blob: 5bd389a5be415be281b28b922f7c4c89a73de7c7 [file] [log] [blame]
/*
* Copyright © 2018 Valve Corporation
* Copyright © 2018 Google
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
*/
#include <algorithm>
#include <array>
#include <stack>
#include <map>
#include "ac_shader_util.h"
#include "aco_ir.h"
#include "aco_builder.h"
#include "aco_interface.h"
#include "aco_instruction_selection_setup.cpp"
#include "util/fast_idiv_by_const.h"
namespace aco {
namespace {
#define isel_err(...) _isel_err(ctx, __FILE__, __LINE__, __VA_ARGS__)
static void _isel_err(isel_context *ctx, const char *file, unsigned line,
const nir_instr *instr, const char *msg)
{
char *out;
size_t outsize;
FILE *memf = open_memstream(&out, &outsize);
fprintf(memf, "%s: ", msg);
nir_print_instr(instr, memf);
fclose(memf);
_aco_err(ctx->program, file, line, out);
free(out);
}
class loop_info_RAII {
isel_context* ctx;
unsigned header_idx_old;
Block* exit_old;
bool divergent_cont_old;
bool divergent_branch_old;
bool divergent_if_old;
public:
loop_info_RAII(isel_context* ctx, unsigned loop_header_idx, Block* loop_exit)
: ctx(ctx),
header_idx_old(ctx->cf_info.parent_loop.header_idx), exit_old(ctx->cf_info.parent_loop.exit),
divergent_cont_old(ctx->cf_info.parent_loop.has_divergent_continue),
divergent_branch_old(ctx->cf_info.parent_loop.has_divergent_branch),
divergent_if_old(ctx->cf_info.parent_if.is_divergent)
{
ctx->cf_info.parent_loop.header_idx = loop_header_idx;
ctx->cf_info.parent_loop.exit = loop_exit;
ctx->cf_info.parent_loop.has_divergent_continue = false;
ctx->cf_info.parent_loop.has_divergent_branch = false;
ctx->cf_info.parent_if.is_divergent = false;
ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
}
~loop_info_RAII()
{
ctx->cf_info.parent_loop.header_idx = header_idx_old;
ctx->cf_info.parent_loop.exit = exit_old;
ctx->cf_info.parent_loop.has_divergent_continue = divergent_cont_old;
ctx->cf_info.parent_loop.has_divergent_branch = divergent_branch_old;
ctx->cf_info.parent_if.is_divergent = divergent_if_old;
ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth - 1;
if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent)
ctx->cf_info.exec_potentially_empty_discard = false;
}
};
struct if_context {
Temp cond;
bool divergent_old;
bool exec_potentially_empty_discard_old;
bool exec_potentially_empty_break_old;
uint16_t exec_potentially_empty_break_depth_old;
unsigned BB_if_idx;
unsigned invert_idx;
bool uniform_has_then_branch;
bool then_branch_divergent;
Block BB_invert;
Block BB_endif;
};
static bool visit_cf_list(struct isel_context *ctx,
struct exec_list *list);
static void add_logical_edge(unsigned pred_idx, Block *succ)
{
succ->logical_preds.emplace_back(pred_idx);
}
static void add_linear_edge(unsigned pred_idx, Block *succ)
{
succ->linear_preds.emplace_back(pred_idx);
}
static void add_edge(unsigned pred_idx, Block *succ)
{
add_logical_edge(pred_idx, succ);
add_linear_edge(pred_idx, succ);
}
static void append_logical_start(Block *b)
{
Builder(NULL, b).pseudo(aco_opcode::p_logical_start);
}
static void append_logical_end(Block *b)
{
Builder(NULL, b).pseudo(aco_opcode::p_logical_end);
}
Temp get_ssa_temp(struct isel_context *ctx, nir_ssa_def *def)
{
assert(ctx->allocated[def->index].id());
return ctx->allocated[def->index];
}
Temp emit_mbcnt(isel_context *ctx, Definition dst,
Operand mask_lo = Operand((uint32_t) -1), Operand mask_hi = Operand((uint32_t) -1))
{
Builder bld(ctx->program, ctx->block);
Definition lo_def = ctx->program->wave_size == 32 ? dst : bld.def(v1);
Temp thread_id_lo = bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, lo_def, mask_lo, Operand(0u));
if (ctx->program->wave_size == 32) {
return thread_id_lo;
} else if (ctx->program->chip_class <= GFX7) {
Temp thread_id_hi = bld.vop2(aco_opcode::v_mbcnt_hi_u32_b32, dst, mask_hi, thread_id_lo);
return thread_id_hi;
} else {
Temp thread_id_hi = bld.vop3(aco_opcode::v_mbcnt_hi_u32_b32_e64, dst, mask_hi, thread_id_lo);
return thread_id_hi;
}
}
Temp emit_wqm(isel_context *ctx, Temp src, Temp dst=Temp(0, s1), bool program_needs_wqm = false)
{
Builder bld(ctx->program, ctx->block);
if (!dst.id())
dst = bld.tmp(src.regClass());
assert(src.size() == dst.size());
if (ctx->stage != fragment_fs) {
if (!dst.id())
return src;
bld.copy(Definition(dst), src);
return dst;
}
bld.pseudo(aco_opcode::p_wqm, Definition(dst), src);
ctx->program->needs_wqm |= program_needs_wqm;
return dst;
}
static Temp emit_bpermute(isel_context *ctx, Builder &bld, Temp index, Temp data)
{
if (index.regClass() == s1)
return bld.readlane(bld.def(s1), data, index);
if (ctx->options->chip_class <= GFX7) {
/* GFX6-7: there is no bpermute instruction */
Operand index_op(index);
Operand input_data(data);
index_op.setLateKill(true);
input_data.setLateKill(true);
return bld.pseudo(aco_opcode::p_bpermute, bld.def(v1), bld.def(bld.lm), bld.def(bld.lm, vcc), index_op, input_data);
} else if (ctx->options->chip_class >= GFX10 && ctx->program->wave_size == 64) {
/* GFX10 wave64 mode: emulate full-wave bpermute */
if (!ctx->has_gfx10_wave64_bpermute) {
ctx->has_gfx10_wave64_bpermute = true;
ctx->program->config->num_shared_vgprs = 8; /* Shared VGPRs are allocated in groups of 8 */
ctx->program->vgpr_limit -= 4; /* We allocate 8 shared VGPRs, so we'll have 4 fewer normal VGPRs */
}
Temp index_is_lo = bld.vopc(aco_opcode::v_cmp_ge_u32, bld.def(bld.lm), Operand(31u), index);
Builder::Result index_is_lo_split = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), bld.def(s1), index_is_lo);
Temp index_is_lo_n1 = bld.sop1(aco_opcode::s_not_b32, bld.def(s1), bld.def(s1, scc), index_is_lo_split.def(1).getTemp());
Operand same_half = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), index_is_lo_split.def(0).getTemp(), index_is_lo_n1);
Operand index_x4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), index);
Operand input_data(data);
index_x4.setLateKill(true);
input_data.setLateKill(true);
same_half.setLateKill(true);
return bld.pseudo(aco_opcode::p_bpermute, bld.def(v1), bld.def(s2), bld.def(s1, scc), index_x4, input_data, same_half);
} else {
/* GFX8-9 or GFX10 wave32: bpermute works normally */
Temp index_x4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), index);
return bld.ds(aco_opcode::ds_bpermute_b32, bld.def(v1), index_x4, data);
}
}
static Temp emit_masked_swizzle(isel_context *ctx, Builder &bld, Temp src, unsigned mask)
{
if (ctx->options->chip_class >= GFX8) {
unsigned and_mask = mask & 0x1f;
unsigned or_mask = (mask >> 5) & 0x1f;
unsigned xor_mask = (mask >> 10) & 0x1f;
uint16_t dpp_ctrl = 0xffff;
// TODO: we could use DPP8 for some swizzles
if (and_mask == 0x1f && or_mask < 4 && xor_mask < 4) {
unsigned res[4] = {0, 1, 2, 3};
for (unsigned i = 0; i < 4; i++)
res[i] = ((res[i] | or_mask) ^ xor_mask) & 0x3;
dpp_ctrl = dpp_quad_perm(res[0], res[1], res[2], res[3]);
} else if (and_mask == 0x1f && !or_mask && xor_mask == 8) {
dpp_ctrl = dpp_row_rr(8);
} else if (and_mask == 0x1f && !or_mask && xor_mask == 0xf) {
dpp_ctrl = dpp_row_mirror;
} else if (and_mask == 0x1f && !or_mask && xor_mask == 0x7) {
dpp_ctrl = dpp_row_half_mirror;
}
if (dpp_ctrl != 0xffff)
return bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
}
return bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, mask, 0, false);
}
Temp as_vgpr(isel_context *ctx, Temp val)
{
if (val.type() == RegType::sgpr) {
Builder bld(ctx->program, ctx->block);
return bld.copy(bld.def(RegType::vgpr, val.size()), val);
}
assert(val.type() == RegType::vgpr);
return val;
}
//assumes a != 0xffffffff
void emit_v_div_u32(isel_context *ctx, Temp dst, Temp a, uint32_t b)
{
assert(b != 0);
Builder bld(ctx->program, ctx->block);
if (util_is_power_of_two_or_zero(b)) {
bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)util_logbase2(b)), a);
return;
}
util_fast_udiv_info info = util_compute_fast_udiv_info(b, 32, 32);
assert(info.multiplier <= 0xffffffff);
bool pre_shift = info.pre_shift != 0;
bool increment = info.increment != 0;
bool multiply = true;
bool post_shift = info.post_shift != 0;
if (!pre_shift && !increment && !multiply && !post_shift) {
bld.vop1(aco_opcode::v_mov_b32, Definition(dst), a);
return;
}
Temp pre_shift_dst = a;
if (pre_shift) {
pre_shift_dst = (increment || multiply || post_shift) ? bld.tmp(v1) : dst;
bld.vop2(aco_opcode::v_lshrrev_b32, Definition(pre_shift_dst), Operand((uint32_t)info.pre_shift), a);
}
Temp increment_dst = pre_shift_dst;
if (increment) {
increment_dst = (post_shift || multiply) ? bld.tmp(v1) : dst;
bld.vadd32(Definition(increment_dst), Operand((uint32_t) info.increment), pre_shift_dst);
}
Temp multiply_dst = increment_dst;
if (multiply) {
multiply_dst = post_shift ? bld.tmp(v1) : dst;
bld.vop3(aco_opcode::v_mul_hi_u32, Definition(multiply_dst), increment_dst,
bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand((uint32_t)info.multiplier)));
}
if (post_shift) {
bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)info.post_shift), multiply_dst);
}
}
void emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, Temp dst)
{
Builder bld(ctx->program, ctx->block);
bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand(idx));
}
Temp emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, RegClass dst_rc)
{
/* no need to extract the whole vector */
if (src.regClass() == dst_rc) {
assert(idx == 0);
return src;
}
assert(src.bytes() > (idx * dst_rc.bytes()));
Builder bld(ctx->program, ctx->block);
auto it = ctx->allocated_vec.find(src.id());
if (it != ctx->allocated_vec.end() && dst_rc.bytes() == it->second[idx].regClass().bytes()) {
if (it->second[idx].regClass() == dst_rc) {
return it->second[idx];
} else {
assert(!dst_rc.is_subdword());
assert(dst_rc.type() == RegType::vgpr && it->second[idx].type() == RegType::sgpr);
return bld.copy(bld.def(dst_rc), it->second[idx]);
}
}
if (dst_rc.is_subdword())
src = as_vgpr(ctx, src);
if (src.bytes() == dst_rc.bytes()) {
assert(idx == 0);
return bld.copy(bld.def(dst_rc), src);
} else {
Temp dst = bld.tmp(dst_rc);
emit_extract_vector(ctx, src, idx, dst);
return dst;
}
}
void emit_split_vector(isel_context* ctx, Temp vec_src, unsigned num_components)
{
if (num_components == 1)
return;
if (ctx->allocated_vec.find(vec_src.id()) != ctx->allocated_vec.end())
return;
RegClass rc;
if (num_components > vec_src.size()) {
if (vec_src.type() == RegType::sgpr) {
/* should still help get_alu_src() */
emit_split_vector(ctx, vec_src, vec_src.size());
return;
}
/* sub-dword split */
rc = RegClass(RegType::vgpr, vec_src.bytes() / num_components).as_subdword();
} else {
rc = RegClass(vec_src.type(), vec_src.size() / num_components);
}
aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_components)};
split->operands[0] = Operand(vec_src);
std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
for (unsigned i = 0; i < num_components; i++) {
elems[i] = {ctx->program->allocateId(), rc};
split->definitions[i] = Definition(elems[i]);
}
ctx->block->instructions.emplace_back(std::move(split));
ctx->allocated_vec.emplace(vec_src.id(), elems);
}
/* This vector expansion uses a mask to determine which elements in the new vector
* come from the original vector. The other elements are undefined. */
void expand_vector(isel_context* ctx, Temp vec_src, Temp dst, unsigned num_components, unsigned mask)
{
emit_split_vector(ctx, vec_src, util_bitcount(mask));
if (vec_src == dst)
return;
Builder bld(ctx->program, ctx->block);
if (num_components == 1) {
if (dst.type() == RegType::sgpr)
bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec_src);
else
bld.copy(Definition(dst), vec_src);
return;
}
unsigned component_size = dst.size() / num_components;
std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
vec->definitions[0] = Definition(dst);
unsigned k = 0;
for (unsigned i = 0; i < num_components; i++) {
if (mask & (1 << i)) {
Temp src = emit_extract_vector(ctx, vec_src, k++, RegClass(vec_src.type(), component_size));
if (dst.type() == RegType::sgpr)
src = bld.as_uniform(src);
vec->operands[i] = Operand(src);
} else {
vec->operands[i] = Operand(0u);
}
elems[i] = vec->operands[i].getTemp();
}
ctx->block->instructions.emplace_back(std::move(vec));
ctx->allocated_vec.emplace(dst.id(), elems);
}
/* adjust misaligned small bit size loads */
void byte_align_scalar(isel_context *ctx, Temp vec, Operand offset, Temp dst)
{
Builder bld(ctx->program, ctx->block);
Operand shift;
Temp select = Temp();
if (offset.isConstant()) {
assert(offset.constantValue() && offset.constantValue() < 4);
shift = Operand(offset.constantValue() * 8);
} else {
/* bit_offset = 8 * (offset & 0x3) */
Temp tmp = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), offset, Operand(3u));
select = bld.tmp(s1);
shift = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.scc(Definition(select)), tmp, Operand(3u));
}
if (vec.size() == 1) {
bld.sop2(aco_opcode::s_lshr_b32, Definition(dst), bld.def(s1, scc), vec, shift);
} else if (vec.size() == 2) {
Temp tmp = dst.size() == 2 ? dst : bld.tmp(s2);
bld.sop2(aco_opcode::s_lshr_b64, Definition(tmp), bld.def(s1, scc), vec, shift);
if (tmp == dst)
emit_split_vector(ctx, dst, 2);
else
emit_extract_vector(ctx, tmp, 0, dst);
} else if (vec.size() == 4) {
Temp lo = bld.tmp(s2), hi = bld.tmp(s2);
bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), vec);
hi = bld.pseudo(aco_opcode::p_extract_vector, bld.def(s1), hi, Operand(0u));
if (select != Temp())
hi = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), hi, Operand(0u), bld.scc(select));
lo = bld.sop2(aco_opcode::s_lshr_b64, bld.def(s2), bld.def(s1, scc), lo, shift);
Temp mid = bld.tmp(s1);
lo = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), Definition(mid), lo);
hi = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), hi, shift);
mid = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), hi, mid);
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, mid);
emit_split_vector(ctx, dst, 2);
}
}
void byte_align_vector(isel_context *ctx, Temp vec, Operand offset, Temp dst, unsigned component_size)
{
Builder bld(ctx->program, ctx->block);
if (offset.isTemp()) {
Temp tmp[4] = {vec, vec, vec, vec};
if (vec.size() == 4) {
tmp[0] = bld.tmp(v1), tmp[1] = bld.tmp(v1), tmp[2] = bld.tmp(v1), tmp[3] = bld.tmp(v1);
bld.pseudo(aco_opcode::p_split_vector, Definition(tmp[0]), Definition(tmp[1]), Definition(tmp[2]), Definition(tmp[3]), vec);
} else if (vec.size() == 3) {
tmp[0] = bld.tmp(v1), tmp[1] = bld.tmp(v1), tmp[2] = bld.tmp(v1);
bld.pseudo(aco_opcode::p_split_vector, Definition(tmp[0]), Definition(tmp[1]), Definition(tmp[2]), vec);
} else if (vec.size() == 2) {
tmp[0] = bld.tmp(v1), tmp[1] = bld.tmp(v1), tmp[2] = tmp[1];
bld.pseudo(aco_opcode::p_split_vector, Definition(tmp[0]), Definition(tmp[1]), vec);
}
for (unsigned i = 0; i < dst.size(); i++)
tmp[i] = bld.vop3(aco_opcode::v_alignbyte_b32, bld.def(v1), tmp[i + 1], tmp[i], offset);
vec = tmp[0];
if (dst.size() == 2)
vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), tmp[0], tmp[1]);
offset = Operand(0u);
}
unsigned num_components = vec.bytes() / component_size;
if (vec.regClass() == dst.regClass()) {
assert(offset.constantValue() == 0);
bld.copy(Definition(dst), vec);
emit_split_vector(ctx, dst, num_components);
return;
}
emit_split_vector(ctx, vec, num_components);
std::array<Temp, NIR_MAX_VEC_COMPONENTS> elems;
RegClass rc = RegClass(RegType::vgpr, component_size).as_subdword();
assert(offset.constantValue() % component_size == 0);
unsigned skip = offset.constantValue() / component_size;
for (unsigned i = skip; i < num_components; i++)
elems[i - skip] = emit_extract_vector(ctx, vec, i, rc);
/* if dst is vgpr - split the src and create a shrunk version according to the mask. */
if (dst.type() == RegType::vgpr) {
num_components = dst.bytes() / component_size;
aco_ptr<Pseudo_instruction> create_vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
for (unsigned i = 0; i < num_components; i++)
create_vec->operands[i] = Operand(elems[i]);
create_vec->definitions[0] = Definition(dst);
bld.insert(std::move(create_vec));
/* if dst is sgpr - split the src, but move the original to sgpr. */
} else if (skip) {
vec = bld.pseudo(aco_opcode::p_as_uniform, bld.def(RegClass(RegType::sgpr, vec.size())), vec);
byte_align_scalar(ctx, vec, offset, dst);
} else {
assert(dst.size() == vec.size());
bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
}
ctx->allocated_vec.emplace(dst.id(), elems);
}
Temp bool_to_vector_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s2))
{
Builder bld(ctx->program, ctx->block);
if (!dst.id())
dst = bld.tmp(bld.lm);
assert(val.regClass() == s1);
assert(dst.regClass() == bld.lm);
return bld.sop2(Builder::s_cselect, Definition(dst), Operand((uint32_t) -1), Operand(0u), bld.scc(val));
}
Temp bool_to_scalar_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s1))
{
Builder bld(ctx->program, ctx->block);
if (!dst.id())
dst = bld.tmp(s1);
assert(val.regClass() == bld.lm);
assert(dst.regClass() == s1);
/* if we're currently in WQM mode, ensure that the source is also computed in WQM */
Temp tmp = bld.tmp(s1);
bld.sop2(Builder::s_and, bld.def(bld.lm), bld.scc(Definition(tmp)), val, Operand(exec, bld.lm));
return emit_wqm(ctx, tmp, dst);
}
Temp convert_int(isel_context *ctx, Builder& bld, Temp src, unsigned src_bits, unsigned dst_bits, bool is_signed, Temp dst=Temp())
{
if (!dst.id()) {
if (dst_bits % 32 == 0 || src.type() == RegType::sgpr)
dst = bld.tmp(src.type(), DIV_ROUND_UP(dst_bits, 32u));
else
dst = bld.tmp(RegClass(RegType::vgpr, dst_bits / 8u).as_subdword());
}
if (dst.bytes() == src.bytes() && dst_bits < src_bits)
return bld.copy(Definition(dst), src);
else if (dst.bytes() < src.bytes())
return bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand(0u));
Temp tmp = dst;
if (dst_bits == 64)
tmp = src_bits == 32 ? src : bld.tmp(src.type(), 1);
if (tmp == src) {
} else if (src.regClass() == s1) {
if (is_signed)
bld.sop1(src_bits == 8 ? aco_opcode::s_sext_i32_i8 : aco_opcode::s_sext_i32_i16, Definition(tmp), src);
else
bld.sop2(aco_opcode::s_and_b32, Definition(tmp), bld.def(s1, scc), Operand(src_bits == 8 ? 0xFFu : 0xFFFFu), src);
} else if (ctx->options->chip_class >= GFX8) {
assert(src_bits != 8 || src.regClass() == v1b);
assert(src_bits != 16 || src.regClass() == v2b);
aco_ptr<SDWA_instruction> sdwa{create_instruction<SDWA_instruction>(aco_opcode::v_mov_b32, asSDWA(Format::VOP1), 1, 1)};
sdwa->operands[0] = Operand(src);
sdwa->definitions[0] = Definition(tmp);
if (is_signed)
sdwa->sel[0] = src_bits == 8 ? sdwa_sbyte : sdwa_sword;
else
sdwa->sel[0] = src_bits == 8 ? sdwa_ubyte : sdwa_uword;
sdwa->dst_sel = tmp.bytes() == 2 ? sdwa_uword : sdwa_udword;
bld.insert(std::move(sdwa));
} else {
assert(ctx->options->chip_class == GFX6 || ctx->options->chip_class == GFX7);
aco_opcode opcode = is_signed ? aco_opcode::v_bfe_i32 : aco_opcode::v_bfe_u32;
bld.vop3(opcode, Definition(tmp), src, Operand(0u), Operand(src_bits == 8 ? 8u : 16u));
}
if (dst_bits == 64) {
if (is_signed && dst.regClass() == s2) {
Temp high = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), tmp, Operand(31u));
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tmp, high);
} else if (is_signed && dst.regClass() == v2) {
Temp high = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), tmp);
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tmp, high);
} else {
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tmp, Operand(0u));
}
}
return dst;
}
enum sgpr_extract_mode {
sgpr_extract_sext,
sgpr_extract_zext,
sgpr_extract_undef,
};
Temp extract_8_16_bit_sgpr_element(isel_context *ctx, Temp dst, nir_alu_src *src, sgpr_extract_mode mode)
{
Temp vec = get_ssa_temp(ctx, src->src.ssa);
unsigned src_size = src->src.ssa->bit_size;
unsigned swizzle = src->swizzle[0];
if (vec.size() > 1) {
assert(src_size == 16);
vec = emit_extract_vector(ctx, vec, swizzle / 2, s1);
swizzle = swizzle & 1;
}
Builder bld(ctx->program, ctx->block);
unsigned offset = src_size * swizzle;
Temp tmp = dst.regClass() == s2 ? bld.tmp(s1) : dst;
if (mode == sgpr_extract_undef && swizzle == 0) {
bld.copy(Definition(tmp), vec);
} else if (mode == sgpr_extract_undef || (offset == 24 && mode == sgpr_extract_zext)) {
bld.sop2(aco_opcode::s_lshr_b32, Definition(tmp), bld.def(s1, scc), vec, Operand(offset));
} else if (src_size == 8 && swizzle == 0 && mode == sgpr_extract_sext) {
bld.sop1(aco_opcode::s_sext_i32_i8, Definition(tmp), vec);
} else if (src_size == 16 && swizzle == 0 && mode == sgpr_extract_sext) {
bld.sop1(aco_opcode::s_sext_i32_i16, Definition(tmp), vec);
} else {
aco_opcode op = mode == sgpr_extract_zext ? aco_opcode::s_bfe_u32 : aco_opcode::s_bfe_i32;
bld.sop2(op, Definition(tmp), bld.def(s1, scc), vec, Operand((src_size << 16) | offset));
}
if (dst.regClass() == s2)
convert_int(ctx, bld, tmp, 32, 64, mode == sgpr_extract_sext, dst);
return dst;
}
Temp get_alu_src(struct isel_context *ctx, nir_alu_src src, unsigned size=1)
{
if (src.src.ssa->num_components == 1 && src.swizzle[0] == 0 && size == 1)
return get_ssa_temp(ctx, src.src.ssa);
if (src.src.ssa->num_components == size) {
bool identity_swizzle = true;
for (unsigned i = 0; identity_swizzle && i < size; i++) {
if (src.swizzle[i] != i)
identity_swizzle = false;
}
if (identity_swizzle)
return get_ssa_temp(ctx, src.src.ssa);
}
Temp vec = get_ssa_temp(ctx, src.src.ssa);
unsigned elem_size = vec.bytes() / src.src.ssa->num_components;
assert(elem_size > 0);
assert(vec.bytes() % elem_size == 0);
if (elem_size < 4 && vec.type() == RegType::sgpr) {
assert(src.src.ssa->bit_size == 8 || src.src.ssa->bit_size == 16);
assert(size == 1);
return extract_8_16_bit_sgpr_element(
ctx, Temp(ctx->program->allocateId(), s1), &src, sgpr_extract_undef);
}
RegClass elem_rc = elem_size < 4 ? RegClass(vec.type(), elem_size).as_subdword() : RegClass(vec.type(), elem_size / 4);
if (size == 1) {
return emit_extract_vector(ctx, vec, src.swizzle[0], elem_rc);
} else {
assert(size <= 4);
std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
aco_ptr<Pseudo_instruction> vec_instr{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, size, 1)};
for (unsigned i = 0; i < size; ++i) {
elems[i] = emit_extract_vector(ctx, vec, src.swizzle[i], elem_rc);
vec_instr->operands[i] = Operand{elems[i]};
}
Temp dst{ctx->program->allocateId(), RegClass(vec.type(), elem_size * size / 4)};
vec_instr->definitions[0] = Definition(dst);
ctx->block->instructions.emplace_back(std::move(vec_instr));
ctx->allocated_vec.emplace(dst.id(), elems);
return dst;
}
}
Temp convert_pointer_to_64_bit(isel_context *ctx, Temp ptr)
{
if (ptr.size() == 2)
return ptr;
Builder bld(ctx->program, ctx->block);
if (ptr.type() == RegType::vgpr)
ptr = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), ptr);
return bld.pseudo(aco_opcode::p_create_vector, bld.def(s2),
ptr, Operand((unsigned)ctx->options->address32_hi));
}
void emit_sop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst, bool writes_scc)
{
aco_ptr<SOP2_instruction> sop2{create_instruction<SOP2_instruction>(op, Format::SOP2, 2, writes_scc ? 2 : 1)};
sop2->operands[0] = Operand(get_alu_src(ctx, instr->src[0]));
sop2->operands[1] = Operand(get_alu_src(ctx, instr->src[1]));
sop2->definitions[0] = Definition(dst);
if (instr->no_unsigned_wrap)
sop2->definitions[0].setNUW(true);
if (writes_scc)
sop2->definitions[1] = Definition(ctx->program->allocateId(), scc, s1);
ctx->block->instructions.emplace_back(std::move(sop2));
}
void emit_vop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
bool commutative, bool swap_srcs=false, bool flush_denorms = false)
{
Builder bld(ctx->program, ctx->block);
bld.is_precise = instr->exact;
Temp src0 = get_alu_src(ctx, instr->src[swap_srcs ? 1 : 0]);
Temp src1 = get_alu_src(ctx, instr->src[swap_srcs ? 0 : 1]);
if (src1.type() == RegType::sgpr) {
if (commutative && src0.type() == RegType::vgpr) {
Temp t = src0;
src0 = src1;
src1 = t;
} else {
src1 = as_vgpr(ctx, src1);
}
}
if (flush_denorms && ctx->program->chip_class < GFX9) {
assert(dst.size() == 1);
Temp tmp = bld.vop2(op, bld.def(v1), src0, src1);
bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
} else {
bld.vop2(op, Definition(dst), src0, src1);
}
}
void emit_vop2_instruction_logic64(isel_context *ctx, nir_alu_instr *instr,
aco_opcode op, Temp dst)
{
Builder bld(ctx->program, ctx->block);
bld.is_precise = instr->exact;
Temp src0 = get_alu_src(ctx, instr->src[0]);
Temp src1 = get_alu_src(ctx, instr->src[1]);
if (src1.type() == RegType::sgpr) {
assert(src0.type() == RegType::vgpr);
std::swap(src0, src1);
}
Temp src00 = bld.tmp(src0.type(), 1);
Temp src01 = bld.tmp(src0.type(), 1);
bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
Temp src10 = bld.tmp(v1);
Temp src11 = bld.tmp(v1);
bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
Temp lo = bld.vop2(op, bld.def(v1), src00, src10);
Temp hi = bld.vop2(op, bld.def(v1), src01, src11);
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
}
void emit_vop3a_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
bool flush_denorms = false)
{
Temp src0 = get_alu_src(ctx, instr->src[0]);
Temp src1 = get_alu_src(ctx, instr->src[1]);
Temp src2 = get_alu_src(ctx, instr->src[2]);
/* ensure that the instruction has at most 1 sgpr operand
* The optimizer will inline constants for us */
if (src0.type() == RegType::sgpr && src1.type() == RegType::sgpr)
src0 = as_vgpr(ctx, src0);
if (src1.type() == RegType::sgpr && src2.type() == RegType::sgpr)
src1 = as_vgpr(ctx, src1);
if (src2.type() == RegType::sgpr && src0.type() == RegType::sgpr)
src2 = as_vgpr(ctx, src2);
Builder bld(ctx->program, ctx->block);
bld.is_precise = instr->exact;
if (flush_denorms && ctx->program->chip_class < GFX9) {
assert(dst.size() == 1);
Temp tmp = bld.vop3(op, Definition(dst), src0, src1, src2);
bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
} else {
bld.vop3(op, Definition(dst), src0, src1, src2);
}
}
void emit_vop1_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
{
Builder bld(ctx->program, ctx->block);
bld.is_precise = instr->exact;
if (dst.type() == RegType::sgpr)
bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
bld.vop1(op, bld.def(RegType::vgpr, dst.size()), get_alu_src(ctx, instr->src[0])));
else
bld.vop1(op, Definition(dst), get_alu_src(ctx, instr->src[0]));
}
void emit_vopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
{
Temp src0 = get_alu_src(ctx, instr->src[0]);
Temp src1 = get_alu_src(ctx, instr->src[1]);
assert(src0.size() == src1.size());
aco_ptr<Instruction> vopc;
if (src1.type() == RegType::sgpr) {
if (src0.type() == RegType::vgpr) {
/* to swap the operands, we might also have to change the opcode */
switch (op) {
case aco_opcode::v_cmp_lt_f16:
op = aco_opcode::v_cmp_gt_f16;
break;
case aco_opcode::v_cmp_ge_f16:
op = aco_opcode::v_cmp_le_f16;
break;
case aco_opcode::v_cmp_lt_i16:
op = aco_opcode::v_cmp_gt_i16;
break;
case aco_opcode::v_cmp_ge_i16:
op = aco_opcode::v_cmp_le_i16;
break;
case aco_opcode::v_cmp_lt_u16:
op = aco_opcode::v_cmp_gt_u16;
break;
case aco_opcode::v_cmp_ge_u16:
op = aco_opcode::v_cmp_le_u16;
break;
case aco_opcode::v_cmp_lt_f32:
op = aco_opcode::v_cmp_gt_f32;
break;
case aco_opcode::v_cmp_ge_f32:
op = aco_opcode::v_cmp_le_f32;
break;
case aco_opcode::v_cmp_lt_i32:
op = aco_opcode::v_cmp_gt_i32;
break;
case aco_opcode::v_cmp_ge_i32:
op = aco_opcode::v_cmp_le_i32;
break;
case aco_opcode::v_cmp_lt_u32:
op = aco_opcode::v_cmp_gt_u32;
break;
case aco_opcode::v_cmp_ge_u32:
op = aco_opcode::v_cmp_le_u32;
break;
case aco_opcode::v_cmp_lt_f64:
op = aco_opcode::v_cmp_gt_f64;
break;
case aco_opcode::v_cmp_ge_f64:
op = aco_opcode::v_cmp_le_f64;
break;
case aco_opcode::v_cmp_lt_i64:
op = aco_opcode::v_cmp_gt_i64;
break;
case aco_opcode::v_cmp_ge_i64:
op = aco_opcode::v_cmp_le_i64;
break;
case aco_opcode::v_cmp_lt_u64:
op = aco_opcode::v_cmp_gt_u64;
break;
case aco_opcode::v_cmp_ge_u64:
op = aco_opcode::v_cmp_le_u64;
break;
default: /* eq and ne are commutative */
break;
}
Temp t = src0;
src0 = src1;
src1 = t;
} else {
src1 = as_vgpr(ctx, src1);
}
}
Builder bld(ctx->program, ctx->block);
bld.vopc(op, bld.hint_vcc(Definition(dst)), src0, src1);
}
void emit_sopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
{
Temp src0 = get_alu_src(ctx, instr->src[0]);
Temp src1 = get_alu_src(ctx, instr->src[1]);
Builder bld(ctx->program, ctx->block);
assert(dst.regClass() == bld.lm);
assert(src0.type() == RegType::sgpr);
assert(src1.type() == RegType::sgpr);
assert(src0.regClass() == src1.regClass());
/* Emit the SALU comparison instruction */
Temp cmp = bld.sopc(op, bld.scc(bld.def(s1)), src0, src1);
/* Turn the result into a per-lane bool */
bool_to_vector_condition(ctx, cmp, dst);
}
void emit_comparison(isel_context *ctx, nir_alu_instr *instr, Temp dst,
aco_opcode v16_op, aco_opcode v32_op, aco_opcode v64_op, aco_opcode s32_op = aco_opcode::num_opcodes, aco_opcode s64_op = aco_opcode::num_opcodes)
{
aco_opcode s_op = instr->src[0].src.ssa->bit_size == 64 ? s64_op : instr->src[0].src.ssa->bit_size == 32 ? s32_op : aco_opcode::num_opcodes;
aco_opcode v_op = instr->src[0].src.ssa->bit_size == 64 ? v64_op : instr->src[0].src.ssa->bit_size == 32 ? v32_op : v16_op;
bool use_valu = s_op == aco_opcode::num_opcodes ||
nir_dest_is_divergent(instr->dest.dest) ||
ctx->allocated[instr->src[0].src.ssa->index].type() == RegType::vgpr ||
ctx->allocated[instr->src[1].src.ssa->index].type() == RegType::vgpr;
aco_opcode op = use_valu ? v_op : s_op;
assert(op != aco_opcode::num_opcodes);
assert(dst.regClass() == ctx->program->lane_mask);
if (use_valu)
emit_vopc_instruction(ctx, instr, op, dst);
else
emit_sopc_instruction(ctx, instr, op, dst);
}
void emit_boolean_logic(isel_context *ctx, nir_alu_instr *instr, Builder::WaveSpecificOpcode op, Temp dst)
{
Builder bld(ctx->program, ctx->block);
Temp src0 = get_alu_src(ctx, instr->src[0]);
Temp src1 = get_alu_src(ctx, instr->src[1]);
assert(dst.regClass() == bld.lm);
assert(src0.regClass() == bld.lm);
assert(src1.regClass() == bld.lm);
bld.sop2(op, Definition(dst), bld.def(s1, scc), src0, src1);
}
void emit_bcsel(isel_context *ctx, nir_alu_instr *instr, Temp dst)
{
Builder bld(ctx->program, ctx->block);
Temp cond = get_alu_src(ctx, instr->src[0]);
Temp then = get_alu_src(ctx, instr->src[1]);
Temp els = get_alu_src(ctx, instr->src[2]);
assert(cond.regClass() == bld.lm);
if (dst.type() == RegType::vgpr) {
aco_ptr<Instruction> bcsel;
if (dst.size() == 1) {
then = as_vgpr(ctx, then);
els = as_vgpr(ctx, els);
bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), els, then, cond);
} else if (dst.size() == 2) {
Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), then);
Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), els);
Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, cond);
Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, cond);
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
return;
}
if (instr->dest.dest.ssa.bit_size == 1) {
assert(dst.regClass() == bld.lm);
assert(then.regClass() == bld.lm);
assert(els.regClass() == bld.lm);
}
if (!nir_src_is_divergent(instr->src[0].src)) { /* uniform condition and values in sgpr */
if (dst.regClass() == s1 || dst.regClass() == s2) {
assert((then.regClass() == s1 || then.regClass() == s2) && els.regClass() == then.regClass());
assert(dst.size() == then.size());
aco_opcode op = dst.regClass() == s1 ? aco_opcode::s_cselect_b32 : aco_opcode::s_cselect_b64;
bld.sop2(op, Definition(dst), then, els, bld.scc(bool_to_scalar_condition(ctx, cond)));
} else {
isel_err(&instr->instr, "Unimplemented uniform bcsel bit size");
}
return;
}
/* divergent boolean bcsel
* this implements bcsel on bools: dst = s0 ? s1 : s2
* are going to be: dst = (s0 & s1) | (~s0 & s2) */
assert(instr->dest.dest.ssa.bit_size == 1);
if (cond.id() != then.id())
then = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), cond, then);
if (cond.id() == els.id())
bld.sop1(Builder::s_mov, Definition(dst), then);
else
bld.sop2(Builder::s_or, Definition(dst), bld.def(s1, scc), then,
bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), els, cond));
}
void emit_scaled_op(isel_context *ctx, Builder& bld, Definition dst, Temp val,
aco_opcode op, uint32_t undo)
{
/* multiply by 16777216 to handle denormals */
Temp is_denormal = bld.vopc(aco_opcode::v_cmp_class_f32, bld.hint_vcc(bld.def(bld.lm)),
as_vgpr(ctx, val), bld.copy(bld.def(v1), Operand((1u << 7) | (1u << 4))));
Temp scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x4b800000u), val);
scaled = bld.vop1(op, bld.def(v1), scaled);
scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(undo), scaled);
Temp not_scaled = bld.vop1(op, bld.def(v1), val);
