blob: abb4105099a165861edc80e20f4c012c64f8ee85 [file] [log] [blame]
#include "util/u_inlines.h"
#include "util/u_memory.h"
#include "util/u_math.h"
#include "util/u_surface.h"
#include "nouveau_screen.h"
#include "nouveau_context.h"
#include "nouveau_winsys.h"
#include "nouveau_fence.h"
#include "nouveau_buffer.h"
#include "nouveau_mm.h"
struct nouveau_transfer {
struct pipe_transfer base;
uint8_t *map;
struct nouveau_bo *bo;
struct nouveau_mm_allocation *mm;
uint32_t offset;
};
static inline struct nouveau_transfer *
nouveau_transfer(struct pipe_transfer *transfer)
{
return (struct nouveau_transfer *)transfer;
}
static inline bool
nouveau_buffer_malloc(struct nv04_resource *buf)
{
if (!buf->data)
buf->data = align_malloc(buf->base.width0, NOUVEAU_MIN_BUFFER_MAP_ALIGN);
return !!buf->data;
}
static inline bool
nouveau_buffer_allocate(struct nouveau_screen *screen,
struct nv04_resource *buf, unsigned domain)
{
uint32_t size = align(buf->base.width0, 0x100);
if (domain == NOUVEAU_BO_VRAM) {
buf->mm = nouveau_mm_allocate(screen->mm_VRAM, size,
&buf->bo, &buf->offset);
if (!buf->bo)
return nouveau_buffer_allocate(screen, buf, NOUVEAU_BO_GART);
NOUVEAU_DRV_STAT(screen, buf_obj_current_bytes_vid, buf->base.width0);
} else
if (domain == NOUVEAU_BO_GART) {
buf->mm = nouveau_mm_allocate(screen->mm_GART, size,
&buf->bo, &buf->offset);
if (!buf->bo)
return false;
NOUVEAU_DRV_STAT(screen, buf_obj_current_bytes_sys, buf->base.width0);
} else {
assert(domain == 0);
if (!nouveau_buffer_malloc(buf))
return false;
}
buf->domain = domain;
if (buf->bo)
buf->address = buf->bo->offset + buf->offset;
util_range_set_empty(&buf->valid_buffer_range);
return true;
}
static inline void
release_allocation(struct nouveau_mm_allocation **mm,
struct nouveau_fence *fence)
{
nouveau_fence_work(fence, nouveau_mm_free_work, *mm);
(*mm) = NULL;
}
inline void
nouveau_buffer_release_gpu_storage(struct nv04_resource *buf)
{
if (buf->fence && buf->fence->state < NOUVEAU_FENCE_STATE_FLUSHED) {
nouveau_fence_work(buf->fence, nouveau_fence_unref_bo, buf->bo);
buf->bo = NULL;
} else {
nouveau_bo_ref(NULL, &buf->bo);
}
if (buf->mm)
release_allocation(&buf->mm, buf->fence);
if (buf->domain == NOUVEAU_BO_VRAM)
NOUVEAU_DRV_STAT_RES(buf, buf_obj_current_bytes_vid, -(uint64_t)buf->base.width0);
if (buf->domain == NOUVEAU_BO_GART)
NOUVEAU_DRV_STAT_RES(buf, buf_obj_current_bytes_sys, -(uint64_t)buf->base.width0);
buf->domain = 0;
}
static inline bool
nouveau_buffer_reallocate(struct nouveau_screen *screen,
struct nv04_resource *buf, unsigned domain)
{
nouveau_buffer_release_gpu_storage(buf);
nouveau_fence_ref(NULL, &buf->fence);
nouveau_fence_ref(NULL, &buf->fence_wr);
buf->status &= NOUVEAU_BUFFER_STATUS_REALLOC_MASK;
return nouveau_buffer_allocate(screen, buf, domain);
}
static void
nouveau_buffer_destroy(struct pipe_screen *pscreen,
struct pipe_resource *presource)
{
struct nv04_resource *res = nv04_resource(presource);
nouveau_buffer_release_gpu_storage(res);
if (res->data && !(res->status & NOUVEAU_BUFFER_STATUS_USER_MEMORY))
align_free(res->data);
nouveau_fence_ref(NULL, &res->fence);
nouveau_fence_ref(NULL, &res->fence_wr);
util_range_destroy(&res->valid_buffer_range);
FREE(res);
NOUVEAU_DRV_STAT(nouveau_screen(pscreen), buf_obj_current_count, -1);
}
/* Set up a staging area for the transfer. This is either done in "regular"
* system memory if the driver supports push_data (nv50+) and the data is
* small enough (and permit_pb == true), or in GART memory.
