors_idx;
return;
}
struct si_resource *buf = si_resource(sbuffer->buffer);
uint64_t va = buf->gpu_address + sbuffer->buffer_offset;
desc[0] = va;
desc[1] = S_008F04_BASE_ADDRESS_HI(va >> 32) | S_008F04_STRIDE(0);
desc[2] = sbuffer->buffer_size;
desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
if (sctx->chip_class >= GFX10) {
desc[3] |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) | S_008F0C_RESOURCE_LEVEL(1);
} else {
desc[3] |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
}
pipe_resource_reference(&buffers->buffers[slot], &buf->b.b);
buffers->offsets[slot] = sbuffer->buffer_offset;
radeon_add_to_gfx_buffer_list_check_mem(
sctx, buf, writable ? RADEON_USAGE_READWRITE : RADEON_USAGE_READ, priority, true);
if (writable)
buffers->writable_mask |= 1llu << slot;
else
buffers->writable_mask &= ~(1llu << slot);
buffers->enabled_mask |= 1llu << slot;
sctx->descriptors_dirty |= 1lu << descriptors_idx;
util_range_add(&buf->b.b, &buf->valid_buffer_range, sbuffer->buffer_offset,
sbuffer->buffer_offset + sbuffer->buffer_size);
}
static void si_set_shader_buffers(struct pipe_context *ctx, enum pipe_shader_type shader,
unsigned start_slot, unsigned count,
const struct pipe_shader_buffer *sbuffers,
unsigned writable_bitmask)
{
struct si_context *sctx = (struct si_context *)ctx;
struct si_buffer_resources *buffers = &sctx->const_and_shader_buffers[shader];
unsigned descriptors_idx = si_const_and_shader_buffer_descriptors_idx(shader);
unsigned i;
assert(start_slot + count <= SI_NUM_SHADER_BUFFERS);
if (shader == PIPE_SHADER_COMPUTE &&
sctx->cs_shader_state.program &&
start_slot < sctx->cs_shader_state.program->sel.cs_num_shaderbufs_in_user_sgprs)
sctx->compute_shaderbuf_sgprs_dirty = true;
for (i = 0; i < count; ++i) {
const struct pipe_shader_buffer *sbuffer = sbuffers ? &sbuffers[i] : NULL;
unsigned slot = si_get_shaderbuf_slot(start_slot + i);
if (sbuffer && sbuffer->buffer)
si_resource(sbuffer->buffer)->bind_history |= PIPE_BIND_SHADER_BUFFER;
si_set_shader_buffer(sctx, buffers, descriptors_idx, slot, sbuffer,
!!(writable_bitmask & (1u << i)), buffers->priority);
}
}
void si_get_shader_buffers(struct si_context *sctx, enum pipe_shader_type shader, uint start_slot,
uint count, struct pipe_shader_buffer *sbuf)
{
struct si_buffer_resources *buffers = &sctx->const_and_shader_buffers[shader];
struct si_descriptors *descs = si_const_and_shader_buffer_descriptors(sctx, shader);
for (unsigned i = 0; i < count; ++i) {
si_get_buffer_from_descriptors(buffers, descs, si_get_shaderbuf_slot(start_slot + i),
&sbuf[i].buffer, &sbuf[i].buffer_offset, &sbuf[i].buffer_size);
}
}
/* RING BUFFERS */
void si_set_rw_buffer(struct si_context *sctx, uint slot, const struct pipe_constant_buffer *input)
{
si_set_constant_buffer(sctx, &sctx->rw_buffers, SI_DESCS_RW_BUFFERS, slot, input);
}
void si_set_rw_shader_buffer(struct si_context *sctx, uint slot,
const struct pipe_shader_buffer *sbuffer)
{
si_set_shader_buffer(sctx, &sctx->rw_buffers, SI_DESCS_RW_BUFFERS, slot, sbuffer, true,
RADEON_PRIO_SHADER_RW_BUFFER);
}
void si_set_ring_buffer(struct si_context *sctx, uint slot, struct pipe_resource *buffer,
unsigned stride, unsigned num_records, bool add_tid, bool swizzle,
unsigned element_size, unsigned index_stride, uint64_t offset)
{
struct si_buffer_resources *buffers = &sctx->rw_buffers;
struct si_descriptors *descs = &sctx->descriptors[SI_DESCS_RW_BUFFERS];
/* The stride field in the resource descriptor has 14 bits */
assert(stride < (1 << 14));
assert(slot < descs->num_elements);
pipe_resource_reference(&buffers->buffers[slot], NULL);
if (buffer) {
uint64_t va;
va = si_resource(buffer)->gpu_address + offset;
switch (element_size) {
default:
assert(!"Unsupported ring buffer element size");
case 0:
case 2:
element_size = 0;
break;
case 4:
element_size = 1;
break;
case 8:
element_size = 2;
break;
case 16:
element_size = 3;
break;
}
switch (index_stride) {
default:
assert(!"Unsupported ring buffer index stride");
case 0:
case 8:
index_stride = 0;
break;
case 16:
index_stride = 1;
break;
case 32:
index_stride = 2;
break;
case 64:
index_stride = 3;
break;
}
if (sctx->chip_class >= GFX8 && stride)
num_records *= stride;
/* Set the descriptor. */
uint32_t *desc = descs->list + slot * 4;
desc[0] = va;
desc[1] = S_008F04_BASE_ADDRESS_HI(va >> 32) | S_008F04_STRIDE(stride) |
S_008F04_SWIZZLE_ENABLE(swizzle);
desc[2] = num_records;
desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) |
S_008F0C_INDEX_STRIDE(index_stride) | S_008F0C_ADD_TID_ENABLE(add_tid);
if (sctx->chip_class >= GFX9)
assert(!swizzle || element_size == 1); /* always 4 bytes on GFX9 */
else
desc[3] |= S_008F0C_ELEMENT_SIZE(element_size);
if (sctx->chip_class >= GFX10) {
desc[3] |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_DISABLED) | S_008F0C_RESOURCE_LEVEL(1);
} else {
desc[3] |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
}
pipe_resource_reference(&buffers->buffers[slot], buffer);
radeon_add_to_buffer_list(sctx, sctx->gfx_cs, si_resource(buffer), RADEON_USAGE_READWRITE,
buffers->priority);
buffers->enabled_mask |= 1llu << slot;
} else {
/* Clear the descriptor. */
memset(descs->list + slot * 4, 0, sizeof(uint32_t) * 4);
buffers->enabled_mask &= ~(1llu << slot);
}
sctx->descriptors_dirty |= 1u << SI_DESCS_RW_BUFFERS;
}
/* INTERNAL CONST BUFFERS */
static void si_set_polygon_stipple(struct pipe_context *ctx, const struct pipe_poly_stipple *state)
{
struct si_context *sctx = (struct si_context *)ctx;
struct pipe_constant_buffer cb = {};
unsigned stipple[32];
int i;
for (i = 0; i < 32; i++)
stipple[i] = util_bitreverse(state->stipple[i]);
cb.user_buffer = stipple;
cb.buffer_size = sizeof(stipple);
si_set_rw_buffer(sctx, SI_PS_CONST_POLY_STIPPLE, &cb);
}
/* TEXTURE METADATA ENABLE/DISABLE */
static void si_resident_handles_update_needs_color_decompress(struct si_context *sctx)
{
util_dynarray_clear(&sctx->resident_tex_needs_color_decompress);
util_dynarray_clear(&sctx->resident_img_needs_color_decompress);
util_dynarray_foreach (&sctx->resident_tex_handles, struct si_texture_handle *, tex_handle) {
struct pipe_resource *res = (*tex_handle)->view->texture;
struct si_texture *tex;
if (!res || res->target == PIPE_BUFFER)
continue;
tex = (struct si_texture *)res;
if (!color_needs_decompression(tex))
continue;
util_dynarray_append(&sctx->resident_tex_needs_color_decompress, struct si_texture_handle *,
*tex_handle);
}
util_dynarray_foreach (&sctx->resident_img_handles, struct si_image_handle *, img_handle) {
struct pipe_image_view *view = &(*img_handle)->view;
struct pipe_resource *res = view->resource;
struct si_texture *tex;
if (!res || res->target == PIPE_BUFFER)
continue;
tex = (struct si_texture *)res;
if (!color_needs_decompression(tex))
continue;
util_dynarray_append(&sctx->resident_img_needs_color_decompress, struct si_image_handle *,
*img_handle);
}
}
/* CMASK can be enabled (for fast clear) and disabled (for texture export)
* while the texture is bound, possibly by a different context. In that case,
* call this function to update needs_*_decompress_masks.
