blob: 689414551e97928b7b05bd2db5a7f75c6a8e4215 [file] [log] [blame]
/*
* Copyright © 2016 Broadcom
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <inttypes.h>
#include "util/format/u_format.h"
#include "util/u_helpers.h"
#include "util/u_math.h"
#include "util/u_memory.h"
#include "util/ralloc.h"
#include "util/hash_table.h"
#include "compiler/nir/nir.h"
#include "compiler/nir/nir_builder.h"
#include "common/v3d_device_info.h"
#include "v3d_compiler.h"
/* We don't do any address packing. */
#define __gen_user_data void
#define __gen_address_type uint32_t
#define __gen_address_offset(reloc) (*reloc)
#define __gen_emit_reloc(cl, reloc)
#include "cle/v3d_packet_v41_pack.h"
#define GENERAL_TMU_LOOKUP_PER_QUAD (0 << 7)
#define GENERAL_TMU_LOOKUP_PER_PIXEL (1 << 7)
#define GENERAL_TMU_LOOKUP_TYPE_8BIT_I (0 << 0)
#define GENERAL_TMU_LOOKUP_TYPE_16BIT_I (1 << 0)
#define GENERAL_TMU_LOOKUP_TYPE_VEC2 (2 << 0)
#define GENERAL_TMU_LOOKUP_TYPE_VEC3 (3 << 0)
#define GENERAL_TMU_LOOKUP_TYPE_VEC4 (4 << 0)
#define GENERAL_TMU_LOOKUP_TYPE_8BIT_UI (5 << 0)
#define GENERAL_TMU_LOOKUP_TYPE_16BIT_UI (6 << 0)
#define GENERAL_TMU_LOOKUP_TYPE_32BIT_UI (7 << 0)
#define V3D_TSY_SET_QUORUM 0
#define V3D_TSY_INC_WAITERS 1
#define V3D_TSY_DEC_WAITERS 2
#define V3D_TSY_INC_QUORUM 3
#define V3D_TSY_DEC_QUORUM 4
#define V3D_TSY_FREE_ALL 5
#define V3D_TSY_RELEASE 6
#define V3D_TSY_ACQUIRE 7
#define V3D_TSY_WAIT 8
#define V3D_TSY_WAIT_INC 9
#define V3D_TSY_WAIT_CHECK 10
#define V3D_TSY_WAIT_INC_CHECK 11
#define V3D_TSY_WAIT_CV 12
#define V3D_TSY_INC_SEMAPHORE 13
#define V3D_TSY_DEC_SEMAPHORE 14
#define V3D_TSY_SET_QUORUM_FREE_ALL 15
static void
ntq_emit_cf_list(struct v3d_compile *c, struct exec_list *list);
static void
resize_qreg_array(struct v3d_compile *c,
struct qreg **regs,
uint32_t *size,
uint32_t decl_size)
{
if (*size >= decl_size)
return;
uint32_t old_size = *size;
*size = MAX2(*size * 2, decl_size);
*regs = reralloc(c, *regs, struct qreg, *size);
if (!*regs) {
fprintf(stderr, "Malloc failure\n");
abort();
}
for (uint32_t i = old_size; i < *size; i++)
(*regs)[i] = c->undef;
}
void
vir_emit_thrsw(struct v3d_compile *c)
{
if (c->threads == 1)
return;
/* Always thread switch after each texture operation for now.
*
* We could do better by batching a bunch of texture fetches up and
* then doing one thread switch and collecting all their results
* afterward.
*/
c->last_thrsw = vir_NOP(c);
c->last_thrsw->qpu.sig.thrsw = true;
c->last_thrsw_at_top_level = !c->in_control_flow;
/* We need to lock the scoreboard before any tlb acess happens. If this
* thread switch comes after we have emitted a tlb load, then it means
* that we can't lock on the last thread switch any more.
*/
if (c->emitted_tlb_load)
c->lock_scoreboard_on_first_thrsw = true;
}
uint32_t
v3d_get_op_for_atomic_add(nir_intrinsic_instr *instr, unsigned src)
{
if (nir_src_is_const(instr->src[src])) {
int64_t add_val = nir_src_as_int(instr->src[src]);
if (add_val == 1)
return V3D_TMU_OP_WRITE_AND_READ_INC;
else if (add_val == -1)
return V3D_TMU_OP_WRITE_OR_READ_DEC;
}
return V3D_TMU_OP_WRITE_ADD_READ_PREFETCH;
}
static uint32_t
v3d_general_tmu_op(nir_intrinsic_instr *instr)
{
switch (instr->intrinsic) {
case nir_intrinsic_load_ssbo:
case nir_intrinsic_load_ubo:
case nir_intrinsic_load_uniform:
case nir_intrinsic_load_shared:
case nir_intrinsic_load_scratch:
case nir_intrinsic_store_ssbo:
case nir_intrinsic_store_shared:
case nir_intrinsic_store_scratch:
return V3D_TMU_OP_REGULAR;
case nir_intrinsic_ssbo_atomic_add:
return v3d_get_op_for_atomic_add(instr, 2);
case nir_intrinsic_shared_atomic_add:
return v3d_get_op_for_atomic_add(instr, 1);
case nir_intrinsic_ssbo_atomic_imin:
case nir_intrinsic_shared_atomic_imin:
return V3D_TMU_OP_WRITE_SMIN;
case nir_intrinsic_ssbo_atomic_umin:
case nir_intrinsic_shared_atomic_umin:
return V3D_TMU_OP_WRITE_UMIN_FULL_L1_CLEAR;
case nir_intrinsic_ssbo_atomic_imax:
case nir_intrinsic_shared_atomic_imax:
return V3D_TMU_OP_WRITE_SMAX;
case nir_intrinsic_ssbo_atomic_umax:
case nir_intrinsic_shared_atomic_umax:
return V3D_TMU_OP_WRITE_UMAX;
case nir_intrinsic_ssbo_atomic_and:
case nir_intrinsic_shared_atomic_and:
return V3D_TMU_OP_WRITE_AND_READ_INC;
case nir_intrinsic_ssbo_atomic_or:
case nir_intrinsic_shared_atomic_or:
return V3D_TMU_OP_WRITE_OR_READ_DEC;
case nir_intrinsic_ssbo_atomic_xor:
case nir_intrinsic_shared_atomic_xor:
return V3D_TMU_OP_WRITE_XOR_READ_NOT;
case nir_intrinsic_ssbo_atomic_exchange:
case nir_intrinsic_shared_atomic_exchange:
return V3D_TMU_OP_WRITE_XCHG_READ_FLUSH;
case nir_intrinsic_ssbo_atomic_comp_swap:
case nir_intrinsic_shared_atomic_comp_swap:
return V3D_TMU_OP_WRITE_CMPXCHG_READ_FLUSH;
default:
unreachable("unknown intrinsic op");
}
}
/**
* Implements indirect uniform loads and SSBO accesses through the TMU general
* memory access interface.
*/
static void
ntq_emit_tmu_general(struct v3d_compile *c, nir_intrinsic_instr *instr,
bool is_shared_or_scratch)
{
uint32_t tmu_op = v3d_general_tmu_op(instr);
/* If we were able to replace atomic_add for an inc/dec, then we
* need/can to do things slightly different, like not loading the
* amount to add/sub, as that is implicit.
*/
bool atomic_add_replaced =
((instr->intrinsic == nir_intrinsic_ssbo_atomic_add ||
instr->intrinsic == nir_intrinsic_shared_atomic_add) &&
(tmu_op == V3D_TMU_OP_WRITE_AND_READ_INC ||
tmu_op == V3D_TMU_OP_WRITE_OR_READ_DEC));
bool is_store = (instr->intrinsic == nir_intrinsic_store_ssbo ||
instr->intrinsic == nir_intrinsic_store_scratch ||
instr->intrinsic == nir_intrinsic_store_shared);
bool is_load = (instr->intrinsic == nir_intrinsic_load_uniform ||
instr->intrinsic == nir_intrinsic_load_ubo ||
instr->intrinsic == nir_intrinsic_load_ssbo ||
instr->intrinsic == nir_intrinsic_load_scratch ||
instr->intrinsic == nir_intrinsic_load_shared);
if (!is_load)
c->tmu_dirty_rcl = true;
bool has_index = !is_shared_or_scratch;
int offset_src;
if (instr->intrinsic == nir_intrinsic_load_uniform) {
offset_src = 0;
} else if (instr->intrinsic == nir_intrinsic_load_ssbo ||
instr->intrinsic == nir_intrinsic_load_ubo ||
instr->intrinsic == nir_intrinsic_load_scratch ||
instr->intrinsic == nir_intrinsic_load_shared ||
atomic_add_replaced) {
offset_src = 0 + has_index;
} else if (is_store) {
offset_src = 1 + has_index;
} else {
offset_src = 0 + has_index;
}
bool dynamic_src = !nir_src_is_const(instr->src[offset_src]);
uint32_t const_offset = 0;
if (!dynamic_src)
const_offset = nir_src_as_uint(instr->src[offset_src]);
struct qreg base_offset;
if (instr->intrinsic == nir_intrinsic_load_uniform) {
const_offset += nir_intrinsic_base(instr);
base_offset = vir_uniform(c, QUNIFORM_UBO_ADDR,
v3d_unit_data_create(0, const_offset));
const_offset = 0;
} else if (instr->intrinsic == nir_intrinsic_load_ubo) {
uint32_t index = nir_src_as_uint(instr->src[0]) + 1;
/* Note that QUNIFORM_UBO_ADDR takes a UBO index shifted up by
* 1 (0 is gallium's constant buffer 0).
*/
base_offset =
vir_uniform(c, QUNIFORM_UBO_ADDR,
v3d_unit_data_create(index, const_offset));
const_offset = 0;
} else if (is_shared_or_scratch) {
/* Shared and scratch variables have no buffer index, and all
* start from a common base that we set up at the start of
* dispatch.
*/
if (instr->intrinsic == nir_intrinsic_load_scratch ||
instr->intrinsic == nir_intrinsic_store_scratch) {
base_offset = c->spill_base;
} else {
base_offset = c->cs_shared_offset;
const_offset += nir_intrinsic_base(instr);
}
} else {
base_offset = vir_uniform(c, QUNIFORM_SSBO_OFFSET,
nir_src_as_uint(instr->src[is_store ?
1 : 0]));
}
struct qreg tmud = vir_reg(QFILE_MAGIC, V3D_QPU_WADDR_TMUD);
unsigned writemask = is_store ? nir_intrinsic_write_mask(instr) : 0;
uint32_t base_const_offset = const_offset;
int first_component = -1;
int last_component = -1;
do {
int tmu_writes = 1; /* address */
if (is_store) {
/* Find the first set of consecutive components that
* are enabled in the writemask and emit the TMUD
* instructions for them.
*/
first_component = ffs(writemask) - 1;
last_component = first_component;
while (writemask & BITFIELD_BIT(last_component + 1))
last_component++;
assert(first_component >= 0 &&
first_component <= last_component &&
last_component < instr->num_components);
struct qreg tmud = vir_reg(QFILE_MAGIC,
V3D_QPU_WADDR_TMUD);
for (int i = first_component; i <= last_component; i++) {
struct qreg data =
ntq_get_src(c, instr->src[0], i);
vir_MOV_dest(c, tmud, data);
tmu_writes++;
}
/* Update the offset for the TMU write based on the
* the first component we are writing.
*/
const_offset = base_const_offset + first_component * 4;
/* Clear these components from the writemask */
uint32_t written_mask =
BITFIELD_RANGE(first_component, tmu_writes - 1);
writemask &= ~written_mask;
} else if (!is_load && !atomic_add_replaced) {
struct qreg data =
ntq_get_src(c, instr->src[1 + has_index], 0);
vir_MOV_dest(c, tmud, data);
tmu_writes++;
if (tmu_op == V3D_TMU_OP_WRITE_CMPXCHG_READ_FLUSH) {
data = ntq_get_src(c, instr->src[2 + has_index],
0);
vir_MOV_dest(c, tmud, data);
tmu_writes++;
}
}
/* Make sure we won't exceed the 16-entry TMU fifo if each
* thread is storing at the same time.
*/
while (tmu_writes > 16 / c->threads)
c->threads /= 2;
/* The spec says that for atomics, the TYPE field is ignored,
* but that doesn't seem to be the case for CMPXCHG. Just use
* the number of tmud writes we did to decide the type (or
* choose "32bit" for atomic reads, which has been fine).
