blob: 690fa98da258b7dc5d1056967e94e80e955b910a [file] [log] [blame]
/*
* Copyright © 2018 Red Hat Inc.
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <math.h>
#include "nir.h"
#include "nir_builtin_builder.h"
nir_ssa_def*
nir_cross3(nir_builder *b, nir_ssa_def *x, nir_ssa_def *y)
{
unsigned yzx[3] = { 1, 2, 0 };
unsigned zxy[3] = { 2, 0, 1 };
return nir_fsub(b, nir_fmul(b, nir_swizzle(b, x, yzx, 3),
nir_swizzle(b, y, zxy, 3)),
nir_fmul(b, nir_swizzle(b, x, zxy, 3),
nir_swizzle(b, y, yzx, 3)));
}
nir_ssa_def*
nir_cross4(nir_builder *b, nir_ssa_def *x, nir_ssa_def *y)
{
nir_ssa_def *cross = nir_cross3(b, x, y);
return nir_vec4(b,
nir_channel(b, cross, 0),
nir_channel(b, cross, 1),
nir_channel(b, cross, 2),
nir_imm_intN_t(b, 0, cross->bit_size));
}
nir_ssa_def*
nir_length(nir_builder *b, nir_ssa_def *vec)
{
nir_ssa_def *finf = nir_imm_floatN_t(b, INFINITY, vec->bit_size);
nir_ssa_def *abs = nir_fabs(b, vec);
if (vec->num_components == 1)
return abs;
nir_ssa_def *maxc = nir_fmax_abs_vec_comp(b, abs);
abs = nir_fdiv(b, abs, maxc);
nir_ssa_def *res = nir_fmul(b, nir_fsqrt(b, nir_fdot(b, abs, abs)), maxc);
return nir_bcsel(b, nir_feq(b, maxc, finf), maxc, res);
}
nir_ssa_def*
nir_fast_length(nir_builder *b, nir_ssa_def *vec)
{
switch (vec->num_components) {
case 1: return nir_fsqrt(b, nir_fmul(b, vec, vec));
case 2: return nir_fsqrt(b, nir_fdot2(b, vec, vec));
case 3: return nir_fsqrt(b, nir_fdot3(b, vec, vec));
case 4: return nir_fsqrt(b, nir_fdot4(b, vec, vec));
case 8: return nir_fsqrt(b, nir_fdot8(b, vec, vec));
case 16: return nir_fsqrt(b, nir_fdot16(b, vec, vec));
default:
unreachable("Invalid number of components");
}
}
nir_ssa_def*
nir_nextafter(nir_builder *b, nir_ssa_def *x, nir_ssa_def *y)
{
nir_ssa_def *zero = nir_imm_intN_t(b, 0, x->bit_size);
nir_ssa_def *one = nir_imm_intN_t(b, 1, x->bit_size);
nir_ssa_def *condeq = nir_feq(b, x, y);
nir_ssa_def *conddir = nir_flt(b, x, y);
nir_ssa_def *condzero = nir_feq(b, x, zero);
/* beware of: +/-0.0 - 1 == NaN */
nir_ssa_def *xn =
nir_bcsel(b,
condzero,
nir_imm_intN_t(b, (1 << (x->bit_size - 1)) + 1, x->bit_size),
nir_isub(b, x, one));
/* beware of -0.0 + 1 == -0x1p-149 */
nir_ssa_def *xp = nir_bcsel(b, condzero, one, nir_iadd(b, x, one));
/* nextafter can be implemented by just +/- 1 on the int value */
nir_ssa_def *res =
nir_bcsel(b, nir_ixor(b, conddir, nir_flt(b, x, zero)), xp, xn);
return nir_nan_check2(b, x, y, nir_bcsel(b, condeq, x, res));
}
nir_ssa_def*
nir_normalize(nir_builder *b, nir_ssa_def *vec)
{
if (vec->num_components == 1)
return nir_fsign(b, vec);
nir_ssa_def *f0 = nir_imm_floatN_t(b, 0.0, vec->bit_size);
nir_ssa_def *f1 = nir_imm_floatN_t(b, 1.0, vec->bit_size);
nir_ssa_def *finf = nir_imm_floatN_t(b, INFINITY, vec->bit_size);
/* scale the input to increase precision */
nir_ssa_def *maxc = nir_fmax_abs_vec_comp(b, vec);
nir_ssa_def *svec = nir_fdiv(b, vec, maxc);
/* for inf */
nir_ssa_def *finfvec = nir_copysign(b, nir_bcsel(b, nir_feq(b, vec, finf), f1, f0), f1);
nir_ssa_def *temp = nir_bcsel(b, nir_feq(b, maxc, finf), finfvec, svec);
nir_ssa_def *res = nir_fmul(b, temp, nir_frsq(b, nir_fdot(b, temp, temp)));
return nir_bcsel(b, nir_feq(b, maxc, f0), vec, res);
}
nir_ssa_def*
nir_rotate(nir_builder *b, nir_ssa_def *x, nir_ssa_def *y)
{
nir_ssa_def *shift_mask = nir_imm_int(b, x->bit_size - 1);
if (y->bit_size != 32)
y = nir_u2u32(b, y);
nir_ssa_def *lshift = nir_iand(b, y, shift_mask);