bld.vop2(aco_opcode::v_cndmask_b32, dst, not_scaled, scaled, is_denormal);
}
void emit_rcp(isel_context *ctx, Builder& bld, Definition dst, Temp val)
{
if (ctx->block->fp_mode.denorm32 == 0) {
bld.vop1(aco_opcode::v_rcp_f32, dst, val);
return;
}
emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rcp_f32, 0x4b800000u);
}
void emit_rsq(isel_context *ctx, Builder& bld, Definition dst, Temp val)
{
if (ctx->block->fp_mode.denorm32 == 0) {
bld.vop1(aco_opcode::v_rsq_f32, dst, val);
return;
}
emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rsq_f32, 0x45800000u);
}
void emit_sqrt(isel_context *ctx, Builder& bld, Definition dst, Temp val)
{
if (ctx->block->fp_mode.denorm32 == 0) {
bld.vop1(aco_opcode::v_sqrt_f32, dst, val);
return;
}
emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_sqrt_f32, 0x39800000u);
}
void emit_log2(isel_context *ctx, Builder& bld, Definition dst, Temp val)
{
if (ctx->block->fp_mode.denorm32 == 0) {
bld.vop1(aco_opcode::v_log_f32, dst, val);
return;
}
emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_log_f32, 0xc1c00000u);
}
Temp emit_trunc_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
{
if (ctx->options->chip_class >= GFX7)
return bld.vop1(aco_opcode::v_trunc_f64, Definition(dst), val);
/* GFX6 doesn't support V_TRUNC_F64, lower it. */
/* TODO: create more efficient code! */
if (val.type() == RegType::sgpr)
val = as_vgpr(ctx, val);
/* Split the input value. */
Temp val_lo = bld.tmp(v1), val_hi = bld.tmp(v1);
bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
/* Extract the exponent and compute the unbiased value. */
Temp exponent = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), val_hi, Operand(20u), Operand(11u));
exponent = bld.vsub32(bld.def(v1), exponent, Operand(1023u));
/* Extract the fractional part. */
Temp fract_mask = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x000fffffu));
fract_mask = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), fract_mask, exponent);
Temp fract_mask_lo = bld.tmp(v1), fract_mask_hi = bld.tmp(v1);
bld.pseudo(aco_opcode::p_split_vector, Definition(fract_mask_lo), Definition(fract_mask_hi), fract_mask);
Temp fract_lo = bld.tmp(v1), fract_hi = bld.tmp(v1);
Temp tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_lo);
fract_lo = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_lo, tmp);
tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_hi);
fract_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_hi, tmp);
/* Get the sign bit. */
Temp sign = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x80000000u), val_hi);
/* Decide the operation to apply depending on the unbiased exponent. */
Temp exp_lt0 = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)), exponent, Operand(0u));
Temp dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_lo, bld.copy(bld.def(v1), Operand(0u)), exp_lt0);
Temp dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_hi, sign, exp_lt0);
Temp exp_gt51 = bld.vopc_e64(aco_opcode::v_cmp_gt_i32, bld.def(s2), exponent, Operand(51u));
dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_lo, val_lo, exp_gt51);
dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_hi, val_hi, exp_gt51);
return bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst_lo, dst_hi);
}
Temp emit_floor_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
{
if (ctx->options->chip_class >= GFX7)
return bld.vop1(aco_opcode::v_floor_f64, Definition(dst), val);
/* GFX6 doesn't support V_FLOOR_F64, lower it (note that it's actually
* lowered at NIR level for precision reasons). */
Temp src0 = as_vgpr(ctx, val);
Temp mask = bld.copy(bld.def(s1), Operand(3u)); /* isnan */
Temp min_val = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(-1u), Operand(0x3fefffffu));
Temp isnan = bld.vopc_e64(aco_opcode::v_cmp_class_f64, bld.hint_vcc(bld.def(bld.lm)), src0, mask);
Temp fract = bld.vop1(aco_opcode::v_fract_f64, bld.def(v2), src0);
Temp min = bld.vop3(aco_opcode::v_min_f64, bld.def(v2), fract, min_val);
Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), src0);
Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), min);
Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, isnan);
Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, isnan);
Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), dst0, dst1);
Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src0, v);
static_cast<VOP3A_instruction*>(add)->neg[1] = true;
return add->definitions[0].getTemp();
}
void visit_alu_instr(isel_context *ctx, nir_alu_instr *instr)
{
if (!instr->dest.dest.is_ssa) {
isel_err(&instr->instr, "nir alu dst not in ssa");
abort();
}
Builder bld(ctx->program, ctx->block);
bld.is_precise = instr->exact;
Temp dst = get_ssa_temp(ctx, &instr->dest.dest.ssa);
switch(instr->op) {
case nir_op_vec2:
case nir_op_vec3:
case nir_op_vec4: {
std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
unsigned num = instr->dest.dest.ssa.num_components;
for (unsigned i = 0; i < num; ++i)
elems[i] = get_alu_src(ctx, instr->src[i]);
if (instr->dest.dest.ssa.bit_size >= 32 || dst.type() == RegType::vgpr) {
aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.dest.ssa.num_components, 1)};
RegClass elem_rc = RegClass::get(RegType::vgpr, instr->dest.dest.ssa.bit_size / 8u);
for (unsigned i = 0; i < num; ++i) {
if (elems[i].type() == RegType::sgpr && elem_rc.is_subdword())
vec->operands[i] = Operand(emit_extract_vector(ctx, elems[i], 0, elem_rc));
else
vec->operands[i] = Operand{elems[i]};
}
vec->definitions[0] = Definition(dst);
ctx->block->instructions.emplace_back(std::move(vec));
ctx->allocated_vec.emplace(dst.id(), elems);
} else {
// TODO: that is a bit suboptimal..
Temp mask = bld.copy(bld.def(s1), Operand((1u << instr->dest.dest.ssa.bit_size) - 1));
for (unsigned i = 0; i < num - 1; ++i)
if (((i+1) * instr->dest.dest.ssa.bit_size) % 32)
elems[i] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), elems[i], mask);
for (unsigned i = 0; i < num; ++i) {
unsigned bit = i * instr->dest.dest.ssa.bit_size;
if (bit % 32 == 0) {
elems[bit / 32] = elems[i];
} else {
elems[i] = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc),
elems[i], Operand((i * instr->dest.dest.ssa.bit_size) % 32));
elems[bit / 32] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), elems[bit / 32], elems[i]);
}
}
if (dst.size() == 1)
bld.copy(Definition(dst), elems[0]);
else
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), elems[0], elems[1]);
}
break;
}
case nir_op_mov: {
Temp src = get_alu_src(ctx, instr->src[0]);
aco_ptr<Instruction> mov;
if (dst.type() == RegType::sgpr) {
if (src.type() == RegType::vgpr)
bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), src);
else if (src.regClass() == s1)
bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
else if (src.regClass() == s2)
bld.sop1(aco_opcode::s_mov_b64, Definition(dst), src);
else
unreachable("wrong src register class for nir_op_imov");
} else {
if (dst.regClass() == v1)
bld.vop1(aco_opcode::v_mov_b32, Definition(dst), src);
else if (dst.regClass() == v1b ||
dst.regClass() == v2b ||
dst.regClass() == v2)
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
else
unreachable("wrong src register class for nir_op_imov");
}
break;
}
case nir_op_inot: {
Temp src = get_alu_src(ctx, instr->src[0]);
if (instr->dest.dest.ssa.bit_size == 1) {
assert(src.regClass() == bld.lm);
assert(dst.regClass() == bld.lm);
/* Don't use s_andn2 here, this allows the optimizer to make a better decision */
Temp tmp = bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), src);
bld.sop2(Builder::s_and, Definition(dst), bld.def(s1, scc), tmp, Operand(exec, bld.lm));
} else if (dst.regClass() == v1) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_not_b32, dst);
} else if (dst.regClass() == v2) {
Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
lo = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), lo);
hi = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), hi);
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
} else if (dst.type() == RegType::sgpr) {
aco_opcode opcode = dst.size() == 1 ? aco_opcode::s_not_b32 : aco_opcode::s_not_b64;
bld.sop1(opcode, Definition(dst), bld.def(s1, scc), src);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_ineg: {
Temp src = get_alu_src(ctx, instr->src[0]);
if (dst.regClass() == v1) {
bld.vsub32(Definition(dst), Operand(0u), Operand(src));
} else if (dst.regClass() == s1) {
bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand((uint32_t) -1), src);
} else if (dst.size() == 2) {
Temp src0 = bld.tmp(dst.type(), 1);
Temp src1 = bld.tmp(dst.type(), 1);
bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
if (dst.regClass() == s2) {
Temp carry = bld.tmp(s1);
Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), Operand(0u), src0);
Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), src1, carry);
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
} else {
Temp lower = bld.tmp(v1);
Temp borrow = bld.vsub32(Definition(lower), Operand(0u), src0, true).def(1).getTemp();
Temp upper = bld.vsub32(bld.def(v1), Operand(0u), src1, false, borrow);
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
}
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_iabs: {
if (dst.regClass() == s1) {
bld.sop1(aco_opcode::s_abs_i32, Definition(dst), bld.def(s1, scc), get_alu_src(ctx, instr->src[0]));
} else if (dst.regClass() == v1) {
Temp src = get_alu_src(ctx, instr->src[0]);
bld.vop2(aco_opcode::v_max_i32, Definition(dst), src, bld.vsub32(bld.def(v1), Operand(0u), src));
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_isign: {
Temp src = get_alu_src(ctx, instr->src[0]);
if (dst.regClass() == s1) {
Temp tmp = bld.sop2(aco_opcode::s_max_i32, bld.def(s1), bld.def(s1, scc), src, Operand((uint32_t)-1));
bld.sop2(aco_opcode::s_min_i32, Definition(dst), bld.def(s1, scc), tmp, Operand(1u));
} else if (dst.regClass() == s2) {
Temp neg = bld.sop2(aco_opcode::s_ashr_i64, bld.def(s2), bld.def(s1, scc), src, Operand(63u));
Temp neqz;
if (ctx->program->chip_class >= GFX8)
neqz = bld.sopc(aco_opcode::s_cmp_lg_u64, bld.def(s1, scc), src, Operand(0u));
else
neqz = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), src, Operand(0u)).def(1).getTemp();
/* SCC gets zero-extended to 64 bit */
bld.sop2(aco_opcode::s_or_b64, Definition(dst), bld.def(s1, scc), neg, bld.scc(neqz));
} else if (dst.regClass() == v1) {
bld.vop3(aco_opcode::v_med3_i32, Definition(dst), Operand((uint32_t)-1), src, Operand(1u));
} else if (dst.regClass() == v2) {
Temp upper = emit_extract_vector(ctx, src, 1, v1);
Temp neg = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), upper);
Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
Temp lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(1u), neg, gtz);
upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), neg, gtz);
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_imax: {
if (dst.regClass() == v1) {
emit_vop2_instruction(ctx, instr, aco_opcode::v_max_i32, dst, true);
} else if (dst.regClass() == s1) {
emit_sop2_instruction(ctx, instr, aco_opcode::s_max_i32, dst, true);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_umax: {
if (dst.regClass() == v1) {
emit_vop2_instruction(ctx, instr, aco_opcode::v_max_u32, dst, true);
} else if (dst.regClass() == s1) {
emit_sop2_instruction(ctx, instr, aco_opcode::s_max_u32, dst, true);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_imin: {
if (dst.regClass() == v1) {
emit_vop2_instruction(ctx, instr, aco_opcode::v_min_i32, dst, true);
} else if (dst.regClass() == s1) {
emit_sop2_instruction(ctx, instr, aco_opcode::s_min_i32, dst, true);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_umin: {
if (dst.regClass() == v1) {
emit_vop2_instruction(ctx, instr, aco_opcode::v_min_u32, dst, true);
} else if (dst.regClass() == s1) {
emit_sop2_instruction(ctx, instr, aco_opcode::s_min_u32, dst, true);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_ior: {
if (instr->dest.dest.ssa.bit_size == 1) {
emit_boolean_logic(ctx, instr, Builder::s_or, dst);
} else if (dst.regClass() == v1) {
emit_vop2_instruction(ctx, instr, aco_opcode::v_or_b32, dst, true);
} else if (dst.regClass() == v2) {
emit_vop2_instruction_logic64(ctx, instr, aco_opcode::v_or_b32, dst);
} else if (dst.regClass() == s1) {
emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b32, dst, true);
} else if (dst.regClass() == s2) {
emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b64, dst, true);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_iand: {
if (instr->dest.dest.ssa.bit_size == 1) {
emit_boolean_logic(ctx, instr, Builder::s_and, dst);
} else if (dst.regClass() == v1) {
emit_vop2_instruction(ctx, instr, aco_opcode::v_and_b32, dst, true);
} else if (dst.regClass() == v2) {
emit_vop2_instruction_logic64(ctx, instr, aco_opcode::v_and_b32, dst);
} else if (dst.regClass() == s1) {
emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b32, dst, true);
} else if (dst.regClass() == s2) {
emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b64, dst, true);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_ixor: {
if (instr->dest.dest.ssa.bit_size == 1) {
emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
} else if (dst.regClass() == v1) {
emit_vop2_instruction(ctx, instr, aco_opcode::v_xor_b32, dst, true);
} else if (dst.regClass() == v2) {
emit_vop2_instruction_logic64(ctx, instr, aco_opcode::v_xor_b32, dst);
} else if (dst.regClass() == s1) {
emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b32, dst, true);
} else if (dst.regClass() == s2) {
emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b64, dst, true);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_ushr: {
if (dst.regClass() == v1) {
emit_vop2_instruction(ctx, instr, aco_opcode::v_lshrrev_b32, dst, false, true);
} else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
bld.vop3(aco_opcode::v_lshrrev_b64, Definition(dst),
get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
} else if (dst.regClass() == v2) {
bld.vop3(aco_opcode::v_lshr_b64, Definition(dst),
get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
} else if (dst.regClass() == s2) {
emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b64, dst, true);
} else if (dst.regClass() == s1) {
emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b32, dst, true);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_ishl: {
if (dst.regClass() == v1) {
emit_vop2_instruction(ctx, instr, aco_opcode::v_lshlrev_b32, dst, false, true);
} else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
bld.vop3(aco_opcode::v_lshlrev_b64, Definition(dst),
get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
} else if (dst.regClass() == v2) {
bld.vop3(aco_opcode::v_lshl_b64, Definition(dst),
get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
} else if (dst.regClass() == s1) {
emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b32, dst, true);
} else if (dst.regClass() == s2) {
emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b64, dst, true);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_ishr: {
if (dst.regClass() == v1) {
emit_vop2_instruction(ctx, instr, aco_opcode::v_ashrrev_i32, dst, false, true);
} else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
bld.vop3(aco_opcode::v_ashrrev_i64, Definition(dst),
get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
} else if (dst.regClass() == v2) {
bld.vop3(aco_opcode::v_ashr_i64, Definition(dst),
get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
} else if (dst.regClass() == s1) {
emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i32, dst, true);
} else if (dst.regClass() == s2) {
emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i64, dst, true);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_find_lsb: {
Temp src = get_alu_src(ctx, instr->src[0]);
if (src.regClass() == s1) {
bld.sop1(aco_opcode::s_ff1_i32_b32, Definition(dst), src);
} else if (src.regClass() == v1) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_ffbl_b32, dst);
} else if (src.regClass() == s2) {
bld.sop1(aco_opcode::s_ff1_i32_b64, Definition(dst), src);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_ufind_msb:
case nir_op_ifind_msb: {
Temp src = get_alu_src(ctx, instr->src[0]);
if (src.regClass() == s1 || src.regClass() == s2) {
aco_opcode op = src.regClass() == s2 ?
(instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b64 : aco_opcode::s_flbit_i32_i64) :
(instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b32 : aco_opcode::s_flbit_i32);
Temp msb_rev = bld.sop1(op, bld.def(s1), src);
Builder::Result sub = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc),
Operand(src.size() * 32u - 1u), msb_rev);
Temp msb = sub.def(0).getTemp();
Temp carry = sub.def(1).getTemp();
bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t)-1), msb, bld.scc(carry));
} else if (src.regClass() == v1) {
aco_opcode op = instr->op == nir_op_ufind_msb ? aco_opcode::v_ffbh_u32 : aco_opcode::v_ffbh_i32;
Temp msb_rev = bld.tmp(v1);
emit_vop1_instruction(ctx, instr, op, msb_rev);
Temp msb = bld.tmp(v1);
Temp carry = bld.vsub32(Definition(msb), Operand(31u), Operand(msb_rev), true).def(1).getTemp();
bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), msb, Operand((uint32_t)-1), carry);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_bitfield_reverse: {
if (dst.regClass() == s1) {
bld.sop1(aco_opcode::s_brev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
} else if (dst.regClass() == v1) {
bld.vop1(aco_opcode::v_bfrev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_iadd: {
if (dst.regClass() == s1) {
emit_sop2_instruction(ctx, instr, aco_opcode::s_add_u32, dst, true);
break;
}
Temp src0 = get_alu_src(ctx, instr->src[0]);
Temp src1 = get_alu_src(ctx, instr->src[1]);
if (dst.regClass() == v1) {
bld.vadd32(Definition(dst), Operand(src0), Operand(src1));
break;
}
assert(src0.size() == 2 && src1.size() == 2);
Temp src00 = bld.tmp(src0.type(), 1);
Temp src01 = bld.tmp(dst.type(), 1);
bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
Temp src10 = bld.tmp(src1.type(), 1);
Temp src11 = bld.tmp(dst.type(), 1);
bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
if (dst.regClass() == s2) {
Temp carry = bld.tmp(s1);
Temp dst0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
Temp dst1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), src01, src11, bld.scc(carry));
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
} else if (dst.regClass() == v2) {
Temp dst0 = bld.tmp(v1);
Temp carry = bld.vadd32(Definition(dst0), src00, src10, true).def(1).getTemp();
Temp dst1 = bld.vadd32(bld.def(v1), src01, src11, false, carry);
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_uadd_sat: {
Temp src0 = get_alu_src(ctx, instr->src[0]);
Temp src1 = get_alu_src(ctx, instr->src[1]);
if (dst.regClass() == s1) {
Temp tmp = bld.tmp(s1), carry = bld.tmp(s1);
bld.sop2(aco_opcode::s_add_u32, Definition(tmp), bld.scc(Definition(carry)),
src0, src1);
bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t) -1), tmp, bld.scc(carry));
} else if (dst.regClass() == v1) {
if (ctx->options->chip_class >= GFX9) {
aco_ptr<VOP3A_instruction> add{create_instruction<VOP3A_instruction>(aco_opcode::v_add_u32, asVOP3(Format::VOP2), 2, 1)};
add->operands[0] = Operand(src0);
add->operands[1] = Operand(src1);
add->definitions[0] = Definition(dst);
add->clamp = 1;
ctx->block->instructions.emplace_back(std::move(add));
} else {
if (src1.regClass() != v1)
std::swap(src0, src1);
assert(src1.regClass() == v1);
Temp tmp = bld.tmp(v1);
Temp carry = bld.vadd32(Definition(tmp), src0, src1, true).def(1).getTemp();
bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), tmp, Operand((uint32_t) -1), carry);
}
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_uadd_carry: {
Temp src0 = get_alu_src(ctx, instr->src[0]);
Temp src1 = get_alu_src(ctx, instr->src[1]);
if (dst.regClass() == s1) {
bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
break;
}
if (dst.regClass() == v1) {
Temp carry = bld.vadd32(bld.def(v1), src0, src1, true).def(1).getTemp();
bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), carry);
break;
}
Temp src00 = bld.tmp(src0.type(), 1);
Temp src01 = bld.tmp(dst.type(), 1);
bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
Temp src10 = bld.tmp(src1.type(), 1);
Temp src11 = bld.tmp(dst.type(), 1);
bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
if (dst.regClass() == s2) {
Temp carry = bld.tmp(s1);
bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
carry = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(carry)).def(1).getTemp();
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
} else if (dst.regClass() == v2) {
Temp carry = bld.vadd32(bld.def(v1), src00, src10, true).def(1).getTemp();
carry = bld.vadd32(bld.def(v1), src01, src11, true, carry).def(1).getTemp();
carry = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), carry);
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_isub: {
if (dst.regClass() == s1) {
emit_sop2_instruction(ctx, instr, aco_opcode::s_sub_i32, dst, true);
break;
}
Temp src0 = get_alu_src(ctx, instr->src[0]);
Temp src1 = get_alu_src(ctx, instr->src[1]);
if (dst.regClass() == v1) {
bld.vsub32(Definition(dst), src0, src1);
break;
}
Temp src00 = bld.tmp(src0.type(), 1);
Temp src01 = bld.tmp(dst.type(), 1);
bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
Temp src10 = bld.tmp(src1.type(), 1);
Temp src11 = bld.tmp(dst.type(), 1);
bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
if (dst.regClass() == s2) {
Temp carry = bld.tmp(s1);
Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), src01, src11, carry);
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
} else if (dst.regClass() == v2) {
Temp lower = bld.tmp(v1);
Temp borrow = bld.vsub32(Definition(lower), src00, src10, true).def(1).getTemp();
Temp upper = bld.vsub32(bld.def(v1), src01, src11, false, borrow);
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_usub_borrow: {
Temp src0 = get_alu_src(ctx, instr->src[0]);
Temp src1 = get_alu_src(ctx, instr->src[1]);
if (dst.regClass() == s1) {
bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
break;
} else if (dst.regClass() == v1) {
Temp borrow = bld.vsub32(bld.def(v1), src0, src1, true).def(1).getTemp();
bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), borrow);
break;
}
Temp src00 = bld.tmp(src0.type(), 1);
Temp src01 = bld.tmp(dst.type(), 1);
bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
Temp src10 = bld.tmp(src1.type(), 1);
Temp src11 = bld.tmp(dst.type(), 1);
bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
if (dst.regClass() == s2) {
Temp borrow = bld.tmp(s1);
bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), src00, src10);
borrow = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(borrow)).def(1).getTemp();
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
} else if (dst.regClass() == v2) {
Temp borrow = bld.vsub32(bld.def(v1), src00, src10, true).def(1).getTemp();
borrow = bld.vsub32(bld.def(v1), src01, src11, true, Operand(borrow)).def(1).getTemp();
borrow = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), borrow);
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_imul: {
if (dst.regClass() == v1) {
bld.vop3(aco_opcode::v_mul_lo_u32, Definition(dst),
get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
} else if (dst.regClass() == s1) {
emit_sop2_instruction(ctx, instr, aco_opcode::s_mul_i32, dst, false);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_umul_high: {
if (dst.regClass() == v1) {
bld.vop3(aco_opcode::v_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
} else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
bld.sop2(aco_opcode::s_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
} else if (dst.regClass() == s1) {
Temp tmp = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_imul_high: {
if (dst.regClass() == v1) {
bld.vop3(aco_opcode::v_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
} else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
bld.sop2(aco_opcode::s_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
} else if (dst.regClass() == s1) {
Temp tmp = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_fmul: {
Temp src0 = get_alu_src(ctx, instr->src[0]);
Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
if (dst.regClass() == v2b) {
emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_f16, dst, true);
} else if (dst.regClass() == v1) {
emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_f32, dst, true);
} else if (dst.regClass() == v2) {
bld.vop3(aco_opcode::v_mul_f64, Definition(dst), src0, src1);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_fadd: {
Temp src0 = get_alu_src(ctx, instr->src[0]);
Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
if (dst.regClass() == v2b) {
emit_vop2_instruction(ctx, instr, aco_opcode::v_add_f16, dst, true);
} else if (dst.regClass() == v1) {
emit_vop2_instruction(ctx, instr, aco_opcode::v_add_f32, dst, true);
} else if (dst.regClass() == v2) {
bld.vop3(aco_opcode::v_add_f64, Definition(dst), src0, src1);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_fsub: {
Temp src0 = get_alu_src(ctx, instr->src[0]);
Temp src1 = get_alu_src(ctx, instr->src[1]);
if (dst.regClass() == v2b) {
if (src1.type() == RegType::vgpr || src0.type() != RegType::vgpr)
emit_vop2_instruction(ctx, instr, aco_opcode::v_sub_f16, dst, false);
else
emit_vop2_instruction(ctx, instr, aco_opcode::v_subrev_f16, dst, true);
} else if (dst.regClass() == v1) {
if (src1.type() == RegType::vgpr || src0.type() != RegType::vgpr)
emit_vop2_instruction(ctx, instr, aco_opcode::v_sub_f32, dst, false);
else
emit_vop2_instruction(ctx, instr, aco_opcode::v_subrev_f32, dst, true);
} else if (dst.regClass() == v2) {
Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst),
as_vgpr(ctx, src0), as_vgpr(ctx, src1));
VOP3A_instruction* sub = static_cast<VOP3A_instruction*>(add);
sub->neg[1] = true;
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_fmax: {
Temp src0 = get_alu_src(ctx, instr->src[0]);
Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
if (dst.regClass() == v2b) {
// TODO: check fp_mode.must_flush_denorms16_64
emit_vop2_instruction(ctx, instr, aco_opcode::v_max_f16, dst, true);
} else if (dst.regClass() == v1) {
emit_vop2_instruction(ctx, instr, aco_opcode::v_max_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
} else if (dst.regClass() == v2) {
if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
Temp tmp = bld.vop3(aco_opcode::v_max_f64, bld.def(v2), src0, src1);
bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
} else {
bld.vop3(aco_opcode::v_max_f64, Definition(dst), src0, src1);
}
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_fmin: {
Temp src0 = get_alu_src(ctx, instr->src[0]);
Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
if (dst.regClass() == v2b) {
// TODO: check fp_mode.must_flush_denorms16_64
emit_vop2_instruction(ctx, instr, aco_opcode::v_min_f16, dst, true);
} else if (dst.regClass() == v1) {
emit_vop2_instruction(ctx, instr, aco_opcode::v_min_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
} else if (dst.regClass() == v2) {
if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
Temp tmp = bld.vop3(aco_opcode::v_min_f64, bld.def(v2), src0, src1);
bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
} else {
bld.vop3(aco_opcode::v_min_f64, Definition(dst), src0, src1);
}
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_fmax3: {
if (dst.regClass() == v2b) {
emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_f16, dst, false);
} else if (dst.regClass() == v1) {
emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_fmin3: {
if (dst.regClass() == v2b) {
emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_f16, dst, false);
} else if (dst.regClass() == v1) {
emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_fmed3: {
if (dst.regClass() == v2b) {
emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_f16, dst, false);
} else if (dst.regClass() == v1) {
emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_umax3: {
if (dst.size() == 1) {
emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_u32, dst);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_umin3: {
if (dst.size() == 1) {
emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_u32, dst);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_umed3: {
if (dst.size() == 1) {
emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_u32, dst);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_imax3: {
if (dst.size() == 1) {
emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_i32, dst);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_imin3: {
if (dst.size() == 1) {
emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_i32, dst);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_imed3: {
if (dst.size() == 1) {
emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_i32, dst);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_cube_face_coord: {
Temp in = get_alu_src(ctx, instr->src[0], 3);
Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
emit_extract_vector(ctx, in, 1, v1),
emit_extract_vector(ctx, in, 2, v1) };
Temp ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), src[0], src[1], src[2]);
ma = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), ma);
Temp sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), src[0], src[1], src[2]);
Temp tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), src[0], src[1], src[2]);
sc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1),
bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), sc, ma), Operand(0x3f000000u/*0.5*/));
tc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1),
bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tc, ma), Operand(0x3f000000u/*0.5*/));
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), sc, tc);
break;
}
case nir_op_cube_face_index: {
Temp in = get_alu_src(ctx, instr->src[0], 3);
Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
emit_extract_vector(ctx, in, 1, v1),
emit_extract_vector(ctx, in, 2, v1) };
bld.vop3(aco_opcode::v_cubeid_f32, Definition(dst), src[0], src[1], src[2]);
break;
}
case nir_op_bcsel: {
emit_bcsel(ctx, instr, dst);
break;
}
case nir_op_frsq: {
Temp src = get_alu_src(ctx, instr->src[0]);
if (dst.regClass() == v2b) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_rsq_f16, dst);
} else if (dst.regClass() == v1) {
emit_rsq(ctx, bld, Definition(dst), src);
} else if (dst.regClass() == v2) {
/* Lowered at NIR level for precision reasons. */
emit_vop1_instruction(ctx, instr, aco_opcode::v_rsq_f64, dst);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_fneg: {
Temp src = get_alu_src(ctx, instr->src[0]);
if (dst.regClass() == v2b) {
if (ctx->block->fp_mode.must_flush_denorms16_64)
src = bld.vop2(aco_opcode::v_mul_f16, bld.def(v2b), Operand((uint16_t)0x3C00), as_vgpr(ctx, src));
bld.vop2(aco_opcode::v_xor_b32, Definition(dst), Operand(0x8000u), as_vgpr(ctx, src));
} else if (dst.regClass() == v1) {
if (ctx->block->fp_mode.must_flush_denorms32)
src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
bld.vop2(aco_opcode::v_xor_b32, Definition(dst), Operand(0x80000000u), as_vgpr(ctx, src));
} else if (dst.regClass() == v2) {
if (ctx->block->fp_mode.must_flush_denorms16_64)
src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), Operand(0x80000000u), upper);
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_fabs: {
Temp src = get_alu_src(ctx, instr->src[0]);
if (dst.regClass() == v2b) {
if (ctx->block->fp_mode.must_flush_denorms16_64)
src = bld.vop2(aco_opcode::v_mul_f16, bld.def(v2b), Operand((uint16_t)0x3C00), as_vgpr(ctx, src));
bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0x7FFFu), as_vgpr(ctx, src));