*/
uint32_t num_components;
if (is_load || atomic_add_replaced) {
num_components = instr->num_components;
} else {
assert(tmu_writes > 1);
num_components = tmu_writes - 1;
}
uint32_t perquad = is_load
? GENERAL_TMU_LOOKUP_PER_QUAD
: GENERAL_TMU_LOOKUP_PER_PIXEL;
uint32_t config = (0xffffff00 |
tmu_op << 3|
perquad);
if (num_components == 1) {
config |= GENERAL_TMU_LOOKUP_TYPE_32BIT_UI;
} else {
config |= GENERAL_TMU_LOOKUP_TYPE_VEC2 +
num_components - 2;
}
if (vir_in_nonuniform_control_flow(c)) {
vir_set_pf(vir_MOV_dest(c, vir_nop_reg(), c->execute),
V3D_QPU_PF_PUSHZ);
}
struct qreg tmua;
if (config == ~0)
tmua = vir_reg(QFILE_MAGIC, V3D_QPU_WADDR_TMUA);
else
tmua = vir_reg(QFILE_MAGIC, V3D_QPU_WADDR_TMUAU);
struct qinst *tmu;
if (dynamic_src) {
struct qreg offset = base_offset;
if (const_offset != 0) {
offset = vir_ADD(c, offset,
vir_uniform_ui(c, const_offset));
}
struct qreg data =
ntq_get_src(c, instr->src[offset_src], 0);
tmu = vir_ADD_dest(c, tmua, offset, data);
} else {
if (const_offset != 0) {
tmu = vir_ADD_dest(c, tmua, base_offset,
vir_uniform_ui(c, const_offset));
} else {
tmu = vir_MOV_dest(c, tmua, base_offset);
}
}
if (config != ~0) {
tmu->uniform =
vir_get_uniform_index(c, QUNIFORM_CONSTANT,
config);
}
if (vir_in_nonuniform_control_flow(c))
vir_set_cond(tmu, V3D_QPU_COND_IFA);
vir_emit_thrsw(c);
/* Read the result, or wait for the TMU op to complete. */
for (int i = 0; i < nir_intrinsic_dest_components(instr); i++) {
ntq_store_dest(c, &instr->dest, i,
vir_MOV(c, vir_LDTMU(c)));
}
if (nir_intrinsic_dest_components(instr) == 0)
vir_TMUWT(c);
} while (is_store && writemask != 0);
}
static struct qreg *
ntq_init_ssa_def(struct v3d_compile *c, nir_ssa_def *def)
{
struct qreg *qregs = ralloc_array(c->def_ht, struct qreg,
def->num_components);
_mesa_hash_table_insert(c->def_ht, def, qregs);
return qregs;
}
static bool
is_ld_signal(const struct v3d_qpu_sig *sig)
{
return (sig->ldunif ||
sig->ldunifa ||
sig->ldunifrf ||
sig->ldunifarf ||
sig->ldtmu ||
sig->ldvary ||
sig->ldvpm ||
sig->ldtlb ||
sig->ldtlbu);
}
/**
* This function is responsible for getting VIR results into the associated
* storage for a NIR instruction.
*
* If it's a NIR SSA def, then we just set the associated hash table entry to
* the new result.
*
* If it's a NIR reg, then we need to update the existing qreg assigned to the
* NIR destination with the incoming value. To do that without introducing
* new MOVs, we require that the incoming qreg either be a uniform, or be
* SSA-defined by the previous VIR instruction in the block and rewritable by
* this function. That lets us sneak ahead and insert the SF flag beforehand
* (knowing that the previous instruction doesn't depend on flags) and rewrite
* its destination to be the NIR reg's destination
*/
void
ntq_store_dest(struct v3d_compile *c, nir_dest *dest, int chan,
struct qreg result)
{
struct qinst *last_inst = NULL;
if (!list_is_empty(&c->cur_block->instructions))
last_inst = (struct qinst *)c->cur_block->instructions.prev;
assert((result.file == QFILE_TEMP &&
last_inst && last_inst == c->defs[result.index]));
if (dest->is_ssa) {
assert(chan < dest->ssa.num_components);
struct qreg *qregs;
struct hash_entry *entry =
_mesa_hash_table_search(c->def_ht, &dest->ssa);
if (entry)
qregs = entry->data;
else
qregs = ntq_init_ssa_def(c, &dest->ssa);
qregs[chan] = result;
} else {
nir_register *reg = dest->reg.reg;
assert(dest->reg.base_offset == 0);
assert(reg->num_array_elems == 0);
struct hash_entry *entry =
_mesa_hash_table_search(c->def_ht, reg);
struct qreg *qregs = entry->data;
/* If the previous instruction can't be predicated for
* the store into the nir_register, then emit a MOV
* that can be.
*/
if (vir_in_nonuniform_control_flow(c) &&
is_ld_signal(&c->defs[last_inst->dst.index]->qpu.sig)) {
result = vir_MOV(c, result);
last_inst = c->defs[result.index];
}
/* We know they're both temps, so just rewrite index. */
c->defs[last_inst->dst.index] = NULL;
last_inst->dst.index = qregs[chan].index;
/* If we're in control flow, then make this update of the reg
* conditional on the execution mask.
*/
if (vir_in_nonuniform_control_flow(c)) {
last_inst->dst.index = qregs[chan].index;
/* Set the flags to the current exec mask.
*/
c->cursor = vir_before_inst(last_inst);
vir_set_pf(vir_MOV_dest(c, vir_nop_reg(), c->execute),
V3D_QPU_PF_PUSHZ);
c->cursor = vir_after_inst(last_inst);
vir_set_cond(last_inst, V3D_QPU_COND_IFA);
}
}
}
struct qreg
ntq_get_src(struct v3d_compile *c, nir_src src, int i)
{
struct hash_entry *entry;
if (src.is_ssa) {
entry = _mesa_hash_table_search(c->def_ht, src.ssa);
assert(i < src.ssa->num_components);
} else {
nir_register *reg = src.reg.reg;
entry = _mesa_hash_table_search(c->def_ht, reg);
assert(reg->num_array_elems == 0);
assert(src.reg.base_offset == 0);
assert(i < reg->num_components);
}
struct qreg *qregs = entry->data;
return qregs[i];
}
static struct qreg
ntq_get_alu_src(struct v3d_compile *c, nir_alu_instr *instr,
unsigned src)
{
assert(util_is_power_of_two_or_zero(instr->dest.write_mask));
unsigned chan = ffs(instr->dest.write_mask) - 1;
struct qreg r = ntq_get_src(c, instr->src[src].src,
instr->src[src].swizzle[chan]);
assert(!instr->src[src].abs);
assert(!instr->src[src].negate);
return r;
};
static struct qreg
ntq_minify(struct v3d_compile *c, struct qreg size, struct qreg level)
{
return vir_MAX(c, vir_SHR(c, size, level), vir_uniform_ui(c, 1));
}
static void
ntq_emit_txs(struct v3d_compile *c, nir_tex_instr *instr)
{
unsigned unit = instr->texture_index;
int lod_index = nir_tex_instr_src_index(instr, nir_tex_src_lod);
int dest_size = nir_tex_instr_dest_size(instr);
struct qreg lod = c->undef;
if (lod_index != -1)
lod = ntq_get_src(c, instr->src[lod_index].src, 0);
for (int i = 0; i < dest_size; i++) {
assert(i < 3);
enum quniform_contents contents;
if (instr->is_array && i == dest_size - 1)
contents = QUNIFORM_TEXTURE_ARRAY_SIZE;
else
contents = QUNIFORM_TEXTURE_WIDTH + i;
struct qreg size = vir_uniform(c, contents, unit);
switch (instr->sampler_dim) {
case GLSL_SAMPLER_DIM_1D:
case GLSL_SAMPLER_DIM_2D:
case GLSL_SAMPLER_DIM_MS:
case GLSL_SAMPLER_DIM_3D:
case GLSL_SAMPLER_DIM_CUBE:
/* Don't minify the array size. */
if (!(instr->is_array && i == dest_size - 1)) {
size = ntq_minify(c, size, lod);
}
break;
case GLSL_SAMPLER_DIM_RECT:
/* There's no LOD field for rects */
break;
default:
unreachable("Bad sampler type");
}
ntq_store_dest(c, &instr->dest, i, size);
}
}
static void
ntq_emit_tex(struct v3d_compile *c, nir_tex_instr *instr)
{
unsigned unit = instr->texture_index;
/* Since each texture sampling op requires uploading uniforms to
* reference the texture, there's no HW support for texture size and
* you just upload uniforms containing the size.
*/
switch (instr->op) {
case nir_texop_query_levels:
ntq_store_dest(c, &instr->dest, 0,
vir_uniform(c, QUNIFORM_TEXTURE_LEVELS, unit));
return;
case nir_texop_txs:
ntq_emit_txs(c, instr);
return;
default:
break;
}
if (c->devinfo->ver >= 40)
v3d40_vir_emit_tex(c, instr);
else
v3d33_vir_emit_tex(c, instr);
}
static struct qreg
ntq_fsincos(struct v3d_compile *c, struct qreg src, bool is_cos)
{
struct qreg input = vir_FMUL(c, src, vir_uniform_f(c, 1.0f / M_PI));
if (is_cos)
input = vir_FADD(c, input, vir_uniform_f(c, 0.5));
struct qreg periods = vir_FROUND(c, input);
struct qreg sin_output = vir_SIN(c, vir_FSUB(c, input, periods));
return vir_XOR(c, sin_output, vir_SHL(c,
vir_FTOIN(c, periods),
vir_uniform_ui(c, -1)));
}
static struct qreg
ntq_fsign(struct v3d_compile *c, struct qreg src)
{
struct qreg t = vir_get_temp(c);
vir_MOV_dest(c, t, vir_uniform_f(c, 0.0));
vir_set_pf(vir_FMOV_dest(c, vir_nop_reg(), src), V3D_QPU_PF_PUSHZ);
vir_MOV_cond(c, V3D_QPU_COND_IFNA, t, vir_uniform_f(c, 1.0));
vir_set_pf(vir_FMOV_dest(c, vir_nop_reg(), src), V3D_QPU_PF_PUSHN);
vir_MOV_cond(c, V3D_QPU_COND_IFA, t, vir_uniform_f(c, -1.0));
return vir_MOV(c, t);
}
static void
emit_fragcoord_input(struct v3d_compile *c, int attr)
{
c->inputs[attr * 4 + 0] = vir_FXCD(c);
c->inputs[attr * 4 + 1] = vir_FYCD(c);
c->inputs[attr * 4 + 2] = c->payload_z;
c->inputs[attr * 4 + 3] = vir_RECIP(c, c->payload_w);
}
static struct qreg
emit_fragment_varying(struct v3d_compile *c, nir_variable *var,
uint8_t swizzle, int array_index)
{
struct qreg r3 = vir_reg(QFILE_MAGIC, V3D_QPU_WADDR_R3);
struct qreg r5 = vir_reg(QFILE_MAGIC, V3D_QPU_WADDR_R5);
struct qreg vary;
if (c->devinfo->ver >= 41) {
struct qinst *ldvary = vir_add_inst(V3D_QPU_A_NOP, c->undef,
c->undef, c->undef);
ldvary->qpu.sig.ldvary = true;
vary = vir_emit_def(c, ldvary);
} else {
vir_NOP(c)->qpu.sig.ldvary = true;
vary = r3;
}
/* For gl_PointCoord input or distance along a line, we'll be called
* with no nir_variable, and we don't count toward VPM size so we
* don't track an input slot.
*/
if (!var) {
return vir_FADD(c, vir_FMUL(c, vary, c->payload_w), r5);
}
int i = c->num_inputs++;
c->input_slots[i] =
v3d_slot_from_slot_and_component(var->data.location +
array_index, swizzle);
switch (var->data.interpolation) {
case INTERP_MODE_NONE:
/* If a gl_FrontColor or gl_BackColor input has no interp
* qualifier, then if we're using glShadeModel(GL_FLAT) it
* needs to be flat shaded.
*/
switch (var->data.location + array_index) {
case VARYING_SLOT_COL0:
case VARYING_SLOT_COL1:
case VARYING_SLOT_BFC0:
case VARYING_SLOT_BFC1:
if (c->fs_key->shade_model_flat) {
BITSET_SET(c->flat_shade_flags, i);
vir_MOV_dest(c, c->undef, vary);
return vir_MOV(c, r5);
} else {
return vir_FADD(c, vir_FMUL(c, vary,
c->payload_w), r5);
}
default:
break;
}
/* FALLTHROUGH */
case INTERP_MODE_SMOOTH:
if (var->data.centroid) {
BITSET_SET(c->centroid_flags, i);
return vir_FADD(c, vir_FMUL(c, vary,
c->payload_w_centroid), r5);
} else {
return vir_FADD(c, vir_FMUL(c, vary, c->payload_w), r5);
}
case INTERP_MODE_NOPERSPECTIVE:
BITSET_SET(c->noperspective_flags, i);
return vir_FADD(c, vir_MOV(c, vary), r5);
case INTERP_MODE_FLAT:
BITSET_SET(c->flat_shade_flags, i);
vir_MOV_dest(c, c->undef, vary);
return vir_MOV(c, r5);
default:
unreachable("Bad interp mode");
}
}
static void
emit_fragment_input(struct v3d_compile *c, int attr, nir_variable *var,
int array_index)
{
for (int i = 0; i < glsl_get_vector_elements(var->type); i++) {
int chan = var->data.location_frac + i;
c->inputs[attr * 4 + chan] =
emit_fragment_varying(c, var, chan, array_index);
}
}
static void
emit_compact_fragment_input(struct v3d_compile *c, int attr, nir_variable *var,
int array_index)
{
/* Compact variables are scalar arrays where each set of 4 elements
* consumes a single location.
