blob: a97f874c753684b3b6b7ab1e445109a5979f034b [file] [log] [blame]
/*
* Copyright © 2010 - 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#pragma once
#include <stdio.h>
#include "common/gen_device_info.h"
#include "main/mtypes.h"
#include "main/macros.h"
#ifdef __cplusplus
extern "C" {
#endif
struct ra_regs;
struct nir_shader;
struct brw_program;
union gl_constant_value;
struct brw_compiler {
const struct gen_device_info *devinfo;
struct {
struct ra_regs *regs;
/**
* Array of the ra classes for the unaligned contiguous register
* block sizes used.
*/
int *classes;
/**
* Mapping for register-allocated objects in *regs to the first
* GRF for that object.
*/
uint8_t *ra_reg_to_grf;
} vec4_reg_set;
struct {
struct ra_regs *regs;
/**
* Array of the ra classes for the unaligned contiguous register
* block sizes used, indexed by register size.
*/
int classes[16];
/**
* Mapping from classes to ra_reg ranges. Each of the per-size
* classes corresponds to a range of ra_reg nodes. This array stores
* those ranges in the form of first ra_reg in each class and the
* total number of ra_reg elements in the last array element. This
* way the range of the i'th class is given by:
* [ class_to_ra_reg_range[i], class_to_ra_reg_range[i+1] )
*/
int class_to_ra_reg_range[17];
/**
* Mapping for register-allocated objects in *regs to the first
* GRF for that object.
*/
uint8_t *ra_reg_to_grf;
/**
* ra class for the aligned pairs we use for PLN, which doesn't
* appear in *classes.
*/
int aligned_pairs_class;
} fs_reg_sets[3];
void (*shader_debug_log)(void *, const char *str, ...) PRINTFLIKE(2, 3);
void (*shader_perf_log)(void *, const char *str, ...) PRINTFLIKE(2, 3);
bool scalar_stage[MESA_SHADER_STAGES];
struct gl_shader_compiler_options glsl_compiler_options[MESA_SHADER_STAGES];
/**
* Apply workarounds for SIN and COS output range problems.
* This can negatively impact performance.
*/
bool precise_trig;
};
/**
* Program key structures.
*
* When drawing, we look for the currently bound shaders in the program
* cache. This is essentially a hash table lookup, and these are the keys.
*
* Sometimes OpenGL features specified as state need to be simulated via
* shader code, due to a mismatch between the API and the hardware. This
* is often referred to as "non-orthagonal state" or "NOS". We store NOS
* in the program key so it's considered when searching for a program. If
* we haven't seen a particular combination before, we have to recompile a
* new specialized version.
*
* Shader compilation should not look up state in gl_context directly, but
* instead use the copy in the program key. This guarantees recompiles will
* happen correctly.
*
* @{
*/
enum PACKED gen6_gather_sampler_wa {
WA_SIGN = 1, /* whether we need to sign extend */
WA_8BIT = 2, /* if we have an 8bit format needing wa */
WA_16BIT = 4, /* if we have a 16bit format needing wa */
};
/**
* Sampler information needed by VS, WM, and GS program cache keys.
*/
struct brw_sampler_prog_key_data {
/**
* EXT_texture_swizzle and DEPTH_TEXTURE_MODE swizzles.
*/
uint16_t swizzles[MAX_SAMPLERS];
uint32_t gl_clamp_mask[3];
/**
* For RG32F, gather4's channel select is broken.
*/
uint32_t gather_channel_quirk_mask;
/**
* Whether this sampler uses the compressed multisample surface layout.
*/
uint32_t compressed_multisample_layout_mask;
/**
* Whether this sampler is using 16x multisampling. If so fetching from
* this sampler will be handled with a different instruction, ld2dms_w
* instead of ld2dms.
*/
uint32_t msaa_16;
/**
* For Sandybridge, which shader w/a we need for gather quirks.
*/
enum gen6_gather_sampler_wa gen6_gather_wa[MAX_SAMPLERS];
/**
* Texture units that have a YUV image bound.
