blob: 982a31f90347c7a3cb59d34083d11a968069aebc [file] [log] [blame]
/*
* Copyright © 2011 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
/**
* @file brw_vue_map.c
*
* This file computes the "VUE map" for a (non-fragment) shader stage, which
* describes the layout of its output varyings. The VUE map is used to match
* outputs from one stage with the inputs of the next.
*
* Largely, varyings can be placed however we like - producers/consumers simply
* have to agree on the layout. However, there is also a "VUE Header" that
* prescribes a fixed-layout for items that interact with fixed function
* hardware, such as the clipper and rasterizer.
*
* Authors:
* Paul Berry <stereotype441@gmail.com>
* Chris Forbes <chrisf@ijw.co.nz>
* Eric Anholt <eric@anholt.net>
*/
#include "brw_context.h"
static inline void
assign_vue_slot(struct brw_vue_map *vue_map, int varying, int slot)
{
/* Make sure this varying hasn't been assigned a slot already */
assert (vue_map->varying_to_slot[varying] == -1);
vue_map->varying_to_slot[varying] = slot;
vue_map->slot_to_varying[slot] = varying;
}
/**
* Compute the VUE map for a shader stage.
*/
void
brw_compute_vue_map(const struct gen_device_info *devinfo,
struct brw_vue_map *vue_map,
GLbitfield64 slots_valid,
bool separate)
{
/* Keep using the packed/contiguous layout on old hardware - we only need
* the SSO layout when using geometry/tessellation shaders or 32 FS input
* varyings, which only exist on Gen >= 6. It's also a bit more efficient.
*/
if (devinfo->gen < 6)
separate = false;
if (separate) {
/* In SSO mode, we don't know whether the adjacent stage will
* read/write gl_ClipDistance, which has a fixed slot location.
* We have to assume the worst and reserve a slot for it, or else
* the rest of our varyings will be off by a slot.
*
* Note that we don't have to worry about COL/BFC, as those built-in
* variables only exist in legacy GL, which only supports VS and FS.
*/
slots_valid |= BITFIELD64_BIT(VARYING_SLOT_CLIP_DIST0);
slots_valid |= BITFIELD64_BIT(VARYING_SLOT_CLIP_DIST1);
}
vue_map->slots_valid = slots_valid;
vue_map->separate = separate;
/* gl_Layer and gl_ViewportIndex don't get their own varying slots -- they
* are stored in the first VUE slot (VARYING_SLOT_PSIZ).
*/
slots_valid &= ~(VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT);
/* Make sure that the values we store in vue_map->varying_to_slot and
* vue_map->slot_to_varying won't overflow the signed chars that are used
* to store them. Note that since vue_map->slot_to_varying sometimes holds
* values equal to BRW_VARYING_SLOT_COUNT, we need to ensure that
* BRW_VARYING_SLOT_COUNT is <= 127, not 128.
*/
STATIC_ASSERT(BRW_VARYING_SLOT_COUNT <= 127);
for (int i = 0; i < BRW_VARYING_SLOT_COUNT; ++i) {
vue_map->varying_to_slot[i] = -1;
vue_map->slot_to_varying[i] = BRW_VARYING_SLOT_PAD;
}
int slot = 0;
/* VUE header: format depends on chip generation and whether clipping is
* enabled.
*
* See the Sandybridge PRM, Volume 2 Part 1, section 1.5.1 (page 30),
* "Vertex URB Entry (VUE) Formats" which describes the VUE header layout.
*/
if (devinfo->gen < 6) {
/* There are 8 dwords in VUE header pre-Ironlake:
* dword 0-3 is indices, point width, clip flags.
* dword 4-7 is ndc position
* dword 8-11 is the first vertex data.
*
* On Ironlake the VUE header is nominally 20 dwords, but the hardware
* will accept the same header layout as Gen4 [and should be a bit faster]
*/
assign_vue_slot(vue_map, VARYING_SLOT_PSIZ, slot++);
assign_vue_slot(vue_map, BRW_VARYING_SLOT_NDC, slot++);
assign_vue_slot(vue_map, VARYING_SLOT_POS, slot++);
} else {
/* There are 8 or 16 DWs (D0-D15) in VUE header on Sandybridge:
* dword 0-3 of the header is indices, point width, clip flags.
