blob: a9ec6fefc7f4932280e78d399262bda335487d55 [file] [log] [blame]
/*
* Copyright 2018 Advanced Micro Devices, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* on the rights to use, copy, modify, merge, publish, distribute, sub
* license, and/or sell copies of the Software, and to permit persons to whom
* the Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include "si_pipe.h"
#include "util/format/u_format.h"
#include "util/format_srgb.h"
/* Note: Compute shaders always use SI_COMPUTE_DST_CACHE_POLICY for dst
* and L2_STREAM for src.
*/
static enum si_cache_policy get_cache_policy(struct si_context *sctx, enum si_coherency coher,
uint64_t size)
{
if ((sctx->chip_class >= GFX9 && (coher == SI_COHERENCY_CB_META ||
coher == SI_COHERENCY_DB_META ||
coher == SI_COHERENCY_CP)) ||
(sctx->chip_class >= GFX7 && coher == SI_COHERENCY_SHADER))
return size <= 256 * 1024 ? L2_LRU : L2_STREAM;
return L2_BYPASS;
}
unsigned si_get_flush_flags(struct si_context *sctx, enum si_coherency coher,
enum si_cache_policy cache_policy)
{
switch (coher) {
default:
case SI_COHERENCY_NONE:
case SI_COHERENCY_CP:
return 0;
case SI_COHERENCY_SHADER:
return SI_CONTEXT_INV_SCACHE | SI_CONTEXT_INV_VCACHE |
(cache_policy == L2_BYPASS ? SI_CONTEXT_INV_L2 : 0);
case SI_COHERENCY_CB_META:
return SI_CONTEXT_FLUSH_AND_INV_CB;
case SI_COHERENCY_DB_META:
return SI_CONTEXT_FLUSH_AND_INV_DB;
}
}
#define SI_CS_IMAGE_OP (1 << 0)
#define SI_CS_WAIT_FOR_IDLE (1 << 1)
#define SI_CS_RENDER_COND_ENABLE (1 << 2)
static void si_launch_grid_internal(struct si_context *sctx, struct pipe_grid_info *info,
void *restore_cs, unsigned flags)
{
/* Wait for previous shaders to finish. */
sctx->flags |= SI_CONTEXT_CS_PARTIAL_FLUSH | SI_CONTEXT_PS_PARTIAL_FLUSH;
/* Invalidate L0-L1 caches. */
/* sL0 is never invalidated, because src resources don't use it. */
sctx->flags |= SI_CONTEXT_INV_VCACHE;
/* Set settings for driver-internal compute dispatches. */
sctx->flags &= ~SI_CONTEXT_START_PIPELINE_STATS;
sctx->flags |= SI_CONTEXT_STOP_PIPELINE_STATS;
if (!(flags & SI_CS_RENDER_COND_ENABLE))
sctx->render_cond_force_off = true;
/* Skip decompression to prevent infinite recursion. */
if (sctx->blitter)
sctx->blitter->running = true;
/* Dispatch compute. */
sctx->b.launch_grid(&sctx->b, info);
/* Restore default settings. */
sctx->flags &= ~SI_CONTEXT_STOP_PIPELINE_STATS;
sctx->flags |= SI_CONTEXT_START_PIPELINE_STATS;
sctx->render_cond_force_off = false;
if (sctx->blitter)
sctx->blitter->running = false;
/* Restore the original compute shader. */
sctx->b.bind_compute_state(&sctx->b, restore_cs);
if (flags & SI_CS_WAIT_FOR_IDLE) {
sctx->flags |= SI_CONTEXT_CS_PARTIAL_FLUSH;
if (flags & SI_CS_IMAGE_OP) {
/* Make sure image stores are visible to CB, which doesn't use L2 on GFX6-8. */
sctx->flags |= sctx->chip_class <= GFX8 ? SI_CONTEXT_WB_L2 : 0;
/* Make sure image stores are visible to all CUs. */
sctx->flags |= SI_CONTEXT_INV_VCACHE;
} else {
/* Make sure buffer stores are visible to all CUs. */
sctx->flags |= SI_CONTEXT_INV_SCACHE | SI_CONTEXT_INV_VCACHE;
}
} else {
assert(!(flags & SI_CS_IMAGE_OP));