*/
void si_update_needs_color_decompress_masks(struct si_context *sctx)
{
for (int i = 0; i < SI_NUM_SHADERS; ++i) {
si_samplers_update_needs_color_decompress_mask(&sctx->samplers[i]);
si_images_update_needs_color_decompress_mask(&sctx->images[i]);
si_update_shader_needs_decompress_mask(sctx, i);
}
si_resident_handles_update_needs_color_decompress(sctx);
}
/* BUFFER DISCARD/INVALIDATION */
/* Reset descriptors of buffer resources after \p buf has been invalidated.
* If buf == NULL, reset all descriptors.
*/
static void si_reset_buffer_resources(struct si_context *sctx, struct si_buffer_resources *buffers,
unsigned descriptors_idx, uint64_t slot_mask,
struct pipe_resource *buf, enum radeon_bo_priority priority)
{
struct si_descriptors *descs = &sctx->descriptors[descriptors_idx];
uint64_t mask = buffers->enabled_mask & slot_mask;
while (mask) {
unsigned i = u_bit_scan64(&mask);
struct pipe_resource *buffer = buffers->buffers[i];
if (buffer && (!buf || buffer == buf)) {
si_set_buf_desc_address(si_resource(buffer), buffers->offsets[i], descs->list + i * 4);
sctx->descriptors_dirty |= 1u << descriptors_idx;
radeon_add_to_gfx_buffer_list_check_mem(
sctx, si_resource(buffer),
buffers->writable_mask & (1llu << i) ? RADEON_USAGE_READWRITE : RADEON_USAGE_READ,
priority, true);
}
}
}
/* Update all buffer bindings where the buffer is bound, including
* all resource descriptors. This is invalidate_buffer without
* the invalidation.
*
* If buf == NULL, update all buffer bindings.
*/
void si_rebind_buffer(struct si_context *sctx, struct pipe_resource *buf)
{
struct si_resource *buffer = si_resource(buf);
unsigned i, shader;
unsigned num_elems = sctx->num_vertex_elements;
/* We changed the buffer, now we need to bind it where the old one
* was bound. This consists of 2 things:
* 1) Updating the resource descriptor and dirtying it.
* 2) Adding a relocation to the CS, so that it's usable.
*/
/* Vertex buffers. */
if (!buffer) {
if (num_elems)
sctx->vertex_buffers_dirty = true;
} else if (buffer->bind_history & PIPE_BIND_VERTEX_BUFFER) {
for (i = 0; i < num_elems; i++) {
int vb = sctx->vertex_elements->vertex_buffer_index[i];
if (vb >= ARRAY_SIZE(sctx->vertex_buffer))
continue;
if (!sctx->vertex_buffer[vb].buffer.resource)
continue;
if (sctx->vertex_buffer[vb].buffer.resource == buf) {
sctx->vertex_buffers_dirty = true;
break;
}
}
}
/* Streamout buffers. (other internal buffers can't be invalidated) */
if (!buffer || buffer->bind_history & PIPE_BIND_STREAM_OUTPUT) {
for (i = SI_VS_STREAMOUT_BUF0; i <= SI_VS_STREAMOUT_BUF3; i++) {
struct si_buffer_resources *buffers = &sctx->rw_buffers;
struct si_descriptors *descs = &sctx->descriptors[SI_DESCS_RW_BUFFERS];
struct pipe_resource *buffer = buffers->buffers[i];
if (!buffer || (buf && buffer != buf))
continue;
si_set_buf_desc_address(si_resource(buffer), buffers->offsets[i], descs->list + i * 4);
sctx->descriptors_dirty |= 1u << SI_DESCS_RW_BUFFERS;
radeon_add_to_gfx_buffer_list_check_mem(sctx, si_resource(buffer), RADEON_USAGE_WRITE,
RADEON_PRIO_SHADER_RW_BUFFER, true);
/* Update the streamout state. */
if (sctx->streamout.begin_emitted)
si_emit_streamout_end(sctx);
sctx->streamout.append_bitmask = sctx->streamout.enabled_mask;
si_streamout_buffers_dirty(sctx);
}
}
/* Constant and shader buffers. */
if (!buffer || buffer->bind_history & PIPE_BIND_CONSTANT_BUFFER) {
for (shader = 0; shader < SI_NUM_SHADERS; shader++)
si_reset_buffer_resources(sctx, &sctx->const_and_shader_buffers[shader],
si_const_and_shader_buffer_descriptors_idx(shader),
u_bit_consecutive64(SI_NUM_SHADER_BUFFERS, SI_NUM_CONST_BUFFERS),
buf, sctx->const_and_shader_buffers[shader].priority_constbuf);
}
if (!buffer || buffer->bind_history & PIPE_BIND_SHADER_BUFFER) {
for (shader = 0; shader < SI_NUM_SHADERS; shader++)
si_reset_buffer_resources(sctx, &sctx->const_and_shader_buffers[shader],
si_const_and_shader_buffer_descriptors_idx(shader),
u_bit_consecutive64(0, SI_NUM_SHADER_BUFFERS), buf,
sctx->const_and_shader_buffers[shader].priority);
}
if (!buffer || buffer->bind_history & PIPE_BIND_SAMPLER_VIEW) {
/* Texture buffers - update bindings. */
for (shader = 0; shader < SI_NUM_SHADERS; shader++) {
struct si_samplers *samplers = &sctx->samplers[shader];
struct si_descriptors *descs = si_sampler_and_image_descriptors(sctx, shader);
unsigned mask = samplers->enabled_mask;
while (mask) {
unsigned i = u_bit_scan(&mask);
struct pipe_resource *buffer = samplers->views[i]->texture;
if (buffer && buffer->target == PIPE_BUFFER && (!buf || buffer == buf)) {
unsigned desc_slot = si_get_sampler_slot(i);
si_set_buf_desc_address(si_resource(buffer), samplers->views[i]->u.buf.offset,
descs->list + desc_slot * 16 + 4);
sctx->descriptors_dirty |= 1u << si_sampler_and_image_descriptors_idx(shader);
radeon_add_to_gfx_buffer_list_check_mem(sctx, si_resource(buffer), RADEON_USAGE_READ,
RADEON_PRIO_SAMPLER_BUFFER, true);
}
}
}
}
/* Shader images */
if (!buffer || buffer->bind_history & PIPE_BIND_SHADER_IMAGE) {
for (shader = 0; shader < SI_NUM_SHADERS; ++shader) {
struct si_images *images = &sctx->images[shader];
struct si_descriptors *descs = si_sampler_and_image_descriptors(sctx, shader);
unsigned mask = images->enabled_mask;
while (mask) {
unsigned i = u_bit_scan(&mask);
struct pipe_resource *buffer = images->views[i].resource;
if (buffer && buffer->target == PIPE_BUFFER && (!buf || buffer == buf)) {
unsigned desc_slot = si_get_image_slot(i);
if (images->views[i].access & PIPE_IMAGE_ACCESS_WRITE)
si_mark_image_range_valid(&images->views[i]);
si_set_buf_desc_address(si_resource(buffer), images->views[i].u.buf.offset,
descs->list + desc_slot * 8 + 4);
sctx->descriptors_dirty |= 1u << si_sampler_and_image_descriptors_idx(shader);
radeon_add_to_gfx_buffer_list_check_mem(sctx, si_resource(buffer),
RADEON_USAGE_READWRITE,
RADEON_PRIO_SAMPLER_BUFFER, true);
}
}
}
}
/* Bindless texture handles */
if (!buffer || buffer->texture_handle_allocated) {
struct si_descriptors *descs = &sctx->bindless_descriptors;
util_dynarray_foreach (&sctx->resident_tex_handles, struct si_texture_handle *, tex_handle) {
struct pipe_sampler_view *view = (*tex_handle)->view;
unsigned desc_slot = (*tex_handle)->desc_slot;
struct pipe_resource *buffer = view->texture;
if (buffer && buffer->target == PIPE_BUFFER && (!buf || buffer == buf)) {
si_set_buf_desc_address(si_resource(buffer), view->u.buf.offset,
descs->list + desc_slot * 16 + 4);
(*tex_handle)->desc_dirty = true;
sctx->bindless_descriptors_dirty = true;
radeon_add_to_gfx_buffer_list_check_mem(sctx, si_resource(buffer), RADEON_USAGE_READ,
RADEON_PRIO_SAMPLER_BUFFER, true);
}
}
}
/* Bindless image handles */
if (!buffer || buffer->image_handle_allocated) {
struct si_descriptors *descs = &sctx->bindless_descriptors;
util_dynarray_foreach (&sctx->resident_img_handles, struct si_image_handle *, img_handle) {
struct pipe_image_view *view = &(*img_handle)->view;
unsigned desc_slot = (*img_handle)->desc_slot;
struct pipe_resource *buffer = view->resource;
if (buffer && buffer->target == PIPE_BUFFER && (!buf || buffer == buf)) {
if (view->access & PIPE_IMAGE_ACCESS_WRITE)
si_mark_image_range_valid(view);
si_set_buf_desc_address(si_resource(buffer), view->u.buf.offset,
descs->list + desc_slot * 16 + 4);
(*img_handle)->desc_dirty = true;
sctx->bindless_descriptors_dirty = true;
radeon_add_to_gfx_buffer_list_check_mem(
sctx, si_resource(buffer), RADEON_USAGE_READWRITE, RADEON_PRIO_SAMPLER_BUFFER, true);
}
}
}
if (buffer) {
/* Do the same for other contexts. They will invoke this function
* with buffer == NULL.