*/
static uint8_t *
nouveau_transfer_staging(struct nouveau_context *nv,
struct nouveau_transfer *tx, bool permit_pb)
{
const unsigned adj = tx->base.box.x & NOUVEAU_MIN_BUFFER_MAP_ALIGN_MASK;
const unsigned size = align(tx->base.box.width, 4) + adj;
if (!nv->push_data)
permit_pb = false;
if ((size <= nv->screen->transfer_pushbuf_threshold) && permit_pb) {
tx->map = align_malloc(size, NOUVEAU_MIN_BUFFER_MAP_ALIGN);
if (tx->map)
tx->map += adj;
} else {
tx->mm =
nouveau_mm_allocate(nv->screen->mm_GART, size, &tx->bo, &tx->offset);
if (tx->bo) {
tx->offset += adj;
if (!nouveau_bo_map(tx->bo, 0, NULL))
tx->map = (uint8_t *)tx->bo->map + tx->offset;
}
}
return tx->map;
}
/* Copies data from the resource into the transfer's temporary GART
* buffer. Also updates buf->data if present.
*
* Maybe just migrate to GART right away if we actually need to do this. */
static bool
nouveau_transfer_read(struct nouveau_context *nv, struct nouveau_transfer *tx)
{
struct nv04_resource *buf = nv04_resource(tx->base.resource);
const unsigned base = tx->base.box.x;
const unsigned size = tx->base.box.width;
NOUVEAU_DRV_STAT(nv->screen, buf_read_bytes_staging_vid, size);
nv->copy_data(nv, tx->bo, tx->offset, NOUVEAU_BO_GART,
buf->bo, buf->offset + base, buf->domain, size);
if (nouveau_bo_wait(tx->bo, NOUVEAU_BO_RD, nv->client))
return false;
if (buf->data)
memcpy(buf->data + base, tx->map, size);
return true;
}
static void
nouveau_transfer_write(struct nouveau_context *nv, struct nouveau_transfer *tx,
unsigned offset, unsigned size)
{
struct nv04_resource *buf = nv04_resource(tx->base.resource);
uint8_t *data = tx->map + offset;
const unsigned base = tx->base.box.x + offset;
const bool can_cb = !((base | size) & 3);
if (buf->data)
memcpy(data, buf->data + base, size);
else
buf->status |= NOUVEAU_BUFFER_STATUS_DIRTY;
if (buf->domain == NOUVEAU_BO_VRAM)
NOUVEAU_DRV_STAT(nv->screen, buf_write_bytes_staging_vid, size);
if (buf->domain == NOUVEAU_BO_GART)
NOUVEAU_DRV_STAT(nv->screen, buf_write_bytes_staging_sys, size);
if (tx->bo)
nv->copy_data(nv, buf->bo, buf->offset + base, buf->domain,
tx->bo, tx->offset + offset, NOUVEAU_BO_GART, size);
else
if (nv->push_cb && can_cb)
nv->push_cb(nv, buf,
base, size / 4, (const uint32_t *)data);
else
nv->push_data(nv, buf->bo, buf->offset + base, buf->domain, size, data);
nouveau_fence_ref(nv->screen->fence.current, &buf->fence);
nouveau_fence_ref(nv->screen->fence.current, &buf->fence_wr);
}
/* Does a CPU wait for the buffer's backing data to become reliably accessible
* for write/read by waiting on the buffer's relevant fences.