*/
uint32_t y_u_v_image_mask;
uint32_t y_uv_image_mask;
uint32_t yx_xuxv_image_mask;
};
/** The program key for Vertex Shaders. */
struct brw_vs_prog_key {
unsigned program_string_id;
/*
* Per-attribute workaround flags
*/
uint8_t gl_attrib_wa_flags[VERT_ATTRIB_MAX];
bool copy_edgeflag:1;
bool clamp_vertex_color:1;
/**
* How many user clipping planes are being uploaded to the vertex shader as
* push constants.
*
* These are used for lowering legacy gl_ClipVertex/gl_Position clipping to
* clip distances.
*/
unsigned nr_userclip_plane_consts:4;
/**
* For pre-Gen6 hardware, a bitfield indicating which texture coordinates
* are going to be replaced with point coordinates (as a consequence of a
* call to glTexEnvi(GL_POINT_SPRITE, GL_COORD_REPLACE, GL_TRUE)). Because
* our SF thread requires exact matching between VS outputs and FS inputs,
* these texture coordinates will need to be unconditionally included in
* the VUE, even if they aren't written by the vertex shader.
*/
uint8_t point_coord_replace;
struct brw_sampler_prog_key_data tex;
};
/** The program key for Tessellation Control Shaders. */
struct brw_tcs_prog_key
{
unsigned program_string_id;
GLenum tes_primitive_mode;
unsigned input_vertices;
/** A bitfield of per-patch outputs written. */
uint32_t patch_outputs_written;
/** A bitfield of per-vertex outputs written. */
uint64_t outputs_written;
bool quads_workaround;
struct brw_sampler_prog_key_data tex;
};
/** The program key for Tessellation Evaluation Shaders. */
struct brw_tes_prog_key
{
unsigned program_string_id;
/** A bitfield of per-patch inputs read. */
uint32_t patch_inputs_read;
/** A bitfield of per-vertex inputs read. */
uint64_t inputs_read;
struct brw_sampler_prog_key_data tex;
};
/** The program key for Geometry Shaders. */
struct brw_gs_prog_key
{
unsigned program_string_id;
struct brw_sampler_prog_key_data tex;
};
/** The program key for Fragment/Pixel Shaders. */
struct brw_wm_prog_key {
uint8_t iz_lookup;
bool stats_wm:1;
bool flat_shade:1;
unsigned nr_color_regions:5;
bool replicate_alpha:1;
bool clamp_fragment_color:1;
bool persample_interp:1;
bool multisample_fbo:1;
unsigned line_aa:2;
bool high_quality_derivatives:1;
bool force_dual_color_blend:1;
bool coherent_fb_fetch:1;
uint16_t drawable_height;
uint64_t input_slots_valid;
unsigned program_string_id;
GLenum alpha_test_func; /* < For Gen4/5 MRT alpha test */
float alpha_test_ref;
struct brw_sampler_prog_key_data tex;
};
struct brw_cs_prog_key {
uint32_t program_string_id;
struct brw_sampler_prog_key_data tex;
};
/*
* Image metadata structure as laid out in the shader parameter
* buffer. Entries have to be 16B-aligned for the vec4 back-end to be
* able to use them. That's okay because the padding and any unused
* entries [most of them except when we're doing untyped surface
* access] will be removed by the uniform packing pass.
*/
#define BRW_IMAGE_PARAM_SURFACE_IDX_OFFSET 0
#define BRW_IMAGE_PARAM_OFFSET_OFFSET 4
#define BRW_IMAGE_PARAM_SIZE_OFFSET 8
#define BRW_IMAGE_PARAM_STRIDE_OFFSET 12
#define BRW_IMAGE_PARAM_TILING_OFFSET 16
#define BRW_IMAGE_PARAM_SWIZZLING_OFFSET 20
#define BRW_IMAGE_PARAM_SIZE 24
struct brw_image_param {
/** Surface binding table index. */
uint32_t surface_idx;
/** Offset applied to the X and Y surface coordinates. */
uint32_t offset[2];
/** Surface X, Y and Z dimensions. */
uint32_t size[3];
/** X-stride in bytes, Y-stride in pixels, horizontal slice stride in
* pixels, vertical slice stride in pixels.