* dword 4-7 is the 4D space position
* dword 8-15 of the vertex header is the user clip distance if
* enabled.
* dword 8-11 or 16-19 is the first vertex element data we fill.
*/
assign_vue_slot(vue_map, VARYING_SLOT_PSIZ, slot++);
assign_vue_slot(vue_map, VARYING_SLOT_POS, slot++);
if (slots_valid & BITFIELD64_BIT(VARYING_SLOT_CLIP_DIST0))
assign_vue_slot(vue_map, VARYING_SLOT_CLIP_DIST0, slot++);
if (slots_valid & BITFIELD64_BIT(VARYING_SLOT_CLIP_DIST1))
assign_vue_slot(vue_map, VARYING_SLOT_CLIP_DIST1, slot++);
/* front and back colors need to be consecutive so that we can use
* ATTRIBUTE_SWIZZLE_INPUTATTR_FACING to swizzle them when doing
* two-sided color.
*/
if (slots_valid & BITFIELD64_BIT(VARYING_SLOT_COL0))
assign_vue_slot(vue_map, VARYING_SLOT_COL0, slot++);
if (slots_valid & BITFIELD64_BIT(VARYING_SLOT_BFC0))
assign_vue_slot(vue_map, VARYING_SLOT_BFC0, slot++);
if (slots_valid & BITFIELD64_BIT(VARYING_SLOT_COL1))
assign_vue_slot(vue_map, VARYING_SLOT_COL1, slot++);
if (slots_valid & BITFIELD64_BIT(VARYING_SLOT_BFC1))
assign_vue_slot(vue_map, VARYING_SLOT_BFC1, slot++);
}
/* The hardware doesn't care about the rest of the vertex outputs, so we
* can assign them however we like. For normal programs, we simply assign
* them contiguously.
*
* For separate shader pipelines, we first assign built-in varyings
* contiguous slots. This works because ARB_separate_shader_objects
* requires that all shaders have matching built-in varying interface
* blocks. Next, we assign generic varyings based on their location
* (either explicit or linker assigned). This guarantees a fixed layout.
*
* We generally don't need to assign a slot for VARYING_SLOT_CLIP_VERTEX,
* since it's encoded as the clip distances by emit_clip_distances().
* However, it may be output by transform feedback, and we'd rather not
* recompute state when TF changes, so we just always include it.
*/
GLbitfield64 builtins = slots_valid & BITFIELD64_MASK(VARYING_SLOT_VAR0);
while (builtins != 0) {
const int varying = ffsll(builtins) - 1;
if (vue_map->varying_to_slot[varying] == -1) {
assign_vue_slot(vue_map, varying, slot++);
}
builtins &= ~BITFIELD64_BIT(varying);
}
const int first_generic_slot = slot;
GLbitfield64 generics = slots_valid & ~BITFIELD64_MASK(VARYING_SLOT_VAR0);
while (generics != 0) {
const int varying = ffsll(generics) - 1;
if (separate) {
slot = first_generic_slot + varying - VARYING_SLOT_VAR0;
assign_vue_slot(vue_map, varying, slot);
} else {
assign_vue_slot(vue_map, varying, slot++);
}
generics &= ~BITFIELD64_BIT(varying);
}
vue_map->num_slots = separate ? slot + 1 : slot;
vue_map->num_per_vertex_slots = 0;
vue_map->num_per_patch_slots = 0;
}
/**
* Compute the VUE map for tessellation control shader outputs and
* tessellation evaluation shader inputs.
*/
void
brw_compute_tess_vue_map(struct brw_vue_map *vue_map,
GLbitfield64 vertex_slots,
GLbitfield patch_slots)
{
/* I don't think anything actually uses this... */
vue_map->slots_valid = vertex_slots;
/* separate isn't really meaningful, but make sure it's initialized */
vue_map->separate = false;
vertex_slots &= ~(VARYING_BIT_TESS_LEVEL_OUTER |
VARYING_BIT_TESS_LEVEL_INNER);
/* Make sure that the values we store in vue_map->varying_to_slot and
* vue_map->slot_to_varying won't overflow the signed chars that are used
* to store them. Note that since vue_map->slot_to_varying sometimes holds
* values equal to VARYING_SLOT_TESS_MAX , we need to ensure that
* VARYING_SLOT_TESS_MAX is <= 127, not 128.