} else if (dst.regClass() == v1) {
if (ctx->block->fp_mode.must_flush_denorms32)
src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0x7FFFFFFFu), as_vgpr(ctx, src));
} else if (dst.regClass() == v2) {
if (ctx->block->fp_mode.must_flush_denorms16_64)
src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
upper = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7FFFFFFFu), upper);
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_fsat: {
Temp src = get_alu_src(ctx, instr->src[0]);
if (dst.regClass() == v2b) {
bld.vop3(aco_opcode::v_med3_f16, Definition(dst), Operand((uint16_t)0u), Operand((uint16_t)0x3c00), src);
} else if (dst.regClass() == v1) {
bld.vop3(aco_opcode::v_med3_f32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
/* apparently, it is not necessary to flush denorms if this instruction is used with these operands */
// TODO: confirm that this holds under any circumstances
} else if (dst.regClass() == v2) {
Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src, Operand(0u));
VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*>(add);
vop3->clamp = true;
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_flog2: {
Temp src = get_alu_src(ctx, instr->src[0]);
if (dst.regClass() == v2b) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_log_f16, dst);
} else if (dst.regClass() == v1) {
emit_log2(ctx, bld, Definition(dst), src);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_frcp: {
Temp src = get_alu_src(ctx, instr->src[0]);
if (dst.regClass() == v2b) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_rcp_f16, dst);
} else if (dst.regClass() == v1) {
emit_rcp(ctx, bld, Definition(dst), src);
} else if (dst.regClass() == v2) {
/* Lowered at NIR level for precision reasons. */
emit_vop1_instruction(ctx, instr, aco_opcode::v_rcp_f64, dst);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_fexp2: {
if (dst.regClass() == v2b) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_exp_f16, dst);
} else if (dst.regClass() == v1) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_exp_f32, dst);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_fsqrt: {
Temp src = get_alu_src(ctx, instr->src[0]);
if (dst.regClass() == v2b) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_sqrt_f16, dst);
} else if (dst.regClass() == v1) {
emit_sqrt(ctx, bld, Definition(dst), src);
} else if (dst.regClass() == v2) {
/* Lowered at NIR level for precision reasons. */
emit_vop1_instruction(ctx, instr, aco_opcode::v_sqrt_f64, dst);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_ffract: {
if (dst.regClass() == v2b) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f16, dst);
} else if (dst.regClass() == v1) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f32, dst);
} else if (dst.regClass() == v2) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f64, dst);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_ffloor: {
Temp src = get_alu_src(ctx, instr->src[0]);
if (dst.regClass() == v2b) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_floor_f16, dst);
} else if (dst.regClass() == v1) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_floor_f32, dst);
} else if (dst.regClass() == v2) {
emit_floor_f64(ctx, bld, Definition(dst), src);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_fceil: {
Temp src0 = get_alu_src(ctx, instr->src[0]);
if (dst.regClass() == v2b) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f16, dst);
} else if (dst.regClass() == v1) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f32, dst);
} else if (dst.regClass() == v2) {
if (ctx->options->chip_class >= GFX7) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f64, dst);
} else {
/* GFX6 doesn't support V_CEIL_F64, lower it. */
/* trunc = trunc(src0)
* if (src0 > 0.0 && src0 != trunc)
* trunc += 1.0
*/
Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src0);
Temp tmp0 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.def(bld.lm), src0, Operand(0u));
Temp tmp1 = bld.vopc(aco_opcode::v_cmp_lg_f64, bld.hint_vcc(bld.def(bld.lm)), src0, trunc);
Temp cond = bld.sop2(aco_opcode::s_and_b64, bld.hint_vcc(bld.def(s2)), bld.def(s1, scc), tmp0, tmp1);
Temp add = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), bld.copy(bld.def(v1), Operand(0u)), bld.copy(bld.def(v1), Operand(0x3ff00000u)), cond);
add = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), bld.copy(bld.def(v1), Operand(0u)), add);
bld.vop3(aco_opcode::v_add_f64, Definition(dst), trunc, add);
}
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_ftrunc: {
Temp src = get_alu_src(ctx, instr->src[0]);
if (dst.regClass() == v2b) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_trunc_f16, dst);
} else if (dst.regClass() == v1) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_trunc_f32, dst);
} else if (dst.regClass() == v2) {
emit_trunc_f64(ctx, bld, Definition(dst), src);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_fround_even: {
Temp src0 = get_alu_src(ctx, instr->src[0]);
if (dst.regClass() == v2b) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f16, dst);
} else if (dst.regClass() == v1) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f32, dst);
} else if (dst.regClass() == v2) {
if (ctx->options->chip_class >= GFX7) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f64, dst);
} else {
/* GFX6 doesn't support V_RNDNE_F64, lower it. */
Temp src0_lo = bld.tmp(v1), src0_hi = bld.tmp(v1);
bld.pseudo(aco_opcode::p_split_vector, Definition(src0_lo), Definition(src0_hi), src0);
Temp bitmask = bld.sop1(aco_opcode::s_brev_b32, bld.def(s1), bld.copy(bld.def(s1), Operand(-2u)));
Temp bfi = bld.vop3(aco_opcode::v_bfi_b32, bld.def(v1), bitmask, bld.copy(bld.def(v1), Operand(0x43300000u)), as_vgpr(ctx, src0_hi));
Temp tmp = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), src0, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
Instruction *sub = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), tmp, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
static_cast<VOP3A_instruction*>(sub)->neg[1] = true;
tmp = sub->definitions[0].getTemp();
Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x432fffffu));
Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.hint_vcc(bld.def(bld.lm)), src0, v);
static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
Temp cond = vop3->definitions[0].getTemp();
Temp tmp_lo = bld.tmp(v1), tmp_hi = bld.tmp(v1);
bld.pseudo(aco_opcode::p_split_vector, Definition(tmp_lo), Definition(tmp_hi), tmp);
Temp dst0 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_lo, as_vgpr(ctx, src0_lo), cond);
Temp dst1 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_hi, as_vgpr(ctx, src0_hi), cond);
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
}
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_fsin:
case nir_op_fcos: {
Temp src = as_vgpr(ctx, get_alu_src(ctx, instr->src[0]));
aco_ptr<Instruction> norm;
if (dst.regClass() == v2b) {
Temp half_pi = bld.copy(bld.def(s1), Operand(0x3118u));
Temp tmp = bld.vop2(aco_opcode::v_mul_f16, bld.def(v1), half_pi, src);
aco_opcode opcode = instr->op == nir_op_fsin ? aco_opcode::v_sin_f16 : aco_opcode::v_cos_f16;
bld.vop1(opcode, Definition(dst), tmp);
} else if (dst.regClass() == v1) {
Temp half_pi = bld.copy(bld.def(s1), Operand(0x3e22f983u));
Temp tmp = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), half_pi, src);
/* before GFX9, v_sin_f32 and v_cos_f32 had a valid input domain of [-256, +256] */
if (ctx->options->chip_class < GFX9)
tmp = bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), tmp);
aco_opcode opcode = instr->op == nir_op_fsin ? aco_opcode::v_sin_f32 : aco_opcode::v_cos_f32;
bld.vop1(opcode, Definition(dst), tmp);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_ldexp: {
Temp src0 = get_alu_src(ctx, instr->src[0]);
Temp src1 = get_alu_src(ctx, instr->src[1]);
if (dst.regClass() == v2b) {
emit_vop2_instruction(ctx, instr, aco_opcode::v_ldexp_f16, dst, false);
} else if (dst.regClass() == v1) {
bld.vop3(aco_opcode::v_ldexp_f32, Definition(dst), as_vgpr(ctx, src0), src1);
} else if (dst.regClass() == v2) {
bld.vop3(aco_opcode::v_ldexp_f64, Definition(dst), as_vgpr(ctx, src0), src1);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_frexp_sig: {
Temp src = get_alu_src(ctx, instr->src[0]);
if (dst.regClass() == v2b) {
bld.vop1(aco_opcode::v_frexp_mant_f16, Definition(dst), src);
} else if (dst.regClass() == v1) {
bld.vop1(aco_opcode::v_frexp_mant_f32, Definition(dst), src);
} else if (dst.regClass() == v2) {
bld.vop1(aco_opcode::v_frexp_mant_f64, Definition(dst), src);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_frexp_exp: {
Temp src = get_alu_src(ctx, instr->src[0]);
if (instr->src[0].src.ssa->bit_size == 16) {
Temp tmp = bld.vop1(aco_opcode::v_frexp_exp_i16_f16, bld.def(v1), src);
tmp = bld.pseudo(aco_opcode::p_extract_vector, bld.def(v1b), tmp, Operand(0u));
convert_int(ctx, bld, tmp, 8, 32, true, dst);
} else if (instr->src[0].src.ssa->bit_size == 32) {
bld.vop1(aco_opcode::v_frexp_exp_i32_f32, Definition(dst), src);
} else if (instr->src[0].src.ssa->bit_size == 64) {
bld.vop1(aco_opcode::v_frexp_exp_i32_f64, Definition(dst), src);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_fsign: {
Temp src = as_vgpr(ctx, get_alu_src(ctx, instr->src[0]));
if (dst.regClass() == v2b) {
Temp one = bld.copy(bld.def(v1), Operand(0x3c00u));
Temp minus_one = bld.copy(bld.def(v1), Operand(0xbc00u));
Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f16, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
src = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), one, src, cond);
cond = bld.vopc(aco_opcode::v_cmp_le_f16, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), minus_one, src, cond);
} else if (dst.regClass() == v1) {
Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
src = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0x3f800000u), src, cond);
cond = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0xbf800000u), src, cond);
} else if (dst.regClass() == v2) {
Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
Temp tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0x3FF00000u));
Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, emit_extract_vector(ctx, src, 1, v1), cond);
cond = bld.vopc(aco_opcode::v_cmp_le_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0xBFF00000u));
upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, upper, cond);
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_f2f16:
case nir_op_f2f16_rtne: {
Temp src = get_alu_src(ctx, instr->src[0]);
if (instr->src[0].src.ssa->bit_size == 64)
src = bld.vop1(aco_opcode::v_cvt_f32_f64, bld.def(v1), src);
if (instr->op == nir_op_f2f16_rtne && ctx->block->fp_mode.round16_64 != fp_round_ne)
/* We emit s_round_mode/s_setreg_imm32 in lower_to_hw_instr to
* keep value numbering and the scheduler simpler.
*/
bld.vop1(aco_opcode::p_cvt_f16_f32_rtne, Definition(dst), src);
else
bld.vop1(aco_opcode::v_cvt_f16_f32, Definition(dst), src);
break;
}
case nir_op_f2f16_rtz: {
Temp src = get_alu_src(ctx, instr->src[0]);
if (instr->src[0].src.ssa->bit_size == 64)
src = bld.vop1(aco_opcode::v_cvt_f32_f64, bld.def(v1), src);
bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32, Definition(dst), src, Operand(0u));
break;
}
case nir_op_f2f32: {
if (instr->src[0].src.ssa->bit_size == 16) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f16, dst);
} else if (instr->src[0].src.ssa->bit_size == 64) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f64, dst);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_f2f64: {
Temp src = get_alu_src(ctx, instr->src[0]);
if (instr->src[0].src.ssa->bit_size == 16)
src = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
bld.vop1(aco_opcode::v_cvt_f64_f32, Definition(dst), src);
break;
}
case nir_op_i2f16: {
assert(dst.regClass() == v2b);
Temp src = get_alu_src(ctx, instr->src[0]);
if (instr->src[0].src.ssa->bit_size == 8)
src = convert_int(ctx, bld, src, 8, 16, true);
else if (instr->src[0].src.ssa->bit_size == 64)
src = convert_int(ctx, bld, src, 64, 32, false);
bld.vop1(aco_opcode::v_cvt_f16_i16, Definition(dst), src);
break;
}
case nir_op_i2f32: {
assert(dst.size() == 1);
Temp src = get_alu_src(ctx, instr->src[0]);
if (instr->src[0].src.ssa->bit_size <= 16)
src = convert_int(ctx, bld, src, instr->src[0].src.ssa->bit_size, 32, true);
bld.vop1(aco_opcode::v_cvt_f32_i32, Definition(dst), src);
break;
}
case nir_op_i2f64: {
if (instr->src[0].src.ssa->bit_size <= 32) {
Temp src = get_alu_src(ctx, instr->src[0]);
if (instr->src[0].src.ssa->bit_size <= 16)
src = convert_int(ctx, bld, src, instr->src[0].src.ssa->bit_size, 32, true);
bld.vop1(aco_opcode::v_cvt_f64_i32, Definition(dst), src);
} else if (instr->src[0].src.ssa->bit_size == 64) {
Temp src = get_alu_src(ctx, instr->src[0]);
RegClass rc = RegClass(src.type(), 1);
Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
upper = bld.vop1(aco_opcode::v_cvt_f64_i32, bld.def(v2), upper);
upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_u2f16: {
assert(dst.regClass() == v2b);
Temp src = get_alu_src(ctx, instr->src[0]);
if (instr->src[0].src.ssa->bit_size == 8)
src = convert_int(ctx, bld, src, 8, 16, false);
else if (instr->src[0].src.ssa->bit_size == 64)
src = convert_int(ctx, bld, src, 64, 32, false);
bld.vop1(aco_opcode::v_cvt_f16_u16, Definition(dst), src);
break;
}
case nir_op_u2f32: {
assert(dst.size() == 1);
Temp src = get_alu_src(ctx, instr->src[0]);
if (instr->src[0].src.ssa->bit_size == 8) {
bld.vop1(aco_opcode::v_cvt_f32_ubyte0, Definition(dst), src);
} else {
if (instr->src[0].src.ssa->bit_size == 16)
src = convert_int(ctx, bld, src, instr->src[0].src.ssa->bit_size, 32, true);
bld.vop1(aco_opcode::v_cvt_f32_u32, Definition(dst), src);
}
break;
}
case nir_op_u2f64: {
if (instr->src[0].src.ssa->bit_size <= 32) {
Temp src = get_alu_src(ctx, instr->src[0]);
if (instr->src[0].src.ssa->bit_size <= 16)
src = convert_int(ctx, bld, src, instr->src[0].src.ssa->bit_size, 32, false);
bld.vop1(aco_opcode::v_cvt_f64_u32, Definition(dst), src);
} else if (instr->src[0].src.ssa->bit_size == 64) {
Temp src = get_alu_src(ctx, instr->src[0]);
RegClass rc = RegClass(src.type(), 1);
Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
upper = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), upper);
upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_f2i8:
case nir_op_f2i16: {
if (instr->src[0].src.ssa->bit_size == 16)
emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_i16_f16, dst);
else if (instr->src[0].src.ssa->bit_size == 32)
emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_i32_f32, dst);
else
emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_i32_f64, dst);
break;
}
case nir_op_f2u8:
case nir_op_f2u16: {
if (instr->src[0].src.ssa->bit_size == 16)
emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_u16_f16, dst);
else if (instr->src[0].src.ssa->bit_size == 32)
emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_u32_f32, dst);
else
emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_u32_f64, dst);
break;
}
case nir_op_f2i32: {
Temp src = get_alu_src(ctx, instr->src[0]);
if (instr->src[0].src.ssa->bit_size == 16) {
Temp tmp = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
if (dst.type() == RegType::vgpr) {
bld.vop1(aco_opcode::v_cvt_i32_f32, Definition(dst), tmp);
} else {
bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), tmp));
}