}
}
static void si_compute_clear_12bytes_buffer(struct si_context *sctx, struct pipe_resource *dst,
unsigned dst_offset, unsigned size,
const uint32_t *clear_value, enum si_coherency coher)
{
struct pipe_context *ctx = &sctx->b;
assert(dst_offset % 4 == 0);
assert(size % 4 == 0);
unsigned size_12 = DIV_ROUND_UP(size, 12);
unsigned data[4] = {0};
memcpy(data, clear_value, 12);
sctx->flags |= si_get_flush_flags(sctx, coher, SI_COMPUTE_DST_CACHE_POLICY);
struct pipe_shader_buffer saved_sb = {0};
si_get_shader_buffers(sctx, PIPE_SHADER_COMPUTE, 0, 1, &saved_sb);
unsigned saved_writable_mask = 0;
if (sctx->const_and_shader_buffers[PIPE_SHADER_COMPUTE].writable_mask &
(1u << si_get_shaderbuf_slot(0)))
saved_writable_mask = 1;
struct pipe_constant_buffer saved_cb = {};
si_get_pipe_constant_buffer(sctx, PIPE_SHADER_COMPUTE, 0, &saved_cb);
void *saved_cs = sctx->cs_shader_state.program;
struct pipe_constant_buffer cb = {};
cb.buffer_size = sizeof(data);
cb.user_buffer = data;
ctx->set_constant_buffer(ctx, PIPE_SHADER_COMPUTE, 0, &cb);
struct pipe_shader_buffer sb = {0};
sb.buffer = dst;
sb.buffer_offset = dst_offset;
sb.buffer_size = size;
ctx->set_shader_buffers(ctx, PIPE_SHADER_COMPUTE, 0, 1, &sb, 0x1);
struct pipe_grid_info info = {0};
if (!sctx->cs_clear_12bytes_buffer)
sctx->cs_clear_12bytes_buffer = si_clear_12bytes_buffer_shader(ctx);
ctx->bind_compute_state(ctx, sctx->cs_clear_12bytes_buffer);
info.block[0] = 64;
info.last_block[0] = size_12 % 64;
info.block[1] = 1;
info.block[2] = 1;
info.grid[0] = DIV_ROUND_UP(size_12, 64);
info.grid[1] = 1;
info.grid[2] = 1;
si_launch_grid_internal(sctx, &info, saved_cs, SI_CS_WAIT_FOR_IDLE);
ctx->set_shader_buffers(ctx, PIPE_SHADER_COMPUTE, 0, 1, &saved_sb, saved_writable_mask);
ctx->set_constant_buffer(ctx, PIPE_SHADER_COMPUTE, 0, &saved_cb);
pipe_resource_reference(&saved_sb.buffer, NULL);
pipe_resource_reference(&saved_cb.buffer, NULL);
}
static void si_compute_do_clear_or_copy(struct si_context *sctx, struct pipe_resource *dst,
unsigned dst_offset, struct pipe_resource *src,
unsigned src_offset, unsigned size,
const uint32_t *clear_value, unsigned clear_value_size,
enum si_coherency coher)
{
struct pipe_context *ctx = &sctx->b;
assert(src_offset % 4 == 0);
assert(dst_offset % 4 == 0);
assert(size % 4 == 0);
assert(dst->target != PIPE_BUFFER || dst_offset + size <= dst->width0);
assert(!src || src_offset + size <= src->width0);
sctx->flags |= si_get_flush_flags(sctx, coher, SI_COMPUTE_DST_CACHE_POLICY);
/* Save states. */
void *saved_cs = sctx->cs_shader_state.program;
struct pipe_shader_buffer saved_sb[2] = {};
si_get_shader_buffers(sctx, PIPE_SHADER_COMPUTE, 0, src ? 2 : 1, saved_sb);
unsigned saved_writable_mask = 0;
for (unsigned i = 0; i < (src ? 2 : 1); i++) {
if (sctx->const_and_shader_buffers[PIPE_SHADER_COMPUTE].writable_mask &
(1u << si_get_shaderbuf_slot(i)))
saved_writable_mask |= 1 << i;
}
/* The memory accesses are coalesced, meaning that the 1st instruction writes
* the 1st contiguous block of data for the whole wave, the 2nd instruction
* writes the 2nd contiguous block of data, etc.