*/
int loc_offset = array_index / 4;
int chan = var->data.location_frac + array_index % 4;
c->inputs[(attr + loc_offset) * 4 + chan] =
emit_fragment_varying(c, var, chan, loc_offset);
}
static void
add_output(struct v3d_compile *c,
uint32_t decl_offset,
uint8_t slot,
uint8_t swizzle)
{
uint32_t old_array_size = c->outputs_array_size;
resize_qreg_array(c, &c->outputs, &c->outputs_array_size,
decl_offset + 1);
if (old_array_size != c->outputs_array_size) {
c->output_slots = reralloc(c,
c->output_slots,
struct v3d_varying_slot,
c->outputs_array_size);
}
c->output_slots[decl_offset] =
v3d_slot_from_slot_and_component(slot, swizzle);
}
/**
* If compare_instr is a valid comparison instruction, emits the
* compare_instr's comparison and returns the sel_instr's return value based
* on the compare_instr's result.
*/
static bool
ntq_emit_comparison(struct v3d_compile *c,
nir_alu_instr *compare_instr,
enum v3d_qpu_cond *out_cond)
{
struct qreg src0 = ntq_get_alu_src(c, compare_instr, 0);
struct qreg src1;
if (nir_op_infos[compare_instr->op].num_inputs > 1)
src1 = ntq_get_alu_src(c, compare_instr, 1);
bool cond_invert = false;
struct qreg nop = vir_nop_reg();
switch (compare_instr->op) {
case nir_op_feq32:
case nir_op_seq:
vir_set_pf(vir_FCMP_dest(c, nop, src0, src1), V3D_QPU_PF_PUSHZ);
break;
case nir_op_ieq32:
vir_set_pf(vir_XOR_dest(c, nop, src0, src1), V3D_QPU_PF_PUSHZ);
break;
case nir_op_fne32:
case nir_op_sne:
vir_set_pf(vir_FCMP_dest(c, nop, src0, src1), V3D_QPU_PF_PUSHZ);
cond_invert = true;
break;
case nir_op_ine32:
vir_set_pf(vir_XOR_dest(c, nop, src0, src1), V3D_QPU_PF_PUSHZ);
cond_invert = true;
break;
case nir_op_fge32:
case nir_op_sge:
vir_set_pf(vir_FCMP_dest(c, nop, src1, src0), V3D_QPU_PF_PUSHC);
break;
case nir_op_ige32:
vir_set_pf(vir_MIN_dest(c, nop, src1, src0), V3D_QPU_PF_PUSHC);
cond_invert = true;
break;
case nir_op_uge32:
vir_set_pf(vir_SUB_dest(c, nop, src0, src1), V3D_QPU_PF_PUSHC);
cond_invert = true;
break;
case nir_op_slt:
case nir_op_flt32:
vir_set_pf(vir_FCMP_dest(c, nop, src0, src1), V3D_QPU_PF_PUSHN);
break;
case nir_op_ilt32:
vir_set_pf(vir_MIN_dest(c, nop, src1, src0), V3D_QPU_PF_PUSHC);
break;
case nir_op_ult32:
vir_set_pf(vir_SUB_dest(c, nop, src0, src1), V3D_QPU_PF_PUSHC);
break;
case nir_op_i2b32:
vir_set_pf(vir_MOV_dest(c, nop, src0), V3D_QPU_PF_PUSHZ);
cond_invert = true;
break;
case nir_op_f2b32:
vir_set_pf(vir_FMOV_dest(c, nop, src0), V3D_QPU_PF_PUSHZ);
cond_invert = true;
break;
default:
return false;
}
*out_cond = cond_invert ? V3D_QPU_COND_IFNA : V3D_QPU_COND_IFA;
return true;
}
/* Finds an ALU instruction that generates our src value that could
* (potentially) be greedily emitted in the consuming instruction.
*/
static struct nir_alu_instr *
ntq_get_alu_parent(nir_src src)
{
if (!src.is_ssa || src.ssa->parent_instr->type != nir_instr_type_alu)
return NULL;
nir_alu_instr *instr = nir_instr_as_alu(src.ssa->parent_instr);
if (!instr)
return NULL;
/* If the ALU instr's srcs are non-SSA, then we would have to avoid
* moving emission of the ALU instr down past another write of the
* src.
*/
for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
if (!instr->src[i].src.is_ssa)
return NULL;
}
return instr;
}
/* Turns a NIR bool into a condition code to predicate on. */
static enum v3d_qpu_cond
ntq_emit_bool_to_cond(struct v3d_compile *c, nir_src src)
{
nir_alu_instr *compare = ntq_get_alu_parent(src);
if (!compare)
goto out;
enum v3d_qpu_cond cond;
if (ntq_emit_comparison(c, compare, &cond))
return cond;
out:
vir_set_pf(vir_MOV_dest(c, vir_nop_reg(), ntq_get_src(c, src, 0)),
V3D_QPU_PF_PUSHZ);
return V3D_QPU_COND_IFNA;
}
static void
ntq_emit_alu(struct v3d_compile *c, nir_alu_instr *instr)
{
/* This should always be lowered to ALU operations for V3D. */
assert(!instr->dest.saturate);
/* Vectors are special in that they have non-scalarized writemasks,
* and just take the first swizzle channel for each argument in order
* into each writemask channel.
*/
if (instr->op == nir_op_vec2 ||
instr->op == nir_op_vec3 ||
instr->op == nir_op_vec4) {
struct qreg srcs[4];
for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++)
srcs[i] = ntq_get_src(c, instr->src[i].src,
instr->src[i].swizzle[0]);
for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++)
ntq_store_dest(c, &instr->dest.dest, i,
vir_MOV(c, srcs[i]));
return;
}
/* General case: We can just grab the one used channel per src. */
struct qreg src[nir_op_infos[instr->op].num_inputs];
for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
src[i] = ntq_get_alu_src(c, instr, i);
}
struct qreg result;
switch (instr->op) {
case nir_op_mov:
result = vir_MOV(c, src[0]);
break;
case nir_op_fneg:
result = vir_XOR(c, src[0], vir_uniform_ui(c, 1 << 31));
break;
case nir_op_ineg:
result = vir_NEG(c, src[0]);
break;
case nir_op_fmul:
result = vir_FMUL(c, src[0], src[1]);
break;
case nir_op_fadd:
result = vir_FADD(c, src[0], src[1]);
break;
case nir_op_fsub:
result = vir_FSUB(c, src[0], src[1]);
break;
case nir_op_fmin:
result = vir_FMIN(c, src[0], src[1]);
break;
case nir_op_fmax:
result = vir_FMAX(c, src[0], src[1]);
break;
case nir_op_f2i32: {
nir_alu_instr *src0_alu = ntq_get_alu_parent(instr->src[0].src);
if (src0_alu && src0_alu->op == nir_op_fround_even) {
result = vir_FTOIN(c, ntq_get_alu_src(c, src0_alu, 0));
} else {
result = vir_FTOIZ(c, src[0]);
}
break;
}
case nir_op_f2u32:
result = vir_FTOUZ(c, src[0]);
break;
case nir_op_i2f32:
result = vir_ITOF(c, src[0]);
break;
case nir_op_u2f32:
result = vir_UTOF(c, src[0]);
break;
case nir_op_b2f32:
result = vir_AND(c, src[0], vir_uniform_f(c, 1.0));
break;
case nir_op_b2i32:
result = vir_AND(c, src[0], vir_uniform_ui(c, 1));
break;
case nir_op_iadd:
result = vir_ADD(c, src[0], src[1]);
break;
case nir_op_ushr:
result = vir_SHR(c, src[0], src[1]);
break;
case nir_op_isub:
result = vir_SUB(c, src[0], src[1]);
break;
case nir_op_ishr:
result = vir_ASR(c, src[0], src[1]);
break;
case nir_op_ishl:
result = vir_SHL(c, src[0], src[1]);
break;
case nir_op_imin:
result = vir_MIN(c, src[0], src[1]);
break;
case nir_op_umin:
result = vir_UMIN(c, src[0], src[1]);
break;
case nir_op_imax:
result = vir_MAX(c, src[0], src[1]);
break;
case nir_op_umax:
result = vir_UMAX(c, src[0], src[1]);
break;
case nir_op_iand:
result = vir_AND(c, src[0], src[1]);
break;
case nir_op_ior:
result = vir_OR(c, src[0], src[1]);
break;
case nir_op_ixor:
result = vir_XOR(c, src[0], src[1]);
break;
case nir_op_inot:
result = vir_NOT(c, src[0]);
break;
case nir_op_ufind_msb:
result = vir_SUB(c, vir_uniform_ui(c, 31), vir_CLZ(c, src[0]));
break;
case nir_op_imul:
result = vir_UMUL(c, src[0], src[1]);
break;
case nir_op_seq:
case nir_op_sne:
case nir_op_sge:
case nir_op_slt: {
enum v3d_qpu_cond cond;
ASSERTED bool ok = ntq_emit_comparison(c, instr, &cond);
assert(ok);
result = vir_MOV(c, vir_SEL(c, cond,
vir_uniform_f(c, 1.0),
vir_uniform_f(c, 0.0)));
break;
}
case nir_op_i2b32:
case nir_op_f2b32:
case nir_op_feq32:
case nir_op_fne32:
case nir_op_fge32:
case nir_op_flt32:
case nir_op_ieq32:
case nir_op_ine32:
case nir_op_ige32:
case nir_op_uge32:
case nir_op_ilt32:
case nir_op_ult32: {
enum v3d_qpu_cond cond;
ASSERTED bool ok = ntq_emit_comparison(c, instr, &cond);
assert(ok);
result = vir_MOV(c, vir_SEL(c, cond,
vir_uniform_ui(c, ~0),
vir_uniform_ui(c, 0)));
break;
}
case nir_op_b32csel:
result = vir_MOV(c,
vir_SEL(c,
ntq_emit_bool_to_cond(c, instr->src[0].src),
src[1], src[2]));
break;
case nir_op_fcsel:
vir_set_pf(vir_MOV_dest(c, vir_nop_reg(), src[0]),
V3D_QPU_PF_PUSHZ);
result = vir_MOV(c, vir_SEL(c, V3D_QPU_COND_IFNA,
src[1], src[2]));
break;
case nir_op_frcp:
result = vir_RECIP(c, src[0]);
break;
case nir_op_frsq:
result = vir_RSQRT(c, src[0]);
break;
case nir_op_fexp2:
result = vir_EXP(c, src[0]);
break;
case nir_op_flog2:
result = vir_LOG(c, src[0]);
break;
case nir_op_fceil:
result = vir_FCEIL(c, src[0]);
break;
case nir_op_ffloor:
result = vir_FFLOOR(c, src[0]);
break;
case nir_op_fround_even:
result = vir_FROUND(c, src[0]);
break;
case nir_op_ftrunc:
result = vir_FTRUNC(c, src[0]);
break;
case nir_op_fsin:
result = ntq_fsincos(c, src[0], false);
break;
case nir_op_fcos:
result = ntq_fsincos(c, src[0], true);
break;
case nir_op_fsign:
result = ntq_fsign(c, src[0]);
break;
case nir_op_fabs: {
result = vir_FMOV(c, src[0]);
vir_set_unpack(c->defs[result.index], 0, V3D_QPU_UNPACK_ABS);
break;
}
case nir_op_iabs:
result = vir_MAX(c, src[0], vir_NEG(c, src[0]));
break;
case nir_op_fddx:
case nir_op_fddx_coarse:
case nir_op_fddx_fine:
result = vir_FDX(c, src[0]);
break;
case nir_op_fddy:
case nir_op_fddy_coarse:
case nir_op_fddy_fine:
result = vir_FDY(c, src[0]);
break;
case nir_op_uadd_carry:
vir_set_pf(vir_ADD_dest(c, vir_nop_reg(), src[0], src[1]),
V3D_QPU_PF_PUSHC);
result = vir_MOV(c, vir_SEL(c, V3D_QPU_COND_IFA,
vir_uniform_ui(c, ~0),
vir_uniform_ui(c, 0)));
break;
case nir_op_pack_half_2x16_split:
result = vir_VFPACK(c, src[0], src[1]);
break;
case nir_op_unpack_half_2x16_split_x:
result = vir_FMOV(c, src[0]);
vir_set_unpack(c->defs[result.index], 0, V3D_QPU_UNPACK_L);
break;
case nir_op_unpack_half_2x16_split_y:
result = vir_FMOV(c, src[0]);
vir_set_unpack(c->defs[result.index], 0, V3D_QPU_UNPACK_H);
break;
default:
fprintf(stderr, "unknown NIR ALU inst: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
abort();
}
/* We have a scalar result, so the instruction should only have a
* single channel written to.
*/
assert(util_is_power_of_two_or_zero(instr->dest.write_mask));
ntq_store_dest(c, &instr->dest.dest,
ffs(instr->dest.write_mask) - 1, result);
}
/* Each TLB read/write setup (a render target or depth buffer) takes an 8-bit
* specifier. They come from a register that's preloaded with 0xffffffff
* (0xff gets you normal vec4 f16 RT0 writes), and when one is neaded the low
* 8 bits are shifted off the bottom and 0xff shifted in from the top.