*/
static inline bool
nouveau_buffer_sync(struct nouveau_context *nv,
struct nv04_resource *buf, unsigned rw)
{
if (rw == PIPE_TRANSFER_READ) {
if (!buf->fence_wr)
return true;
NOUVEAU_DRV_STAT_RES(buf, buf_non_kernel_fence_sync_count,
!nouveau_fence_signalled(buf->fence_wr));
if (!nouveau_fence_wait(buf->fence_wr, &nv->debug))
return false;
} else {
if (!buf->fence)
return true;
NOUVEAU_DRV_STAT_RES(buf, buf_non_kernel_fence_sync_count,
!nouveau_fence_signalled(buf->fence));
if (!nouveau_fence_wait(buf->fence, &nv->debug))
return false;
nouveau_fence_ref(NULL, &buf->fence);
}
nouveau_fence_ref(NULL, &buf->fence_wr);
return true;
}
static inline bool
nouveau_buffer_busy(struct nv04_resource *buf, unsigned rw)
{
if (rw == PIPE_TRANSFER_READ)
return (buf->fence_wr && !nouveau_fence_signalled(buf->fence_wr));
else
return (buf->fence && !nouveau_fence_signalled(buf->fence));
}
static inline void
nouveau_buffer_transfer_init(struct nouveau_transfer *tx,
struct pipe_resource *resource,
const struct pipe_box *box,
unsigned usage)
{
tx->base.resource = resource;
tx->base.level = 0;
tx->base.usage = usage;
tx->base.box.x = box->x;
tx->base.box.y = 0;
tx->base.box.z = 0;
tx->base.box.width = box->width;
tx->base.box.height = 1;
tx->base.box.depth = 1;
tx->base.stride = 0;
tx->base.layer_stride = 0;
tx->bo = NULL;
tx->map = NULL;
}
static inline void
nouveau_buffer_transfer_del(struct nouveau_context *nv,
struct nouveau_transfer *tx)
{
if (tx->map) {
if (likely(tx->bo)) {
nouveau_fence_work(nv->screen->fence.current,
nouveau_fence_unref_bo, tx->bo);
if (tx->mm)
release_allocation(&tx->mm, nv->screen->fence.current);
} else {
align_free(tx->map -
(tx->base.box.x & NOUVEAU_MIN_BUFFER_MAP_ALIGN_MASK));
}
}
}
/* Creates a cache in system memory of the buffer data. */
static bool
nouveau_buffer_cache(struct nouveau_context *nv, struct nv04_resource *buf)
{
struct nouveau_transfer tx;
bool ret;
tx.base.resource = &buf->base;
tx.base.box.x = 0;
tx.base.box.width = buf->base.width0;
tx.bo = NULL;
tx.map = NULL;
if (!buf->data)
if (!nouveau_buffer_malloc(buf))
return false;
if (!(buf->status & NOUVEAU_BUFFER_STATUS_DIRTY))
return true;
nv->stats.buf_cache_count++;
if (!nouveau_transfer_staging(nv, &tx, false))
return false;
ret = nouveau_transfer_read(nv, &tx);
if (ret) {
buf->status &= ~NOUVEAU_BUFFER_STATUS_DIRTY;
memcpy(buf->data, tx.map, buf->base.width0);
}
nouveau_buffer_transfer_del(nv, &tx);
return ret;
}
#define NOUVEAU_TRANSFER_DISCARD \
(PIPE_TRANSFER_DISCARD_RANGE | PIPE_TRANSFER_DISCARD_WHOLE_RESOURCE)
/* Checks whether it is possible to completely discard the memory backing this
* resource. This can be useful if we would otherwise have to wait for a read
* operation to complete on this data.
*/
static inline bool
nouveau_buffer_should_discard(struct nv04_resource *buf, unsigned usage)
{
if (!(usage & PIPE_TRANSFER_DISCARD_WHOLE_RESOURCE))
return false;
if (unlikely(buf->base.bind & PIPE_BIND_SHARED))
return false;
if (unlikely(usage & PIPE_TRANSFER_PERSISTENT))
return false;
return buf->mm && nouveau_buffer_busy(buf, PIPE_TRANSFER_WRITE);
}
/* Returns a pointer to a memory area representing a window into the
* resource's data.
*
* This may or may not be the _actual_ memory area of the resource. However
* when calling nouveau_buffer_transfer_unmap, if it wasn't the actual memory
* area, the contents of the returned map are copied over to the resource.
*
* The usage indicates what the caller plans to do with the map:
*
* WRITE means that the user plans to write to it
*
* READ means that the user plans on reading from it
*
* DISCARD_WHOLE_RESOURCE means that the whole resource is going to be
* potentially overwritten, and even if it isn't, the bits that aren't don't
* need to be maintained.
*
* DISCARD_RANGE means that all the data in the specified range is going to
* be overwritten.
*
* The strategy for determining what kind of memory area to return is complex,
* see comments inside of the function.