*/
uint32_t stride[4];
/** Log2 of the tiling modulus in the X, Y and Z dimension. */
uint32_t tiling[3];
/**
* Right shift to apply for bit 6 address swizzling. Two different
* swizzles can be specified and will be applied one after the other. The
* resulting address will be:
*
* addr' = addr ^ ((1 << 6) & ((addr >> swizzling[0]) ^
* (addr >> swizzling[1])))
*
* Use \c 0xff if any of the swizzles is not required.
*/
uint32_t swizzling[2];
};
struct brw_stage_prog_data {
struct {
/** size of our binding table. */
uint32_t size_bytes;
/** @{
* surface indices for the various groups of surfaces
*/
uint32_t pull_constants_start;
uint32_t texture_start;
uint32_t gather_texture_start;
uint32_t ubo_start;
uint32_t ssbo_start;
uint32_t abo_start;
uint32_t image_start;
uint32_t shader_time_start;
uint32_t plane_start[3];
/** @} */
} binding_table;
GLuint nr_params; /**< number of float params/constants */
GLuint nr_pull_params;
unsigned nr_image_params;
unsigned curb_read_length;
unsigned total_scratch;
unsigned total_shared;
/**
* Register where the thread expects to find input data from the URB
* (typically uniforms, followed by vertex or fragment attributes).
*/
unsigned dispatch_grf_start_reg;
bool use_alt_mode; /**< Use ALT floating point mode? Otherwise, IEEE. */
/* Pointers to tracked values (only valid once
* _mesa_load_state_parameters has been called at runtime).
*/
const union gl_constant_value **param;
const union gl_constant_value **pull_param;
/** Image metadata passed to the shader as uniforms. */
struct brw_image_param *image_param;
};
/* Data about a particular attempt to compile a program. Note that
* there can be many of these, each in a different GL state
* corresponding to a different brw_wm_prog_key struct, with different
* compiled programs.
*/
struct brw_wm_prog_data {
struct brw_stage_prog_data base;
GLuint num_varying_inputs;
uint8_t reg_blocks_0;
uint8_t reg_blocks_2;
uint8_t dispatch_grf_start_reg_2;
uint32_t prog_offset_2;
struct {
/** @{
* surface indices the WM-specific surfaces
*/
uint32_t render_target_start;
uint32_t render_target_read_start;
/** @} */
} binding_table;
uint8_t computed_depth_mode;
bool computed_stencil;
bool early_fragment_tests;
bool post_depth_coverage;
bool inner_coverage;
bool dispatch_8;
bool dispatch_16;
bool dual_src_blend;
bool persample_dispatch;
bool uses_pos_offset;
bool uses_omask;
bool uses_kill;
bool uses_src_depth;
bool uses_src_w;
bool uses_sample_mask;
bool has_side_effects;
bool pulls_bary;
/**
* Mask of which interpolation modes are required by the fragment shader.
* Used in hardware setup on gen6+.
*/
uint32_t barycentric_interp_modes;
/**
* Mask of which FS inputs are marked flat by the shader source. This is
* needed for setting up 3DSTATE_SF/SBE.
*/
uint32_t flat_inputs;
/**
* Map from gl_varying_slot to the position within the FS setup data
* payload where the varying's attribute vertex deltas should be delivered.
* For varying slots that are not used by the FS, the value is -1.