*/
unsigned dwords_per_thread =
src ? SI_COMPUTE_COPY_DW_PER_THREAD : SI_COMPUTE_CLEAR_DW_PER_THREAD;
unsigned instructions_per_thread = MAX2(1, dwords_per_thread / 4);
unsigned dwords_per_instruction = dwords_per_thread / instructions_per_thread;
unsigned wave_size = sctx->screen->compute_wave_size;
unsigned dwords_per_wave = dwords_per_thread * wave_size;
unsigned num_dwords = size / 4;
unsigned num_instructions = DIV_ROUND_UP(num_dwords, dwords_per_instruction);
struct pipe_grid_info info = {};
info.block[0] = MIN2(wave_size, num_instructions);
info.block[1] = 1;
info.block[2] = 1;
info.grid[0] = DIV_ROUND_UP(num_dwords, dwords_per_wave);
info.grid[1] = 1;
info.grid[2] = 1;
struct pipe_shader_buffer sb[2] = {};
sb[0].buffer = dst;
sb[0].buffer_offset = dst_offset;
sb[0].buffer_size = size;
bool shader_dst_stream_policy = SI_COMPUTE_DST_CACHE_POLICY != L2_LRU;
if (src) {
sb[1].buffer = src;
sb[1].buffer_offset = src_offset;
sb[1].buffer_size = size;
ctx->set_shader_buffers(ctx, PIPE_SHADER_COMPUTE, 0, 2, sb, 0x1);
if (!sctx->cs_copy_buffer) {
sctx->cs_copy_buffer = si_create_dma_compute_shader(
&sctx->b, SI_COMPUTE_COPY_DW_PER_THREAD, shader_dst_stream_policy, true);
}
ctx->bind_compute_state(ctx, sctx->cs_copy_buffer);
} else {
assert(clear_value_size >= 4 && clear_value_size <= 16 &&
util_is_power_of_two_or_zero(clear_value_size));
for (unsigned i = 0; i < 4; i++)
sctx->cs_user_data[i] = clear_value[i % (clear_value_size / 4)];
ctx->set_shader_buffers(ctx, PIPE_SHADER_COMPUTE, 0, 1, sb, 0x1);
if (!sctx->cs_clear_buffer) {
sctx->cs_clear_buffer = si_create_dma_compute_shader(
&sctx->b, SI_COMPUTE_CLEAR_DW_PER_THREAD, shader_dst_stream_policy, false);
}
ctx->bind_compute_state(ctx, sctx->cs_clear_buffer);
}
si_launch_grid_internal(sctx, &info, saved_cs, SI_CS_WAIT_FOR_IDLE);
enum si_cache_policy cache_policy = get_cache_policy(sctx, coher, size);
sctx->flags |= cache_policy == L2_BYPASS ? SI_CONTEXT_WB_L2 : 0;
if (cache_policy != L2_BYPASS)
si_resource(dst)->TC_L2_dirty = true;
/* Restore states. */
ctx->set_shader_buffers(ctx, PIPE_SHADER_COMPUTE, 0, src ? 2 : 1, saved_sb, saved_writable_mask);
for (int i = 0; i < 2; i++)
pipe_resource_reference(&saved_sb[i].buffer, NULL);
}
void si_clear_buffer(struct si_context *sctx, struct pipe_resource *dst, uint64_t offset,
uint64_t size, uint32_t *clear_value, uint32_t clear_value_size,
enum si_coherency coher, bool force_cpdma)
{
if (!size)
return;
ASSERTED unsigned clear_alignment = MIN2(clear_value_size, 4);
assert(clear_value_size != 3 && clear_value_size != 6); /* 12 is allowed. */
assert(offset % clear_alignment == 0);
assert(size % clear_alignment == 0);
assert(size < (UINT_MAX & ~0xf)); /* TODO: test 64-bit sizes in all codepaths */
/* Reduce a large clear value size if possible. */
if (clear_value_size > 4) {
bool clear_dword_duplicated = true;
/* See if we can lower large fills to dword fills. */
for (unsigned i = 1; i < clear_value_size / 4; i++) {
if (clear_value[0] != clear_value[i]) {
clear_dword_duplicated = false;
break;
}
}
if (clear_dword_duplicated)
clear_value_size = 4;
}
/* Expand a small clear value size. */
uint32_t tmp_clear_value;
if (clear_value_size <= 2) {
if (clear_value_size == 1) {
tmp_clear_value = *(uint8_t *)clear_value;
tmp_clear_value |=
(tmp_clear_value << 8) | (tmp_clear_value << 16) | (tmp_clear_value << 24);
} else {
tmp_clear_value = *(uint16_t *)clear_value;
tmp_clear_value |= tmp_clear_value << 16;
}
clear_value = &tmp_clear_value;
clear_value_size = 4;
}
if (clear_value_size == 12) {
si_compute_clear_12bytes_buffer(sctx, dst, offset, size, clear_value, coher);
return;
}
uint64_t aligned_size = size & ~3ull;
if (aligned_size >= 4) {
uint64_t compute_min_size;
/* CP DMA clears are terribly slow with GTT on GFX6-8, which can always
* happen due to BO evictions.