*/
unsigned new_counter = p_atomic_inc_return(&sctx->screen->dirty_buf_counter);
/* Skip the update for the current context, because we have already updated
* the buffer bindings.
*/
if (new_counter == sctx->last_dirty_buf_counter + 1)
sctx->last_dirty_buf_counter = new_counter;
}
}
static void si_upload_bindless_descriptor(struct si_context *sctx, unsigned desc_slot,
unsigned num_dwords)
{
struct si_descriptors *desc = &sctx->bindless_descriptors;
unsigned desc_slot_offset = desc_slot * 16;
uint32_t *data;
uint64_t va;
data = desc->list + desc_slot_offset;
va = desc->gpu_address + desc_slot_offset * 4;
si_cp_write_data(sctx, desc->buffer, va - desc->buffer->gpu_address, num_dwords * 4, V_370_TC_L2,
V_370_ME, data);
}
static void si_upload_bindless_descriptors(struct si_context *sctx)
{
if (!sctx->bindless_descriptors_dirty)
return;
/* Wait for graphics/compute to be idle before updating the resident
* descriptors directly in memory, in case the GPU is using them.
*/
sctx->flags |= SI_CONTEXT_PS_PARTIAL_FLUSH | SI_CONTEXT_CS_PARTIAL_FLUSH;
sctx->emit_cache_flush(sctx);
util_dynarray_foreach (&sctx->resident_tex_handles, struct si_texture_handle *, tex_handle) {
unsigned desc_slot = (*tex_handle)->desc_slot;
if (!(*tex_handle)->desc_dirty)
continue;
si_upload_bindless_descriptor(sctx, desc_slot, 16);
(*tex_handle)->desc_dirty = false;
}
util_dynarray_foreach (&sctx->resident_img_handles, struct si_image_handle *, img_handle) {
unsigned desc_slot = (*img_handle)->desc_slot;
if (!(*img_handle)->desc_dirty)
continue;
si_upload_bindless_descriptor(sctx, desc_slot, 8);
(*img_handle)->desc_dirty = false;
}
/* Invalidate L1 because it doesn't know that L2 changed. */
sctx->flags |= SI_CONTEXT_INV_SCACHE;
sctx->emit_cache_flush(sctx);
sctx->bindless_descriptors_dirty = false;
}
/* Update mutable image descriptor fields of all resident textures. */
static void si_update_bindless_texture_descriptor(struct si_context *sctx,
struct si_texture_handle *tex_handle)
{
struct si_sampler_view *sview = (struct si_sampler_view *)tex_handle->view;
struct si_descriptors *desc = &sctx->bindless_descriptors;
unsigned desc_slot_offset = tex_handle->desc_slot * 16;
uint32_t desc_list[16];
if (sview->base.texture->target == PIPE_BUFFER)
return;
memcpy(desc_list, desc->list + desc_slot_offset, sizeof(desc_list));
si_set_sampler_view_desc(sctx, sview, &tex_handle->sstate, desc->list + desc_slot_offset);
if (memcmp(desc_list, desc->list + desc_slot_offset, sizeof(desc_list))) {
tex_handle->desc_dirty = true;
sctx->bindless_descriptors_dirty = true;
}
}
static void si_update_bindless_image_descriptor(struct si_context *sctx,
struct si_image_handle *img_handle)
{
struct si_descriptors *desc = &sctx->bindless_descriptors;
unsigned desc_slot_offset = img_handle->desc_slot * 16;
struct pipe_image_view *view = &img_handle->view;
struct pipe_resource *res = view->resource;
uint32_t image_desc[16];
unsigned desc_size = (res->nr_samples >= 2 ? 16 : 8) * 4;
if (res->target == PIPE_BUFFER)
return;
memcpy(image_desc, desc->list + desc_slot_offset, desc_size);
si_set_shader_image_desc(sctx, view, true, desc->list + desc_slot_offset,
desc->list + desc_slot_offset + 8);
if (memcmp(image_desc, desc->list + desc_slot_offset, desc_size)) {
img_handle->desc_dirty = true;
sctx->bindless_descriptors_dirty = true;
}
}
static void si_update_all_resident_texture_descriptors(struct si_context *sctx)
{
util_dynarray_foreach (&sctx->resident_tex_handles, struct si_texture_handle *, tex_handle) {
si_update_bindless_texture_descriptor(sctx, *tex_handle);
}
util_dynarray_foreach (&sctx->resident_img_handles, struct si_image_handle *, img_handle) {
si_update_bindless_image_descriptor(sctx, *img_handle);
}
si_upload_bindless_descriptors(sctx);
}
/* Update mutable image descriptor fields of all bound textures. */
void si_update_all_texture_descriptors(struct si_context *sctx)
{
unsigned shader;
for (shader = 0; shader < SI_NUM_SHADERS; shader++) {
struct si_samplers *samplers = &sctx->samplers[shader];
struct si_images *images = &sctx->images[shader];
unsigned mask;
/* Images. */
mask = images->enabled_mask;
while (mask) {
unsigned i = u_bit_scan(&mask);
struct pipe_image_view *view = &images->views[i];
if (!view->resource || view->resource->target == PIPE_BUFFER)
continue;
si_set_shader_image(sctx, shader, i, view, true);
}
/* Sampler views. */
mask = samplers->enabled_mask;
while (mask) {
unsigned i = u_bit_scan(&mask);
struct pipe_sampler_view *view = samplers->views[i];
if (!view || !view->texture || view->texture->target == PIPE_BUFFER)
continue;
si_set_sampler_view(sctx, shader, i, samplers->views[i], true);
}
si_update_shader_needs_decompress_mask(sctx, shader);
}
si_update_all_resident_texture_descriptors(sctx);
si_update_ps_colorbuf0_slot(sctx);
}
/* SHADER USER DATA */
static void si_mark_shader_pointers_dirty(struct si_context *sctx, unsigned shader)
{
sctx->shader_pointers_dirty |=
u_bit_consecutive(SI_DESCS_FIRST_SHADER + shader * SI_NUM_SHADER_DESCS, SI_NUM_SHADER_DESCS);
if (shader == PIPE_SHADER_VERTEX) {
sctx->vertex_buffer_pointer_dirty = sctx->vb_descriptors_buffer != NULL;
sctx->vertex_buffer_user_sgprs_dirty =
sctx->num_vertex_elements > 0 && sctx->screen->num_vbos_in_user_sgprs;
}
si_mark_atom_dirty(sctx, &sctx->atoms.s.shader_pointers);
}
void si_shader_pointers_mark_dirty(struct si_context *sctx)
{
sctx->shader_pointers_dirty = u_bit_consecutive(0, SI_NUM_DESCS);
sctx->vertex_buffer_pointer_dirty = sctx->vb_descriptors_buffer != NULL;
sctx->vertex_buffer_user_sgprs_dirty =
sctx->num_vertex_elements > 0 && sctx->screen->num_vbos_in_user_sgprs;
si_mark_atom_dirty(sctx, &sctx->atoms.s.shader_pointers);
sctx->graphics_bindless_pointer_dirty = sctx->bindless_descriptors.buffer != NULL;
sctx->compute_bindless_pointer_dirty = sctx->bindless_descriptors.buffer != NULL;
sctx->compute_shaderbuf_sgprs_dirty = true;
sctx->compute_image_sgprs_dirty = true;
}
/* Set a base register address for user data constants in the given shader.