*/
#define TLB_TYPE_F16_COLOR (3 << 6)
#define TLB_TYPE_I32_COLOR (1 << 6)
#define TLB_TYPE_F32_COLOR (0 << 6)
#define TLB_RENDER_TARGET_SHIFT 3 /* Reversed! 7 = RT 0, 0 = RT 7. */
#define TLB_SAMPLE_MODE_PER_SAMPLE (0 << 2)
#define TLB_SAMPLE_MODE_PER_PIXEL (1 << 2)
#define TLB_F16_SWAP_HI_LO (1 << 1)
#define TLB_VEC_SIZE_4_F16 (1 << 0)
#define TLB_VEC_SIZE_2_F16 (0 << 0)
#define TLB_VEC_SIZE_MINUS_1_SHIFT 0
/* Triggers Z/Stencil testing, used when the shader state's "FS modifies Z"
* flag is set.
*/
#define TLB_TYPE_DEPTH ((2 << 6) | (0 << 4))
#define TLB_DEPTH_TYPE_INVARIANT (0 << 2) /* Unmodified sideband input used */
#define TLB_DEPTH_TYPE_PER_PIXEL (1 << 2) /* QPU result used */
#define TLB_V42_DEPTH_TYPE_INVARIANT (0 << 3) /* Unmodified sideband input used */
#define TLB_V42_DEPTH_TYPE_PER_PIXEL (1 << 3) /* QPU result used */
/* Stencil is a single 32-bit write. */
#define TLB_TYPE_STENCIL_ALPHA ((2 << 6) | (1 << 4))
static void
vir_emit_tlb_color_write(struct v3d_compile *c, unsigned rt)
{
if (!(c->fs_key->cbufs & (1 << rt)) || !c->output_color_var[rt])
return;
struct qreg tlb_reg = vir_magic_reg(V3D_QPU_WADDR_TLB);
struct qreg tlbu_reg = vir_magic_reg(V3D_QPU_WADDR_TLBU);
nir_variable *var = c->output_color_var[rt];
int num_components = glsl_get_vector_elements(var->type);
uint32_t conf = 0xffffff00;
struct qinst *inst;
conf |= c->msaa_per_sample_output ? TLB_SAMPLE_MODE_PER_SAMPLE :
TLB_SAMPLE_MODE_PER_PIXEL;
conf |= (7 - rt) << TLB_RENDER_TARGET_SHIFT;
if (c->fs_key->swap_color_rb & (1 << rt))
num_components = MAX2(num_components, 3);
assert(num_components != 0);
enum glsl_base_type type = glsl_get_base_type(var->type);
bool is_int_format = type == GLSL_TYPE_INT || type == GLSL_TYPE_UINT;
bool is_32b_tlb_format = is_int_format ||
(c->fs_key->f32_color_rb & (1 << rt));
if (is_int_format) {
/* The F32 vs I32 distinction was dropped in 4.2. */
if (c->devinfo->ver < 42)
conf |= TLB_TYPE_I32_COLOR;
else
conf |= TLB_TYPE_F32_COLOR;
conf |= ((num_components - 1) << TLB_VEC_SIZE_MINUS_1_SHIFT);
} else {
if (c->fs_key->f32_color_rb & (1 << rt)) {
conf |= TLB_TYPE_F32_COLOR;
conf |= ((num_components - 1) <<
TLB_VEC_SIZE_MINUS_1_SHIFT);
} else {
conf |= TLB_TYPE_F16_COLOR;
conf |= TLB_F16_SWAP_HI_LO;
if (num_components >= 3)
conf |= TLB_VEC_SIZE_4_F16;
else
conf |= TLB_VEC_SIZE_2_F16;
}
}
int num_samples = c->msaa_per_sample_output ? V3D_MAX_SAMPLES : 1;
for (int i = 0; i < num_samples; i++) {
struct qreg *color = c->msaa_per_sample_output ?
&c->sample_colors[(rt * V3D_MAX_SAMPLES + i) * 4] :
&c->outputs[var->data.driver_location * 4];
struct qreg r = color[0];
struct qreg g = color[1];
struct qreg b = color[2];
struct qreg a = color[3];
if (c->fs_key->swap_color_rb & (1 << rt)) {
r = color[2];
b = color[0];
}
if (c->fs_key->sample_alpha_to_one)
a = vir_uniform_f(c, 1.0);
if (is_32b_tlb_format) {
if (i == 0) {
inst = vir_MOV_dest(c, tlbu_reg, r);
inst->uniform =
vir_get_uniform_index(c,
QUNIFORM_CONSTANT,
conf);
} else {
inst = vir_MOV_dest(c, tlb_reg, r);
}
if (num_components >= 2)
vir_MOV_dest(c, tlb_reg, g);
if (num_components >= 3)
vir_MOV_dest(c, tlb_reg, b);
if (num_components >= 4)
vir_MOV_dest(c, tlb_reg, a);
} else {
inst = vir_VFPACK_dest(c, tlb_reg, r, g);
if (conf != ~0 && i == 0) {
inst->dst = tlbu_reg;
inst->uniform =
vir_get_uniform_index(c,
QUNIFORM_CONSTANT,
conf);
}
if (num_components >= 3)
inst = vir_VFPACK_dest(c, tlb_reg, b, a);
}
}
}
static void
emit_frag_end(struct v3d_compile *c)
{
/* XXX
if (c->output_sample_mask_index != -1) {
vir_MS_MASK(c, c->outputs[c->output_sample_mask_index]);
}
*/
bool has_any_tlb_color_write = false;
for (int rt = 0; rt < V3D_MAX_DRAW_BUFFERS; rt++) {
if (c->fs_key->cbufs & (1 << rt) && c->output_color_var[rt])
has_any_tlb_color_write = true;
}
if (c->fs_key->sample_alpha_to_coverage && c->output_color_var[0]) {
struct nir_variable *var = c->output_color_var[0];
struct qreg *color = &c->outputs[var->data.driver_location * 4];
vir_SETMSF_dest(c, vir_nop_reg(),
vir_AND(c,
vir_MSF(c),
vir_FTOC(c, color[3])));
}
struct qreg tlbu_reg = vir_magic_reg(V3D_QPU_WADDR_TLBU);
if (c->output_position_index != -1) {
struct qinst *inst = vir_MOV_dest(c, tlbu_reg,
c->outputs[c->output_position_index]);
uint8_t tlb_specifier = TLB_TYPE_DEPTH;
if (c->devinfo->ver >= 42) {
tlb_specifier |= (TLB_V42_DEPTH_TYPE_PER_PIXEL |
TLB_SAMPLE_MODE_PER_PIXEL);
} else
tlb_specifier |= TLB_DEPTH_TYPE_PER_PIXEL;
inst->uniform = vir_get_uniform_index(c, QUNIFORM_CONSTANT,
tlb_specifier |
0xffffff00);
c->writes_z = true;
} else if (c->s->info.fs.uses_discard ||
!c->s->info.fs.early_fragment_tests ||
c->fs_key->sample_alpha_to_coverage ||
!has_any_tlb_color_write) {
/* Emit passthrough Z if it needed to be delayed until shader
* end due to potential discards.
*
* Since (single-threaded) fragment shaders always need a TLB
* write, emit passthrouh Z if we didn't have any color
* buffers and flag us as potentially discarding, so that we
* can use Z as the TLB write.
*/
c->s->info.fs.uses_discard = true;
struct qinst *inst = vir_MOV_dest(c, tlbu_reg,
vir_nop_reg());
uint8_t tlb_specifier = TLB_TYPE_DEPTH;
if (c->devinfo->ver >= 42) {
/* The spec says the PER_PIXEL flag is ignored for
* invariant writes, but the simulator demands it.
*/
tlb_specifier |= (TLB_V42_DEPTH_TYPE_INVARIANT |
TLB_SAMPLE_MODE_PER_PIXEL);
} else {
tlb_specifier |= TLB_DEPTH_TYPE_INVARIANT;
}
inst->uniform = vir_get_uniform_index(c,
QUNIFORM_CONSTANT,
tlb_specifier |
0xffffff00);
c->writes_z = true;
}
/* XXX: Performance improvement: Merge Z write and color writes TLB
* uniform setup
*/
for (int rt = 0; rt < V3D_MAX_DRAW_BUFFERS; rt++)
vir_emit_tlb_color_write(c, rt);
}
static inline void
vir_VPM_WRITE_indirect(struct v3d_compile *c,
struct qreg val,
struct qreg vpm_index)
{
assert(c->devinfo->ver >= 40);
vir_STVPMV(c, vpm_index, val);
}
static void
vir_VPM_WRITE(struct v3d_compile *c, struct qreg val, uint32_t vpm_index)
{
if (c->devinfo->ver >= 40) {
vir_VPM_WRITE_indirect(c, val, vir_uniform_ui(c, vpm_index));
} else {
/* XXX: v3d33_vir_vpm_write_setup(c); */
vir_MOV_dest(c, vir_reg(QFILE_MAGIC, V3D_QPU_WADDR_VPM), val);
}
}
static void
emit_vert_end(struct v3d_compile *c)
{
/* GFXH-1684: VPM writes need to be complete by the end of the shader.
*/
if (c->devinfo->ver >= 40 && c->devinfo->ver <= 42)
vir_VPMWT(c);
}
static void
emit_geom_end(struct v3d_compile *c)
{
/* GFXH-1684: VPM writes need to be complete by the end of the shader.
*/
if (c->devinfo->ver >= 40 && c->devinfo->ver <= 42)
vir_VPMWT(c);
}
void
v3d_optimize_nir(struct nir_shader *s)
{
bool progress;
unsigned lower_flrp =
(s->options->lower_flrp16 ? 16 : 0) |
(s->options->lower_flrp32 ? 32 : 0) |
(s->options->lower_flrp64 ? 64 : 0);
do {
progress = false;
NIR_PASS_V(s, nir_lower_vars_to_ssa);
NIR_PASS(progress, s, nir_lower_alu_to_scalar, NULL, NULL);
NIR_PASS(progress, s, nir_lower_phis_to_scalar);
NIR_PASS(progress, s, nir_copy_prop);
NIR_PASS(progress, s, nir_opt_remove_phis);
NIR_PASS(progress, s, nir_opt_dce);
NIR_PASS(progress, s, nir_opt_dead_cf);
NIR_PASS(progress, s, nir_opt_cse);
NIR_PASS(progress, s, nir_opt_peephole_select, 8, true, true);
NIR_PASS(progress, s, nir_opt_algebraic);
NIR_PASS(progress, s, nir_opt_constant_folding);
if (lower_flrp != 0) {
bool lower_flrp_progress = false;
NIR_PASS(lower_flrp_progress, s, nir_lower_flrp,
lower_flrp,
false /* always_precise */,
s->options->lower_ffma);
if (lower_flrp_progress) {
NIR_PASS(progress, s, nir_opt_constant_folding);
progress = true;
}
/* Nothing should rematerialize any flrps, so we only
* need to do this lowering once.
*/
lower_flrp = 0;
}
NIR_PASS(progress, s, nir_opt_undef);
} while (progress);
NIR_PASS(progress, s, nir_opt_move, nir_move_load_ubo);
}
static int
driver_location_compare(const void *in_a, const void *in_b)
{
const nir_variable *const *a = in_a;
const nir_variable *const *b = in_b;
if ((*a)->data.driver_location == (*b)->data.driver_location)
return (*a)->data.location_frac - (*b)->data.location_frac;
return (*a)->data.driver_location - (*b)->data.driver_location;
}
static struct qreg
ntq_emit_vpm_read(struct v3d_compile *c,
uint32_t *num_components_queued,
uint32_t *remaining,
uint32_t vpm_index)
{
struct qreg vpm = vir_reg(QFILE_VPM, vpm_index);
if (c->devinfo->ver >= 40 ) {
return vir_LDVPMV_IN(c,
vir_uniform_ui(c,
(*num_components_queued)++));
}
if (*num_components_queued != 0) {
(*num_components_queued)--;
return vir_MOV(c, vpm);
}
uint32_t num_components = MIN2(*remaining, 32);
v3d33_vir_vpm_read_setup(c, num_components);
*num_components_queued = num_components - 1;
*remaining -= num_components;
return vir_MOV(c, vpm);
}
static void
ntq_setup_vs_inputs(struct v3d_compile *c)
{
/* Figure out how many components of each vertex attribute the shader
* uses. Each variable should have been split to individual
* components and unused ones DCEed. The vertex fetcher will load
* from the start of the attribute to the number of components we
* declare we need in c->vattr_sizes[].