*/
static void *
nouveau_buffer_transfer_map(struct pipe_context *pipe,
struct pipe_resource *resource,
unsigned level, unsigned usage,
const struct pipe_box *box,
struct pipe_transfer **ptransfer)
{
struct nouveau_context *nv = nouveau_context(pipe);
struct nv04_resource *buf = nv04_resource(resource);
struct nouveau_transfer *tx = MALLOC_STRUCT(nouveau_transfer);
uint8_t *map;
int ret;
if (!tx)
return NULL;
nouveau_buffer_transfer_init(tx, resource, box, usage);
*ptransfer = &tx->base;
if (usage & PIPE_TRANSFER_READ)
NOUVEAU_DRV_STAT(nv->screen, buf_transfers_rd, 1);
if (usage & PIPE_TRANSFER_WRITE)
NOUVEAU_DRV_STAT(nv->screen, buf_transfers_wr, 1);
/* If we are trying to write to an uninitialized range, the user shouldn't
* care what was there before. So we can treat the write as if the target
* range were being discarded. Furthermore, since we know that even if this
* buffer is busy due to GPU activity, because the contents were
* uninitialized, the GPU can't care what was there, and so we can treat
* the write as being unsynchronized.
*/
if ((usage & PIPE_TRANSFER_WRITE) &&
!util_ranges_intersect(&buf->valid_buffer_range, box->x, box->x + box->width))
usage |= PIPE_TRANSFER_DISCARD_RANGE | PIPE_TRANSFER_UNSYNCHRONIZED;
if (buf->domain == NOUVEAU_BO_VRAM) {
if (usage & NOUVEAU_TRANSFER_DISCARD) {
/* Set up a staging area for the user to write to. It will be copied
* back into VRAM on unmap. */
if (usage & PIPE_TRANSFER_DISCARD_WHOLE_RESOURCE)
buf->status &= NOUVEAU_BUFFER_STATUS_REALLOC_MASK;
nouveau_transfer_staging(nv, tx, true);
} else {
if (buf->status & NOUVEAU_BUFFER_STATUS_GPU_WRITING) {
/* The GPU is currently writing to this buffer. Copy its current
* contents to a staging area in the GART. This is necessary since
* not the whole area being mapped is being discarded.
*/
if (buf->data) {
align_free(buf->data);
buf->data = NULL;
}
nouveau_transfer_staging(nv, tx, false);
nouveau_transfer_read(nv, tx);
} else {
/* The buffer is currently idle. Create a staging area for writes,
* and make sure that the cached data is up-to-date. */
if (usage & PIPE_TRANSFER_WRITE)
nouveau_transfer_staging(nv, tx, true);
if (!buf->data)
nouveau_buffer_cache(nv, buf);
}
}
return buf->data ? (buf->data + box->x) : tx->map;
} else
if (unlikely(buf->domain == 0)) {
return buf->data + box->x;
}
/* At this point, buf->domain == GART */
if (nouveau_buffer_should_discard(buf, usage)) {
int ref = buf->base.reference.count - 1;
nouveau_buffer_reallocate(nv->screen, buf, buf->domain);
if (ref > 0) /* any references inside context possible ? */
nv->invalidate_resource_storage(nv, &buf->base, ref);
}
/* Note that nouveau_bo_map ends up doing a nouveau_bo_wait with the
* relevant flags. If buf->mm is set, that means this resource is part of a
* larger slab bo that holds multiple resources. So in that case, don't
* wait on the whole slab and instead use the logic below to return a
* reasonable buffer for that case.
*/
ret = nouveau_bo_map(buf->bo,
buf->mm ? 0 : nouveau_screen_transfer_flags(usage),
nv->client);
if (ret) {
FREE(tx);
return NULL;
}
map = (uint8_t *)buf->bo->map + buf->offset + box->x;
/* using kernel fences only if !buf->mm */
if ((usage & PIPE_TRANSFER_UNSYNCHRONIZED) || !buf->mm)
return map;
/* If the GPU is currently reading/writing this buffer, we shouldn't
* interfere with its progress. So instead we either wait for the GPU to
* complete its operation, or set up a staging area to perform our work in.