nir_ssa_def *rshift = nir_isub(b, nir_imm_int(b, x->bit_size), lshift);
nir_ssa_def *hi = nir_ishl(b, x, lshift);
nir_ssa_def *lo = nir_ushr(b, x, rshift);
return nir_ior(b, hi, lo);
}
nir_ssa_def*
nir_smoothstep(nir_builder *b, nir_ssa_def *edge0, nir_ssa_def *edge1, nir_ssa_def *x)
{
nir_ssa_def *f2 = nir_imm_floatN_t(b, 2.0, x->bit_size);
nir_ssa_def *f3 = nir_imm_floatN_t(b, 3.0, x->bit_size);
/* t = clamp((x - edge0) / (edge1 - edge0), 0, 1) */
nir_ssa_def *t =
nir_fsat(b, nir_fdiv(b, nir_fsub(b, x, edge0),
nir_fsub(b, edge1, edge0)));
/* result = t * t * (3 - 2 * t) */
return nir_fmul(b, t, nir_fmul(b, t, nir_fsub(b, f3, nir_fmul(b, f2, t))));
}
nir_ssa_def*
nir_upsample(nir_builder *b, nir_ssa_def *hi, nir_ssa_def *lo)
{
assert(lo->num_components == hi->num_components);
assert(lo->bit_size == hi->bit_size);
nir_ssa_def *res[NIR_MAX_VEC_COMPONENTS];
for (unsigned i = 0; i < lo->num_components; ++i) {
nir_ssa_def *vec = nir_vec2(b, nir_channel(b, lo, i), nir_channel(b, hi, i));
res[i] = nir_pack_bits(b, vec, vec->bit_size * 2);
}
return nir_vec(b, res, lo->num_components);
}
/**
* Compute xs[0] + xs[1] + xs[2] + ... using fadd.
*/
static nir_ssa_def *
build_fsum(nir_builder *b, nir_ssa_def **xs, int terms)
{
nir_ssa_def *accum = xs[0];
for (int i = 1; i < terms; i++)
accum = nir_fadd(b, accum, xs[i]);
return accum;
}
nir_ssa_def *
nir_atan(nir_builder *b, nir_ssa_def *y_over_x)
{
const uint32_t bit_size = y_over_x->bit_size;
nir_ssa_def *abs_y_over_x = nir_fabs(b, y_over_x);
nir_ssa_def *one = nir_imm_floatN_t(b, 1.0f, bit_size);
/*
* range-reduction, first step:
*
* / y_over_x if |y_over_x| <= 1.0;
* x = <
* \ 1.0 / y_over_x otherwise
*/
nir_ssa_def *x = nir_fdiv(b, nir_fmin(b, abs_y_over_x, one),
nir_fmax(b, abs_y_over_x, one));
/*
* approximate atan by evaluating polynomial:
*
* x * 0.9999793128310355 - x^3 * 0.3326756418091246 +
* x^5 * 0.1938924977115610 - x^7 * 0.1173503194786851 +
* x^9 * 0.0536813784310406 - x^11 * 0.0121323213173444
*/
nir_ssa_def *x_2 = nir_fmul(b, x, x);
nir_ssa_def *x_3 = nir_fmul(b, x_2, x);
nir_ssa_def *x_5 = nir_fmul(b, x_3, x_2);
nir_ssa_def *x_7 = nir_fmul(b, x_5, x_2);
nir_ssa_def *x_9 = nir_fmul(b, x_7, x_2);
nir_ssa_def *x_11 = nir_fmul(b, x_9, x_2);
nir_ssa_def *polynomial_terms[] = {
nir_fmul_imm(b, x, 0.9999793128310355f),
nir_fmul_imm(b, x_3, -0.3326756418091246f),
nir_fmul_imm(b, x_5, 0.1938924977115610f),
nir_fmul_imm(b, x_7, -0.1173503194786851f),
nir_fmul_imm(b, x_9, 0.0536813784310406f),
nir_fmul_imm(b, x_11, -0.0121323213173444f),
};
nir_ssa_def *tmp =
build_fsum(b, polynomial_terms, ARRAY_SIZE(polynomial_terms));
/* range-reduction fixup */
tmp = nir_fadd(b, tmp,
nir_fmul(b, nir_b2f(b, nir_flt(b, one, abs_y_over_x), bit_size),
nir_fadd_imm(b, nir_fmul_imm(b, tmp, -2.0f), M_PI_2)));
/* sign fixup */
return nir_fmul(b, tmp, nir_fsign(b, y_over_x));
}
nir_ssa_def *
nir_atan2(nir_builder *b, nir_ssa_def *y, nir_ssa_def *x)
{
assert(y->bit_size == x->bit_size);
const uint32_t bit_size = x->bit_size;
nir_ssa_def *zero = nir_imm_floatN_t(b, 0, bit_size);
nir_ssa_def *one = nir_imm_floatN_t(b, 1, bit_size);
/* If we're on the left half-plane rotate the coordinates π/2 clock-wise
* for the y=0 discontinuity to end up aligned with the vertical
* discontinuity of atan(s/t) along t=0. This also makes sure that we
* don't attempt to divide by zero along the vertical line, which may give
* unspecified results on non-GLSL 4.1-capable hardware.