*/
if (sctx->chip_class <= GFX8) {
compute_min_size = 0;
} else if (sctx->chip_class >= GFX10 &&
sctx->screen->info.has_dedicated_vram &&
si_resource(dst)->domains & RADEON_DOMAIN_VRAM) {
/* VRAM clears on gfx10 dGPUs */
if (sctx->screen->info.vram_bit_width >= 192)
compute_min_size = 128 * 1024;
else
compute_min_size = 1024 * 1024;
} else if (sctx->screen->info.has_dedicated_vram &&
si_resource(dst)->domains & RADEON_DOMAIN_GTT) {
/* GTT clears on gfx9 and gfx10 dGPUs */
compute_min_size = UINT64_MAX; /* CP DMA is the best due to slow PCIe */
} else {
compute_min_size = 32 * 1024;
}
if (clear_value_size > 4 || (!force_cpdma && clear_value_size == 4 && offset % 4 == 0 &&
size > compute_min_size)) {
si_compute_do_clear_or_copy(sctx, dst, offset, NULL, 0, aligned_size, clear_value,
clear_value_size, coher);
} else {
assert(clear_value_size == 4);
si_cp_dma_clear_buffer(sctx, sctx->gfx_cs, dst, offset, aligned_size, *clear_value, 0,
coher, get_cache_policy(sctx, coher, size));
}
offset += aligned_size;
size -= aligned_size;
}
/* Handle non-dword alignment. */
if (size) {
assert(dst);
assert(dst->target == PIPE_BUFFER);
assert(size < 4);
pipe_buffer_write(&sctx->b, dst, offset, size, clear_value);
}
}
static void si_pipe_clear_buffer(struct pipe_context *ctx, struct pipe_resource *dst,
unsigned offset, unsigned size, const void *clear_value,
int clear_value_size)
{
si_clear_buffer((struct si_context *)ctx, dst, offset, size, (uint32_t *)clear_value,
clear_value_size, SI_COHERENCY_SHADER, false);
}
void si_copy_buffer(struct si_context *sctx, struct pipe_resource *dst, struct pipe_resource *src,
uint64_t dst_offset, uint64_t src_offset, unsigned size)
{
if (!size)
return;
enum si_coherency coher = SI_COHERENCY_SHADER;
enum si_cache_policy cache_policy = get_cache_policy(sctx, coher, size);
uint64_t compute_min_size;
if (sctx->chip_class >= GFX10 &&
sctx->screen->info.has_dedicated_vram &&
si_resource(dst)->domains & RADEON_DOMAIN_VRAM &&
si_resource(src)->domains & RADEON_DOMAIN_VRAM) {
/* VRAM copies on gfx10 dGPUs */
if (sctx->screen->info.vram_bit_width >= 192)
compute_min_size = 128 * 1024;
else
compute_min_size = 1024 * 1024;
} else if (sctx->chip_class >= GFX10 &&
sctx->screen->info.has_dedicated_vram &&
(si_resource(dst)->domains | si_resource(src)->domains) & RADEON_DOMAIN_GTT) {
compute_min_size = UINT64_MAX; /* CP DMA is the best due to slow PCIe */
} else {
compute_min_size = 32 * 1024;
}
/* Only use compute for VRAM copies on dGPUs. */
if (sctx->screen->info.has_dedicated_vram && si_resource(dst)->domains & RADEON_DOMAIN_VRAM &&
si_resource(src)->domains & RADEON_DOMAIN_VRAM && size > compute_min_size &&
dst_offset % 4 == 0 && src_offset % 4 == 0 && size % 4 == 0) {
si_compute_do_clear_or_copy(sctx, dst, dst_offset, src, src_offset, size, NULL, 0, coher);
} else {
si_cp_dma_copy_buffer(sctx, dst, src, dst_offset, src_offset, size, 0, coher, cache_policy);
}
}
void si_compute_copy_image(struct si_context *sctx, struct pipe_resource *dst, unsigned dst_level,
struct pipe_resource *src, unsigned src_level, unsigned dstx,
unsigned dsty, unsigned dstz, const struct pipe_box *src_box,
bool is_dcc_decompress)
{
struct pipe_context *ctx = &sctx->b;
unsigned width = src_box->width;
unsigned height = src_box->height;
unsigned depth = src_box->depth;
enum pipe_format src_format = util_format_linear(src->format);
enum pipe_format dst_format = util_format_linear(dst->format);
bool is_linear = ((struct si_texture*)src)->surface.is_linear ||
((struct si_texture*)dst)->surface.is_linear;
assert(util_format_is_subsampled_422(src_format) == util_format_is_subsampled_422(dst_format));
if (util_format_is_subsampled_422(src_format)) {
src_format = dst_format = PIPE_FORMAT_R32_UINT;
/* Interpreting 422 subsampled format (16 bpp) as 32 bpp
* should force us to divide src_box->x, dstx and width by 2.