} else if (instr->src[0].src.ssa->bit_size == 32) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_i32_f32, dst);
} else if (instr->src[0].src.ssa->bit_size == 64) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_i32_f64, dst);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_f2u32: {
Temp src = get_alu_src(ctx, instr->src[0]);
if (instr->src[0].src.ssa->bit_size == 16) {
Temp tmp = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
if (dst.type() == RegType::vgpr) {
bld.vop1(aco_opcode::v_cvt_u32_f32, Definition(dst), tmp);
} else {
bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), tmp));
}
} else if (instr->src[0].src.ssa->bit_size == 32) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_u32_f32, dst);
} else if (instr->src[0].src.ssa->bit_size == 64) {
emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_u32_f64, dst);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_f2i64: {
Temp src = get_alu_src(ctx, instr->src[0]);
if (instr->src[0].src.ssa->bit_size == 16)
src = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
if (instr->src[0].src.ssa->bit_size <= 32 && dst.type() == RegType::vgpr) {
Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
exponent = bld.vop3(aco_opcode::v_med3_i32, bld.def(v1), Operand(0x0u), exponent, Operand(64u));
Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
Temp sign = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
mantissa = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(7u), mantissa);
mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
Temp new_exponent = bld.tmp(v1);
Temp borrow = bld.vsub32(Definition(new_exponent), Operand(63u), exponent, true).def(1).getTemp();
if (ctx->program->chip_class >= GFX8)
mantissa = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), new_exponent, mantissa);
else
mantissa = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), mantissa, new_exponent);
Temp saturate = bld.vop1(aco_opcode::v_bfrev_b32, bld.def(v1), Operand(0xfffffffeu));
Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
lower = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), lower, Operand(0xffffffffu), borrow);
upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), upper, saturate, borrow);
lower = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, lower);
upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, upper);
Temp new_lower = bld.tmp(v1);
borrow = bld.vsub32(Definition(new_lower), lower, sign, true).def(1).getTemp();
Temp new_upper = bld.vsub32(bld.def(v1), upper, sign, false, borrow);
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), new_lower, new_upper);
} else if (instr->src[0].src.ssa->bit_size <= 32 && dst.type() == RegType::sgpr) {
if (src.type() == RegType::vgpr)
src = bld.as_uniform(src);
Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
exponent = bld.sop2(aco_opcode::s_sub_i32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
exponent = bld.sop2(aco_opcode::s_max_i32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
exponent = bld.sop2(aco_opcode::s_min_i32, bld.def(s1), bld.def(s1, scc), Operand(64u), exponent);
Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
Temp sign = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
mantissa = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), mantissa, Operand(7u));
mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(63u), exponent);
mantissa = bld.sop2(aco_opcode::s_lshr_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent);
Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), exponent, Operand(0xffffffffu)); // exp >= 64
Temp saturate = bld.sop1(aco_opcode::s_brev_b64, bld.def(s2), Operand(0xfffffffeu));
mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), saturate, mantissa, cond);
Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
lower = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, lower);
upper = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, upper);
Temp borrow = bld.tmp(s1);
lower = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), lower, sign);
upper = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), upper, sign, borrow);
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
} else if (instr->src[0].src.ssa->bit_size == 64) {
Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
Temp upper = bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), floor);
if (dst.type() == RegType::sgpr) {
lower = bld.as_uniform(lower);
upper = bld.as_uniform(upper);
}
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_f2u64: {
Temp src = get_alu_src(ctx, instr->src[0]);
if (instr->src[0].src.ssa->bit_size == 16)
src = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
if (instr->src[0].src.ssa->bit_size <= 32 && dst.type() == RegType::vgpr) {
Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
Temp exponent_in_range = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(bld.lm)), Operand(64u), exponent);
exponent = bld.vop2(aco_opcode::v_max_i32, bld.def(v1), Operand(0x0u), exponent);
Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
Temp exponent_small = bld.vsub32(bld.def(v1), Operand(24u), exponent);
Temp small = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), exponent_small, mantissa);
mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
Temp new_exponent = bld.tmp(v1);
Temp cond_small = bld.vsub32(Definition(new_exponent), exponent, Operand(24u), true).def(1).getTemp();
if (ctx->program->chip_class >= GFX8)
mantissa = bld.vop3(aco_opcode::v_lshlrev_b64, bld.def(v2), new_exponent, mantissa);
else
mantissa = bld.vop3(aco_opcode::v_lshl_b64, bld.def(v2), mantissa, new_exponent);
Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), lower, small, cond_small);
upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), upper, Operand(0u), cond_small);
lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), lower, exponent_in_range);
upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), upper, exponent_in_range);
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
} else if (instr->src[0].src.ssa->bit_size <= 32 && dst.type() == RegType::sgpr) {
if (src.type() == RegType::vgpr)
src = bld.as_uniform(src);
Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
exponent = bld.sop2(aco_opcode::s_sub_i32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
exponent = bld.sop2(aco_opcode::s_max_i32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
Temp exponent_small = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(24u), exponent);
Temp small = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), mantissa, exponent_small);
mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
Temp exponent_large = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(24u));
mantissa = bld.sop2(aco_opcode::s_lshl_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent_large);
Temp cond = bld.sopc(aco_opcode::s_cmp_ge_i32, bld.def(s1, scc), Operand(64u), exponent);
mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), mantissa, Operand(0xffffffffu), cond);
Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
Temp cond_small = bld.sopc(aco_opcode::s_cmp_le_i32, bld.def(s1, scc), exponent, Operand(24u));
lower = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), small, lower, cond_small);
upper = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), Operand(0u), upper, cond_small);
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
} else if (instr->src[0].src.ssa->bit_size == 64) {
Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
Temp upper = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), floor);
if (dst.type() == RegType::sgpr) {
lower = bld.as_uniform(lower);
upper = bld.as_uniform(upper);
}
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_b2f16: {
Temp src = get_alu_src(ctx, instr->src[0]);
assert(src.regClass() == bld.lm);
if (dst.regClass() == s1) {
src = bool_to_scalar_condition(ctx, src);
bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand(0x3c00u), src);
} else if (dst.regClass() == v2b) {
Temp one = bld.copy(bld.def(v1), Operand(0x3c00u));
bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), one, src);
} else {
unreachable("Wrong destination register class for nir_op_b2f16.");
}
break;
}
case nir_op_b2f32: {
Temp src = get_alu_src(ctx, instr->src[0]);
assert(src.regClass() == bld.lm);
if (dst.regClass() == s1) {
src = bool_to_scalar_condition(ctx, src);
bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand(0x3f800000u), src);
} else if (dst.regClass() == v1) {
bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
} else {
unreachable("Wrong destination register class for nir_op_b2f32.");
}
break;
}
case nir_op_b2f64: {
Temp src = get_alu_src(ctx, instr->src[0]);
assert(src.regClass() == bld.lm);
if (dst.regClass() == s2) {
src = bool_to_scalar_condition(ctx, src);
bld.sop2(aco_opcode::s_cselect_b64, Definition(dst), Operand(0x3f800000u), Operand(0u), bld.scc(src));
} else if (dst.regClass() == v2) {
Temp one = bld.vop1(aco_opcode::v_mov_b32, bld.def(v2), Operand(0x3FF00000u));
Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), one, src);
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
} else {
unreachable("Wrong destination register class for nir_op_b2f64.");
}
break;
}
case nir_op_i2i8:
case nir_op_i2i16:
case nir_op_i2i32:
case nir_op_i2i64: {
if (dst.type() == RegType::sgpr && instr->src[0].src.ssa->bit_size < 32) {
/* no need to do the extract in get_alu_src() */
sgpr_extract_mode mode = instr->dest.dest.ssa.bit_size > instr->src[0].src.ssa->bit_size ?
sgpr_extract_sext : sgpr_extract_undef;
extract_8_16_bit_sgpr_element(ctx, dst, &instr->src[0], mode);
} else {
convert_int(ctx, bld, get_alu_src(ctx, instr->src[0]),
instr->src[0].src.ssa->bit_size, instr->dest.dest.ssa.bit_size, true, dst);
}
break;
}
case nir_op_u2u8:
case nir_op_u2u16:
case nir_op_u2u32:
case nir_op_u2u64: {
if (dst.type() == RegType::sgpr && instr->src[0].src.ssa->bit_size < 32) {
/* no need to do the extract in get_alu_src() */
sgpr_extract_mode mode = instr->dest.dest.ssa.bit_size > instr->src[0].src.ssa->bit_size ?
sgpr_extract_zext : sgpr_extract_undef;
extract_8_16_bit_sgpr_element(ctx, dst, &instr->src[0], mode);
} else {
convert_int(ctx, bld, get_alu_src(ctx, instr->src[0]),
instr->src[0].src.ssa->bit_size, instr->dest.dest.ssa.bit_size, false, dst);
}
break;
}
case nir_op_b2b32:
case nir_op_b2i8:
case nir_op_b2i16:
case nir_op_b2i32:
case nir_op_b2i64: {
Temp src = get_alu_src(ctx, instr->src[0]);
assert(src.regClass() == bld.lm);
Temp tmp = dst.bytes() == 8 ? bld.tmp(RegClass::get(dst.type(), 4)) : dst;
if (tmp.regClass() == s1) {
// TODO: in a post-RA optimization, we can check if src is in VCC, and directly use VCCNZ
bool_to_scalar_condition(ctx, src, tmp);
} else if (tmp.type() == RegType::vgpr) {
bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(tmp), Operand(0u), Operand(1u), src);
} else {
unreachable("Invalid register class for b2i32");
}
if (tmp != dst)
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tmp, Operand(0u));
break;
}
case nir_op_b2b1:
case nir_op_i2b1: {
Temp src = get_alu_src(ctx, instr->src[0]);
assert(dst.regClass() == bld.lm);
if (src.type() == RegType::vgpr) {
assert(src.regClass() == v1 || src.regClass() == v2);
assert(dst.regClass() == bld.lm);
bld.vopc(src.size() == 2 ? aco_opcode::v_cmp_lg_u64 : aco_opcode::v_cmp_lg_u32,
Definition(dst), Operand(0u), src).def(0).setHint(vcc);
} else {
assert(src.regClass() == s1 || src.regClass() == s2);
Temp tmp;
if (src.regClass() == s2 && ctx->program->chip_class <= GFX7) {
tmp = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), Operand(0u), src).def(1).getTemp();
} else {
tmp = bld.sopc(src.size() == 2 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::s_cmp_lg_u32,
bld.scc(bld.def(s1)), Operand(0u), src);
}
bool_to_vector_condition(ctx, tmp, dst);
}
break;
}
case nir_op_pack_64_2x32_split: {
Temp src0 = get_alu_src(ctx, instr->src[0]);
Temp src1 = get_alu_src(ctx, instr->src[1]);
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src0, src1);
break;
}
case nir_op_unpack_64_2x32_split_x:
bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(dst.regClass()), get_alu_src(ctx, instr->src[0]));
break;
case nir_op_unpack_64_2x32_split_y:
bld.pseudo(aco_opcode::p_split_vector, bld.def(dst.regClass()), Definition(dst), get_alu_src(ctx, instr->src[0]));
break;
case nir_op_unpack_32_2x16_split_x:
if (dst.type() == RegType::vgpr) {
bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(dst.regClass()), get_alu_src(ctx, instr->src[0]));
} else {
bld.copy(Definition(dst), get_alu_src(ctx, instr->src[0]));
}
break;
case nir_op_unpack_32_2x16_split_y:
if (dst.type() == RegType::vgpr) {
bld.pseudo(aco_opcode::p_split_vector, bld.def(dst.regClass()), Definition(dst), get_alu_src(ctx, instr->src[0]));
} else {
bld.sop2(aco_opcode::s_bfe_u32, Definition(dst), bld.def(s1, scc), get_alu_src(ctx, instr->src[0]), Operand(uint32_t(16 << 16 | 16)));
}
break;
case nir_op_pack_32_2x16_split: {
Temp src0 = get_alu_src(ctx, instr->src[0]);
Temp src1 = get_alu_src(ctx, instr->src[1]);
if (dst.regClass() == v1) {
src0 = emit_extract_vector(ctx, src0, 0, v2b);
src1 = emit_extract_vector(ctx, src1, 0, v2b);
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src0, src1);
} else {
src0 = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), src0, Operand(0xFFFFu));
src1 = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), src1, Operand(16u));
bld.sop2(aco_opcode::s_or_b32, Definition(dst), bld.def(s1, scc), src0, src1);
}
break;
}
case nir_op_pack_half_2x16: {
Temp src = get_alu_src(ctx, instr->src[0], 2);
if (dst.regClass() == v1) {
Temp src0 = bld.tmp(v1);
Temp src1 = bld.tmp(v1);
bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
if (0 && (!ctx->block->fp_mode.care_about_round32 || ctx->block->fp_mode.round32 == fp_round_tz)) {
bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32, Definition(dst), src0, src1);
} else {
src0 = bld.vop1(aco_opcode::v_cvt_f16_f32, bld.def(v1), src0);
src1 = bld.vop1(aco_opcode::v_cvt_f16_f32, bld.def(v1), src1);
if (ctx->program->chip_class >= GFX10) {
/* the high bits of v_cvt_f16_f32 isn't zero'd on GFX10 */
bld.vop3(aco_opcode::v_pack_b32_f16, Definition(dst), src0, src1);
} else {
bld.vop3(aco_opcode::v_cvt_pk_u16_u32, Definition(dst), src0, src1);
}
}
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_unpack_half_2x16_split_x: {
if (dst.regClass() == v1) {
bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst), get_alu_src(ctx, instr->src[0]));
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_unpack_half_2x16_split_y: {
if (dst.regClass() == v1) {
/* TODO: use SDWA here */
bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst),
bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), as_vgpr(ctx, get_alu_src(ctx, instr->src[0]))));
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_fquantize2f16: {
Temp src = get_alu_src(ctx, instr->src[0]);
Temp f16 = bld.vop1(aco_opcode::v_cvt_f16_f32, bld.def(v1), src);
Temp f32, cmp_res;
if (ctx->program->chip_class >= GFX8) {
Temp mask = bld.copy(bld.def(s1), Operand(0x36Fu)); /* value is NOT negative/positive denormal value */
cmp_res = bld.vopc_e64(aco_opcode::v_cmp_class_f16, bld.hint_vcc(bld.def(bld.lm)), f16, mask);
f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
} else {
/* 0x38800000 is smallest half float value (2^-14) in 32-bit float,
* so compare the result and flush to 0 if it's smaller.