*/
nir_foreach_shader_in_variable(var, c->s) {
/* No VS attribute array support. */
assert(MAX2(glsl_get_length(var->type), 1) == 1);
unsigned loc = var->data.driver_location;
int start_component = var->data.location_frac;
int num_components = glsl_get_components(var->type);
c->vattr_sizes[loc] = MAX2(c->vattr_sizes[loc],
start_component + num_components);
}
unsigned num_components = 0;
uint32_t vpm_components_queued = 0;
bool uses_iid = c->s->info.system_values_read &
(1ull << SYSTEM_VALUE_INSTANCE_ID);
bool uses_vid = c->s->info.system_values_read &
(1ull << SYSTEM_VALUE_VERTEX_ID);
num_components += uses_iid;
num_components += uses_vid;
for (int i = 0; i < ARRAY_SIZE(c->vattr_sizes); i++)
num_components += c->vattr_sizes[i];
if (uses_iid) {
c->iid = ntq_emit_vpm_read(c, &vpm_components_queued,
&num_components, ~0);
}
if (uses_vid) {
c->vid = ntq_emit_vpm_read(c, &vpm_components_queued,
&num_components, ~0);
}
/* The actual loads will happen directly in nir_intrinsic_load_input
* on newer versions.
*/
if (c->devinfo->ver >= 40)
return;
for (int loc = 0; loc < ARRAY_SIZE(c->vattr_sizes); loc++) {
resize_qreg_array(c, &c->inputs, &c->inputs_array_size,
(loc + 1) * 4);
for (int i = 0; i < c->vattr_sizes[loc]; i++) {
c->inputs[loc * 4 + i] =
ntq_emit_vpm_read(c,
&vpm_components_queued,
&num_components,
loc * 4 + i);
}
}
if (c->devinfo->ver >= 40) {
assert(vpm_components_queued == num_components);
} else {
assert(vpm_components_queued == 0);
assert(num_components == 0);
}
}
static bool
program_reads_point_coord(struct v3d_compile *c)
{
nir_foreach_shader_in_variable(var, c->s) {
if (util_varying_is_point_coord(var->data.location,
c->fs_key->point_sprite_mask)) {
return true;
}
}
return false;
}
static void
get_sorted_input_variables(struct v3d_compile *c,
unsigned *num_entries,
nir_variable ***vars)
{
*num_entries = 0;
nir_foreach_shader_in_variable(var, c->s)
(*num_entries)++;
*vars = ralloc_array(c, nir_variable *, *num_entries);
unsigned i = 0;
nir_foreach_shader_in_variable(var, c->s)
(*vars)[i++] = var;
/* Sort the variables so that we emit the input setup in
* driver_location order. This is required for VPM reads, whose data
* is fetched into the VPM in driver_location (TGSI register index)
* order.
*/
qsort(*vars, *num_entries, sizeof(**vars), driver_location_compare);
}
static void
ntq_setup_gs_inputs(struct v3d_compile *c)
{
nir_variable **vars;
unsigned num_entries;
get_sorted_input_variables(c, &num_entries, &vars);
for (unsigned i = 0; i < num_entries; i++) {
nir_variable *var = vars[i];
/* All GS inputs are arrays with as many entries as vertices
* in the input primitive, but here we only care about the
* per-vertex input type.
*/
const struct glsl_type *type = glsl_without_array(var->type);
unsigned array_len = MAX2(glsl_get_length(type), 1);
unsigned loc = var->data.driver_location;
resize_qreg_array(c, &c->inputs, &c->inputs_array_size,
(loc + array_len) * 4);
for (unsigned j = 0; j < array_len; j++) {
unsigned num_elements = glsl_get_vector_elements(type);
for (unsigned k = 0; k < num_elements; k++) {
unsigned chan = var->data.location_frac + k;
unsigned input_idx = c->num_inputs++;
struct v3d_varying_slot slot =
v3d_slot_from_slot_and_component(var->data.location + j, chan);
c->input_slots[input_idx] = slot;
}
}
}
}
static void
ntq_setup_fs_inputs(struct v3d_compile *c)
{
nir_variable **vars;
unsigned num_entries;
get_sorted_input_variables(c, &num_entries, &vars);
for (unsigned i = 0; i < num_entries; i++) {
nir_variable *var = vars[i];
unsigned array_len = MAX2(glsl_get_length(var->type), 1);
unsigned loc = var->data.driver_location;
resize_qreg_array(c, &c->inputs, &c->inputs_array_size,
(loc + array_len) * 4);
if (var->data.location == VARYING_SLOT_POS) {
emit_fragcoord_input(c, loc);
} else if (util_varying_is_point_coord(var->data.location,
c->fs_key->point_sprite_mask)) {
c->inputs[loc * 4 + 0] = c->point_x;
c->inputs[loc * 4 + 1] = c->point_y;
} else if (var->data.compact) {
for (int j = 0; j < array_len; j++)
emit_compact_fragment_input(c, loc, var, j);
} else {
for (int j = 0; j < array_len; j++)
emit_fragment_input(c, loc + j, var, j);
}
}
}
static void
ntq_setup_outputs(struct v3d_compile *c)
{
if (c->s->info.stage != MESA_SHADER_FRAGMENT)
return;
nir_foreach_shader_out_variable(var, c->s) {
unsigned array_len = MAX2(glsl_get_length(var->type), 1);
unsigned loc = var->data.driver_location * 4;
assert(array_len == 1);
(void)array_len;
for (int i = 0; i < 4 - var->data.location_frac; i++) {
add_output(c, loc + var->data.location_frac + i,
var->data.location,
var->data.location_frac + i);
}
switch (var->data.location) {
case FRAG_RESULT_COLOR:
c->output_color_var[0] = var;
c->output_color_var[1] = var;
c->output_color_var[2] = var;
c->output_color_var[3] = var;
break;
case FRAG_RESULT_DATA0:
case FRAG_RESULT_DATA1:
case FRAG_RESULT_DATA2:
case FRAG_RESULT_DATA3:
c->output_color_var[var->data.location -
FRAG_RESULT_DATA0] = var;
break;
case FRAG_RESULT_DEPTH:
c->output_position_index = loc;
break;
case FRAG_RESULT_SAMPLE_MASK:
c->output_sample_mask_index = loc;
break;
}
}
}
/**
* Sets up the mapping from nir_register to struct qreg *.
*
* Each nir_register gets a struct qreg per 32-bit component being stored.
*/
static void
ntq_setup_registers(struct v3d_compile *c, struct exec_list *list)
{
foreach_list_typed(nir_register, nir_reg, node, list) {
unsigned array_len = MAX2(nir_reg->num_array_elems, 1);
struct qreg *qregs = ralloc_array(c->def_ht, struct qreg,
array_len *
nir_reg->num_components);
_mesa_hash_table_insert(c->def_ht, nir_reg, qregs);
for (int i = 0; i < array_len * nir_reg->num_components; i++)
qregs[i] = vir_get_temp(c);
}
}
static void
ntq_emit_load_const(struct v3d_compile *c, nir_load_const_instr *instr)
{
/* XXX perf: Experiment with using immediate loads to avoid having
* these end up in the uniform stream. Watch out for breaking the
* small immediates optimization in the process!
*/
struct qreg *qregs = ntq_init_ssa_def(c, &instr->def);
for (int i = 0; i < instr->def.num_components; i++)
qregs[i] = vir_uniform_ui(c, instr->value[i].u32);
_mesa_hash_table_insert(c->def_ht, &instr->def, qregs);
}
static void
ntq_emit_ssa_undef(struct v3d_compile *c, nir_ssa_undef_instr *instr)
{
struct qreg *qregs = ntq_init_ssa_def(c, &instr->def);
/* VIR needs there to be *some* value, so pick 0 (same as for
* ntq_setup_registers().
*/
for (int i = 0; i < instr->def.num_components; i++)
qregs[i] = vir_uniform_ui(c, 0);
}
static void
ntq_emit_image_size(struct v3d_compile *c, nir_intrinsic_instr *instr)
{
unsigned image_index = nir_src_as_uint(instr->src[0]);
bool is_array = nir_intrinsic_image_array(instr);
assert(nir_src_as_uint(instr->src[1]) == 0);
ntq_store_dest(c, &instr->dest, 0,
vir_uniform(c, QUNIFORM_IMAGE_WIDTH, image_index));
if (instr->num_components > 1) {
ntq_store_dest(c, &instr->dest, 1,
vir_uniform(c,
instr->num_components == 2 && is_array ?
QUNIFORM_IMAGE_ARRAY_SIZE :
QUNIFORM_IMAGE_HEIGHT,
image_index));
}
if (instr->num_components > 2) {
ntq_store_dest(c, &instr->dest, 2,
vir_uniform(c,
is_array ?
QUNIFORM_IMAGE_ARRAY_SIZE :
QUNIFORM_IMAGE_DEPTH,
image_index));
}
}
static void
vir_emit_tlb_color_read(struct v3d_compile *c, nir_intrinsic_instr *instr)
{
assert(c->s->info.stage == MESA_SHADER_FRAGMENT);
int rt = nir_src_as_uint(instr->src[0]);
assert(rt < V3D_MAX_DRAW_BUFFERS);
int sample_index = nir_intrinsic_base(instr) ;
assert(sample_index < V3D_MAX_SAMPLES);
int component = nir_intrinsic_component(instr);
assert(component < 4);
/* We need to emit our TLB reads after we have acquired the scoreboard
* lock, or the GPU will hang. Usually, we do our scoreboard locking on
* the last thread switch to improve parallelism, however, that is only
* guaranteed to happen before the tlb color writes.
*
* To fix that, we make sure we always emit a thread switch before the
* first tlb color read. If that happens to be the last thread switch
* we emit, then everything is fine, but otherwsie, if any code after
* this point needs to emit additional thread switches, then we will
* switch the strategy to locking the scoreboard on the first thread
* switch instead -- see vir_emit_thrsw().
*/
if (!c->emitted_tlb_load) {
if (!c->last_thrsw_at_top_level) {
assert(c->devinfo->ver >= 41);
vir_emit_thrsw(c);
}
c->emitted_tlb_load = true;
}
struct qreg *color_reads_for_sample =
&c->color_reads[(rt * V3D_MAX_SAMPLES + sample_index) * 4];
if (color_reads_for_sample[component].file == QFILE_NULL) {
enum pipe_format rt_format = c->fs_key->color_fmt[rt].format;
int num_components =
util_format_get_nr_components(rt_format);
const bool swap_rb = c->fs_key->swap_color_rb & (1 << rt);
if (swap_rb)
num_components = MAX2(num_components, 3);
nir_variable *var = c->output_color_var[rt];
enum glsl_base_type type = glsl_get_base_type(var->type);
bool is_int_format = type == GLSL_TYPE_INT ||
type == GLSL_TYPE_UINT;
bool is_32b_tlb_format = is_int_format ||
(c->fs_key->f32_color_rb & (1 << rt));
int num_samples = c->fs_key->msaa ? V3D_MAX_SAMPLES : 1;
uint32_t conf = 0xffffff00;
conf |= c->fs_key->msaa ? TLB_SAMPLE_MODE_PER_SAMPLE :
TLB_SAMPLE_MODE_PER_PIXEL;
conf |= (7 - rt) << TLB_RENDER_TARGET_SHIFT;
if (is_32b_tlb_format) {
/* The F32 vs I32 distinction was dropped in 4.2. */
conf |= (c->devinfo->ver < 42 && is_int_format) ?
TLB_TYPE_I32_COLOR : TLB_TYPE_F32_COLOR;
conf |= ((num_components - 1) <<
TLB_VEC_SIZE_MINUS_1_SHIFT);
} else {
conf |= TLB_TYPE_F16_COLOR;
conf |= TLB_F16_SWAP_HI_LO;
if (num_components >= 3)
conf |= TLB_VEC_SIZE_4_F16;
else
conf |= TLB_VEC_SIZE_2_F16;
}
for (int i = 0; i < num_samples; i++) {
struct qreg r, g, b, a;
if (is_32b_tlb_format) {
r = conf != 0xffffffff && i == 0?
vir_TLBU_COLOR_READ(c, conf) :
vir_TLB_COLOR_READ(c);
if (num_components >= 2)
g = vir_TLB_COLOR_READ(c);
if (num_components >= 3)
b = vir_TLB_COLOR_READ(c);
if (num_components >= 4)
a = vir_TLB_COLOR_READ(c);
} else {
struct qreg rg = conf != 0xffffffff && i == 0 ?
vir_TLBU_COLOR_READ(c, conf) :
vir_TLB_COLOR_READ(c);
r = vir_FMOV(c, rg);
vir_set_unpack(c->defs[r.index], 0,
V3D_QPU_UNPACK_L);
g = vir_FMOV(c, rg);
vir_set_unpack(c->defs[g.index], 0,
V3D_QPU_UNPACK_H);
if (num_components > 2) {
struct qreg ba = vir_TLB_COLOR_READ(c);
b = vir_FMOV(c, ba);
vir_set_unpack(c->defs[b.index], 0,
V3D_QPU_UNPACK_L);
a = vir_FMOV(c, ba);
vir_set_unpack(c->defs[a.index], 0,
V3D_QPU_UNPACK_H);
}
}
struct qreg *color_reads =
&c->color_reads[(rt * V3D_MAX_SAMPLES + i) * 4];
color_reads[0] = swap_rb ? b : r;
if (num_components >= 2)
color_reads[1] = g;
if (num_components >= 3)
color_reads[2] = swap_rb ? r : b;
if (num_components >= 4)
color_reads[3] = a;
}
}
assert(color_reads_for_sample[component].file != QFILE_NULL);
ntq_store_dest(c, &instr->dest, 0,
vir_MOV(c, color_reads_for_sample[component]));
}
static void
ntq_emit_load_uniform(struct v3d_compile *c, nir_intrinsic_instr *instr)
{
if (nir_src_is_const(instr->src[0])) {
int offset = (nir_intrinsic_base(instr) +
nir_src_as_uint(instr->src[0]));
assert(offset % 4 == 0);
/* We need dwords */
offset = offset / 4;
for (int i = 0; i < instr->num_components; i++) {
ntq_store_dest(c, &instr->dest, i,
vir_uniform(c, QUNIFORM_UNIFORM,
offset + i));
}
} else {
ntq_emit_tmu_general(c, instr, false);
}
}
static void
ntq_emit_load_input(struct v3d_compile *c, nir_intrinsic_instr *instr)
{
/* XXX: Use ldvpmv (uniform offset) or ldvpmd (non-uniform offset)
* and enable PIPE_SHADER_CAP_INDIRECT_INPUT_ADDR.