* But given that ac_surface allocates this format as 32 bpp
* and that surf_size is then modified to pack the values
* we must keep the original values to get the correct results.
*/
}
if (width == 0 || height == 0)
return;
/* The driver doesn't decompress resources automatically here. */
si_decompress_subresource(ctx, dst, PIPE_MASK_RGBAZS, dst_level, dstz,
dstz + src_box->depth - 1);
si_decompress_subresource(ctx, src, PIPE_MASK_RGBAZS, src_level, src_box->z,
src_box->z + src_box->depth - 1);
/* src and dst have the same number of samples. */
si_make_CB_shader_coherent(sctx, src->nr_samples, true,
/* Only src can have DCC.*/
((struct si_texture *)src)->surface.u.gfx9.dcc.pipe_aligned);
struct pipe_constant_buffer saved_cb = {};
struct si_images *images = &sctx->images[PIPE_SHADER_COMPUTE];
struct pipe_image_view saved_image[2] = {0};
util_copy_image_view(&saved_image[0], &images->views[0]);
util_copy_image_view(&saved_image[1], &images->views[1]);
void *saved_cs = sctx->cs_shader_state.program;
if (!is_dcc_decompress) {
unsigned data[] = {src_box->x, src_box->y, src_box->z, 0, dstx, dsty, dstz, 0};
si_get_pipe_constant_buffer(sctx, PIPE_SHADER_COMPUTE, 0, &saved_cb);
struct pipe_constant_buffer cb = {};
cb.buffer_size = sizeof(data);
cb.user_buffer = data;
ctx->set_constant_buffer(ctx, PIPE_SHADER_COMPUTE, 0, &cb);
}
struct pipe_image_view image[2] = {0};
image[0].resource = src;
image[0].shader_access = image[0].access = PIPE_IMAGE_ACCESS_READ;
image[0].format = src_format;
image[0].u.tex.level = src_level;
image[0].u.tex.first_layer = 0;
image[0].u.tex.last_layer = src->target == PIPE_TEXTURE_3D ? u_minify(src->depth0, src_level) - 1
: (unsigned)(src->array_size - 1);
image[1].resource = dst;
image[1].shader_access = image[1].access = PIPE_IMAGE_ACCESS_WRITE;
image[1].format = dst_format;
image[1].u.tex.level = dst_level;
image[1].u.tex.first_layer = 0;
image[1].u.tex.last_layer = dst->target == PIPE_TEXTURE_3D ? u_minify(dst->depth0, dst_level) - 1
: (unsigned)(dst->array_size - 1);
if (sctx->chip_class < GFX10_3 &&
src->format == PIPE_FORMAT_R9G9B9E5_FLOAT)
image[0].format = image[1].format = PIPE_FORMAT_R32_UINT;
/* SNORM8 blitting has precision issues on some chips. Use the SINT
* equivalent instead, which doesn't force DCC decompression.
* Note that some chips avoid this issue by using SDMA.
*/
if (util_format_is_snorm8(dst->format)) {
image[0].format = image[1].format = util_format_snorm8_to_sint8(dst->format);
}
if (is_dcc_decompress)
image[1].access |= SI_IMAGE_ACCESS_DCC_OFF;
ctx->set_shader_images(ctx, PIPE_SHADER_COMPUTE, 0, 2, image);
struct pipe_grid_info info = {0};
if (is_dcc_decompress) {
/* The DCC decompression is a normal blit where the load is compressed
* and the store is uncompressed. The workgroup size is either equal to
* the DCC block size or a multiple thereof. The shader uses a barrier
* between loads and stores to safely overwrite each DCC block of pixels.