*/
if (nouveau_buffer_busy(buf, usage & PIPE_TRANSFER_READ_WRITE)) {
if (unlikely(usage & (PIPE_TRANSFER_DISCARD_WHOLE_RESOURCE |
PIPE_TRANSFER_PERSISTENT))) {
/* Discarding was not possible, must sync because
* subsequent transfers might use UNSYNCHRONIZED. */
nouveau_buffer_sync(nv, buf, usage & PIPE_TRANSFER_READ_WRITE);
} else
if (usage & PIPE_TRANSFER_DISCARD_RANGE) {
/* The whole range is being discarded, so it doesn't matter what was
* there before. No need to copy anything over. */
nouveau_transfer_staging(nv, tx, true);
map = tx->map;
} else
if (nouveau_buffer_busy(buf, PIPE_TRANSFER_READ)) {
if (usage & PIPE_TRANSFER_DONTBLOCK)
map = NULL;
else
nouveau_buffer_sync(nv, buf, usage & PIPE_TRANSFER_READ_WRITE);
} else {
/* It is expected that the returned buffer be a representation of the
* data in question, so we must copy it over from the buffer. */
nouveau_transfer_staging(nv, tx, true);
if (tx->map)
memcpy(tx->map, map, box->width);
map = tx->map;
}
}
if (!map)
FREE(tx);
return map;
}
static void
nouveau_buffer_transfer_flush_region(struct pipe_context *pipe,
struct pipe_transfer *transfer,
const struct pipe_box *box)
{
struct nouveau_transfer *tx = nouveau_transfer(transfer);
struct nv04_resource *buf = nv04_resource(transfer->resource);
if (tx->map)
nouveau_transfer_write(nouveau_context(pipe), tx, box->x, box->width);
util_range_add(&buf->base, &buf->valid_buffer_range,
tx->base.box.x + box->x,
tx->base.box.x + box->x + box->width);
}
/* Unmap stage of the transfer. If it was a WRITE transfer and the map that
* was returned was not the real resource's data, this needs to transfer the
* data back to the resource.
*
* Also marks vbo dirty based on the buffer's binding
*/
static void
nouveau_buffer_transfer_unmap(struct pipe_context *pipe,
struct pipe_transfer *transfer)
{
struct nouveau_context *nv = nouveau_context(pipe);
struct nouveau_transfer *tx = nouveau_transfer(transfer);
struct nv04_resource *buf = nv04_resource(transfer->resource);
if (tx->base.usage & PIPE_TRANSFER_WRITE) {
if (!(tx->base.usage & PIPE_TRANSFER_FLUSH_EXPLICIT)) {
if (tx->map)
nouveau_transfer_write(nv, tx, 0, tx->base.box.width);
util_range_add(&buf->base, &buf->valid_buffer_range,
tx->base.box.x, tx->base.box.x + tx->base.box.width);
}
if (likely(buf->domain)) {
const uint8_t bind = buf->base.bind;
/* make sure we invalidate dedicated caches */
if (bind & (PIPE_BIND_VERTEX_BUFFER | PIPE_BIND_INDEX_BUFFER))
nv->vbo_dirty = true;
}
}
if (!tx->bo && (tx->base.usage & PIPE_TRANSFER_WRITE))
NOUVEAU_DRV_STAT(nv->screen, buf_write_bytes_direct, tx->base.box.width);
nouveau_buffer_transfer_del(nv, tx);
FREE(tx);
}
void
nouveau_copy_buffer(struct nouveau_context *nv,
struct nv04_resource *dst, unsigned dstx,
struct nv04_resource *src, unsigned srcx, unsigned size)
{
assert(dst->base.target == PIPE_BUFFER && src->base.target == PIPE_BUFFER);
if (likely(dst->domain) && likely(src->domain)) {
nv->copy_data(nv,
dst->bo, dst->offset + dstx, dst->domain,
src->bo, src->offset + srcx, src->domain, size);
dst->status |= NOUVEAU_BUFFER_STATUS_GPU_WRITING;
nouveau_fence_ref(nv->screen->fence.current, &dst->fence);
nouveau_fence_ref(nv->screen->fence.current, &dst->fence_wr);
src->status |= NOUVEAU_BUFFER_STATUS_GPU_READING;
nouveau_fence_ref(nv->screen->fence.current, &src->fence);
} else {
struct pipe_box src_box;
src_box.x = srcx;
src_box.y = 0;
src_box.z = 0;
src_box.width = size;
src_box.height = 1;
src_box.depth = 1;
util_resource_copy_region(&nv->pipe,
&dst->base, 0, dstx, 0, 0,
&src->base, 0, &src_box);
}