* This assigns a mapping from PIPE_SHADER_* to SPI_SHADER_USER_DATA_*.
*/
static void si_set_user_data_base(struct si_context *sctx, unsigned shader, uint32_t new_base)
{
uint32_t *base = &sctx->shader_pointers.sh_base[shader];
if (*base != new_base) {
*base = new_base;
if (new_base)
si_mark_shader_pointers_dirty(sctx, shader);
/* Any change in enabled shader stages requires re-emitting
* the VS state SGPR, because it contains the clamp_vertex_color
* state, which can be done in VS, TES, and GS.
*/
sctx->last_vs_state = ~0;
}
}
/* This must be called when these are changed between enabled and disabled
* - geometry shader
* - tessellation evaluation shader
* - NGG
*/
void si_shader_change_notify(struct si_context *sctx)
{
/* VS can be bound as VS, ES, or LS. */
if (sctx->tes_shader.cso) {
if (sctx->chip_class >= GFX10) {
si_set_user_data_base(sctx, PIPE_SHADER_VERTEX, R_00B430_SPI_SHADER_USER_DATA_HS_0);
} else if (sctx->chip_class == GFX9) {
si_set_user_data_base(sctx, PIPE_SHADER_VERTEX, R_00B430_SPI_SHADER_USER_DATA_LS_0);
} else {
si_set_user_data_base(sctx, PIPE_SHADER_VERTEX, R_00B530_SPI_SHADER_USER_DATA_LS_0);
}
} else if (sctx->chip_class >= GFX10) {
if (sctx->ngg || sctx->gs_shader.cso) {
si_set_user_data_base(sctx, PIPE_SHADER_VERTEX, R_00B230_SPI_SHADER_USER_DATA_GS_0);
} else {
si_set_user_data_base(sctx, PIPE_SHADER_VERTEX, R_00B130_SPI_SHADER_USER_DATA_VS_0);
}
} else if (sctx->gs_shader.cso) {
si_set_user_data_base(sctx, PIPE_SHADER_VERTEX, R_00B330_SPI_SHADER_USER_DATA_ES_0);
} else {
si_set_user_data_base(sctx, PIPE_SHADER_VERTEX, R_00B130_SPI_SHADER_USER_DATA_VS_0);
}
/* TES can be bound as ES, VS, or not bound. */
if (sctx->tes_shader.cso) {
if (sctx->chip_class >= GFX10) {
if (sctx->ngg || sctx->gs_shader.cso) {
si_set_user_data_base(sctx, PIPE_SHADER_TESS_EVAL, R_00B230_SPI_SHADER_USER_DATA_GS_0);
} else {
si_set_user_data_base(sctx, PIPE_SHADER_TESS_EVAL, R_00B130_SPI_SHADER_USER_DATA_VS_0);
}
} else if (sctx->gs_shader.cso) {
si_set_user_data_base(sctx, PIPE_SHADER_TESS_EVAL, R_00B330_SPI_SHADER_USER_DATA_ES_0);
} else {
si_set_user_data_base(sctx, PIPE_SHADER_TESS_EVAL, R_00B130_SPI_SHADER_USER_DATA_VS_0);
}
} else {
si_set_user_data_base(sctx, PIPE_SHADER_TESS_EVAL, 0);
}
}
static void si_emit_shader_pointer_head(struct radeon_cmdbuf *cs, unsigned sh_offset,
unsigned pointer_count)
{
SI_CHECK_SHADOWED_REGS(sh_offset, pointer_count);
radeon_emit(cs, PKT3(PKT3_SET_SH_REG, pointer_count, 0));
radeon_emit(cs, (sh_offset - SI_SH_REG_OFFSET) >> 2);
}
static void si_emit_shader_pointer_body(struct si_screen *sscreen, struct radeon_cmdbuf *cs,
uint64_t va)
{
radeon_emit(cs, va);
assert(va == 0 || (va >> 32) == sscreen->info.address32_hi);
}
static void si_emit_shader_pointer(struct si_context *sctx, struct si_descriptors *desc,
unsigned sh_base)
{
struct radeon_cmdbuf *cs = sctx->gfx_cs;
unsigned sh_offset = sh_base + desc->shader_userdata_offset;
si_emit_shader_pointer_head(cs, sh_offset, 1);
si_emit_shader_pointer_body(sctx->screen, cs, desc->gpu_address);
}
static void si_emit_consecutive_shader_pointers(struct si_context *sctx, unsigned pointer_mask,
unsigned sh_base)
{
if (!sh_base)
return;
struct radeon_cmdbuf *cs = sctx->gfx_cs;
unsigned mask = sctx->shader_pointers_dirty & pointer_mask;
while (mask) {
int start, count;
u_bit_scan_consecutive_range(&mask, &start, &count);
struct si_descriptors *descs = &sctx->descriptors[start];
unsigned sh_offset = sh_base + descs->shader_userdata_offset;
si_emit_shader_pointer_head(cs, sh_offset, count);
for (int i = 0; i < count; i++)
si_emit_shader_pointer_body(sctx->screen, cs, descs[i].gpu_address);
}
}
static void si_emit_global_shader_pointers(struct si_context *sctx, struct si_descriptors *descs)
{
if (sctx->chip_class >= GFX10) {
si_emit_shader_pointer(sctx, descs, R_00B030_SPI_SHADER_USER_DATA_PS_0);
/* HW VS stage only used in non-NGG mode. */
si_emit_shader_pointer(sctx, descs, R_00B130_SPI_SHADER_USER_DATA_VS_0);
si_emit_shader_pointer(sctx, descs, R_00B230_SPI_SHADER_USER_DATA_GS_0);
si_emit_shader_pointer(sctx, descs, R_00B430_SPI_SHADER_USER_DATA_HS_0);
return;
} else if (sctx->chip_class == GFX9 && sctx->shadowed_regs) {
/* We can't use the COMMON registers with register shadowing. */
si_emit_shader_pointer(sctx, descs, R_00B030_SPI_SHADER_USER_DATA_PS_0);
si_emit_shader_pointer(sctx, descs, R_00B130_SPI_SHADER_USER_DATA_VS_0);
si_emit_shader_pointer(sctx, descs, R_00B330_SPI_SHADER_USER_DATA_ES_0);
si_emit_shader_pointer(sctx, descs, R_00B430_SPI_SHADER_USER_DATA_LS_0);
return;
} else if (sctx->chip_class == GFX9) {
/* Broadcast it to all shader stages. */
si_emit_shader_pointer(sctx, descs, R_00B530_SPI_SHADER_USER_DATA_COMMON_0);
return;
}
si_emit_shader_pointer(sctx, descs, R_00B030_SPI_SHADER_USER_DATA_PS_0);
si_emit_shader_pointer(sctx, descs, R_00B130_SPI_SHADER_USER_DATA_VS_0);
si_emit_shader_pointer(sctx, descs, R_00B330_SPI_SHADER_USER_DATA_ES_0);
si_emit_shader_pointer(sctx, descs, R_00B230_SPI_SHADER_USER_DATA_GS_0);
si_emit_shader_pointer(sctx, descs, R_00B430_SPI_SHADER_USER_DATA_HS_0);
si_emit_shader_pointer(sctx, descs, R_00B530_SPI_SHADER_USER_DATA_LS_0);
}
void si_emit_graphics_shader_pointers(struct si_context *sctx)
{
uint32_t *sh_base = sctx->shader_pointers.sh_base;
if (sctx->shader_pointers_dirty & (1 << SI_DESCS_RW_BUFFERS)) {
si_emit_global_shader_pointers(sctx, &sctx->descriptors[SI_DESCS_RW_BUFFERS]);
}
si_emit_consecutive_shader_pointers(sctx, SI_DESCS_SHADER_MASK(VERTEX),
sh_base[PIPE_SHADER_VERTEX]);
si_emit_consecutive_shader_pointers(sctx, SI_DESCS_SHADER_MASK(TESS_EVAL),
sh_base[PIPE_SHADER_TESS_EVAL]);
si_emit_consecutive_shader_pointers(sctx, SI_DESCS_SHADER_MASK(FRAGMENT),
sh_base[PIPE_SHADER_FRAGMENT]);
si_emit_consecutive_shader_pointers(sctx, SI_DESCS_SHADER_MASK(TESS_CTRL),
sh_base[PIPE_SHADER_TESS_CTRL]);
si_emit_consecutive_shader_pointers(sctx, SI_DESCS_SHADER_MASK(GEOMETRY),
sh_base[PIPE_SHADER_GEOMETRY]);
sctx->shader_pointers_dirty &= ~u_bit_consecutive(SI_DESCS_RW_BUFFERS, SI_DESCS_FIRST_COMPUTE);
if (sctx->vertex_buffer_pointer_dirty && sctx->num_vertex_elements) {
struct radeon_cmdbuf *cs = sctx->gfx_cs;
/* Find the location of the VB descriptor pointer. */