*/
struct si_texture *tex = (struct si_texture*)src;
unsigned dim[3] = {src_box->width, src_box->height, src_box->depth};
assert(src == dst);
assert(dst->target != PIPE_TEXTURE_1D && dst->target != PIPE_TEXTURE_1D_ARRAY);
if (!sctx->cs_dcc_decompress)
sctx->cs_dcc_decompress = si_create_dcc_decompress_cs(ctx);
ctx->bind_compute_state(ctx, sctx->cs_dcc_decompress);
info.block[0] = tex->surface.u.gfx9.dcc_block_width;
info.block[1] = tex->surface.u.gfx9.dcc_block_height;
info.block[2] = tex->surface.u.gfx9.dcc_block_depth;
/* Make sure the block size is at least the same as wave size. */
while (info.block[0] * info.block[1] * info.block[2] <
sctx->screen->compute_wave_size) {
info.block[0] *= 2;
}
for (unsigned i = 0; i < 3; i++) {
info.last_block[i] = dim[i] % info.block[i];
info.grid[i] = DIV_ROUND_UP(dim[i], info.block[i]);
}
} else if (dst->target == PIPE_TEXTURE_1D_ARRAY && src->target == PIPE_TEXTURE_1D_ARRAY) {
if (!sctx->cs_copy_image_1d_array)
sctx->cs_copy_image_1d_array = si_create_copy_image_compute_shader_1d_array(ctx);
ctx->bind_compute_state(ctx, sctx->cs_copy_image_1d_array);
info.block[0] = 64;
info.last_block[0] = width % 64;
info.block[1] = 1;
info.block[2] = 1;
info.grid[0] = DIV_ROUND_UP(width, 64);
info.grid[1] = depth;
info.grid[2] = 1;
} else {
if (!sctx->cs_copy_image)
sctx->cs_copy_image = si_create_copy_image_compute_shader(ctx);
ctx->bind_compute_state(ctx, sctx->cs_copy_image);
/* This is better for access over PCIe. */
if (is_linear) {
info.block[0] = 64;
info.block[1] = 1;
} else {
info.block[0] = 8;
info.block[1] = 8;
}
info.last_block[0] = width % info.block[0];
info.last_block[1] = height % info.block[1];
info.block[2] = 1;
info.grid[0] = DIV_ROUND_UP(width, info.block[0]);
info.grid[1] = DIV_ROUND_UP(height, info.block[1]);
info.grid[2] = depth;
}
si_launch_grid_internal(sctx, &info, saved_cs,
SI_CS_WAIT_FOR_IDLE | SI_CS_IMAGE_OP);
ctx->set_shader_images(ctx, PIPE_SHADER_COMPUTE, 0, 2, saved_image);
for (int i = 0; i < 2; i++)
pipe_resource_reference(&saved_image[i].resource, NULL);
if (!is_dcc_decompress) {
ctx->set_constant_buffer(ctx, PIPE_SHADER_COMPUTE, 0, &saved_cb);
pipe_resource_reference(&saved_cb.buffer, NULL);
}
}
void si_retile_dcc(struct si_context *sctx, struct si_texture *tex)
{
struct pipe_context *ctx = &sctx->b;
sctx->flags |= si_get_flush_flags(sctx, SI_COHERENCY_CB_META, L2_LRU);
/* Save states. */
void *saved_cs = sctx->cs_shader_state.program;
struct pipe_image_view saved_img[3] = {};
for (unsigned i = 0; i < 3; i++) {
util_copy_image_view(&saved_img[i], &sctx->images[PIPE_SHADER_COMPUTE].views[i]);
}
/* Set images. */
bool use_uint16 = tex->surface.u.gfx9.dcc_retile_use_uint16;
unsigned num_elements = tex->surface.u.gfx9.dcc_retile_num_elements;
struct pipe_image_view img[3];
assert(tex->surface.dcc_retile_map_offset && tex->surface.dcc_retile_map_offset <= UINT_MAX);
assert(tex->surface.dcc_offset && tex->surface.dcc_offset <= UINT_MAX);
assert(tex->surface.display_dcc_offset && tex->surface.display_dcc_offset <= UINT_MAX);
for (unsigned i = 0; i < 3; i++) {
img[i].resource = &tex->buffer.b.b;
img[i].access = i == 2 ? PIPE_IMAGE_ACCESS_WRITE : PIPE_IMAGE_ACCESS_READ;
img[i].shader_access = SI_IMAGE_ACCESS_AS_BUFFER;
}
img[0].format = use_uint16 ? PIPE_FORMAT_R16G16B16A16_UINT : PIPE_FORMAT_R32G32B32A32_UINT;
img[0].u.buf.offset = tex->surface.dcc_retile_map_offset;
img[0].u.buf.size = num_elements * (use_uint16 ? 2 : 4);
img[1].format = PIPE_FORMAT_R8_UINT;
img[1].u.buf.offset = tex->surface.dcc_offset;
img[1].u.buf.size = tex->surface.dcc_size;
img[2].format = PIPE_FORMAT_R8_UINT;
img[2].u.buf.offset = tex->surface.display_dcc_offset;
img[2].u.buf.size = tex->surface.u.gfx9.display_dcc_size;
ctx->set_shader_images(ctx, PIPE_SHADER_COMPUTE, 0, 3, img);
/* Bind the compute shader. */
if (!sctx->cs_dcc_retile)
sctx->cs_dcc_retile = si_create_dcc_retile_cs(ctx);
ctx->bind_compute_state(ctx, sctx->cs_dcc_retile);
/* Dispatch compute. */
/* img[0] has 4 channels per element containing 2 pairs of DCC offsets. */
unsigned num_threads = num_elements / 4;
struct pipe_grid_info info = {};
info.block[0] = 64;
info.block[1] = 1;
info.block[2] = 1;
info.grid[0] = DIV_ROUND_UP(num_threads, 64); /* includes the partial block */
info.grid[1] = 1;
info.grid[2] = 1;
info.last_block[0] = num_threads % 64;
si_launch_grid_internal(sctx, &info, saved_cs, 0);
/* Don't flush caches or wait. The driver will wait at the end of this IB,
* and L2 will be flushed by the kernel fence.