*/
int urb_setup[VARYING_SLOT_MAX];
};
struct brw_push_const_block {
unsigned dwords; /* Dword count, not reg aligned */
unsigned regs;
unsigned size; /* Bytes, register aligned */
};
struct brw_cs_prog_data {
struct brw_stage_prog_data base;
GLuint dispatch_grf_start_reg_16;
unsigned local_size[3];
unsigned simd_size;
unsigned threads;
bool uses_barrier;
bool uses_num_work_groups;
int thread_local_id_index;
struct {
struct brw_push_const_block cross_thread;
struct brw_push_const_block per_thread;
struct brw_push_const_block total;
} push;
struct {
/** @{
* surface indices the CS-specific surfaces
*/
uint32_t work_groups_start;
/** @} */
} binding_table;
};
/**
* Enum representing the i965-specific vertex results that don't correspond
* exactly to any element of gl_varying_slot. The values of this enum are
* assigned such that they don't conflict with gl_varying_slot.
*/
typedef enum
{
BRW_VARYING_SLOT_NDC = VARYING_SLOT_MAX,
BRW_VARYING_SLOT_PAD,
/**
* Technically this is not a varying but just a placeholder that
* compile_sf_prog() inserts into its VUE map to cause the gl_PointCoord
* builtin variable to be compiled correctly. see compile_sf_prog() for
* more info.
*/
BRW_VARYING_SLOT_PNTC,
BRW_VARYING_SLOT_COUNT
} brw_varying_slot;
/**
* Data structure recording the relationship between the gl_varying_slot enum
* and "slots" within the vertex URB entry (VUE). A "slot" is defined as a
* single octaword within the VUE (128 bits).
*
* Note that each BRW register contains 256 bits (2 octawords), so when
* accessing the VUE in URB_NOSWIZZLE mode, each register corresponds to two
* consecutive VUE slots. When accessing the VUE in URB_INTERLEAVED mode (as
* in a vertex shader), each register corresponds to a single VUE slot, since
* it contains data for two separate vertices.
*/
struct brw_vue_map {
/**
* Bitfield representing all varying slots that are (a) stored in this VUE
* map, and (b) actually written by the shader. Does not include any of
* the additional varying slots defined in brw_varying_slot.
*/
GLbitfield64 slots_valid;
/**
* Is this VUE map for a separate shader pipeline?
*
* Separable programs (GL_ARB_separate_shader_objects) can be mixed and matched
* without the linker having a chance to dead code eliminate unused varyings.
*
* This means that we have to use a fixed slot layout, based on the output's
* location field, rather than assigning slots in a compact contiguous block.
*/
bool separate;
/**
* Map from gl_varying_slot value to VUE slot. For gl_varying_slots that are
* not stored in a slot (because they are not written, or because
* additional processing is applied before storing them in the VUE), the
* value is -1.
*/
signed char varying_to_slot[VARYING_SLOT_TESS_MAX];
/**
* Map from VUE slot to gl_varying_slot value. For slots that do not
* directly correspond to a gl_varying_slot, the value comes from
* brw_varying_slot.
*
* For slots that are not in use, the value is BRW_VARYING_SLOT_PAD.
*/
signed char slot_to_varying[VARYING_SLOT_TESS_MAX];
/**
* Total number of VUE slots in use
*/
int num_slots;
/**
* Number of per-patch VUE slots. Only valid for tessellation control
* shader outputs and tessellation evaluation shader inputs.
*/
int num_per_patch_slots;
/**
* Number of per-vertex VUE slots. Only valid for tessellation control
* shader outputs and tessellation evaluation shader inputs.
*/
int num_per_vertex_slots;
};
void brw_print_vue_map(FILE *fp, const struct brw_vue_map *vue_map);
/**
* Convert a VUE slot number into a byte offset within the VUE.
*/
static inline GLuint brw_vue_slot_to_offset(GLuint slot)
{
return 16*slot;
}
/**
* Convert a vertex output (brw_varying_slot) into a byte offset within the
* VUE.