*/
unsigned offset =
nir_intrinsic_base(instr) + nir_src_as_uint(instr->src[0]);
if (c->s->info.stage != MESA_SHADER_FRAGMENT && c->devinfo->ver >= 40) {
/* Emit the LDVPM directly now, rather than at the top
* of the shader like we did for V3D 3.x (which needs
* vpmsetup when not just taking the next offset).
*
* Note that delaying like this may introduce stalls,
* as LDVPMV takes a minimum of 1 instruction but may
* be slower if the VPM unit is busy with another QPU.
*/
int index = 0;
if (c->s->info.system_values_read &
(1ull << SYSTEM_VALUE_INSTANCE_ID)) {
index++;
}
if (c->s->info.system_values_read &
(1ull << SYSTEM_VALUE_VERTEX_ID)) {
index++;
}
for (int i = 0; i < offset; i++)
index += c->vattr_sizes[i];
index += nir_intrinsic_component(instr);
for (int i = 0; i < instr->num_components; i++) {
struct qreg vpm_offset = vir_uniform_ui(c, index++);
ntq_store_dest(c, &instr->dest, i,
vir_LDVPMV_IN(c, vpm_offset));
}
} else {
for (int i = 0; i < instr->num_components; i++) {
int comp = nir_intrinsic_component(instr) + i;
ntq_store_dest(c, &instr->dest, i,
vir_MOV(c, c->inputs[offset * 4 + comp]));
}
}
}
static void
ntq_emit_per_sample_color_write(struct v3d_compile *c,
nir_intrinsic_instr *instr)
{
assert(instr->intrinsic == nir_intrinsic_store_tlb_sample_color_v3d);
unsigned rt = nir_src_as_uint(instr->src[1]);
assert(rt < V3D_MAX_DRAW_BUFFERS);
unsigned sample_idx = nir_intrinsic_base(instr);
assert(sample_idx < V3D_MAX_SAMPLES);
unsigned offset = (rt * V3D_MAX_SAMPLES + sample_idx) * 4;
for (int i = 0; i < instr->num_components; i++) {
c->sample_colors[offset + i] =
vir_MOV(c, ntq_get_src(c, instr->src[0], i));
}
}
static void
ntq_emit_color_write(struct v3d_compile *c,
nir_intrinsic_instr *instr)
{
unsigned offset = (nir_intrinsic_base(instr) +
nir_src_as_uint(instr->src[1])) * 4 +
nir_intrinsic_component(instr);
for (int i = 0; i < instr->num_components; i++) {
c->outputs[offset + i] =
vir_MOV(c, ntq_get_src(c, instr->src[0], i));
}
}
static void
emit_store_output_gs(struct v3d_compile *c, nir_intrinsic_instr *instr)
{
assert(instr->num_components == 1);
struct qreg offset = ntq_get_src(c, instr->src[1], 0);
uint32_t base_offset = nir_intrinsic_base(instr);
if (base_offset)
offset = vir_ADD(c, vir_uniform_ui(c, base_offset), offset);
/* Usually, for VS or FS, we only emit outputs once at program end so
* our VPM writes are never in non-uniform control flow, but this
* is not true for GS, where we are emitting multiple vertices.
*/
if (vir_in_nonuniform_control_flow(c)) {
vir_set_pf(vir_MOV_dest(c, vir_nop_reg(), c->execute),
V3D_QPU_PF_PUSHZ);
}
struct qreg val = ntq_get_src(c, instr->src[0], 0);
/* The offset isn’t necessarily dynamically uniform for a geometry
* shader. This can happen if the shader sometimes doesn’t emit one of
* the vertices. In that case subsequent vertices will be written to
* different offsets in the VPM and we need to use the scatter write
* instruction to have a different offset for each lane.
*/
if (nir_src_is_dynamically_uniform(instr->src[1]))
vir_VPM_WRITE_indirect(c, val, offset);
else
vir_STVPMD(c, offset, val);
if (vir_in_nonuniform_control_flow(c)) {
struct qinst *last_inst =
(struct qinst *)c->cur_block->instructions.prev;
vir_set_cond(last_inst, V3D_QPU_COND_IFA);
}
}
static void
ntq_emit_store_output(struct v3d_compile *c, nir_intrinsic_instr *instr)
{
/* XXX perf: Use stvpmv with uniform non-constant offsets and
* stvpmd with non-uniform offsets and enable
* PIPE_SHADER_CAP_INDIRECT_OUTPUT_ADDR.
*/
if (c->s->info.stage == MESA_SHADER_FRAGMENT) {
ntq_emit_color_write(c, instr);
} else if (c->s->info.stage == MESA_SHADER_GEOMETRY) {
emit_store_output_gs(c, instr);
} else {
assert(c->s->info.stage == MESA_SHADER_VERTEX);
assert(instr->num_components == 1);
vir_VPM_WRITE(c,
ntq_get_src(c, instr->src[0], 0),
nir_intrinsic_base(instr));
}
}
static void
ntq_emit_intrinsic(struct v3d_compile *c, nir_intrinsic_instr *instr)
{
switch (instr->intrinsic) {
case nir_intrinsic_load_uniform:
ntq_emit_load_uniform(c, instr);
break;
case nir_intrinsic_load_ubo:
ntq_emit_tmu_general(c, instr, false);
break;
case nir_intrinsic_ssbo_atomic_add:
case nir_intrinsic_ssbo_atomic_imin:
case nir_intrinsic_ssbo_atomic_umin:
case nir_intrinsic_ssbo_atomic_imax:
case nir_intrinsic_ssbo_atomic_umax:
case nir_intrinsic_ssbo_atomic_and:
case nir_intrinsic_ssbo_atomic_or:
case nir_intrinsic_ssbo_atomic_xor:
case nir_intrinsic_ssbo_atomic_exchange:
case nir_intrinsic_ssbo_atomic_comp_swap:
case nir_intrinsic_load_ssbo:
case nir_intrinsic_store_ssbo:
ntq_emit_tmu_general(c, instr, false);
break;
case nir_intrinsic_shared_atomic_add:
case nir_intrinsic_shared_atomic_imin:
case nir_intrinsic_shared_atomic_umin:
case nir_intrinsic_shared_atomic_imax:
case nir_intrinsic_shared_atomic_umax:
case nir_intrinsic_shared_atomic_and:
case nir_intrinsic_shared_atomic_or:
case nir_intrinsic_shared_atomic_xor:
case nir_intrinsic_shared_atomic_exchange:
case nir_intrinsic_shared_atomic_comp_swap:
case nir_intrinsic_load_shared:
case nir_intrinsic_store_shared:
case nir_intrinsic_load_scratch:
case nir_intrinsic_store_scratch:
ntq_emit_tmu_general(c, instr, true);
break;
case nir_intrinsic_image_load:
case nir_intrinsic_image_store:
case nir_intrinsic_image_atomic_add:
case nir_intrinsic_image_atomic_imin:
case nir_intrinsic_image_atomic_umin:
case nir_intrinsic_image_atomic_imax:
case nir_intrinsic_image_atomic_umax:
case nir_intrinsic_image_atomic_and:
case nir_intrinsic_image_atomic_or:
case nir_intrinsic_image_atomic_xor:
case nir_intrinsic_image_atomic_exchange:
case nir_intrinsic_image_atomic_comp_swap:
v3d40_vir_emit_image_load_store(c, instr);
break;
case nir_intrinsic_get_buffer_size:
ntq_store_dest(c, &instr->dest, 0,
vir_uniform(c, QUNIFORM_GET_BUFFER_SIZE,
nir_src_as_uint(instr->src[0])));
break;
case nir_intrinsic_load_user_clip_plane:
for (int i = 0; i < nir_intrinsic_dest_components(instr); i++) {
ntq_store_dest(c, &instr->dest, i,
vir_uniform(c, QUNIFORM_USER_CLIP_PLANE,
nir_intrinsic_ucp_id(instr) *
4 + i));
}
break;
case nir_intrinsic_load_viewport_x_scale:
ntq_store_dest(c, &instr->dest, 0,
vir_uniform(c, QUNIFORM_VIEWPORT_X_SCALE, 0));
break;
case nir_intrinsic_load_viewport_y_scale:
ntq_store_dest(c, &instr->dest, 0,
vir_uniform(c, QUNIFORM_VIEWPORT_Y_SCALE, 0));
break;
case nir_intrinsic_load_viewport_z_scale:
ntq_store_dest(c, &instr->dest, 0,
vir_uniform(c, QUNIFORM_VIEWPORT_Z_SCALE, 0));
break;
case nir_intrinsic_load_viewport_z_offset:
ntq_store_dest(c, &instr->dest, 0,
vir_uniform(c, QUNIFORM_VIEWPORT_Z_OFFSET, 0));
break;
case nir_intrinsic_load_alpha_ref_float:
ntq_store_dest(c, &instr->dest, 0,
vir_uniform(c, QUNIFORM_ALPHA_REF, 0));
break;
case nir_intrinsic_load_line_coord:
ntq_store_dest(c, &instr->dest, 0, vir_MOV(c, c->line_x));
break;
case nir_intrinsic_load_line_width:
ntq_store_dest(c, &instr->dest, 0,
vir_uniform(c, QUNIFORM_LINE_WIDTH, 0));
break;
case nir_intrinsic_load_aa_line_width:
ntq_store_dest(c, &instr->dest, 0,
vir_uniform(c, QUNIFORM_AA_LINE_WIDTH, 0));
break;
case nir_intrinsic_load_sample_mask_in:
ntq_store_dest(c, &instr->dest, 0, vir_MSF(c));
break;
case nir_intrinsic_load_helper_invocation:
vir_set_pf(vir_MSF_dest(c, vir_nop_reg()), V3D_QPU_PF_PUSHZ);
ntq_store_dest(c, &instr->dest, 0,
vir_MOV(c, vir_SEL(c, V3D_QPU_COND_IFA,
vir_uniform_ui(c, ~0),
vir_uniform_ui(c, 0))));
break;
case nir_intrinsic_load_front_face:
/* The register contains 0 (front) or 1 (back), and we need to
* turn it into a NIR bool where true means front.
*/
ntq_store_dest(c, &instr->dest, 0,
vir_ADD(c,
vir_uniform_ui(c, -1),
vir_REVF(c)));
break;
case nir_intrinsic_load_instance_id:
ntq_store_dest(c, &instr->dest, 0, vir_MOV(c, c->iid));
break;
case nir_intrinsic_load_vertex_id:
ntq_store_dest(c, &instr->dest, 0, vir_MOV(c, c->vid));
break;
case nir_intrinsic_load_tlb_color_v3d:
vir_emit_tlb_color_read(c, instr);
break;
case nir_intrinsic_load_input:
ntq_emit_load_input(c, instr);
break;
case nir_intrinsic_store_tlb_sample_color_v3d:
ntq_emit_per_sample_color_write(c, instr);
break;
case nir_intrinsic_store_output:
ntq_emit_store_output(c, instr);
break;
case nir_intrinsic_image_size:
ntq_emit_image_size(c, instr);
break;
case nir_intrinsic_discard:
if (vir_in_nonuniform_control_flow(c)) {
vir_set_pf(vir_MOV_dest(c, vir_nop_reg(), c->execute),
V3D_QPU_PF_PUSHZ);
vir_set_cond(vir_SETMSF_dest(c, vir_nop_reg(),
vir_uniform_ui(c, 0)),
V3D_QPU_COND_IFA);
} else {
vir_SETMSF_dest(c, vir_nop_reg(),
vir_uniform_ui(c, 0));
}
break;
case nir_intrinsic_discard_if: {
enum v3d_qpu_cond cond = ntq_emit_bool_to_cond(c, instr->src[0]);
if (vir_in_nonuniform_control_flow(c)) {
struct qinst *exec_flag = vir_MOV_dest(c, vir_nop_reg(),
c->execute);
if (cond == V3D_QPU_COND_IFA) {
vir_set_uf(exec_flag, V3D_QPU_UF_ANDZ);
} else {
vir_set_uf(exec_flag, V3D_QPU_UF_NORNZ);
cond = V3D_QPU_COND_IFA;
}
}
vir_set_cond(vir_SETMSF_dest(c, vir_nop_reg(),
vir_uniform_ui(c, 0)), cond);
break;
}
case nir_intrinsic_memory_barrier:
case nir_intrinsic_memory_barrier_buffer:
case nir_intrinsic_memory_barrier_image:
case nir_intrinsic_memory_barrier_shared:
case nir_intrinsic_memory_barrier_tcs_patch:
case nir_intrinsic_group_memory_barrier:
/* We don't do any instruction scheduling of these NIR
* instructions between each other, so we just need to make
* sure that the TMU operations before the barrier are flushed
* before the ones after the barrier. That is currently
* handled by having a THRSW in each of them and a LDTMU
* series or a TMUWT after.