unsigned sh_dw_offset = SI_VS_NUM_USER_SGPR;
if (sctx->chip_class >= GFX9) {
if (sctx->tes_shader.cso)
sh_dw_offset = GFX9_TCS_NUM_USER_SGPR;
else if (sctx->gs_shader.cso)
sh_dw_offset = GFX9_VSGS_NUM_USER_SGPR;
}
unsigned sh_offset = sh_base[PIPE_SHADER_VERTEX] + sh_dw_offset * 4;
si_emit_shader_pointer_head(cs, sh_offset, 1);
si_emit_shader_pointer_body(
sctx->screen, cs, sctx->vb_descriptors_buffer->gpu_address + sctx->vb_descriptors_offset);
sctx->vertex_buffer_pointer_dirty = false;
}
if (sctx->vertex_buffer_user_sgprs_dirty && sctx->num_vertex_elements &&
sctx->screen->num_vbos_in_user_sgprs) {
struct radeon_cmdbuf *cs = sctx->gfx_cs;
unsigned num_desc = MIN2(sctx->num_vertex_elements, sctx->screen->num_vbos_in_user_sgprs);
unsigned sh_offset = sh_base[PIPE_SHADER_VERTEX] + SI_SGPR_VS_VB_DESCRIPTOR_FIRST * 4;
si_emit_shader_pointer_head(cs, sh_offset, num_desc * 4);
radeon_emit_array(cs, sctx->vb_descriptor_user_sgprs, num_desc * 4);
sctx->vertex_buffer_user_sgprs_dirty = false;
}
if (sctx->graphics_bindless_pointer_dirty) {
si_emit_global_shader_pointers(sctx, &sctx->bindless_descriptors);
sctx->graphics_bindless_pointer_dirty = false;
}
}
void si_emit_compute_shader_pointers(struct si_context *sctx)
{
struct radeon_cmdbuf *cs = sctx->gfx_cs;
struct si_shader_selector *shader = &sctx->cs_shader_state.program->sel;
unsigned base = R_00B900_COMPUTE_USER_DATA_0;
si_emit_consecutive_shader_pointers(sctx, SI_DESCS_SHADER_MASK(COMPUTE),
R_00B900_COMPUTE_USER_DATA_0);
sctx->shader_pointers_dirty &= ~SI_DESCS_SHADER_MASK(COMPUTE);
if (sctx->compute_bindless_pointer_dirty) {
si_emit_shader_pointer(sctx, &sctx->bindless_descriptors, base);
sctx->compute_bindless_pointer_dirty = false;
}
/* Set shader buffer descriptors in user SGPRs. */
unsigned num_shaderbufs = shader->cs_num_shaderbufs_in_user_sgprs;
if (num_shaderbufs && sctx->compute_shaderbuf_sgprs_dirty) {
struct si_descriptors *desc = si_const_and_shader_buffer_descriptors(sctx, PIPE_SHADER_COMPUTE);
si_emit_shader_pointer_head(cs, R_00B900_COMPUTE_USER_DATA_0 +
shader->cs_shaderbufs_sgpr_index * 4,
num_shaderbufs * 4);
for (unsigned i = 0; i < num_shaderbufs; i++)
radeon_emit_array(cs, &desc->list[si_get_shaderbuf_slot(i) * 4], 4);
sctx->compute_shaderbuf_sgprs_dirty = false;
}
/* Set image descriptors in user SGPRs. */
unsigned num_images = shader->cs_num_images_in_user_sgprs;
if (num_images && sctx->compute_image_sgprs_dirty) {
struct si_descriptors *desc = si_sampler_and_image_descriptors(sctx, PIPE_SHADER_COMPUTE);
si_emit_shader_pointer_head(cs, R_00B900_COMPUTE_USER_DATA_0 +
shader->cs_images_sgpr_index * 4,
shader->cs_images_num_sgprs);
for (unsigned i = 0; i < num_images; i++) {
unsigned desc_offset = si_get_image_slot(i) * 8;
unsigned num_sgprs = 8;
/* Image buffers are in desc[4..7]. */
if (shader->info.image_buffers & (1 << i)) {
desc_offset += 4;
num_sgprs = 4;
}
radeon_emit_array(cs, &desc->list[desc_offset], num_sgprs);
}
sctx->compute_image_sgprs_dirty = false;
}
}
/* BINDLESS */
static void si_init_bindless_descriptors(struct si_context *sctx, struct si_descriptors *desc,
short shader_userdata_rel_index, unsigned num_elements)
{
ASSERTED unsigned desc_slot;
si_init_descriptors(desc, shader_userdata_rel_index, 16, num_elements);
sctx->bindless_descriptors.num_active_slots = num_elements;
/* The first bindless descriptor is stored at slot 1, because 0 is not
* considered to be a valid handle.
*/
sctx->num_bindless_descriptors = 1;
/* Track which bindless slots are used (or not). */
util_idalloc_init(&sctx->bindless_used_slots);
util_idalloc_resize(&sctx->bindless_used_slots, num_elements);
/* Reserve slot 0 because it's an invalid handle for bindless. */
desc_slot = util_idalloc_alloc(&sctx->bindless_used_slots);
assert(desc_slot == 0);
}
static void si_release_bindless_descriptors(struct si_context *sctx)
{
si_release_descriptors(&sctx->bindless_descriptors);
util_idalloc_fini(&sctx->bindless_used_slots);
}
static unsigned si_get_first_free_bindless_slot(struct si_context *sctx)
{
struct si_descriptors *desc = &sctx->bindless_descriptors;
unsigned desc_slot;
desc_slot = util_idalloc_alloc(&sctx->bindless_used_slots);
if (desc_slot >= desc->num_elements) {
/* The array of bindless descriptors is full, resize it. */
unsigned slot_size = desc->element_dw_size * 4;
unsigned new_num_elements = desc->num_elements * 2;
desc->list =
REALLOC(desc->list, desc->num_elements * slot_size, new_num_elements * slot_size);
desc->num_elements = new_num_elements;
desc->num_active_slots = new_num_elements;
}
assert(desc_slot);
return desc_slot;
}
static unsigned si_create_bindless_descriptor(struct si_context *sctx, uint32_t *desc_list,
unsigned size)
{
struct si_descriptors *desc = &sctx->bindless_descriptors;
unsigned desc_slot, desc_slot_offset;
/* Find a free slot. */
desc_slot = si_get_first_free_bindless_slot(sctx);
/* For simplicity, sampler and image bindless descriptors use fixed
* 16-dword slots for now. Image descriptors only need 8-dword but this
* doesn't really matter because no real apps use image handles.
*/
desc_slot_offset = desc_slot * 16;
/* Copy the descriptor into the array. */
memcpy(desc->list + desc_slot_offset, desc_list, size);
/* Re-upload the whole array of bindless descriptors into a new buffer.
*/
if (!si_upload_descriptors(sctx, desc))
return 0;
/* Make sure to re-emit the shader pointers for all stages. */
sctx->graphics_bindless_pointer_dirty = true;
sctx->compute_bindless_pointer_dirty = true;
return desc_slot;
}
static void si_update_bindless_buffer_descriptor(struct si_context *sctx, unsigned desc_slot,
struct pipe_resource *resource, uint64_t offset,
bool *desc_dirty)
{
struct si_descriptors *desc = &sctx->bindless_descriptors;
struct si_resource *buf = si_resource(resource);
unsigned desc_slot_offset = desc_slot * 16;
uint32_t *desc_list = desc->list + desc_slot_offset + 4;
uint64_t old_desc_va;
assert(resource->target == PIPE_BUFFER);
/* Retrieve the old buffer addr from the descriptor. */
old_desc_va = si_desc_extract_buffer_address(desc_list);
if (old_desc_va != buf->gpu_address + offset) {
/* The buffer has been invalidated when the handle wasn't
* resident, update the descriptor and the dirty flag.