*/
static inline
GLuint brw_varying_to_offset(const struct brw_vue_map *vue_map, GLuint varying)
{
return brw_vue_slot_to_offset(vue_map->varying_to_slot[varying]);
}
void brw_compute_vue_map(const struct gen_device_info *devinfo,
struct brw_vue_map *vue_map,
GLbitfield64 slots_valid,
bool separate_shader);
void brw_compute_tess_vue_map(struct brw_vue_map *const vue_map,
const GLbitfield64 slots_valid,
const GLbitfield is_patch);
/* brw_interpolation_map.c */
void brw_setup_vue_interpolation(struct brw_vue_map *vue_map,
struct nir_shader *nir,
struct gl_program *prog,
const struct gen_device_info *devinfo);
enum shader_dispatch_mode {
DISPATCH_MODE_4X1_SINGLE = 0,
DISPATCH_MODE_4X2_DUAL_INSTANCE = 1,
DISPATCH_MODE_4X2_DUAL_OBJECT = 2,
DISPATCH_MODE_SIMD8 = 3,
};
/**
* @defgroup Tessellator parameter enumerations.
*
* These correspond to the hardware values in 3DSTATE_TE, and are provided
* as part of the tessellation evaluation shader.
*
* @{
*/
enum brw_tess_partitioning {
BRW_TESS_PARTITIONING_INTEGER = 0,
BRW_TESS_PARTITIONING_ODD_FRACTIONAL = 1,
BRW_TESS_PARTITIONING_EVEN_FRACTIONAL = 2,
};
enum brw_tess_output_topology {
BRW_TESS_OUTPUT_TOPOLOGY_POINT = 0,
BRW_TESS_OUTPUT_TOPOLOGY_LINE = 1,
BRW_TESS_OUTPUT_TOPOLOGY_TRI_CW = 2,
BRW_TESS_OUTPUT_TOPOLOGY_TRI_CCW = 3,
};
enum brw_tess_domain {
BRW_TESS_DOMAIN_QUAD = 0,
BRW_TESS_DOMAIN_TRI = 1,
BRW_TESS_DOMAIN_ISOLINE = 2,
};
/** @} */
struct brw_vue_prog_data {
struct brw_stage_prog_data base;
struct brw_vue_map vue_map;
/** Should the hardware deliver input VUE handles for URB pull loads? */
bool include_vue_handles;
GLuint urb_read_length;
GLuint total_grf;
uint32_t clip_distance_mask;
uint32_t cull_distance_mask;
/* Used for calculating urb partitions. In the VS, this is the size of the
* URB entry used for both input and output to the thread. In the GS, this
* is the size of the URB entry used for output.
*/
GLuint urb_entry_size;
enum shader_dispatch_mode dispatch_mode;
};
struct brw_vs_prog_data {
struct brw_vue_prog_data base;
GLbitfield64 inputs_read;
GLbitfield64 double_inputs_read;
unsigned nr_attributes;
unsigned nr_attribute_slots;
bool uses_vertexid;
bool uses_instanceid;
bool uses_basevertex;
bool uses_baseinstance;
bool uses_drawid;
};
struct brw_tcs_prog_data
{
struct brw_vue_prog_data base;
/** Number vertices in output patch */
int instances;
};
struct brw_tes_prog_data
{
struct brw_vue_prog_data base;
enum brw_tess_partitioning partitioning;
enum brw_tess_output_topology output_topology;
enum brw_tess_domain domain;
};
struct brw_gs_prog_data
{
struct brw_vue_prog_data base;
unsigned vertices_in;
/**
* Size of an output vertex, measured in HWORDS (32 bytes).
*/
unsigned output_vertex_size_hwords;
unsigned output_topology;
/**
* Size of the control data (cut bits or StreamID bits), in hwords (32
* bytes). 0 if there is no control data.
*/
unsigned control_data_header_size_hwords;
/**
* Format of the control data (either GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID
* if the control data is StreamID bits, or
* GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT if the control data is cut bits).
* Ignored if control_data_header_size is 0.
*/
unsigned control_data_format;
bool include_primitive_id;
/**
* The number of vertices emitted, if constant - otherwise -1.
*/
int static_vertex_count;
int invocations;
/**
* Gen6 transform feedback enabled flag.