*/
f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
Temp smallest = bld.copy(bld.def(s1), Operand(0x38800000u));
Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), f32, smallest);
static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
cmp_res = vop3->definitions[0].getTemp();
}
if (ctx->block->fp_mode.preserve_signed_zero_inf_nan32 || ctx->program->chip_class < GFX8) {
Temp copysign_0 = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0u), as_vgpr(ctx, src));
bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), copysign_0, f32, cmp_res);
} else {
bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), f32, cmp_res);
}
break;
}
case nir_op_bfm: {
Temp bits = get_alu_src(ctx, instr->src[0]);
Temp offset = get_alu_src(ctx, instr->src[1]);
if (dst.regClass() == s1) {
bld.sop2(aco_opcode::s_bfm_b32, Definition(dst), bits, offset);
} else if (dst.regClass() == v1) {
bld.vop3(aco_opcode::v_bfm_b32, Definition(dst), bits, offset);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_bitfield_select: {
/* (mask & insert) | (~mask & base) */
Temp bitmask = get_alu_src(ctx, instr->src[0]);
Temp insert = get_alu_src(ctx, instr->src[1]);
Temp base = get_alu_src(ctx, instr->src[2]);
/* dst = (insert & bitmask) | (base & ~bitmask) */
if (dst.regClass() == s1) {
aco_ptr<Instruction> sop2;
nir_const_value* const_bitmask = nir_src_as_const_value(instr->src[0].src);
nir_const_value* const_insert = nir_src_as_const_value(instr->src[1].src);
Operand lhs;
if (const_insert && const_bitmask) {
lhs = Operand(const_insert->u32 & const_bitmask->u32);
} else {
insert = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), insert, bitmask);
lhs = Operand(insert);
}
Operand rhs;
nir_const_value* const_base = nir_src_as_const_value(instr->src[2].src);
if (const_base && const_bitmask) {
rhs = Operand(const_base->u32 & ~const_bitmask->u32);
} else {
base = bld.sop2(aco_opcode::s_andn2_b32, bld.def(s1), bld.def(s1, scc), base, bitmask);
rhs = Operand(base);
}
bld.sop2(aco_opcode::s_or_b32, Definition(dst), bld.def(s1, scc), rhs, lhs);
} else if (dst.regClass() == v1) {
if (base.type() == RegType::sgpr && (bitmask.type() == RegType::sgpr || (insert.type() == RegType::sgpr)))
base = as_vgpr(ctx, base);
if (insert.type() == RegType::sgpr && bitmask.type() == RegType::sgpr)
insert = as_vgpr(ctx, insert);
bld.vop3(aco_opcode::v_bfi_b32, Definition(dst), bitmask, insert, base);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_ubfe:
case nir_op_ibfe: {
Temp base = get_alu_src(ctx, instr->src[0]);
Temp offset = get_alu_src(ctx, instr->src[1]);
Temp bits = get_alu_src(ctx, instr->src[2]);
if (dst.type() == RegType::sgpr) {
Operand extract;
nir_const_value* const_offset = nir_src_as_const_value(instr->src[1].src);
nir_const_value* const_bits = nir_src_as_const_value(instr->src[2].src);
if (const_offset && const_bits) {
uint32_t const_extract = (const_bits->u32 << 16) | const_offset->u32;
extract = Operand(const_extract);
} else {
Operand width;
if (const_bits) {
width = Operand(const_bits->u32 << 16);
} else {
width = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), bits, Operand(16u));
}
extract = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), offset, width);
}
aco_opcode opcode;
if (dst.regClass() == s1) {
if (instr->op == nir_op_ubfe)
opcode = aco_opcode::s_bfe_u32;
else
opcode = aco_opcode::s_bfe_i32;
} else if (dst.regClass() == s2) {
if (instr->op == nir_op_ubfe)
opcode = aco_opcode::s_bfe_u64;
else
opcode = aco_opcode::s_bfe_i64;
} else {
unreachable("Unsupported BFE bit size");
}
bld.sop2(opcode, Definition(dst), bld.def(s1, scc), base, extract);
} else {
aco_opcode opcode;
if (dst.regClass() == v1) {
if (instr->op == nir_op_ubfe)
opcode = aco_opcode::v_bfe_u32;
else
opcode = aco_opcode::v_bfe_i32;
} else {
unreachable("Unsupported BFE bit size");
}
emit_vop3a_instruction(ctx, instr, opcode, dst);
}
break;
}
case nir_op_bit_count: {
Temp src = get_alu_src(ctx, instr->src[0]);
if (src.regClass() == s1) {
bld.sop1(aco_opcode::s_bcnt1_i32_b32, Definition(dst), bld.def(s1, scc), src);
} else if (src.regClass() == v1) {
bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst), src, Operand(0u));
} else if (src.regClass() == v2) {
bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst),
emit_extract_vector(ctx, src, 1, v1),
bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1),
emit_extract_vector(ctx, src, 0, v1), Operand(0u)));
} else if (src.regClass() == s2) {
bld.sop1(aco_opcode::s_bcnt1_i32_b64, Definition(dst), bld.def(s1, scc), src);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_op_flt: {
emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_f16, aco_opcode::v_cmp_lt_f32, aco_opcode::v_cmp_lt_f64);
break;
}
case nir_op_fge: {
emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_f16, aco_opcode::v_cmp_ge_f32, aco_opcode::v_cmp_ge_f64);
break;
}
case nir_op_feq: {
emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_f16, aco_opcode::v_cmp_eq_f32, aco_opcode::v_cmp_eq_f64);
break;
}
case nir_op_fne: {
emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_neq_f16, aco_opcode::v_cmp_neq_f32, aco_opcode::v_cmp_neq_f64);
break;
}
case nir_op_ilt: {
emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_i16, aco_opcode::v_cmp_lt_i32, aco_opcode::v_cmp_lt_i64, aco_opcode::s_cmp_lt_i32);
break;
}
case nir_op_ige: {
emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_i16, aco_opcode::v_cmp_ge_i32, aco_opcode::v_cmp_ge_i64, aco_opcode::s_cmp_ge_i32);
break;
}
case nir_op_ieq: {
if (instr->src[0].src.ssa->bit_size == 1)
emit_boolean_logic(ctx, instr, Builder::s_xnor, dst);
else
emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_i16, aco_opcode::v_cmp_eq_i32, aco_opcode::v_cmp_eq_i64, aco_opcode::s_cmp_eq_i32,
ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_eq_u64 : aco_opcode::num_opcodes);
break;
}
case nir_op_ine: {
if (instr->src[0].src.ssa->bit_size == 1)
emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
else
emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lg_i16, aco_opcode::v_cmp_lg_i32, aco_opcode::v_cmp_lg_i64, aco_opcode::s_cmp_lg_i32,
ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::num_opcodes);
break;
}
case nir_op_ult: {
emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_u16, aco_opcode::v_cmp_lt_u32, aco_opcode::v_cmp_lt_u64, aco_opcode::s_cmp_lt_u32);
break;
}
case nir_op_uge: {
emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_u16, aco_opcode::v_cmp_ge_u32, aco_opcode::v_cmp_ge_u64, aco_opcode::s_cmp_ge_u32);
break;
}
case nir_op_fddx:
case nir_op_fddy:
case nir_op_fddx_fine:
case nir_op_fddy_fine:
case nir_op_fddx_coarse:
case nir_op_fddy_coarse: {
Temp src = get_alu_src(ctx, instr->src[0]);
uint16_t dpp_ctrl1, dpp_ctrl2;
if (instr->op == nir_op_fddx_fine) {
dpp_ctrl1 = dpp_quad_perm(0, 0, 2, 2);
dpp_ctrl2 = dpp_quad_perm(1, 1, 3, 3);
} else if (instr->op == nir_op_fddy_fine) {
dpp_ctrl1 = dpp_quad_perm(0, 1, 0, 1);
dpp_ctrl2 = dpp_quad_perm(2, 3, 2, 3);
} else {
dpp_ctrl1 = dpp_quad_perm(0, 0, 0, 0);
if (instr->op == nir_op_fddx || instr->op == nir_op_fddx_coarse)
dpp_ctrl2 = dpp_quad_perm(1, 1, 1, 1);
else
dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
}
Temp tmp;
if (ctx->program->chip_class >= GFX8) {
Temp tl = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl1);
tmp = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), src, tl, dpp_ctrl2);
} else {
Temp tl = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl1);
Temp tr = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl2);
tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), tr, tl);
}
emit_wqm(ctx, tmp, dst, true);
break;
}
default:
isel_err(&instr->instr, "Unknown NIR ALU instr");
}
}
void visit_load_const(isel_context *ctx, nir_load_const_instr *instr)
{
Temp dst = get_ssa_temp(ctx, &instr->def);
// TODO: we really want to have the resulting type as this would allow for 64bit literals
// which get truncated the lsb if double and msb if int
// for now, we only use s_mov_b64 with 64bit inline constants
assert(instr->def.num_components == 1 && "Vector load_const should be lowered to scalar.");
assert(dst.type() == RegType::sgpr);
Builder bld(ctx->program, ctx->block);
if (instr->def.bit_size == 1) {
assert(dst.regClass() == bld.lm);
int val = instr->value[0].b ? -1 : 0;
Operand op = bld.lm.size() == 1 ? Operand((uint32_t) val) : Operand((uint64_t) val);
bld.sop1(Builder::s_mov, Definition(dst), op);
} else if (instr->def.bit_size == 8) {
/* ensure that the value is correctly represented in the low byte of the register */
bld.sopk(aco_opcode::s_movk_i32, Definition(dst), instr->value[0].u8);
} else if (instr->def.bit_size == 16) {
/* ensure that the value is correctly represented in the low half of the register */
bld.sopk(aco_opcode::s_movk_i32, Definition(dst), instr->value[0].u16);
} else if (dst.size() == 1) {
bld.copy(Definition(dst), Operand(instr->value[0].u32));
} else {
assert(dst.size() != 1);
aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
if (instr->def.bit_size == 64)
for (unsigned i = 0; i < dst.size(); i++)
vec->operands[i] = Operand{(uint32_t)(instr->value[0].u64 >> i * 32)};
else {
for (unsigned i = 0; i < dst.size(); i++)
vec->operands[i] = Operand{instr->value[i].u32};
}
vec->definitions[0] = Definition(dst);
ctx->block->instructions.emplace_back(std::move(vec));
}
}
uint32_t widen_mask(uint32_t mask, unsigned multiplier)
{
uint32_t new_mask = 0;
for(unsigned i = 0; i < 32 && (1u << i) <= mask; ++i)
if (mask & (1u << i))
new_mask |= ((1u << multiplier) - 1u) << (i * multiplier);
return new_mask;
}
struct LoadEmitInfo {
Operand offset;
Temp dst;
unsigned num_components;
unsigned component_size;
Temp resource = Temp(0, s1);
unsigned component_stride = 0;
unsigned const_offset = 0;
unsigned align_mul = 0;
unsigned align_offset = 0;
bool glc = false;
unsigned swizzle_component_size = 0;
memory_sync_info sync;
Temp soffset = Temp(0, s1);
};
using LoadCallback = Temp(*)(
Builder& bld, const LoadEmitInfo* info, Temp offset, unsigned bytes_needed,
unsigned align, unsigned const_offset, Temp dst_hint);
template <LoadCallback callback, bool byte_align_loads, bool supports_8bit_16bit_loads, unsigned max_const_offset_plus_one>
void emit_load(isel_context *ctx, Builder& bld, const LoadEmitInfo *info)
{
unsigned load_size = info->num_components * info->component_size;
unsigned component_size = info->component_size;
unsigned num_vals = 0;
Temp vals[info->dst.bytes()];
unsigned const_offset = info->const_offset;
unsigned align_mul = info->align_mul ? info->align_mul : component_size;
unsigned align_offset = (info->align_offset + const_offset) % align_mul;
unsigned bytes_read = 0;
while (bytes_read < load_size) {
unsigned bytes_needed = load_size - bytes_read;
/* add buffer for unaligned loads */
int byte_align = align_mul % 4 == 0 ? align_offset % 4 : -1;
if (byte_align) {
if ((bytes_needed > 2 ||
(bytes_needed == 2 && (align_mul % 2 || align_offset % 2)) ||
!supports_8bit_16bit_loads) && byte_align_loads) {
if (info->component_stride) {
assert(supports_8bit_16bit_loads && "unimplemented");
bytes_needed = 2;
byte_align = 0;
} else {
bytes_needed += byte_align == -1 ? 4 - info->align_mul : byte_align;
bytes_needed = align(bytes_needed, 4);
}
} else {
byte_align = 0;
}
}
if (info->swizzle_component_size)
bytes_needed = MIN2(bytes_needed, info->swizzle_component_size);
if (info->component_stride)
bytes_needed = MIN2(bytes_needed, info->component_size);
bool need_to_align_offset = byte_align && (align_mul % 4 || align_offset % 4);
/* reduce constant offset */
Operand offset = info->offset;
unsigned reduced_const_offset = const_offset;
bool remove_const_offset_completely = need_to_align_offset;
if (const_offset && (remove_const_offset_completely || const_offset >= max_const_offset_plus_one)) {
unsigned to_add = const_offset;
if (remove_const_offset_completely) {
reduced_const_offset = 0;
} else {
to_add = const_offset / max_const_offset_plus_one * max_const_offset_plus_one;
reduced_const_offset %= max_const_offset_plus_one;
}
Temp offset_tmp = offset.isTemp() ? offset.getTemp() : Temp();
if (offset.isConstant()) {
offset = Operand(offset.constantValue() + to_add);
} else if (offset_tmp.regClass() == s1) {
offset = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
offset_tmp, Operand(to_add));
} else if (offset_tmp.regClass() == v1) {
offset = bld.vadd32(bld.def(v1), offset_tmp, Operand(to_add));
} else {
Temp lo = bld.tmp(offset_tmp.type(), 1);
Temp hi = bld.tmp(offset_tmp.type(), 1);
bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), offset_tmp);
if (offset_tmp.regClass() == s2) {
Temp carry = bld.tmp(s1);
lo = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), lo, Operand(to_add));
hi = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), hi, carry);
offset = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), lo, hi);
} else {
Temp new_lo = bld.tmp(v1);
Temp carry = bld.vadd32(Definition(new_lo), lo, Operand(to_add), true).def(1).getTemp();
hi = bld.vadd32(bld.def(v1), hi, Operand(0u), false, carry);
offset = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), new_lo, hi);
}
}
}
/* align offset down if needed */
Operand aligned_offset = offset;
unsigned align = align_offset ? 1 << (ffs(align_offset) - 1) : align_mul;
if (need_to_align_offset) {
align = 4;
Temp offset_tmp = offset.isTemp() ? offset.getTemp() : Temp();
if (offset.isConstant()) {
aligned_offset = Operand(offset.constantValue() & 0xfffffffcu);
} else if (offset_tmp.regClass() == s1) {
aligned_offset = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0xfffffffcu), offset_tmp);
} else if (offset_tmp.regClass() == s2) {
aligned_offset = bld.sop2(aco_opcode::s_and_b64, bld.def(s2), bld.def(s1, scc), Operand((uint64_t)0xfffffffffffffffcllu), offset_tmp);
} else if (offset_tmp.regClass() == v1) {
aligned_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xfffffffcu), offset_tmp);
} else if (offset_tmp.regClass() == v2) {
Temp hi = bld.tmp(v1), lo = bld.tmp(v1);
bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), offset_tmp);
lo = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xfffffffcu), lo);
aligned_offset = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), lo, hi);
}
}
Temp aligned_offset_tmp = aligned_offset.isTemp() ? aligned_offset.getTemp() :
bld.copy(bld.def(s1), aligned_offset);
Temp val = callback(bld, info, aligned_offset_tmp, bytes_needed, align,
reduced_const_offset, byte_align ? Temp() : info->dst);
/* the callback wrote directly to dst */
if (val == info->dst) {
assert(num_vals == 0);
emit_split_vector(ctx, info->dst, info->num_components);
return;
}
/* shift result right if needed */
if (info->component_size < 4 && byte_align_loads) {
Operand align((uint32_t)byte_align);
if (byte_align == -1) {
if (offset.isConstant())
align = Operand(offset.constantValue() % 4u);
else if (offset.size() == 2)
align = Operand(emit_extract_vector(ctx, offset.getTemp(), 0, RegClass(offset.getTemp().type(), 1)));
else
align = offset;
}
assert(val.bytes() >= load_size && "unimplemented");
if (val.type() == RegType::sgpr)
byte_align_scalar(ctx, val, align, info->dst);
else
byte_align_vector(ctx, val, align, info->dst, component_size);
return;
}
/* add result to list and advance */
if (info->component_stride) {
assert(val.bytes() == info->component_size && "unimplemented");
const_offset += info->component_stride;
align_offset = (align_offset + info->component_stride) % align_mul;
} else {
const_offset += val.bytes();
align_offset = (align_offset + val.bytes()) % align_mul;
}
bytes_read += val.bytes();
vals[num_vals++] = val;
}
/* create array of components */
unsigned components_split = 0;
std::array<Temp, NIR_MAX_VEC_COMPONENTS> allocated_vec;
bool has_vgprs = false;
for (unsigned i = 0; i < num_vals;) {
Temp tmp[num_vals];
unsigned num_tmps = 0;
unsigned tmp_size = 0;
RegType reg_type = RegType::sgpr;
while ((!tmp_size || (tmp_size % component_size)) && i < num_vals) {
if (vals[i].type() == RegType::vgpr)