*/
si_set_buf_desc_address(buf, offset, &desc_list[0]);
*desc_dirty = true;
}
}
static uint64_t si_create_texture_handle(struct pipe_context *ctx, struct pipe_sampler_view *view,
const struct pipe_sampler_state *state)
{
struct si_sampler_view *sview = (struct si_sampler_view *)view;
struct si_context *sctx = (struct si_context *)ctx;
struct si_texture_handle *tex_handle;
struct si_sampler_state *sstate;
uint32_t desc_list[16];
uint64_t handle;
tex_handle = CALLOC_STRUCT(si_texture_handle);
if (!tex_handle)
return 0;
memset(desc_list, 0, sizeof(desc_list));
si_init_descriptor_list(&desc_list[0], 16, 1, null_texture_descriptor);
sstate = ctx->create_sampler_state(ctx, state);
if (!sstate) {
FREE(tex_handle);
return 0;
}
si_set_sampler_view_desc(sctx, sview, sstate, &desc_list[0]);
memcpy(&tex_handle->sstate, sstate, sizeof(*sstate));
ctx->delete_sampler_state(ctx, sstate);
tex_handle->desc_slot = si_create_bindless_descriptor(sctx, desc_list, sizeof(desc_list));
if (!tex_handle->desc_slot) {
FREE(tex_handle);
return 0;
}
handle = tex_handle->desc_slot;
if (!_mesa_hash_table_insert(sctx->tex_handles, (void *)(uintptr_t)handle, tex_handle)) {
FREE(tex_handle);
return 0;
}
pipe_sampler_view_reference(&tex_handle->view, view);
si_resource(sview->base.texture)->texture_handle_allocated = true;
return handle;
}
static void si_delete_texture_handle(struct pipe_context *ctx, uint64_t handle)
{
struct si_context *sctx = (struct si_context *)ctx;
struct si_texture_handle *tex_handle;
struct hash_entry *entry;
entry = _mesa_hash_table_search(sctx->tex_handles, (void *)(uintptr_t)handle);
if (!entry)
return;
tex_handle = (struct si_texture_handle *)entry->data;
/* Allow this descriptor slot to be re-used. */
util_idalloc_free(&sctx->bindless_used_slots, tex_handle->desc_slot);
pipe_sampler_view_reference(&tex_handle->view, NULL);
_mesa_hash_table_remove(sctx->tex_handles, entry);
FREE(tex_handle);
}
static void si_make_texture_handle_resident(struct pipe_context *ctx, uint64_t handle,
bool resident)
{
struct si_context *sctx = (struct si_context *)ctx;
struct si_texture_handle *tex_handle;
struct si_sampler_view *sview;
struct hash_entry *entry;
entry = _mesa_hash_table_search(sctx->tex_handles, (void *)(uintptr_t)handle);
if (!entry)
return;
tex_handle = (struct si_texture_handle *)entry->data;
sview = (struct si_sampler_view *)tex_handle->view;
if (resident) {
if (sview->base.texture->target != PIPE_BUFFER) {
struct si_texture *tex = (struct si_texture *)sview->base.texture;
if (depth_needs_decompression(tex)) {
util_dynarray_append(&sctx->resident_tex_needs_depth_decompress,
struct si_texture_handle *, tex_handle);
}
if (color_needs_decompression(tex)) {
util_dynarray_append(&sctx->resident_tex_needs_color_decompress,
struct si_texture_handle *, tex_handle);
}
if (vi_dcc_enabled(tex, sview->base.u.tex.first_level) &&
p_atomic_read(&tex->framebuffers_bound))
sctx->need_check_render_feedback = true;
si_update_bindless_texture_descriptor(sctx, tex_handle);
} else {
si_update_bindless_buffer_descriptor(sctx, tex_handle->desc_slot, sview->base.texture,
sview->base.u.buf.offset, &tex_handle->desc_dirty);
}
/* Re-upload the descriptor if it has been updated while it
* wasn't resident.
*/
if (tex_handle->desc_dirty)
sctx->bindless_descriptors_dirty = true;
/* Add the texture handle to the per-context list. */
util_dynarray_append(&sctx->resident_tex_handles, struct si_texture_handle *, tex_handle);
/* Add the buffers to the current CS in case si_begin_new_cs()
* is not going to be called.
*/
si_sampler_view_add_buffer(sctx, sview->base.texture, RADEON_USAGE_READ,
sview->is_stencil_sampler, false);
} else {
/* Remove the texture handle from the per-context list. */
util_dynarray_delete_unordered(&sctx->resident_tex_handles, struct si_texture_handle *,
tex_handle);
if (sview->base.texture->target != PIPE_BUFFER) {
util_dynarray_delete_unordered(&sctx->resident_tex_needs_depth_decompress,
struct si_texture_handle *, tex_handle);
util_dynarray_delete_unordered(&sctx->resident_tex_needs_color_decompress,
struct si_texture_handle *, tex_handle);
}
}
}
static uint64_t si_create_image_handle(struct pipe_context *ctx, const struct pipe_image_view *view)
{
struct si_context *sctx = (struct si_context *)ctx;
struct si_image_handle *img_handle;
uint32_t desc_list[16];
uint64_t handle;
if (!view || !view->resource)
return 0;
img_handle = CALLOC_STRUCT(si_image_handle);
if (!img_handle)
return 0;
memset(desc_list, 0, sizeof(desc_list));
si_init_descriptor_list(&desc_list[0], 8, 2, null_image_descriptor);
si_set_shader_image_desc(sctx, view, false, &desc_list[0], &desc_list[8]);
img_handle->desc_slot = si_create_bindless_descriptor(sctx, desc_list, sizeof(desc_list));
if (!img_handle->desc_slot) {
FREE(img_handle);
return 0;
}
handle = img_handle->desc_slot;
if (!_mesa_hash_table_insert(sctx->img_handles, (void *)(uintptr_t)handle, img_handle)) {
FREE(img_handle);
return 0;
}
util_copy_image_view(&img_handle->view, view);
si_resource(view->resource)->image_handle_allocated = true;
return handle;
}
static void si_delete_image_handle(struct pipe_context *ctx, uint64_t handle)
{
struct si_context *sctx = (struct si_context *)ctx;
struct si_image_handle *img_handle;
struct hash_entry *entry;
entry = _mesa_hash_table_search(sctx->img_handles, (void *)(uintptr_t)handle);
if (!entry)
return;
img_handle = (struct si_image_handle *)entry->data;
util_copy_image_view(&img_handle->view, NULL);
_mesa_hash_table_remove(sctx->img_handles, entry);
FREE(img_handle);
}
static void si_make_image_handle_resident(struct pipe_context *ctx, uint64_t handle,
unsigned access, bool resident)
{
struct si_context *sctx = (struct si_context *)ctx;
struct si_image_handle *img_handle;
struct pipe_image_view *view;
struct si_resource *res;
struct hash_entry *entry;
entry = _mesa_hash_table_search(sctx->img_handles, (void *)(uintptr_t)handle);
if (!entry)
return;
img_handle = (struct si_image_handle *)entry->data;
view = &img_handle->view;
res = si_resource(view->resource);
if (resident) {
if (res->b.b.target != PIPE_BUFFER) {
struct si_texture *tex = (struct si_texture *)res;
unsigned level = view->u.tex.level;
if (color_needs_decompression(tex)) {
util_dynarray_append(&sctx->resident_img_needs_color_decompress,
struct si_image_handle *, img_handle);
}
if (vi_dcc_enabled(tex, level) && p_atomic_read(&tex->framebuffers_bound))
sctx->need_check_render_feedback = true;
si_update_bindless_image_descriptor(sctx, img_handle);
} else {
si_update_bindless_buffer_descriptor(sctx, img_handle->desc_slot, view->resource,
view->u.buf.offset, &img_handle->desc_dirty);
}
/* Re-upload the descriptor if it has been updated while it
* wasn't resident.
*/
if (img_handle->desc_dirty)
sctx->bindless_descriptors_dirty = true;
/* Add the image handle to the per-context list. */
util_dynarray_append(&sctx->resident_img_handles, struct si_image_handle *, img_handle);
/* Add the buffers to the current CS in case si_begin_new_cs()
* is not going to be called.