*/
nir_ssa_def *flip = nir_fge(b, zero, x);
nir_ssa_def *s = nir_bcsel(b, flip, nir_fabs(b, x), y);
nir_ssa_def *t = nir_bcsel(b, flip, y, nir_fabs(b, x));
/* If the magnitude of the denominator exceeds some huge value, scale down
* the arguments in order to prevent the reciprocal operation from flushing
* its result to zero, which would cause precision problems, and for s
* infinite would cause us to return a NaN instead of the correct finite
* value.
*
* If fmin and fmax are respectively the smallest and largest positive
* normalized floating point values representable by the implementation,
* the constants below should be in agreement with:
*
* huge <= 1 / fmin
* scale <= 1 / fmin / fmax (for |t| >= huge)
*
* In addition scale should be a negative power of two in order to avoid
* loss of precision. The values chosen below should work for most usual
* floating point representations with at least the dynamic range of ATI's
* 24-bit representation.
*/
const double huge_val = bit_size >= 32 ? 1e18 : 16384;
nir_ssa_def *huge = nir_imm_floatN_t(b, huge_val, bit_size);
nir_ssa_def *scale = nir_bcsel(b, nir_fge(b, nir_fabs(b, t), huge),
nir_imm_floatN_t(b, 0.25, bit_size), one);
nir_ssa_def *rcp_scaled_t = nir_frcp(b, nir_fmul(b, t, scale));
nir_ssa_def *s_over_t = nir_fmul(b, nir_fmul(b, s, scale), rcp_scaled_t);
/* For |x| = |y| assume tan = 1 even if infinite (i.e. pretend momentarily
* that ∞/∞ = 1) in order to comply with the rather artificial rules
* inherited from IEEE 754-2008, namely:
*
* "atan2(±∞, −∞) is ±3π/4
* atan2(±∞, +∞) is ±π/4"
*
* Note that this is inconsistent with the rules for the neighborhood of
* zero that are based on iterated limits:
*
* "atan2(±0, −0) is ±π
* atan2(±0, +0) is ±0"
*
* but GLSL specifically allows implementations to deviate from IEEE rules
* at (0,0), so we take that license (i.e. pretend that 0/0 = 1 here as
* well).
*/
nir_ssa_def *tan = nir_bcsel(b, nir_feq(b, nir_fabs(b, x), nir_fabs(b, y)),
one, nir_fabs(b, s_over_t));
/* Calculate the arctangent and fix up the result if we had flipped the
* coordinate system.
*/
nir_ssa_def *arc =
nir_fadd(b, nir_fmul_imm(b, nir_b2f(b, flip, bit_size), M_PI_2),
nir_atan(b, tan));
/* Rather convoluted calculation of the sign of the result. When x < 0 we
* cannot use fsign because we need to be able to distinguish between
* negative and positive zero. We don't use bitwise arithmetic tricks for
* consistency with the GLSL front-end. When x >= 0 rcp_scaled_t will
* always be non-negative so this won't be able to distinguish between
* negative and positive zero, but we don't care because atan2 is
* continuous along the whole positive y = 0 half-line, so it won't affect
* the result significantly.