*/
break;
case nir_intrinsic_control_barrier:
/* Emit a TSY op to get all invocations in the workgroup
* (actually supergroup) to block until the last invocation
* reaches the TSY op.
*/
if (c->devinfo->ver >= 42) {
vir_BARRIERID_dest(c, vir_reg(QFILE_MAGIC,
V3D_QPU_WADDR_SYNCB));
} else {
struct qinst *sync =
vir_BARRIERID_dest(c,
vir_reg(QFILE_MAGIC,
V3D_QPU_WADDR_SYNCU));
sync->uniform =
vir_get_uniform_index(c, QUNIFORM_CONSTANT,
0xffffff00 |
V3D_TSY_WAIT_INC_CHECK);
}
/* The blocking of a TSY op only happens at the next thread
* switch. No texturing may be outstanding at the time of a
* TSY blocking operation.
*/
vir_emit_thrsw(c);
break;
case nir_intrinsic_load_num_work_groups:
for (int i = 0; i < 3; i++) {
ntq_store_dest(c, &instr->dest, i,
vir_uniform(c, QUNIFORM_NUM_WORK_GROUPS,
i));
}
break;
case nir_intrinsic_load_local_invocation_index:
ntq_store_dest(c, &instr->dest, 0,
vir_SHR(c, c->cs_payload[1],
vir_uniform_ui(c, 32 - c->local_invocation_index_bits)));
break;
case nir_intrinsic_load_work_group_id:
ntq_store_dest(c, &instr->dest, 0,
vir_AND(c, c->cs_payload[0],
vir_uniform_ui(c, 0xffff)));
ntq_store_dest(c, &instr->dest, 1,
vir_SHR(c, c->cs_payload[0],
vir_uniform_ui(c, 16)));
ntq_store_dest(c, &instr->dest, 2,
vir_AND(c, c->cs_payload[1],
vir_uniform_ui(c, 0xffff)));
break;
case nir_intrinsic_load_subgroup_id:
ntq_store_dest(c, &instr->dest, 0, vir_EIDX(c));
break;
case nir_intrinsic_load_per_vertex_input: {
/* col: vertex index, row = varying index */
struct qreg col = ntq_get_src(c, instr->src[0], 0);
uint32_t row_idx = nir_intrinsic_base(instr) * 4 +
nir_intrinsic_component(instr);
for (int i = 0; i < instr->num_components; i++) {
struct qreg row = vir_uniform_ui(c, row_idx++);
ntq_store_dest(c, &instr->dest, i,
vir_LDVPMG_IN(c, row, col));
}
break;
}
case nir_intrinsic_emit_vertex:
case nir_intrinsic_end_primitive:
unreachable("Should have been lowered in v3d_nir_lower_io");
break;
case nir_intrinsic_load_primitive_id: {
/* gl_PrimitiveIdIn is written by the GBG in the first word of
* VPM output header. According to docs, we should read this
* using ldvpm(v,d)_in (See Table 71).
*/
ntq_store_dest(c, &instr->dest, 0,
vir_LDVPMV_IN(c, vir_uniform_ui(c, 0)));
break;
}
case nir_intrinsic_load_invocation_id:
ntq_store_dest(c, &instr->dest, 0, vir_IID(c));
break;
case nir_intrinsic_load_fb_layers_v3d:
ntq_store_dest(c, &instr->dest, 0,
vir_uniform(c, QUNIFORM_FB_LAYERS, 0));
break;
case nir_intrinsic_load_sample_id:
ntq_store_dest(c, &instr->dest, 0, vir_SAMPID(c));
break;
default:
fprintf(stderr, "Unknown intrinsic: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
break;
}
}
/* Clears (activates) the execute flags for any channels whose jump target
* matches this block.
*
* XXX perf: Could we be using flpush/flpop somehow for our execution channel
* enabling?
*
* XXX perf: For uniform control flow, we should be able to skip c->execute
* handling entirely.
*/
static void
ntq_activate_execute_for_block(struct v3d_compile *c)
{
vir_set_pf(vir_XOR_dest(c, vir_nop_reg(),
c->execute, vir_uniform_ui(c, c->cur_block->index)),
V3D_QPU_PF_PUSHZ);
vir_MOV_cond(c, V3D_QPU_COND_IFA, c->execute, vir_uniform_ui(c, 0));
}
static void
ntq_emit_uniform_if(struct v3d_compile *c, nir_if *if_stmt)
{
nir_block *nir_else_block = nir_if_first_else_block(if_stmt);
bool empty_else_block =
(nir_else_block == nir_if_last_else_block(if_stmt) &&
exec_list_is_empty(&nir_else_block->instr_list));
struct qblock *then_block = vir_new_block(c);
struct qblock *after_block = vir_new_block(c);
struct qblock *else_block;
if (empty_else_block)
else_block = after_block;
else
else_block = vir_new_block(c);
/* Set up the flags for the IF condition (taking the THEN branch). */
enum v3d_qpu_cond cond = ntq_emit_bool_to_cond(c, if_stmt->condition);
/* Jump to ELSE. */
vir_BRANCH(c, cond == V3D_QPU_COND_IFA ?
V3D_QPU_BRANCH_COND_ALLNA :
V3D_QPU_BRANCH_COND_ALLA);
vir_link_blocks(c->cur_block, else_block);
vir_link_blocks(c->cur_block, then_block);
/* Process the THEN block. */
vir_set_emit_block(c, then_block);
ntq_emit_cf_list(c, &if_stmt->then_list);
if (!empty_else_block) {
/* At the end of the THEN block, jump to ENDIF */
vir_BRANCH(c, V3D_QPU_BRANCH_COND_ALWAYS);
vir_link_blocks(c->cur_block, after_block);
/* Emit the else block. */
vir_set_emit_block(c, else_block);
ntq_emit_cf_list(c, &if_stmt->else_list);
}
vir_link_blocks(c->cur_block, after_block);
vir_set_emit_block(c, after_block);
}
static void
ntq_emit_nonuniform_if(struct v3d_compile *c, nir_if *if_stmt)
{
nir_block *nir_else_block = nir_if_first_else_block(if_stmt);
bool empty_else_block =
(nir_else_block == nir_if_last_else_block(if_stmt) &&
exec_list_is_empty(&nir_else_block->instr_list));
struct qblock *then_block = vir_new_block(c);
struct qblock *after_block = vir_new_block(c);
struct qblock *else_block;
if (empty_else_block)
else_block = after_block;
else
else_block = vir_new_block(c);
bool was_uniform_control_flow = false;
if (!vir_in_nonuniform_control_flow(c)) {
c->execute = vir_MOV(c, vir_uniform_ui(c, 0));
was_uniform_control_flow = true;
}
/* Set up the flags for the IF condition (taking the THEN branch). */
enum v3d_qpu_cond cond = ntq_emit_bool_to_cond(c, if_stmt->condition);
/* Update the flags+cond to mean "Taking the ELSE branch (!cond) and
* was previously active (execute Z) for updating the exec flags.
*/
if (was_uniform_control_flow) {
cond = v3d_qpu_cond_invert(cond);
} else {
struct qinst *inst = vir_MOV_dest(c, vir_nop_reg(), c->execute);
if (cond == V3D_QPU_COND_IFA) {
vir_set_uf(inst, V3D_QPU_UF_NORNZ);
} else {
vir_set_uf(inst, V3D_QPU_UF_ANDZ);
cond = V3D_QPU_COND_IFA;
}
}
vir_MOV_cond(c, cond,
c->execute,
vir_uniform_ui(c, else_block->index));
/* Jump to ELSE if nothing is active for THEN, otherwise fall
* through.
*/
vir_set_pf(vir_MOV_dest(c, vir_nop_reg(), c->execute), V3D_QPU_PF_PUSHZ);
vir_BRANCH(c, V3D_QPU_BRANCH_COND_ALLNA);
vir_link_blocks(c->cur_block, else_block);
vir_link_blocks(c->cur_block, then_block);
/* Process the THEN block. */
vir_set_emit_block(c, then_block);
ntq_emit_cf_list(c, &if_stmt->then_list);
if (!empty_else_block) {
/* Handle the end of the THEN block. First, all currently
* active channels update their execute flags to point to
* ENDIF
*/
vir_set_pf(vir_MOV_dest(c, vir_nop_reg(), c->execute),
V3D_QPU_PF_PUSHZ);
vir_MOV_cond(c, V3D_QPU_COND_IFA, c->execute,
vir_uniform_ui(c, after_block->index));
/* If everything points at ENDIF, then jump there immediately. */
vir_set_pf(vir_XOR_dest(c, vir_nop_reg(),
c->execute,
vir_uniform_ui(c, after_block->index)),
V3D_QPU_PF_PUSHZ);
vir_BRANCH(c, V3D_QPU_BRANCH_COND_ALLA);
vir_link_blocks(c->cur_block, after_block);
vir_link_blocks(c->cur_block, else_block);
vir_set_emit_block(c, else_block);
ntq_activate_execute_for_block(c);
ntq_emit_cf_list(c, &if_stmt->else_list);
}
vir_link_blocks(c->cur_block, after_block);
vir_set_emit_block(c, after_block);
if (was_uniform_control_flow)
c->execute = c->undef;
else
ntq_activate_execute_for_block(c);
}
static void
ntq_emit_if(struct v3d_compile *c, nir_if *nif)
{
bool was_in_control_flow = c->in_control_flow;
c->in_control_flow = true;
if (!vir_in_nonuniform_control_flow(c) &&
nir_src_is_dynamically_uniform(nif->condition)) {
ntq_emit_uniform_if(c, nif);
} else {
ntq_emit_nonuniform_if(c, nif);
}
c->in_control_flow = was_in_control_flow;
}
static void
ntq_emit_jump(struct v3d_compile *c, nir_jump_instr *jump)
{
switch (jump->type) {
case nir_jump_break:
vir_set_pf(vir_MOV_dest(c, vir_nop_reg(), c->execute),
V3D_QPU_PF_PUSHZ);
vir_MOV_cond(c, V3D_QPU_COND_IFA, c->execute,
vir_uniform_ui(c, c->loop_break_block->index));
break;
case nir_jump_continue:
vir_set_pf(vir_MOV_dest(c, vir_nop_reg(), c->execute),
V3D_QPU_PF_PUSHZ);
vir_MOV_cond(c, V3D_QPU_COND_IFA, c->execute,
vir_uniform_ui(c, c->loop_cont_block->index));
break;
case nir_jump_return:
unreachable("All returns shouold be lowered\n");
break;
case nir_jump_goto:
case nir_jump_goto_if:
unreachable("not supported\n");
break;
}
}
static void
ntq_emit_instr(struct v3d_compile *c, nir_instr *instr)
{
switch (instr->type) {
case nir_instr_type_alu:
ntq_emit_alu(c, nir_instr_as_alu(instr));
break;
case nir_instr_type_intrinsic:
ntq_emit_intrinsic(c, nir_instr_as_intrinsic(instr));
break;
case nir_instr_type_load_const:
ntq_emit_load_const(c, nir_instr_as_load_const(instr));
break;
case nir_instr_type_ssa_undef:
ntq_emit_ssa_undef(c, nir_instr_as_ssa_undef(instr));
break;
case nir_instr_type_tex:
ntq_emit_tex(c, nir_instr_as_tex(instr));
break;
case nir_instr_type_jump:
ntq_emit_jump(c, nir_instr_as_jump(instr));
break;
default:
fprintf(stderr, "Unknown NIR instr type: ");
nir_print_instr(instr, stderr);
fprintf(stderr, "\n");
abort();
}
}
static void
ntq_emit_block(struct v3d_compile *c, nir_block *block)
{
nir_foreach_instr(instr, block) {
ntq_emit_instr(c, instr);
}
}
static void ntq_emit_cf_list(struct v3d_compile *c, struct exec_list *list);
static void
ntq_emit_loop(struct v3d_compile *c, nir_loop *loop)
{
bool was_in_control_flow = c->in_control_flow;
c->in_control_flow = true;
bool was_uniform_control_flow = false;
if (!vir_in_nonuniform_control_flow(c)) {
c->execute = vir_MOV(c, vir_uniform_ui(c, 0));
was_uniform_control_flow = true;
}
struct qblock *save_loop_cont_block = c->loop_cont_block;
struct qblock *save_loop_break_block = c->loop_break_block;
c->loop_cont_block = vir_new_block(c);
c->loop_break_block = vir_new_block(c);
vir_link_blocks(c->cur_block, c->loop_cont_block);
vir_set_emit_block(c, c->loop_cont_block);
ntq_activate_execute_for_block(c);
ntq_emit_cf_list(c, &loop->body);
/* Re-enable any previous continues now, so our ANYA check below
* works.