*/
si_sampler_view_add_buffer(
sctx, view->resource,
(access & PIPE_IMAGE_ACCESS_WRITE) ? RADEON_USAGE_READWRITE : RADEON_USAGE_READ, false,
false);
} else {
/* Remove the image handle from the per-context list. */
util_dynarray_delete_unordered(&sctx->resident_img_handles, struct si_image_handle *,
img_handle);
if (res->b.b.target != PIPE_BUFFER) {
util_dynarray_delete_unordered(&sctx->resident_img_needs_color_decompress,
struct si_image_handle *, img_handle);
}
}
}
static void si_resident_buffers_add_all_to_bo_list(struct si_context *sctx)
{
unsigned num_resident_tex_handles, num_resident_img_handles;
num_resident_tex_handles = sctx->resident_tex_handles.size / sizeof(struct si_texture_handle *);
num_resident_img_handles = sctx->resident_img_handles.size / sizeof(struct si_image_handle *);
/* Add all resident texture handles. */
util_dynarray_foreach (&sctx->resident_tex_handles, struct si_texture_handle *, tex_handle) {
struct si_sampler_view *sview = (struct si_sampler_view *)(*tex_handle)->view;
si_sampler_view_add_buffer(sctx, sview->base.texture, RADEON_USAGE_READ,
sview->is_stencil_sampler, false);
}
/* Add all resident image handles. */
util_dynarray_foreach (&sctx->resident_img_handles, struct si_image_handle *, img_handle) {
struct pipe_image_view *view = &(*img_handle)->view;
si_sampler_view_add_buffer(sctx, view->resource, RADEON_USAGE_READWRITE, false, false);
}
sctx->num_resident_handles += num_resident_tex_handles + num_resident_img_handles;
assert(sctx->bo_list_add_all_resident_resources);
sctx->bo_list_add_all_resident_resources = false;
}
/* INIT/DEINIT/UPLOAD */
void si_init_all_descriptors(struct si_context *sctx)
{
int i;
unsigned first_shader = sctx->has_graphics ? 0 : PIPE_SHADER_COMPUTE;
for (i = first_shader; i < SI_NUM_SHADERS; i++) {
bool is_2nd =
sctx->chip_class >= GFX9 && (i == PIPE_SHADER_TESS_CTRL || i == PIPE_SHADER_GEOMETRY);
unsigned num_sampler_slots = SI_NUM_IMAGE_SLOTS / 2 + SI_NUM_SAMPLERS;
unsigned num_buffer_slots = SI_NUM_SHADER_BUFFERS + SI_NUM_CONST_BUFFERS;
int rel_dw_offset;
struct si_descriptors *desc;
if (is_2nd) {
if (i == PIPE_SHADER_TESS_CTRL) {
rel_dw_offset =
(R_00B408_SPI_SHADER_USER_DATA_ADDR_LO_HS - R_00B430_SPI_SHADER_USER_DATA_LS_0) / 4;
} else if (sctx->chip_class >= GFX10) { /* PIPE_SHADER_GEOMETRY */
rel_dw_offset =
(R_00B208_SPI_SHADER_USER_DATA_ADDR_LO_GS - R_00B230_SPI_SHADER_USER_DATA_GS_0) / 4;
} else {
rel_dw_offset =
(R_00B208_SPI_SHADER_USER_DATA_ADDR_LO_GS - R_00B330_SPI_SHADER_USER_DATA_ES_0) / 4;
}
} else {
rel_dw_offset = SI_SGPR_CONST_AND_SHADER_BUFFERS;
}
desc = si_const_and_shader_buffer_descriptors(sctx, i);
si_init_buffer_resources(&sctx->const_and_shader_buffers[i], desc, num_buffer_slots,
rel_dw_offset, RADEON_PRIO_SHADER_RW_BUFFER,
RADEON_PRIO_CONST_BUFFER);
desc->slot_index_to_bind_directly = si_get_constbuf_slot(0);
if (is_2nd) {
if (i == PIPE_SHADER_TESS_CTRL) {
rel_dw_offset =
(R_00B40C_SPI_SHADER_USER_DATA_ADDR_HI_HS - R_00B430_SPI_SHADER_USER_DATA_LS_0) / 4;
} else if (sctx->chip_class >= GFX10) { /* PIPE_SHADER_GEOMETRY */
rel_dw_offset =
(R_00B20C_SPI_SHADER_USER_DATA_ADDR_HI_GS - R_00B230_SPI_SHADER_USER_DATA_GS_0) / 4;
} else {
rel_dw_offset =
(R_00B20C_SPI_SHADER_USER_DATA_ADDR_HI_GS - R_00B330_SPI_SHADER_USER_DATA_ES_0) / 4;
}
} else {
rel_dw_offset = SI_SGPR_SAMPLERS_AND_IMAGES;
}
desc = si_sampler_and_image_descriptors(sctx, i);
si_init_descriptors(desc, rel_dw_offset, 16, num_sampler_slots);
int j;
for (j = 0; j < SI_NUM_IMAGE_SLOTS; j++)
memcpy(desc->list + j * 8, null_image_descriptor, 8 * 4);
for (; j < SI_NUM_IMAGE_SLOTS + SI_NUM_SAMPLERS * 2; j++)
memcpy(desc->list + j * 8, null_texture_descriptor, 8 * 4);
}
si_init_buffer_resources(&sctx->rw_buffers, &sctx->descriptors[SI_DESCS_RW_BUFFERS],
SI_NUM_RW_BUFFERS, SI_SGPR_RW_BUFFERS,
/* The second priority is used by
* const buffers in RW buffer slots. */
RADEON_PRIO_SHADER_RINGS, RADEON_PRIO_CONST_BUFFER);
sctx->descriptors[SI_DESCS_RW_BUFFERS].num_active_slots = SI_NUM_RW_BUFFERS;
/* Initialize an array of 1024 bindless descriptors, when the limit is
* reached, just make it larger and re-upload the whole array.
*/
si_init_bindless_descriptors(sctx, &sctx->bindless_descriptors,
SI_SGPR_BINDLESS_SAMPLERS_AND_IMAGES, 1024);
sctx->descriptors_dirty = u_bit_consecutive(0, SI_NUM_DESCS);
/* Set pipe_context functions. */
sctx->b.bind_sampler_states = si_bind_sampler_states;
sctx->b.set_shader_images = si_set_shader_images;
sctx->b.set_constant_buffer = si_pipe_set_constant_buffer;
sctx->b.set_shader_buffers = si_set_shader_buffers;
sctx->b.set_sampler_views = si_set_sampler_views;
sctx->b.create_texture_handle = si_create_texture_handle;
sctx->b.delete_texture_handle = si_delete_texture_handle;
sctx->b.make_texture_handle_resident = si_make_texture_handle_resident;
sctx->b.create_image_handle = si_create_image_handle;
sctx->b.delete_image_handle = si_delete_image_handle;
sctx->b.make_image_handle_resident = si_make_image_handle_resident;
if (!sctx->has_graphics)
return;
sctx->b.set_polygon_stipple = si_set_polygon_stipple;
/* Shader user data. */
sctx->atoms.s.shader_pointers.emit = si_emit_graphics_shader_pointers;
/* Set default and immutable mappings. */
if (sctx->ngg) {
assert(sctx->chip_class >= GFX10);
si_set_user_data_base(sctx, PIPE_SHADER_VERTEX, R_00B230_SPI_SHADER_USER_DATA_GS_0);
} else {
si_set_user_data_base(sctx, PIPE_SHADER_VERTEX, R_00B130_SPI_SHADER_USER_DATA_VS_0);
}
if (sctx->chip_class == GFX9) {
si_set_user_data_base(sctx, PIPE_SHADER_TESS_CTRL, R_00B430_SPI_SHADER_USER_DATA_LS_0);
si_set_user_data_base(sctx, PIPE_SHADER_GEOMETRY, R_00B330_SPI_SHADER_USER_DATA_ES_0);
} else {
si_set_user_data_base(sctx, PIPE_SHADER_TESS_CTRL, R_00B430_SPI_SHADER_USER_DATA_HS_0);
si_set_user_data_base(sctx, PIPE_SHADER_GEOMETRY, R_00B230_SPI_SHADER_USER_DATA_GS_0);
}
si_set_user_data_base(sctx, PIPE_SHADER_FRAGMENT, R_00B030_SPI_SHADER_USER_DATA_PS_0);
}
static bool si_upload_shader_descriptors(struct si_context *sctx, unsigned mask)
{
unsigned dirty = sctx->descriptors_dirty & mask;
/* Assume nothing will go wrong: */
sctx->shader_pointers_dirty |= dirty;
while (dirty) {
unsigned i = u_bit_scan(&dirty);
if (!si_upload_descriptors(sctx, &sctx->descriptors[i]))
return false;
}
sctx->descriptors_dirty &= ~mask;
si_upload_bindless_descriptors(sctx);
return true;
}
bool si_upload_graphics_shader_descriptors(struct si_context *sctx)
{
const unsigned mask = u_bit_consecutive(0, SI_DESCS_FIRST_COMPUTE);
return si_upload_shader_descriptors(sctx, mask);
}
bool si_upload_compute_shader_descriptors(struct si_context *sctx)
{
/* Does not update rw_buffers as that is not needed for compute shaders
* and the input buffer is using the same SGPR's anyway.