util_range_add(&dst->base, &dst->valid_buffer_range, dstx, dstx + size);
}
void *
nouveau_resource_map_offset(struct nouveau_context *nv,
struct nv04_resource *res, uint32_t offset,
uint32_t flags)
{
if (unlikely(res->status & NOUVEAU_BUFFER_STATUS_USER_MEMORY))
return res->data + offset;
if (res->domain == NOUVEAU_BO_VRAM) {
if (!res->data || (res->status & NOUVEAU_BUFFER_STATUS_GPU_WRITING))
nouveau_buffer_cache(nv, res);
}
if (res->domain != NOUVEAU_BO_GART)
return res->data + offset;
if (res->mm) {
unsigned rw;
rw = (flags & NOUVEAU_BO_WR) ? PIPE_TRANSFER_WRITE : PIPE_TRANSFER_READ;
nouveau_buffer_sync(nv, res, rw);
if (nouveau_bo_map(res->bo, 0, NULL))
return NULL;
} else {
if (nouveau_bo_map(res->bo, flags, nv->client))
return NULL;
}
return (uint8_t *)res->bo->map + res->offset + offset;
}
const struct u_resource_vtbl nouveau_buffer_vtbl =
{
u_default_resource_get_handle, /* get_handle */
nouveau_buffer_destroy, /* resource_destroy */
nouveau_buffer_transfer_map, /* transfer_map */
nouveau_buffer_transfer_flush_region, /* transfer_flush_region */
nouveau_buffer_transfer_unmap, /* transfer_unmap */
};
struct pipe_resource *
nouveau_buffer_create(struct pipe_screen *pscreen,
const struct pipe_resource *templ)
{
struct nouveau_screen *screen = nouveau_screen(pscreen);
struct nv04_resource *buffer;
bool ret;
buffer = CALLOC_STRUCT(nv04_resource);
if (!buffer)
return NULL;
buffer->base = *templ;
buffer->vtbl = &nouveau_buffer_vtbl;
pipe_reference_init(&buffer->base.reference, 1);
buffer->base.screen = pscreen;
if (buffer->base.flags & (PIPE_RESOURCE_FLAG_MAP_PERSISTENT |
PIPE_RESOURCE_FLAG_MAP_COHERENT)) {
buffer->domain = NOUVEAU_BO_GART;
} else if (buffer->base.bind == 0 || (buffer->base.bind &
(screen->vidmem_bindings & screen->sysmem_bindings))) {
switch (buffer->base.usage) {
case PIPE_USAGE_DEFAULT:
case PIPE_USAGE_IMMUTABLE:
buffer->domain = NV_VRAM_DOMAIN(screen);
break;
case PIPE_USAGE_DYNAMIC:
/* For most apps, we'd have to do staging transfers to avoid sync
* with this usage, and GART -> GART copies would be suboptimal.
*/
buffer->domain = NV_VRAM_DOMAIN(screen);
break;
case PIPE_USAGE_STAGING:
case PIPE_USAGE_STREAM:
buffer->domain = NOUVEAU_BO_GART;
break;
default:
assert(0);
break;
}
} else {
if (buffer->base.bind & screen->vidmem_bindings)
buffer->domain = NV_VRAM_DOMAIN(screen);
else
if (buffer->base.bind & screen->sysmem_bindings)
buffer->domain = NOUVEAU_BO_GART;
}
ret = nouveau_buffer_allocate(screen, buffer, buffer->domain);
if (ret == false)
goto fail;
if (buffer->domain == NOUVEAU_BO_VRAM && screen->hint_buf_keep_sysmem_copy)
nouveau_buffer_cache(NULL, buffer);
NOUVEAU_DRV_STAT(screen, buf_obj_current_count, 1);
util_range_init(&buffer->valid_buffer_range);
return &buffer->base;
fail:
FREE(buffer);
return NULL;
}
struct pipe_resource *
nouveau_user_buffer_create(struct pipe_screen *pscreen, void *ptr,
unsigned bytes, unsigned bind)
{
struct nv04_resource *buffer;
buffer = CALLOC_STRUCT(nv04_resource);
if (!buffer)
return NULL;
pipe_reference_init(&buffer->base.reference, 1);
buffer->vtbl = &nouveau_buffer_vtbl;
buffer->base.screen = pscreen;
buffer->base.format = PIPE_FORMAT_R8_UNORM;
buffer->base.usage = PIPE_USAGE_IMMUTABLE;
buffer->base.bind = bind;
buffer->base.width0 = bytes;
buffer->base.height0 = 1;
buffer->base.depth0 = 1;
buffer->data = ptr;
buffer->status = NOUVEAU_BUFFER_STATUS_USER_MEMORY;
util_range_init(&buffer->valid_buffer_range);
util_range_add(&buffer->base, &buffer->valid_buffer_range, 0, bytes);
return &buffer->base;
}
static inline bool