*/
/* Restore states. */
ctx->set_shader_images(ctx, PIPE_SHADER_COMPUTE, 0, 3, saved_img);
for (unsigned i = 0; i < 3; i++) {
pipe_resource_reference(&saved_img[i].resource, NULL);
}
}
/* Expand FMASK to make it identity, so that image stores can ignore it. */
void si_compute_expand_fmask(struct pipe_context *ctx, struct pipe_resource *tex)
{
struct si_context *sctx = (struct si_context *)ctx;
bool is_array = tex->target == PIPE_TEXTURE_2D_ARRAY;
unsigned log_fragments = util_logbase2(tex->nr_storage_samples);
unsigned log_samples = util_logbase2(tex->nr_samples);
assert(tex->nr_samples >= 2);
/* EQAA FMASK expansion is unimplemented. */
if (tex->nr_samples != tex->nr_storage_samples)
return;
si_make_CB_shader_coherent(sctx, tex->nr_samples, true,
true /* DCC is not possible with image stores */);
/* Save states. */
void *saved_cs = sctx->cs_shader_state.program;
struct pipe_image_view saved_image = {0};
util_copy_image_view(&saved_image, &sctx->images[PIPE_SHADER_COMPUTE].views[0]);
/* Bind the image. */
struct pipe_image_view image = {0};
image.resource = tex;
/* Don't set WRITE so as not to trigger FMASK expansion, causing
* an infinite loop. */
image.shader_access = image.access = PIPE_IMAGE_ACCESS_READ;
image.format = util_format_linear(tex->format);
if (is_array)
image.u.tex.last_layer = tex->array_size - 1;
ctx->set_shader_images(ctx, PIPE_SHADER_COMPUTE, 0, 1, &image);
/* Bind the shader. */
void **shader = &sctx->cs_fmask_expand[log_samples - 1][is_array];
if (!*shader)
*shader = si_create_fmask_expand_cs(ctx, tex->nr_samples, is_array);
ctx->bind_compute_state(ctx, *shader);
/* Dispatch compute. */
struct pipe_grid_info info = {0};
info.block[0] = 8;
info.last_block[0] = tex->width0 % 8;
info.block[1] = 8;
info.last_block[1] = tex->height0 % 8;
info.block[2] = 1;
info.grid[0] = DIV_ROUND_UP(tex->width0, 8);
info.grid[1] = DIV_ROUND_UP(tex->height0, 8);
info.grid[2] = is_array ? tex->array_size : 1;
si_launch_grid_internal(sctx, &info, saved_cs,
SI_CS_WAIT_FOR_IDLE | SI_CS_IMAGE_OP);
/* Restore previous states. */
ctx->set_shader_images(ctx, PIPE_SHADER_COMPUTE, 0, 1, &saved_image);
pipe_resource_reference(&saved_image.resource, NULL);
/* Array of fully expanded FMASK values, arranged by [log2(fragments)][log2(samples)-1]. */
#define INVALID 0 /* never used */
static const uint64_t fmask_expand_values[][4] = {
/* samples */
/* 2 (8 bpp) 4 (8 bpp) 8 (8-32bpp) 16 (16-64bpp) fragments */
{0x02020202, 0x0E0E0E0E, 0xFEFEFEFE, 0xFFFEFFFE}, /* 1 */
{0x02020202, 0xA4A4A4A4, 0xAAA4AAA4, 0xAAAAAAA4}, /* 2 */
{INVALID, 0xE4E4E4E4, 0x44443210, 0x4444444444443210}, /* 4 */
{INVALID, INVALID, 0x76543210, 0x8888888876543210}, /* 8 */
};
/* Clear FMASK to identity. */
struct si_texture *stex = (struct si_texture *)tex;
si_clear_buffer(sctx, tex, stex->surface.fmask_offset, stex->surface.fmask_size,
(uint32_t *)&fmask_expand_values[log_fragments][log_samples - 1],
log_fragments >= 2 && log_samples == 4 ? 8 : 4,
SI_COHERENCY_SHADER, false);
}
void si_init_compute_blit_functions(struct si_context *sctx)
{
sctx->b.clear_buffer = si_pipe_clear_buffer;
}
/* Clear a region of a color surface to a constant value. */
void si_compute_clear_render_target(struct pipe_context *ctx, struct pipe_surface *dstsurf,