*/
bool gen6_xfb_enabled;
/**
* Gen6: Provoking vertex convention for odd-numbered triangles
* in tristrips.
*/
GLuint pv_first:1;
/**
* Gen6: Number of varyings that are output to transform feedback.
*/
GLuint num_transform_feedback_bindings:7; /* 0-BRW_MAX_SOL_BINDINGS */
/**
* Gen6: Map from the index of a transform feedback binding table entry to the
* gl_varying_slot that should be streamed out through that binding table
* entry.
*/
unsigned char transform_feedback_bindings[64 /* BRW_MAX_SOL_BINDINGS */];
/**
* Gen6: Map from the index of a transform feedback binding table entry to the
* swizzles that should be used when streaming out data through that
* binding table entry.
*/
unsigned char transform_feedback_swizzles[64 /* BRW_MAX_SOL_BINDINGS */];
};
#define DEFINE_PROG_DATA_DOWNCAST(stage) \
static inline struct brw_##stage##_prog_data * \
brw_##stage##_prog_data(struct brw_stage_prog_data *prog_data) \
{ \
return (struct brw_##stage##_prog_data *) prog_data; \
}
DEFINE_PROG_DATA_DOWNCAST(vue)
DEFINE_PROG_DATA_DOWNCAST(vs)
DEFINE_PROG_DATA_DOWNCAST(tcs)
DEFINE_PROG_DATA_DOWNCAST(tes)
DEFINE_PROG_DATA_DOWNCAST(gs)
DEFINE_PROG_DATA_DOWNCAST(wm)
DEFINE_PROG_DATA_DOWNCAST(cs)
DEFINE_PROG_DATA_DOWNCAST(ff_gs)
DEFINE_PROG_DATA_DOWNCAST(clip)
DEFINE_PROG_DATA_DOWNCAST(sf)
#undef DEFINE_PROG_DATA_DOWNCAST
/** @} */
struct brw_compiler *
brw_compiler_create(void *mem_ctx, const struct gen_device_info *devinfo);
/**
* Compile a vertex shader.
*
* Returns the final assembly and the program's size.
*/
const unsigned *
brw_compile_vs(const struct brw_compiler *compiler, void *log_data,
void *mem_ctx,
const struct brw_vs_prog_key *key,
struct brw_vs_prog_data *prog_data,
const struct nir_shader *shader,
gl_clip_plane *clip_planes,
bool use_legacy_snorm_formula,
int shader_time_index,
unsigned *final_assembly_size,
char **error_str);
/**
* Compile a tessellation control shader.
*
* Returns the final assembly and the program's size.
*/
const unsigned *
brw_compile_tcs(const struct brw_compiler *compiler,
void *log_data,
void *mem_ctx,
const struct brw_tcs_prog_key *key,
struct brw_tcs_prog_data *prog_data,
const struct nir_shader *nir,
int shader_time_index,
unsigned *final_assembly_size,
char **error_str);
/**
* Compile a tessellation evaluation shader.
*
* Returns the final assembly and the program's size.
*/
const unsigned *
brw_compile_tes(const struct brw_compiler *compiler, void *log_data,
void *mem_ctx,
const struct brw_tes_prog_key *key,
struct brw_tes_prog_data *prog_data,
const struct nir_shader *shader,
struct gl_shader_program *shader_prog,
int shader_time_index,
unsigned *final_assembly_size,
char **error_str);
/**
* Compile a vertex shader.
*
* Returns the final assembly and the program's size.
*/
const unsigned *
brw_compile_gs(const struct brw_compiler *compiler, void *log_data,
void *mem_ctx,
const struct brw_gs_prog_key *key,
struct brw_gs_prog_data *prog_data,
const struct nir_shader *shader,
struct gl_shader_program *shader_prog,
int shader_time_index,
unsigned *final_assembly_size,
char **error_str);
/**
* Compile a fragment shader.
*
* Returns the final assembly and the program's size.