*/
return nir_bcsel(b, nir_flt(b, nir_fmin(b, y, rcp_scaled_t), zero),
nir_fneg(b, arc), arc);
}
nir_ssa_def *
nir_get_texture_size(nir_builder *b, nir_tex_instr *tex)
{
b->cursor = nir_before_instr(&tex->instr);
nir_tex_instr *txs;
unsigned num_srcs = 1; /* One for the LOD */
for (unsigned i = 0; i < tex->num_srcs; i++) {
if (tex->src[i].src_type == nir_tex_src_texture_deref ||
tex->src[i].src_type == nir_tex_src_sampler_deref ||
tex->src[i].src_type == nir_tex_src_texture_offset ||
tex->src[i].src_type == nir_tex_src_sampler_offset ||
tex->src[i].src_type == nir_tex_src_texture_handle ||
tex->src[i].src_type == nir_tex_src_sampler_handle)
num_srcs++;
}
txs = nir_tex_instr_create(b->shader, num_srcs);
txs->op = nir_texop_txs;
txs->sampler_dim = tex->sampler_dim;
txs->is_array = tex->is_array;
txs->is_shadow = tex->is_shadow;
txs->is_new_style_shadow = tex->is_new_style_shadow;
txs->texture_index = tex->texture_index;
txs->sampler_index = tex->sampler_index;
txs->dest_type = nir_type_int;
unsigned idx = 0;
for (unsigned i = 0; i < tex->num_srcs; i++) {
if (tex->src[i].src_type == nir_tex_src_texture_deref ||
tex->src[i].src_type == nir_tex_src_sampler_deref ||
tex->src[i].src_type == nir_tex_src_texture_offset ||
tex->src[i].src_type == nir_tex_src_sampler_offset ||
tex->src[i].src_type == nir_tex_src_texture_handle ||
tex->src[i].src_type == nir_tex_src_sampler_handle) {
nir_src_copy(&txs->src[idx].src, &tex->src[i].src, txs);
txs->src[idx].src_type = tex->src[i].src_type;
idx++;
}
}
/* Add in an LOD because some back-ends require it */
txs->src[idx].src = nir_src_for_ssa(nir_imm_int(b, 0));
txs->src[idx].src_type = nir_tex_src_lod;
nir_ssa_dest_init(&txs->instr, &txs->dest,
nir_tex_instr_dest_size(txs), 32, NULL);
nir_builder_instr_insert(b, &txs->instr);
return &txs->dest.ssa;
}
nir_ssa_def *
nir_get_texture_lod(nir_builder *b, nir_tex_instr *tex)
{
b->cursor = nir_before_instr(&tex->instr);
nir_tex_instr *tql;
unsigned num_srcs = 0;
for (unsigned i = 0; i < tex->num_srcs; i++) {
if (tex->src[i].src_type == nir_tex_src_coord ||
tex->src[i].src_type == nir_tex_src_texture_deref ||
tex->src[i].src_type == nir_tex_src_sampler_deref ||
tex->src[i].src_type == nir_tex_src_texture_offset ||
tex->src[i].src_type == nir_tex_src_sampler_offset ||
tex->src[i].src_type == nir_tex_src_texture_handle ||
tex->src[i].src_type == nir_tex_src_sampler_handle)
num_srcs++;
}
tql = nir_tex_instr_create(b->shader, num_srcs);
tql->op = nir_texop_lod;
tql->coord_components = tex->coord_components;
tql->sampler_dim = tex->sampler_dim;
tql->is_array = tex->is_array;
tql->is_shadow = tex->is_shadow;
tql->is_new_style_shadow = tex->is_new_style_shadow;
tql->texture_index = tex->texture_index;
tql->sampler_index = tex->sampler_index;
tql->dest_type = nir_type_float;
unsigned idx = 0;
for (unsigned i = 0; i < tex->num_srcs; i++) {
if (tex->src[i].src_type == nir_tex_src_coord ||
tex->src[i].src_type == nir_tex_src_texture_deref ||
tex->src[i].src_type == nir_tex_src_sampler_deref ||
tex->src[i].src_type == nir_tex_src_texture_offset ||
tex->src[i].src_type == nir_tex_src_sampler_offset ||
tex->src[i].src_type == nir_tex_src_texture_handle ||
tex->src[i].src_type == nir_tex_src_sampler_handle) {
nir_src_copy(&tql->src[idx].src, &tex->src[i].src, tql);
tql->src[idx].src_type = tex->src[i].src_type;
idx++;
}
}
nir_ssa_dest_init(&tql->instr, &tql->dest, 2, 32, NULL);
nir_builder_instr_insert(b, &tql->instr);
/* The LOD is the y component of the result */
return nir_channel(b, &tql->dest.ssa, 1);
}