*/
const unsigned mask =
u_bit_consecutive(SI_DESCS_FIRST_COMPUTE, SI_NUM_DESCS - SI_DESCS_FIRST_COMPUTE);
return si_upload_shader_descriptors(sctx, mask);
}
void si_release_all_descriptors(struct si_context *sctx)
{
int i;
for (i = 0; i < SI_NUM_SHADERS; i++) {
si_release_buffer_resources(&sctx->const_and_shader_buffers[i],
si_const_and_shader_buffer_descriptors(sctx, i));
si_release_sampler_views(&sctx->samplers[i]);
si_release_image_views(&sctx->images[i]);
}
si_release_buffer_resources(&sctx->rw_buffers, &sctx->descriptors[SI_DESCS_RW_BUFFERS]);
for (i = 0; i < SI_NUM_VERTEX_BUFFERS; i++)
pipe_vertex_buffer_unreference(&sctx->vertex_buffer[i]);
for (i = 0; i < SI_NUM_DESCS; ++i)
si_release_descriptors(&sctx->descriptors[i]);
si_resource_reference(&sctx->vb_descriptors_buffer, NULL);
sctx->vb_descriptors_gpu_list = NULL; /* points into a mapped buffer */
si_release_bindless_descriptors(sctx);
}
bool si_gfx_resources_check_encrypted(struct si_context *sctx)
{
bool use_encrypted_bo = false;
struct si_shader_ctx_state *current_shader[SI_NUM_SHADERS] = {
[PIPE_SHADER_VERTEX] = &sctx->vs_shader,
[PIPE_SHADER_TESS_CTRL] = &sctx->tcs_shader,
[PIPE_SHADER_TESS_EVAL] = &sctx->tes_shader,
[PIPE_SHADER_GEOMETRY] = &sctx->gs_shader,
[PIPE_SHADER_FRAGMENT] = &sctx->ps_shader,
};
for (unsigned i = 0; i < SI_NUM_GRAPHICS_SHADERS && !use_encrypted_bo; i++) {
if (!current_shader[i]->cso)
continue;
use_encrypted_bo |=
si_buffer_resources_check_encrypted(sctx, &sctx->const_and_shader_buffers[i]);
use_encrypted_bo |=
si_sampler_views_check_encrypted(sctx, &sctx->samplers[i],
current_shader[i]->cso->info.samplers_declared);
use_encrypted_bo |= si_image_views_check_encrypted(sctx, &sctx->images[i],
current_shader[i]->cso->info.images_declared);
}
use_encrypted_bo |= si_buffer_resources_check_encrypted(sctx, &sctx->rw_buffers);
struct si_state_blend *blend = sctx->queued.named.blend;
for (int i = 0; i < sctx->framebuffer.state.nr_cbufs && !use_encrypted_bo; i++) {
struct pipe_surface *surf = sctx->framebuffer.state.cbufs[i];
if (surf && surf->texture) {
struct si_texture *tex = (struct si_texture *)surf->texture;
if (!(tex->buffer.flags & RADEON_FLAG_ENCRYPTED))
continue;
/* Are we reading from this framebuffer (blend) */
if ((blend->blend_enable_4bit >> (4 * i)) & 0xf) {
/* TODO: blend op */
use_encrypted_bo = true;
}
}
}
/* TODO: we should assert that either use_encrypted_bo is false,
* or all writable buffers are encrypted.
*/
return use_encrypted_bo;
}
void si_gfx_resources_add_all_to_bo_list(struct si_context *sctx)
{
for (unsigned i = 0; i < SI_NUM_GRAPHICS_SHADERS; i++) {
si_buffer_resources_begin_new_cs(sctx, &sctx->const_and_shader_buffers[i]);
si_sampler_views_begin_new_cs(sctx, &sctx->samplers[i]);
si_image_views_begin_new_cs(sctx, &sctx->images[i]);
}
si_buffer_resources_begin_new_cs(sctx, &sctx->rw_buffers);
si_vertex_buffers_begin_new_cs(sctx);
if (sctx->bo_list_add_all_resident_resources)
si_resident_buffers_add_all_to_bo_list(sctx);
assert(sctx->bo_list_add_all_gfx_resources);
sctx->bo_list_add_all_gfx_resources = false;
}
bool si_compute_resources_check_encrypted(struct si_context *sctx)
{
unsigned sh = PIPE_SHADER_COMPUTE;
struct si_shader_info* info = &sctx->cs_shader_state.program->sel.info;
/* TODO: we should assert that either use_encrypted_bo is false,
* or all writable buffers are encrypted.
*/
return si_buffer_resources_check_encrypted(sctx, &sctx->const_and_shader_buffers[sh]) ||
si_sampler_views_check_encrypted(sctx, &sctx->samplers[sh], info->samplers_declared) ||
si_image_views_check_encrypted(sctx, &sctx->images[sh], info->images_declared) ||
si_buffer_resources_check_encrypted(sctx, &sctx->rw_buffers);
}
void si_compute_resources_add_all_to_bo_list(struct si_context *sctx)
{
unsigned sh = PIPE_SHADER_COMPUTE;
si_buffer_resources_begin_new_cs(sctx, &sctx->const_and_shader_buffers[sh]);
si_sampler_views_begin_new_cs(sctx, &sctx->samplers[sh]);
si_image_views_begin_new_cs(sctx, &sctx->images[sh]);
si_buffer_resources_begin_new_cs(sctx, &sctx->rw_buffers);
if (sctx->bo_list_add_all_resident_resources)
si_resident_buffers_add_all_to_bo_list(sctx);
assert(sctx->bo_list_add_all_compute_resources);
sctx->bo_list_add_all_compute_resources = false;
}
void si_add_all_descriptors_to_bo_list(struct si_context *sctx)
{
for (unsigned i = 0; i < SI_NUM_DESCS; ++i)
si_add_descriptors_to_bo_list(sctx, &sctx->descriptors[i]);
si_add_descriptors_to_bo_list(sctx, &sctx->bindless_descriptors);
sctx->bo_list_add_all_resident_resources = true;
sctx->bo_list_add_all_gfx_resources = true;
sctx->bo_list_add_all_compute_resources = true;
}
void si_set_active_descriptors(struct si_context *sctx, unsigned desc_idx, uint64_t new_active_mask)
{
struct si_descriptors *desc = &sctx->descriptors[desc_idx];
/* Ignore no-op updates and updates that disable all slots. */
if (!new_active_mask ||
new_active_mask == u_bit_consecutive64(desc->first_active_slot, desc->num_active_slots))
return;
int first, count;
u_bit_scan_consecutive_range64(&new_active_mask, &first, &count);
assert(new_active_mask == 0);
/* Upload/dump descriptors if slots are being enabled. */
if (first < desc->first_active_slot ||
first + count > desc->first_active_slot + desc->num_active_slots)
sctx->descriptors_dirty |= 1u << desc_idx;
desc->first_active_slot = first;
desc->num_active_slots = count;
}
void si_set_active_descriptors_for_shader(struct si_context *sctx, struct si_shader_selector *sel)
{
if (!sel)
return;
si_set_active_descriptors(sctx, si_const_and_shader_buffer_descriptors_idx(sel->type),
sel->active_const_and_shader_buffers);
si_set_active_descriptors(sctx, si_sampler_and_image_descriptors_idx(sel->type),
sel->active_samplers_and_images);
}