*/
const unsigned *
brw_compile_fs(const struct brw_compiler *compiler, void *log_data,
void *mem_ctx,
const struct brw_wm_prog_key *key,
struct brw_wm_prog_data *prog_data,
const struct nir_shader *shader,
struct gl_program *prog,
int shader_time_index8,
int shader_time_index16,
bool allow_spilling,
bool use_rep_send, struct brw_vue_map *vue_map,
unsigned *final_assembly_size,
char **error_str);
/**
* Compile a compute shader.
*
* Returns the final assembly and the program's size.
*/
const unsigned *
brw_compile_cs(const struct brw_compiler *compiler, void *log_data,
void *mem_ctx,
const struct brw_cs_prog_key *key,
struct brw_cs_prog_data *prog_data,
const struct nir_shader *shader,
int shader_time_index,
unsigned *final_assembly_size,
char **error_str);
static inline uint32_t
encode_slm_size(unsigned gen, uint32_t bytes)
{
uint32_t slm_size = 0;
/* Shared Local Memory is specified as powers of two, and encoded in
* INTERFACE_DESCRIPTOR_DATA with the following representations:
*
* Size | 0 kB | 1 kB | 2 kB | 4 kB | 8 kB | 16 kB | 32 kB | 64 kB |
* -------------------------------------------------------------------
* Gen7-8 | 0 | none | none | 1 | 2 | 4 | 8 | 16 |
* -------------------------------------------------------------------
* Gen9+ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
*/
assert(bytes <= 64 * 1024);
if (bytes > 0) {
/* Shared Local Memory Size is specified as powers of two. */
slm_size = util_next_power_of_two(bytes);
if (gen >= 9) {
/* Use a minimum of 1kB; turn an exponent of 10 (1024 kB) into 1. */
slm_size = ffs(MAX2(slm_size, 1024)) - 10;
} else {
/* Use a minimum of 4kB; convert to the pre-Gen9 representation. */
slm_size = MAX2(slm_size, 4096) / 4096;
}
}
return slm_size;
}
/**
* Return true if the given shader stage is dispatched contiguously by the
* relevant fixed function starting from channel 0 of the SIMD thread, which
* implies that the dispatch mask of a thread can be assumed to have the form
* '2^n - 1' for some n.
*/
static inline bool
brw_stage_has_packed_dispatch(const struct gen_device_info *devinfo,
gl_shader_stage stage,
const struct brw_stage_prog_data *prog_data)
{
/* The code below makes assumptions about the hardware's thread dispatch
* behavior that could be proven wrong in future generations -- Make sure
* to do a full test run with brw_fs_test_dispatch_packing() hooked up to
* the NIR front-end before changing this assertion.
*/
assert(devinfo->gen <= 9);
switch (stage) {
case MESA_SHADER_FRAGMENT: {
/* The PSD discards subspans coming in with no lit samples, which in the
* per-pixel shading case implies that each subspan will either be fully
* lit (due to the VMask being used to allow derivative computations),
* or not dispatched at all. In per-sample dispatch mode individual
* samples from the same subspan have a fixed relative location within
* the SIMD thread, so dispatch of unlit samples cannot be avoided in
* general and we should return false.
*/
const struct brw_wm_prog_data *wm_prog_data =
(const struct brw_wm_prog_data *)prog_data;
return !wm_prog_data->persample_dispatch;
}
case MESA_SHADER_COMPUTE:
/* Compute shaders will be spawned with either a fully enabled dispatch
* mask or with whatever bottom/right execution mask was given to the
* GPGPU walker command to be used along the workgroup edges -- In both
* cases the dispatch mask is required to be tightly packed for our
* invocation index calculations to work.
*/
return true;
default:
/* Most remaining fixed functions are limited to use a packed dispatch
* mask due to the hardware representation of the dispatch mask as a
* single counter representing the number of enabled channels.
*/
return true;
}
}
#ifdef __cplusplus
} /* extern "C" */
#endif