const union pipe_color_union *color, unsigned dstx,
unsigned dsty, unsigned width, unsigned height,
bool render_condition_enabled)
{
struct si_context *sctx = (struct si_context *)ctx;
unsigned num_layers = dstsurf->u.tex.last_layer - dstsurf->u.tex.first_layer + 1;
unsigned data[4 + sizeof(color->ui)] = {dstx, dsty, dstsurf->u.tex.first_layer, 0};
if (width == 0 || height == 0)
return;
/* The driver doesn't decompress resources automatically here. */
si_decompress_subresource(ctx, dstsurf->texture, PIPE_MASK_RGBA, dstsurf->u.tex.level,
dstsurf->u.tex.first_layer, dstsurf->u.tex.last_layer);
if (util_format_is_srgb(dstsurf->format)) {
union pipe_color_union color_srgb;
for (int i = 0; i < 3; i++)
color_srgb.f[i] = util_format_linear_to_srgb_float(color->f[i]);
color_srgb.f[3] = color->f[3];
memcpy(data + 4, color_srgb.ui, sizeof(color->ui));
} else {
memcpy(data + 4, color->ui, sizeof(color->ui));
}
si_make_CB_shader_coherent(sctx, dstsurf->texture->nr_samples, true,
true /* DCC is not possible with image stores */);
struct pipe_constant_buffer saved_cb = {};
si_get_pipe_constant_buffer(sctx, PIPE_SHADER_COMPUTE, 0, &saved_cb);
struct si_images *images = &sctx->images[PIPE_SHADER_COMPUTE];
struct pipe_image_view saved_image = {0};
util_copy_image_view(&saved_image, &images->views[0]);
void *saved_cs = sctx->cs_shader_state.program;
struct pipe_constant_buffer cb = {};
cb.buffer_size = sizeof(data);
cb.user_buffer = data;
ctx->set_constant_buffer(ctx, PIPE_SHADER_COMPUTE, 0, &cb);
struct pipe_image_view image = {0};
image.resource = dstsurf->texture;
image.shader_access = image.access = PIPE_IMAGE_ACCESS_WRITE;
image.format = util_format_linear(dstsurf->format);
image.u.tex.level = dstsurf->u.tex.level;
image.u.tex.first_layer = 0; /* 3D images ignore first_layer (BASE_ARRAY) */
image.u.tex.last_layer = dstsurf->u.tex.last_layer;
ctx->set_shader_images(ctx, PIPE_SHADER_COMPUTE, 0, 1, &image);
struct pipe_grid_info info = {0};
if (dstsurf->texture->target != PIPE_TEXTURE_1D_ARRAY) {
if (!sctx->cs_clear_render_target)
sctx->cs_clear_render_target = si_clear_render_target_shader(ctx);
ctx->bind_compute_state(ctx, sctx->cs_clear_render_target);
info.block[0] = 8;
info.last_block[0] = width % 8;
info.block[1] = 8;
info.last_block[1] = height % 8;
info.block[2] = 1;
info.grid[0] = DIV_ROUND_UP(width, 8);
info.grid[1] = DIV_ROUND_UP(height, 8);
info.grid[2] = num_layers;
} else {
if (!sctx->cs_clear_render_target_1d_array)
sctx->cs_clear_render_target_1d_array = si_clear_render_target_shader_1d_array(ctx);
ctx->bind_compute_state(ctx, sctx->cs_clear_render_target_1d_array);
info.block[0] = 64;
info.last_block[0] = width % 64;
info.block[1] = 1;
info.block[2] = 1;
info.grid[0] = DIV_ROUND_UP(width, 64);
info.grid[1] = num_layers;
info.grid[2] = 1;
}
si_launch_grid_internal(sctx, &info, saved_cs,
SI_CS_WAIT_FOR_IDLE | SI_CS_IMAGE_OP |
(render_condition_enabled ? SI_CS_RENDER_COND_ENABLE : 0));
ctx->set_shader_images(ctx, PIPE_SHADER_COMPUTE, 0, 1, &saved_image);
ctx->set_constant_buffer(ctx, PIPE_SHADER_COMPUTE, 0, &saved_cb);
pipe_resource_reference(&saved_image.resource, NULL);
pipe_resource_reference(&saved_cb.buffer, NULL);
}