nouveau_buffer_data_fetch(struct nouveau_context *nv, struct nv04_resource *buf,
struct nouveau_bo *bo, unsigned offset, unsigned size)
{
if (!nouveau_buffer_malloc(buf))
return false;
if (nouveau_bo_map(bo, NOUVEAU_BO_RD, nv->client))
return false;
memcpy(buf->data, (uint8_t *)bo->map + offset, size);
return true;
}
/* Migrate a linear buffer (vertex, index, constants) USER -> GART -> VRAM. */
bool
nouveau_buffer_migrate(struct nouveau_context *nv,
struct nv04_resource *buf, const unsigned new_domain)
{
struct nouveau_screen *screen = nv->screen;
struct nouveau_bo *bo;
const unsigned old_domain = buf->domain;
unsigned size = buf->base.width0;
unsigned offset;
int ret;
assert(new_domain != old_domain);
if (new_domain == NOUVEAU_BO_GART && old_domain == 0) {
if (!nouveau_buffer_allocate(screen, buf, new_domain))
return false;
ret = nouveau_bo_map(buf->bo, 0, nv->client);
if (ret)
return ret;
memcpy((uint8_t *)buf->bo->map + buf->offset, buf->data, size);
align_free(buf->data);
} else
if (old_domain != 0 && new_domain != 0) {
struct nouveau_mm_allocation *mm = buf->mm;
if (new_domain == NOUVEAU_BO_VRAM) {
/* keep a system memory copy of our data in case we hit a fallback */
if (!nouveau_buffer_data_fetch(nv, buf, buf->bo, buf->offset, size))
return false;
if (nouveau_mesa_debug)
debug_printf("migrating %u KiB to VRAM\n", size / 1024);
}
offset = buf->offset;
bo = buf->bo;
buf->bo = NULL;
buf->mm = NULL;
nouveau_buffer_allocate(screen, buf, new_domain);
nv->copy_data(nv, buf->bo, buf->offset, new_domain,
bo, offset, old_domain, buf->base.width0);
nouveau_fence_work(screen->fence.current, nouveau_fence_unref_bo, bo);
if (mm)
release_allocation(&mm, screen->fence.current);
} else
if (new_domain == NOUVEAU_BO_VRAM && old_domain == 0) {
struct nouveau_transfer tx;
if (!nouveau_buffer_allocate(screen, buf, NOUVEAU_BO_VRAM))
return false;
tx.base.resource = &buf->base;
tx.base.box.x = 0;
tx.base.box.width = buf->base.width0;
tx.bo = NULL;
tx.map = NULL;
if (!nouveau_transfer_staging(nv, &tx, false))
return false;
nouveau_transfer_write(nv, &tx, 0, tx.base.box.width);
nouveau_buffer_transfer_del(nv, &tx);
} else
return false;
assert(buf->domain == new_domain);
return true;
}
/* Migrate data from glVertexAttribPointer(non-VBO) user buffers to GART.
* We'd like to only allocate @size bytes here, but then we'd have to rebase
* the vertex indices ...
*/
bool
nouveau_user_buffer_upload(struct nouveau_context *nv,
struct nv04_resource *buf,
unsigned base, unsigned size)
{
struct nouveau_screen *screen = nouveau_screen(buf->base.screen);
int ret;
assert(buf->status & NOUVEAU_BUFFER_STATUS_USER_MEMORY);
buf->base.width0 = base + size;
if (!nouveau_buffer_reallocate(screen, buf, NOUVEAU_BO_GART))
return false;
ret = nouveau_bo_map(buf->bo, 0, nv->client);
if (ret)
return false;
memcpy((uint8_t *)buf->bo->map + buf->offset + base, buf->data + base, size);
return true;
}
/* Invalidate underlying buffer storage, reset fences, reallocate to non-busy
* buffer.
*/
void
nouveau_buffer_invalidate(struct pipe_context *pipe,
struct pipe_resource *resource)
{
struct nouveau_context *nv = nouveau_context(pipe);
struct nv04_resource *buf = nv04_resource(resource);
int ref = buf->base.reference.count - 1;
/* Shared buffers shouldn't get reallocated */
if (unlikely(buf->base.bind & PIPE_BIND_SHARED))
return;
/* If the buffer is sub-allocated and not currently being written, just
* wipe the valid buffer range. Otherwise we have to create fresh
* storage. (We don't keep track of fences for non-sub-allocated BO's.)
