blob: 3b956615c340c19eb45359b209d6fa2799ab018d [file] [log] [blame]
/*
* Copyright © 2015 Intel Corporation
* Copyright © 2019 Valve Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Jason Ekstrand (jason@jlekstrand.net)
* Samuel Pitoiset (samuel.pitoiset@gmail.com>
*/
#include "nir.h"
#include "nir_builder.h"
static nir_ssa_def *
lower_frexp_sig(nir_builder *b, nir_ssa_def *x)
{
nir_ssa_def *abs_x = nir_fabs(b, x);
nir_ssa_def *zero = nir_imm_floatN_t(b, 0, x->bit_size);
nir_ssa_def *sign_mantissa_mask, *exponent_value;
nir_ssa_def *is_not_zero = nir_fne(b, abs_x, zero);
switch (x->bit_size) {
case 16:
/* Half-precision floating-point values are stored as
* 1 sign bit;
* 5 exponent bits;
* 10 mantissa bits.
*
* An exponent shift of 10 will shift the mantissa out, leaving only the
* exponent and sign bit (which itself may be zero, if the absolute value
* was taken before the bitcast and shift).
*/
sign_mantissa_mask = nir_imm_intN_t(b, 0x83ffu, 16);
/* Exponent of floating-point values in the range [0.5, 1.0). */
exponent_value = nir_imm_intN_t(b, 0x3800u, 16);
break;
case 32:
/* Single-precision floating-point values are stored as
* 1 sign bit;
* 8 exponent bits;
* 23 mantissa bits.
*
* An exponent shift of 23 will shift the mantissa out, leaving only the
* exponent and sign bit (which itself may be zero, if the absolute value
* was taken before the bitcast and shift.
*/
sign_mantissa_mask = nir_imm_int(b, 0x807fffffu);
/* Exponent of floating-point values in the range [0.5, 1.0). */
exponent_value = nir_imm_int(b, 0x3f000000u);
break;
case 64:
/* Double-precision floating-point values are stored as
* 1 sign bit;
* 11 exponent bits;
* 52 mantissa bits.
*
* An exponent shift of 20 will shift the remaining mantissa bits out,
* leaving only the exponent and sign bit (which itself may be zero, if
* the absolute value was taken before the bitcast and shift.
*/
sign_mantissa_mask = nir_imm_int(b, 0x800fffffu);
/* Exponent of floating-point values in the range [0.5, 1.0). */
exponent_value = nir_imm_int(b, 0x3fe00000u);
break;
default:
unreachable("Invalid bitsize");
}
if (x->bit_size == 64) {
/* We only need to deal with the exponent so first we extract the upper
* 32 bits using nir_unpack_64_2x32_split_y.
*/
nir_ssa_def *upper_x = nir_unpack_64_2x32_split_y(b, x);
nir_ssa_def *zero32 = nir_imm_int(b, 0);
nir_ssa_def *new_upper =
nir_ior(b, nir_iand(b, upper_x, sign_mantissa_mask),
nir_bcsel(b, is_not_zero, exponent_value, zero32));
nir_ssa_def *lower_x = nir_unpack_64_2x32_split_x(b, x);
return nir_pack_64_2x32_split(b, lower_x, new_upper);
} else {
return nir_ior(b, nir_iand(b, x, sign_mantissa_mask),
nir_bcsel(b, is_not_zero, exponent_value, zero));
}
}
static nir_ssa_def *
lower_frexp_exp(nir_builder *b, nir_ssa_def *x)
{
nir_ssa_def *abs_x = nir_fabs(b, x);
nir_ssa_def *zero = nir_imm_floatN_t(b, 0, x->bit_size);
nir_ssa_def *is_not_zero = nir_fne(b, abs_x, zero);
nir_ssa_def *exponent;
switch (x->bit_size) {
case 16: {
nir_ssa_def *exponent_shift = nir_imm_int(b, 10);
nir_ssa_def *exponent_bias = nir_imm_intN_t(b, -14, 16);
/* Significand return must be of the same type as the input, but the
* exponent must be a 32-bit integer.
*/
exponent = nir_i2i32(b, nir_iadd(b, nir_ushr(b, abs_x, exponent_shift),
nir_bcsel(b, is_not_zero, exponent_bias, zero)));
break;
}
case 32: {
nir_ssa_def *exponent_shift = nir_imm_int(b, 23);
nir_ssa_def *exponent_bias = nir_imm_int(b, -126);
exponent = nir_iadd(b, nir_ushr(b, abs_x, exponent_shift),
nir_bcsel(b, is_not_zero, exponent_bias, zero));
break;
}
case 64: {
nir_ssa_def *exponent_shift = nir_imm_int(b, 20);
nir_ssa_def *exponent_bias = nir_imm_int(b, -1022);
nir_ssa_def *zero32 = nir_imm_int(b, 0);
nir_ssa_def *abs_upper_x = nir_unpack_64_2x32_split_y(b, abs_x);
exponent = nir_iadd(b, nir_ushr(b, abs_upper_x, exponent_shift),
nir_bcsel(b, is_not_zero, exponent_bias, zero32));
break;
}
default:
unreachable("Invalid bitsize");
}
return exponent;
}
static bool
lower_frexp_impl(nir_function_impl *impl)
{
bool progress = false;
nir_builder b;
nir_builder_init(&b, impl);
nir_foreach_block(block, impl) {
nir_foreach_instr_safe(instr, block) {
if (instr->type != nir_instr_type_alu)
continue;
nir_alu_instr *alu_instr = nir_instr_as_alu(instr);
nir_ssa_def *lower;
b.cursor = nir_before_instr(instr);
switch (alu_instr->op) {
case nir_op_frexp_sig:
lower = lower_frexp_sig(&b, nir_ssa_for_alu_src(&b, alu_instr, 0));
break;
case nir_op_frexp_exp:
lower = lower_frexp_exp(&b, nir_ssa_for_alu_src(&b, alu_instr, 0));
break;
default:
continue;
}
nir_ssa_def_rewrite_uses(&alu_instr->dest.dest.ssa,
nir_src_for_ssa(lower));
nir_instr_remove(instr);
progress = true;
}
}
if (progress) {
nir_metadata_preserve(impl, nir_metadata_block_index |
nir_metadata_dominance);
}
return progress;
}
bool
nir_lower_frexp(nir_shader *shader)
{
bool progress = false;
nir_foreach_function(function, shader) {
if (function->impl)
progress |= lower_frexp_impl(function->impl);
}
return progress;
}