*/
STATIC_ASSERT(VARYING_SLOT_TESS_MAX <= 127);
for (int i = 0; i < VARYING_SLOT_TESS_MAX ; ++i) {
vue_map->varying_to_slot[i] = -1;
vue_map->slot_to_varying[i] = BRW_VARYING_SLOT_PAD;
}
int slot = 0;
/* The first 8 DWords are reserved for the "Patch Header".
*
* VARYING_SLOT_TESS_LEVEL_OUTER / INNER live here, but the exact layout
* depends on the domain type. They might not be in slots 0 and 1 as
* described here, but pretending they're separate allows us to uniquely
* identify them by distinct slot locations.
*/
assign_vue_slot(vue_map, VARYING_SLOT_TESS_LEVEL_INNER, slot++);
assign_vue_slot(vue_map, VARYING_SLOT_TESS_LEVEL_OUTER, slot++);
/* first assign per-patch varyings */
while (patch_slots != 0) {
const int varying = ffsll(patch_slots) - 1;
if (vue_map->varying_to_slot[varying + VARYING_SLOT_PATCH0] == -1) {
assign_vue_slot(vue_map, varying + VARYING_SLOT_PATCH0, slot++);
}
patch_slots &= ~BITFIELD64_BIT(varying);
}
/* apparently, including the patch header... */
vue_map->num_per_patch_slots = slot;
/* then assign per-vertex varyings for each vertex in our patch */
while (vertex_slots != 0) {
const int varying = ffsll(vertex_slots) - 1;
if (vue_map->varying_to_slot[varying] == -1) {
assign_vue_slot(vue_map, varying, slot++);
}
vertex_slots &= ~BITFIELD64_BIT(varying);
}
vue_map->num_per_vertex_slots = slot - vue_map->num_per_patch_slots;
vue_map->num_slots = slot;
}
static const char *
varying_name(brw_varying_slot slot)
{
assume(slot < BRW_VARYING_SLOT_COUNT);
if (slot < VARYING_SLOT_MAX)
return gl_varying_slot_name(slot);
static const char *brw_names[] = {
[BRW_VARYING_SLOT_NDC - VARYING_SLOT_MAX] = "BRW_VARYING_SLOT_NDC",
[BRW_VARYING_SLOT_PAD - VARYING_SLOT_MAX] = "BRW_VARYING_SLOT_PAD",
[BRW_VARYING_SLOT_PNTC - VARYING_SLOT_MAX] = "BRW_VARYING_SLOT_PNTC",
};
return brw_names[slot - VARYING_SLOT_MAX];
}
void
brw_print_vue_map(FILE *fp, const struct brw_vue_map *vue_map)
{
if (vue_map->num_per_vertex_slots > 0 || vue_map->num_per_patch_slots > 0) {
fprintf(fp, "PUE map (%d slots, %d/patch, %d/vertex, %s)\n",
vue_map->num_slots,
vue_map->num_per_patch_slots,
vue_map->num_per_vertex_slots,
vue_map->separate ? "SSO" : "non-SSO");
for (int i = 0; i < vue_map->num_slots; i++) {
if (vue_map->slot_to_varying[i] >= VARYING_SLOT_PATCH0) {
fprintf(fp, " [%d] VARYING_SLOT_PATCH%d\n", i,
vue_map->slot_to_varying[i] - VARYING_SLOT_PATCH0);
} else {
fprintf(fp, " [%d] %s\n", i,
varying_name(vue_map->slot_to_varying[i]));
}
}
} else {
fprintf(fp, "VUE map (%d slots, %s)\n",
vue_map->num_slots, vue_map->separate ? "SSO" : "non-SSO");
for (int i = 0; i < vue_map->num_slots; i++) {
fprintf(fp, " [%d] %s\n", i,
varying_name(vue_map->slot_to_varying[i]));
}
}
fprintf(fp, "\n");
}