*/
if (buf->mm && !nouveau_buffer_busy(buf, PIPE_TRANSFER_WRITE)) {
util_range_set_empty(&buf->valid_buffer_range);
} else {
nouveau_buffer_reallocate(nv->screen, buf, buf->domain);
if (ref > 0) /* any references inside context possible ? */
nv->invalidate_resource_storage(nv, &buf->base, ref);
}
}
/* Scratch data allocation. */
static inline int
nouveau_scratch_bo_alloc(struct nouveau_context *nv, struct nouveau_bo **pbo,
unsigned size)
{
return nouveau_bo_new(nv->screen->device, NOUVEAU_BO_GART | NOUVEAU_BO_MAP,
4096, size, NULL, pbo);
}
static void
nouveau_scratch_unref_bos(void *d)
{
struct runout *b = d;
int i;
for (i = 0; i < b->nr; ++i)
nouveau_bo_ref(NULL, &b->bo[i]);
FREE(b);
}
void
nouveau_scratch_runout_release(struct nouveau_context *nv)
{
if (!nv->scratch.runout)
return;
if (!nouveau_fence_work(nv->screen->fence.current, nouveau_scratch_unref_bos,
nv->scratch.runout))
return;
nv->scratch.end = 0;
nv->scratch.runout = NULL;
}
/* Allocate an extra bo if we can't fit everything we need simultaneously.
* (Could happen for very large user arrays.)
*/
static inline bool
nouveau_scratch_runout(struct nouveau_context *nv, unsigned size)
{
int ret;
unsigned n;
if (nv->scratch.runout)
n = nv->scratch.runout->nr;
else
n = 0;
nv->scratch.runout = REALLOC(nv->scratch.runout, n == 0 ? 0 :
(sizeof(*nv->scratch.runout) + (n + 0) * sizeof(void *)),
sizeof(*nv->scratch.runout) + (n + 1) * sizeof(void *));
nv->scratch.runout->nr = n + 1;
nv->scratch.runout->bo[n] = NULL;
ret = nouveau_scratch_bo_alloc(nv, &nv->scratch.runout->bo[n], size);
if (!ret) {
ret = nouveau_bo_map(nv->scratch.runout->bo[n], 0, NULL);
if (ret)
nouveau_bo_ref(NULL, &nv->scratch.runout->bo[--nv->scratch.runout->nr]);
}
if (!ret) {
nv->scratch.current = nv->scratch.runout->bo[n];
nv->scratch.offset = 0;
nv->scratch.end = size;
nv->scratch.map = nv->scratch.current->map;
}
return !ret;
}
/* Continue to next scratch buffer, if available (no wrapping, large enough).
* Allocate it if it has not yet been created.
*/
static inline bool
nouveau_scratch_next(struct nouveau_context *nv, unsigned size)
{
struct nouveau_bo *bo;
int ret;
const unsigned i = (nv->scratch.id + 1) % NOUVEAU_MAX_SCRATCH_BUFS;
if ((size > nv->scratch.bo_size) || (i == nv->scratch.wrap))
return false;
nv->scratch.id = i;
bo = nv->scratch.bo[i];
if (!bo) {
ret = nouveau_scratch_bo_alloc(nv, &bo, nv->scratch.bo_size);
if (ret)
return false;
nv->scratch.bo[i] = bo;
}
nv->scratch.current = bo;
nv->scratch.offset = 0;
nv->scratch.end = nv->scratch.bo_size;
ret = nouveau_bo_map(bo, NOUVEAU_BO_WR, nv->client);
if (!ret)
nv->scratch.map = bo->map;
return !ret;
}
static bool
nouveau_scratch_more(struct nouveau_context *nv, unsigned min_size)
{
bool ret;
ret = nouveau_scratch_next(nv, min_size);
if (!ret)
ret = nouveau_scratch_runout(nv, min_size);
return ret;
}
/* Copy data to a scratch buffer and return address & bo the data resides in. */
uint64_t
nouveau_scratch_data(struct nouveau_context *nv,
const void *data, unsigned base, unsigned size,
struct nouveau_bo **bo)
{
unsigned bgn = MAX2(base, nv->scratch.offset);
unsigned end = bgn + size;
if (end >= nv->scratch.end) {
end = base + size;
if (!nouveau_scratch_more(nv, end))
return 0;
bgn = base;
}
nv->scratch.offset = align(end, 4);
memcpy(nv->scratch.map + bgn, (const uint8_t *)data + base, size);
*bo = nv->scratch.current;
return (*bo)->offset + (bgn - base);
}
void *
nouveau_scratch_get(struct nouveau_context *nv,
unsigned size, uint64_t *gpu_addr, struct nouveau_bo **pbo)
{
unsigned bgn = nv->scratch.offset;
unsigned end = nv->scratch.offset + size;
if (end >= nv->scratch.end) {
end = size;
if (!nouveau_scratch_more(nv, end))
return NULL;
bgn = 0;
}
nv->scratch.offset = align(end, 4);
*pbo = nv->scratch.current;
*gpu_addr = nv->scratch.current->offset + bgn;
return nv->scratch.map + bgn;
}