*
* XXX: Use the .ORZ flags update, instead.
*/
vir_set_pf(vir_XOR_dest(c,
vir_nop_reg(),
c->execute,
vir_uniform_ui(c, c->loop_cont_block->index)),
V3D_QPU_PF_PUSHZ);
vir_MOV_cond(c, V3D_QPU_COND_IFA, c->execute, vir_uniform_ui(c, 0));
vir_set_pf(vir_MOV_dest(c, vir_nop_reg(), c->execute), V3D_QPU_PF_PUSHZ);
struct qinst *branch = vir_BRANCH(c, V3D_QPU_BRANCH_COND_ANYA);
/* Pixels that were not dispatched or have been discarded should not
* contribute to looping again.
*/
branch->qpu.branch.msfign = V3D_QPU_MSFIGN_P;
vir_link_blocks(c->cur_block, c->loop_cont_block);
vir_link_blocks(c->cur_block, c->loop_break_block);
vir_set_emit_block(c, c->loop_break_block);
if (was_uniform_control_flow)
c->execute = c->undef;
else
ntq_activate_execute_for_block(c);
c->loop_break_block = save_loop_break_block;
c->loop_cont_block = save_loop_cont_block;
c->loops++;
c->in_control_flow = was_in_control_flow;
}
static void
ntq_emit_function(struct v3d_compile *c, nir_function_impl *func)
{
fprintf(stderr, "FUNCTIONS not handled.\n");
abort();
}
static void
ntq_emit_cf_list(struct v3d_compile *c, struct exec_list *list)
{
foreach_list_typed(nir_cf_node, node, node, list) {
switch (node->type) {
case nir_cf_node_block:
ntq_emit_block(c, nir_cf_node_as_block(node));
break;
case nir_cf_node_if:
ntq_emit_if(c, nir_cf_node_as_if(node));
break;
case nir_cf_node_loop:
ntq_emit_loop(c, nir_cf_node_as_loop(node));
break;
case nir_cf_node_function:
ntq_emit_function(c, nir_cf_node_as_function(node));
break;
default:
fprintf(stderr, "Unknown NIR node type\n");
abort();
}
}
}
static void
ntq_emit_impl(struct v3d_compile *c, nir_function_impl *impl)
{
ntq_setup_registers(c, &impl->registers);
ntq_emit_cf_list(c, &impl->body);
}
static void
nir_to_vir(struct v3d_compile *c)
{
switch (c->s->info.stage) {
case MESA_SHADER_FRAGMENT:
c->payload_w = vir_MOV(c, vir_reg(QFILE_REG, 0));
c->payload_w_centroid = vir_MOV(c, vir_reg(QFILE_REG, 1));
c->payload_z = vir_MOV(c, vir_reg(QFILE_REG, 2));
/* V3D 4.x can disable implicit point coordinate varyings if
* they are not used.
*/
if (c->fs_key->is_points &&
(c->devinfo->ver < 40 || program_reads_point_coord(c))) {
c->point_x = emit_fragment_varying(c, NULL, 0, 0);
c->point_y = emit_fragment_varying(c, NULL, 0, 0);
c->uses_implicit_point_line_varyings = true;
} else if (c->fs_key->is_lines &&
(c->devinfo->ver < 40 ||
(c->s->info.system_values_read &
BITFIELD64_BIT(SYSTEM_VALUE_LINE_COORD)))) {
c->line_x = emit_fragment_varying(c, NULL, 0, 0);
c->uses_implicit_point_line_varyings = true;
}
break;
case MESA_SHADER_COMPUTE:
/* Set up the TSO for barriers, assuming we do some. */
if (c->devinfo->ver < 42) {
vir_BARRIERID_dest(c, vir_reg(QFILE_MAGIC,
V3D_QPU_WADDR_SYNC));
}
c->cs_payload[0] = vir_MOV(c, vir_reg(QFILE_REG, 0));
c->cs_payload[1] = vir_MOV(c, vir_reg(QFILE_REG, 2));
/* Set up the division between gl_LocalInvocationIndex and
* wg_in_mem in the payload reg.
*/
int wg_size = (c->s->info.cs.local_size[0] *
c->s->info.cs.local_size[1] *
c->s->info.cs.local_size[2]);
c->local_invocation_index_bits =
ffs(util_next_power_of_two(MAX2(wg_size, 64))) - 1;
assert(c->local_invocation_index_bits <= 8);
if (c->s->info.cs.shared_size) {
struct qreg wg_in_mem = vir_SHR(c, c->cs_payload[1],
vir_uniform_ui(c, 16));
if (c->s->info.cs.local_size[0] != 1 ||
c->s->info.cs.local_size[1] != 1 ||
c->s->info.cs.local_size[2] != 1) {
int wg_bits = (16 -
c->local_invocation_index_bits);
int wg_mask = (1 << wg_bits) - 1;
wg_in_mem = vir_AND(c, wg_in_mem,
vir_uniform_ui(c, wg_mask));
}
struct qreg shared_per_wg =
vir_uniform_ui(c, c->s->info.cs.shared_size);
c->cs_shared_offset =
vir_ADD(c,
vir_uniform(c, QUNIFORM_SHARED_OFFSET,0),
vir_UMUL(c, wg_in_mem, shared_per_wg));
}
break;
default:
break;
}
if (c->s->scratch_size) {
v3d_setup_spill_base(c);
c->spill_size += V3D_CHANNELS * c->s->scratch_size;
}
switch (c->s->info.stage) {
case MESA_SHADER_VERTEX:
ntq_setup_vs_inputs(c);
break;
case MESA_SHADER_GEOMETRY:
ntq_setup_gs_inputs(c);
break;
case MESA_SHADER_FRAGMENT:
ntq_setup_fs_inputs(c);
break;
case MESA_SHADER_COMPUTE:
break;
default:
unreachable("unsupported shader stage");
}
ntq_setup_outputs(c);
/* Find the main function and emit the body. */
nir_foreach_function(function, c->s) {
assert(strcmp(function->name, "main") == 0);
assert(function->impl);
ntq_emit_impl(c, function->impl);
}
}
const nir_shader_compiler_options v3d_nir_options = {
.lower_all_io_to_temps = true,
.lower_extract_byte = true,
.lower_extract_word = true,
.lower_bitfield_insert_to_shifts = true,
.lower_bitfield_extract_to_shifts = true,
.lower_bitfield_reverse = true,
.lower_bit_count = true,
.lower_cs_local_id_from_index = true,
.lower_ffract = true,
.lower_fmod = true,
.lower_pack_unorm_2x16 = true,
.lower_pack_snorm_2x16 = true,
.lower_pack_unorm_4x8 = true,
.lower_pack_snorm_4x8 = true,
.lower_unpack_unorm_4x8 = true,
.lower_unpack_snorm_4x8 = true,
.lower_pack_half_2x16 = true,
.lower_unpack_half_2x16 = true,
.lower_fdiv = true,
.lower_find_lsb = true,
.lower_ffma = true,
.lower_flrp32 = true,
.lower_fpow = true,
.lower_fsat = true,
.lower_fsqrt = true,
.lower_ifind_msb = true,
.lower_isign = true,
.lower_ldexp = true,
.lower_mul_high = true,
.lower_wpos_pntc = true,
.lower_rotate = true,
.lower_to_scalar = true,
};
/**
* When demoting a shader down to single-threaded, removes the THRSW
* instructions (one will still be inserted at v3d_vir_to_qpu() for the
* program end).
*/
static void
vir_remove_thrsw(struct v3d_compile *c)
{
vir_for_each_block(block, c) {
vir_for_each_inst_safe(inst, block) {
if (inst->qpu.sig.thrsw)
vir_remove_instruction(c, inst);
}
}
c->last_thrsw = NULL;
}
void
vir_emit_last_thrsw(struct v3d_compile *c)
{
/* On V3D before 4.1, we need a TMU op to be outstanding when thread
* switching, so disable threads if we didn't do any TMU ops (each of
* which would have emitted a THRSW).
*/
if (!c->last_thrsw_at_top_level && c->devinfo->ver < 41) {
c->threads = 1;
if (c->last_thrsw)
vir_remove_thrsw(c);
return;
}
/* If we're threaded and the last THRSW was in conditional code, then
* we need to emit another one so that we can flag it as the last
* thrsw.
*/
if (c->last_thrsw && !c->last_thrsw_at_top_level) {
assert(c->devinfo->ver >= 41);
vir_emit_thrsw(c);
}
/* If we're threaded, then we need to mark the last THRSW instruction
* so we can emit a pair of them at QPU emit time.
*
* For V3D 4.x, we can spawn the non-fragment shaders already in the
* post-last-THRSW state, so we can skip this.
*/
if (!c->last_thrsw && c->s->info.stage == MESA_SHADER_FRAGMENT) {
assert(c->devinfo->ver >= 41);
vir_emit_thrsw(c);
}
if (c->last_thrsw)
c->last_thrsw->is_last_thrsw = true;
}
/* There's a flag in the shader for "center W is needed for reasons other than
* non-centroid varyings", so we just walk the program after VIR optimization
* to see if it's used. It should be harmless to set even if we only use
* center W for varyings.
*/
static void
vir_check_payload_w(struct v3d_compile *c)
{
if (c->s->info.stage != MESA_SHADER_FRAGMENT)
return;
vir_for_each_inst_inorder(inst, c) {
for (int i = 0; i < vir_get_nsrc(inst); i++) {
if (inst->src[i].file == QFILE_REG &&
inst->src[i].index == 0) {
c->uses_center_w = true;
return;
}
}
}
}
void
v3d_nir_to_vir(struct v3d_compile *c)
{
if (V3D_DEBUG & (V3D_DEBUG_NIR |
v3d_debug_flag_for_shader_stage(c->s->info.stage))) {
fprintf(stderr, "%s prog %d/%d NIR:\n",
vir_get_stage_name(c),
c->program_id, c->variant_id);
nir_print_shader(c->s, stderr);
}
nir_to_vir(c);
/* Emit the last THRSW before STVPM and TLB writes. */
vir_emit_last_thrsw(c);
switch (c->s->info.stage) {
case MESA_SHADER_FRAGMENT:
emit_frag_end(c);
break;
case MESA_SHADER_GEOMETRY:
emit_geom_end(c);
break;
case MESA_SHADER_VERTEX:
emit_vert_end(c);
break;
case MESA_SHADER_COMPUTE:
break;
default:
unreachable("bad stage");
}
if (V3D_DEBUG & (V3D_DEBUG_VIR |
v3d_debug_flag_for_shader_stage(c->s->info.stage))) {
fprintf(stderr, "%s prog %d/%d pre-opt VIR:\n",
vir_get_stage_name(c),
c->program_id, c->variant_id);
vir_dump(c);
fprintf(stderr, "\n");
}
vir_optimize(c);
vir_check_payload_w(c);
/* XXX perf: On VC4, we do a VIR-level instruction scheduling here.
* We used that on that platform to pipeline TMU writes and reduce the
* number of thread switches, as well as try (mostly successfully) to
* reduce maximum register pressure to allow more threads. We should
* do something of that sort for V3D -- either instruction scheduling
* here, or delay the the THRSW and LDTMUs from our texture
* instructions until the results are needed.
*/
if (V3D_DEBUG & (V3D_DEBUG_VIR |
v3d_debug_flag_for_shader_stage(c->s->info.stage))) {
fprintf(stderr, "%s prog %d/%d VIR:\n",
vir_get_stage_name(c),
c->program_id, c->variant_id);
vir_dump(c);
fprintf(stderr, "\n");
}
/* Attempt to allocate registers for the temporaries. If we fail,
* reduce thread count and try again.
*/
int min_threads = (c->devinfo->ver >= 41) ? 2 : 1;
struct qpu_reg *temp_registers;
while (true) {
bool spilled;
temp_registers = v3d_register_allocate(c, &spilled);
if (spilled)
continue;
if (temp_registers)
break;
if (c->threads == min_threads) {
if (c->fallback_scheduler) {
fprintf(stderr,
"Failed to register allocate at %d "
"threads:\n",
c->threads);
vir_dump(c);
}
c->compilation_result =
V3D_COMPILATION_FAILED_REGISTER_ALLOCATION;
return;
}
c->threads /= 2;
if (c->threads == 1)
vir_remove_thrsw(c);
}
if (c->spills &&
(V3D_DEBUG & (V3D_DEBUG_VIR |
v3d_debug_flag_for_shader_stage(c->s->info.stage)))) {
fprintf(stderr, "%s prog %d/%d spilled VIR:\n",
vir_get_stage_name(c),
c->program_id, c->variant_id);
vir_dump(c);
fprintf(stderr, "\n");
}
v3d_vir_to_qpu(c, temp_registers);
}