reg_type = RegType::vgpr;
tmp_size += vals[i].bytes();
tmp[num_tmps++] = vals[i++];
}
if (num_tmps > 1) {
aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(
aco_opcode::p_create_vector, Format::PSEUDO, num_tmps, 1)};
for (unsigned i = 0; i < num_tmps; i++)
vec->operands[i] = Operand(tmp[i]);
tmp[0] = bld.tmp(RegClass::get(reg_type, tmp_size));
vec->definitions[0] = Definition(tmp[0]);
bld.insert(std::move(vec));
}
if (tmp[0].bytes() % component_size) {
/* trim tmp[0] */
assert(i == num_vals);
RegClass new_rc = RegClass::get(reg_type, tmp[0].bytes() / component_size * component_size);
tmp[0] = bld.pseudo(aco_opcode::p_extract_vector, bld.def(new_rc), tmp[0], Operand(0u));
}
RegClass elem_rc = RegClass::get(reg_type, component_size);
unsigned start = components_split;
if (tmp_size == elem_rc.bytes()) {
allocated_vec[components_split++] = tmp[0];
} else {
assert(tmp_size % elem_rc.bytes() == 0);
aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(
aco_opcode::p_split_vector, Format::PSEUDO, 1, tmp_size / elem_rc.bytes())};
for (unsigned i = 0; i < split->definitions.size(); i++) {
Temp component = bld.tmp(elem_rc);
allocated_vec[components_split++] = component;
split->definitions[i] = Definition(component);
}
split->operands[0] = Operand(tmp[0]);
bld.insert(std::move(split));
}
/* try to p_as_uniform early so we can create more optimizable code and
* also update allocated_vec */
for (unsigned j = start; j < components_split; j++) {
if (allocated_vec[j].bytes() % 4 == 0 && info->dst.type() == RegType::sgpr)
allocated_vec[j] = bld.as_uniform(allocated_vec[j]);
has_vgprs |= allocated_vec[j].type() == RegType::vgpr;
}
}
/* concatenate components and p_as_uniform() result if needed */
if (info->dst.type() == RegType::vgpr || !has_vgprs)
ctx->allocated_vec.emplace(info->dst.id(), allocated_vec);
int padding_bytes = MAX2((int)info->dst.bytes() - int(allocated_vec[0].bytes() * info->num_components), 0);
aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(
aco_opcode::p_create_vector, Format::PSEUDO, info->num_components + !!padding_bytes, 1)};
for (unsigned i = 0; i < info->num_components; i++)
vec->operands[i] = Operand(allocated_vec[i]);
if (padding_bytes)
vec->operands[info->num_components] = Operand(RegClass::get(RegType::vgpr, padding_bytes));
if (info->dst.type() == RegType::sgpr && has_vgprs) {
Temp tmp = bld.tmp(RegType::vgpr, info->dst.size());
vec->definitions[0] = Definition(tmp);
bld.insert(std::move(vec));
bld.pseudo(aco_opcode::p_as_uniform, Definition(info->dst), tmp);
} else {
vec->definitions[0] = Definition(info->dst);
bld.insert(std::move(vec));
}
}
Operand load_lds_size_m0(Builder& bld)
{
/* TODO: m0 does not need to be initialized on GFX9+ */
return bld.m0((Temp)bld.sopk(aco_opcode::s_movk_i32, bld.def(s1, m0), 0xffff));
}
Temp lds_load_callback(Builder& bld, const LoadEmitInfo *info,
Temp offset, unsigned bytes_needed,
unsigned align, unsigned const_offset,
Temp dst_hint)
{
offset = offset.regClass() == s1 ? bld.copy(bld.def(v1), offset) : offset;
Operand m = load_lds_size_m0(bld);
bool large_ds_read = bld.program->chip_class >= GFX7;
bool usable_read2 = bld.program->chip_class >= GFX7;
bool read2 = false;
unsigned size = 0;
aco_opcode op;
//TODO: use ds_read_u8_d16_hi/ds_read_u16_d16_hi if beneficial
if (bytes_needed >= 16 && align % 16 == 0 && large_ds_read) {
size = 16;
op = aco_opcode::ds_read_b128;
} else if (bytes_needed >= 16 && align % 8 == 0 && const_offset % 8 == 0 && usable_read2) {
size = 16;
read2 = true;
op = aco_opcode::ds_read2_b64;
} else if (bytes_needed >= 12 && align % 16 == 0 && large_ds_read) {
size = 12;
op = aco_opcode::ds_read_b96;
} else if (bytes_needed >= 8 && align % 8 == 0) {
size = 8;
op = aco_opcode::ds_read_b64;
} else if (bytes_needed >= 8 && align % 4 == 0 && const_offset % 4 == 0) {
size = 8;
read2 = true;
op = aco_opcode::ds_read2_b32;
} else if (bytes_needed >= 4 && align % 4 == 0) {
size = 4;
op = aco_opcode::ds_read_b32;
} else if (bytes_needed >= 2 && align % 2 == 0) {
size = 2;
op = aco_opcode::ds_read_u16;
} else {
size = 1;
op = aco_opcode::ds_read_u8;
}
unsigned max_offset_plus_one = read2 ? 254 * (size / 2u) + 1 : 65536;
if (const_offset >= max_offset_plus_one) {
offset = bld.vadd32(bld.def(v1), offset, Operand(const_offset / max_offset_plus_one));
const_offset %= max_offset_plus_one;
}
if (read2)
const_offset /= (size / 2u);
RegClass rc = RegClass(RegType::vgpr, DIV_ROUND_UP(size, 4));
Temp val = rc == info->dst.regClass() && dst_hint.id() ? dst_hint : bld.tmp(rc);
Instruction *instr;
if (read2)
instr = bld.ds(op, Definition(val), offset, m, const_offset, const_offset + 1);
else
instr = bld.ds(op, Definition(val), offset, m, const_offset);
static_cast<DS_instruction *>(instr)->sync = info->sync;
if (size < 4)
val = bld.pseudo(aco_opcode::p_extract_vector, bld.def(RegClass::get(RegType::vgpr, size)), val, Operand(0u));
return val;
}
static auto emit_lds_load = emit_load<lds_load_callback, false, true, UINT32_MAX>;
Temp smem_load_callback(Builder& bld, const LoadEmitInfo *info,
Temp offset, unsigned bytes_needed,
unsigned align, unsigned const_offset,
Temp dst_hint)
{
unsigned size = 0;
aco_opcode op;
if (bytes_needed <= 4) {
size = 1;
op = info->resource.id() ? aco_opcode::s_buffer_load_dword : aco_opcode::s_load_dword;
} else if (bytes_needed <= 8) {
size = 2;
op = info->resource.id() ? aco_opcode::s_buffer_load_dwordx2 : aco_opcode::s_load_dwordx2;
} else if (bytes_needed <= 16) {
size = 4;
op = info->resource.id() ? aco_opcode::s_buffer_load_dwordx4 : aco_opcode::s_load_dwordx4;
} else if (bytes_needed <= 32) {
size = 8;
op = info->resource.id() ? aco_opcode::s_buffer_load_dwordx8 : aco_opcode::s_load_dwordx8;
} else {
size = 16;
op = info->resource.id() ? aco_opcode::s_buffer_load_dwordx16 : aco_opcode::s_load_dwordx16;
}
aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
if (info->resource.id()) {
load->operands[0] = Operand(info->resource);
load->operands[1] = Operand(offset);
} else {
load->operands[0] = Operand(offset);
load->operands[1] = Operand(0u);
}
RegClass rc(RegType::sgpr, size);
Temp val = dst_hint.id() && dst_hint.regClass() == rc ? dst_hint : bld.tmp(rc);
load->definitions[0] = Definition(val);
load->glc = info->glc;
load->dlc = info->glc && bld.program->chip_class >= GFX10;
load->sync = info->sync;
bld.insert(std::move(load));
return val;
}
static auto emit_smem_load = emit_load<smem_load_callback, true, false, 1024>;
Temp mubuf_load_callback(Builder& bld, const LoadEmitInfo *info,
Temp offset, unsigned bytes_needed,
unsigned align_, unsigned const_offset,
Temp dst_hint)
{
Operand vaddr = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
Operand soffset = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
if (info->soffset.id()) {
if (soffset.isTemp())
vaddr = bld.copy(bld.def(v1), soffset);
soffset = Operand(info->soffset);
}
unsigned bytes_size = 0;
aco_opcode op;
if (bytes_needed == 1 || align_ % 2) {
bytes_size = 1;
op = aco_opcode::buffer_load_ubyte;
} else if (bytes_needed == 2 || align_ % 4) {
bytes_size = 2;
op = aco_opcode::buffer_load_ushort;
} else if (bytes_needed <= 4) {
bytes_size = 4;
op = aco_opcode::buffer_load_dword;
} else if (bytes_needed <= 8) {
bytes_size = 8;
op = aco_opcode::buffer_load_dwordx2;
} else if (bytes_needed <= 12 && bld.program->chip_class > GFX6) {
bytes_size = 12;
op = aco_opcode::buffer_load_dwordx3;
} else {
bytes_size = 16;
op = aco_opcode::buffer_load_dwordx4;
}
aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
mubuf->operands[0] = Operand(info->resource);
mubuf->operands[1] = vaddr;
mubuf->operands[2] = soffset;
mubuf->offen = (offset.type() == RegType::vgpr);
mubuf->glc = info->glc;
mubuf->dlc = info->glc && bld.program->chip_class >= GFX10;
mubuf->sync = info->sync;
mubuf->offset = const_offset;
mubuf->swizzled = info->swizzle_component_size != 0;
RegClass rc = RegClass::get(RegType::vgpr, bytes_size);
Temp val = dst_hint.id() && rc == dst_hint.regClass() ? dst_hint : bld.tmp(rc);
mubuf->definitions[0] = Definition(val);
bld.insert(std::move(mubuf));
return val;
}
static auto emit_mubuf_load = emit_load<mubuf_load_callback, true, true, 4096>;
static auto emit_scratch_load = emit_load<mubuf_load_callback, false, true, 4096>;
Temp get_gfx6_global_rsrc(Builder& bld, Temp addr)
{
uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
if (addr.type() == RegType::vgpr)
return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), Operand(0u), Operand(0u), Operand(-1u), Operand(rsrc_conf));
return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), addr, Operand(-1u), Operand(rsrc_conf));
}
Temp global_load_callback(Builder& bld, const LoadEmitInfo *info,
Temp offset, unsigned bytes_needed,
unsigned align_, unsigned const_offset,
Temp dst_hint)
{
unsigned bytes_size = 0;
bool mubuf = bld.program->chip_class == GFX6;
bool global = bld.program->chip_class >= GFX9;
aco_opcode op;
if (bytes_needed == 1) {
bytes_size = 1;
op = mubuf ? aco_opcode::buffer_load_ubyte : global ? aco_opcode::global_load_ubyte : aco_opcode::flat_load_ubyte;
} else if (bytes_needed == 2) {
bytes_size = 2;
op = mubuf ? aco_opcode::buffer_load_ushort : global ? aco_opcode::global_load_ushort : aco_opcode::flat_load_ushort;
} else if (bytes_needed <= 4) {
bytes_size = 4;
op = mubuf ? aco_opcode::buffer_load_dword : global ? aco_opcode::global_load_dword : aco_opcode::flat_load_dword;
} else if (bytes_needed <= 8) {
bytes_size = 8;
op = mubuf ? aco_opcode::buffer_load_dwordx2 : global ? aco_opcode::global_load_dwordx2 : aco_opcode::flat_load_dwordx2;
} else if (bytes_needed <= 12 && !mubuf) {
bytes_size = 12;
op = global ? aco_opcode::global_load_dwordx3 : aco_opcode::flat_load_dwordx3;
} else {
bytes_size = 16;
op = mubuf ? aco_opcode::buffer_load_dwordx4 : global ? aco_opcode::global_load_dwordx4 : aco_opcode::flat_load_dwordx4;
}
RegClass rc = RegClass::get(RegType::vgpr, align(bytes_size, 4));
Temp val = dst_hint.id() && rc == dst_hint.regClass() ? dst_hint : bld.tmp(rc);
if (mubuf) {
aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
mubuf->operands[0] = Operand(get_gfx6_global_rsrc(bld, offset));
mubuf->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
mubuf->operands[2] = Operand(0u);
mubuf->glc = info->glc;
mubuf->dlc = false;
mubuf->offset = 0;
mubuf->addr64 = offset.type() == RegType::vgpr;
mubuf->disable_wqm = false;
mubuf->sync = info->sync;
mubuf->definitions[0] = Definition(val);
bld.insert(std::move(mubuf));
} else {
offset = offset.regClass() == s2 ? bld.copy(bld.def(v2), offset) : offset;
aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 2, 1)};
flat->operands[0] = Operand(offset);
flat->operands[1] = Operand(s1);
flat->glc = info->glc;
flat->dlc = info->glc && bld.program->chip_class >= GFX10;
flat->sync = info->sync;
flat->offset = 0u;
flat->definitions[0] = Definition(val);
bld.insert(std::move(flat));
}
return val;
}
static auto emit_global_load = emit_load<global_load_callback, true, true, 1>;
Temp load_lds(isel_context *ctx, unsigned elem_size_bytes, Temp dst,
Temp address, unsigned base_offset, unsigned align)
{
assert(util_is_power_of_two_nonzero(align));
Builder bld(ctx->program, ctx->block);
unsigned num_components = dst.bytes() / elem_size_bytes;
LoadEmitInfo info = {Operand(as_vgpr(ctx, address)), dst, num_components, elem_size_bytes};
info.align_mul = align;
info.align_offset = 0;
info.sync = memory_sync_info(storage_shared);
info.const_offset = base_offset;
emit_lds_load(ctx, bld, &info);
return dst;
}
void split_store_data(isel_context *ctx, RegType dst_type, unsigned count, Temp *dst, unsigned *offsets, Temp src)
{
if (!count)
return;
Builder bld(ctx->program, ctx->block);
ASSERTED bool is_subdword = false;
for (unsigned i = 0; i < count; i++)
is_subdword |= offsets[i] % 4;
is_subdword |= (src.bytes() - offsets[count - 1]) % 4;
assert(!is_subdword || dst_type == RegType::vgpr);
/* count == 1 fast path */
if (count == 1) {
if (dst_type == RegType::sgpr)
dst[0] = bld.as_uniform(src);
else
dst[0] = as_vgpr(ctx, src);
return;
}
for (unsigned i = 0; i < count - 1; i++)
dst[i] = bld.tmp(RegClass::get(dst_type, offsets[i + 1] - offsets[i]));
dst[count - 1] = bld.tmp(RegClass::get(dst_type, src.bytes() - offsets[count - 1]));
if (is_subdword && src.type() == RegType::sgpr) {
src = as_vgpr(ctx, src);
} else {
/* use allocated_vec if possible */
auto it = ctx->allocated_vec.find(src.id());
if (it != ctx->allocated_vec.end()) {
if (!it->second[0].id())
goto split;
unsigned elem_size = it->second[0].bytes();
assert(src.bytes() % elem_size == 0);
for (unsigned i = 0; i < src.bytes() / elem_size; i++) {
if (!it->second[i].id())
goto split;
}
for (unsigned i = 0; i < count; i++) {
if (offsets[i] % elem_size || dst[i].bytes() % elem_size)
goto split;
}
for (unsigned i = 0; i < count; i++) {
unsigned start_idx = offsets[i] / elem_size;
unsigned op_count = dst[i].bytes() / elem_size;
if (op_count == 1) {
if (dst_type == RegType::sgpr)
dst[i] = bld.as_uniform(it->second[start_idx]);
else
dst[i] = as_vgpr(ctx, it->second[start_idx]);
continue;
}
aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, op_count, 1)};
for (unsigned j = 0; j < op_count; j++) {
Temp tmp = it->second[start_idx + j];
if (dst_type == RegType::sgpr)
tmp = bld.as_uniform(tmp);
vec->operands[j] = Operand(tmp);
}
vec->definitions[0] = Definition(dst[i]);
bld.insert(std::move(vec));
}
return;
}
}
split:
if (dst_type == RegType::sgpr)
src = bld.as_uniform(src);
/* just split it */
aco_ptr<Instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, count)};
split->operands[0] = Operand(src);
for (unsigned i = 0; i < count; i++)
split->definitions[i] = Definition(dst[i]);
bld.insert(std::move(split));
}
bool scan_write_mask(uint32_t mask, uint32_t todo_mask,
int *start, int *count)
{
unsigned start_elem = ffs(todo_mask) - 1;
bool skip = !(mask & (1 << start_elem));
if (skip)
mask = ~mask & todo_mask;
mask &= todo_mask;
u_bit_scan_consecutive_range(&mask, start, count);
return !skip;
}
void advance_write_mask(uint32_t *todo_mask, int start, int count)
{
*todo_mask &= ~u_bit_consecutive(0, count) << start;
}
void store_lds(isel_context *ctx, unsigned elem_size_bytes, Temp data, uint32_t wrmask,
Temp address, unsigned base_offset, unsigned align)
{
assert(util_is_power_of_two_nonzero(align));
assert(util_is_power_of_two_nonzero(elem_size_bytes) && elem_size_bytes <= 8);
Builder bld(ctx->program, ctx->block);
bool large_ds_write = ctx->options->chip_class >= GFX7;
bool usable_write2 = ctx->options->chip_class >= GFX7;
unsigned write_count = 0;
Temp write_datas[32];
unsigned offsets[32];
aco_opcode opcodes[32];
wrmask = widen_mask(wrmask, elem_size_bytes);
uint32_t todo = u_bit_consecutive(0, data.bytes());
while (todo) {
int offset, bytes;
if (!scan_write_mask(wrmask, todo, &offset, &bytes)) {
offsets[write_count] = offset;
opcodes[write_count] = aco_opcode::num_opcodes;
write_count++;
advance_write_mask(&todo, offset, bytes);
continue;
}
bool aligned2 = offset % 2 == 0 && align % 2 == 0;
bool aligned4 = offset % 4 == 0 && align % 4 == 0;
bool aligned8 = offset % 8 == 0 && align % 8 == 0;
bool aligned16 = offset % 16 == 0 && align % 16 == 0;
//TODO: use ds_write_b8_d16_hi/ds_write_b16_d16_hi if beneficial
aco_opcode op = aco_opcode::num_opcodes;
if (bytes >= 16 && aligned16 && large_ds_write) {
op = aco_opcode::ds_write_b128;
bytes = 16;
} else if (bytes >= 12 && aligned16 && large_ds_write) {
op = aco_opcode::ds_write_b96;
bytes = 12;
} else if (bytes >= 8 && aligned8) {
op = aco_opcode::ds_write_b64;
bytes = 8;
} else if (bytes >= 4 && aligned4) {
op = aco_opcode::ds_write_b32;
bytes = 4;
} else if (bytes >= 2 && aligned2) {
op = aco_opcode::ds_write_b16;
bytes = 2;
} else if (bytes >= 1) {
op = aco_opcode::ds_write_b8;
bytes = 1;
} else {
assert(false);
}
offsets[write_count] = offset;
opcodes[write_count] = op;
write_count++;
advance_write_mask(&todo, offset, bytes);
}
Operand m = load_lds_size_m0(bld);
split_store_data(ctx, RegType::vgpr, write_count, write_datas, offsets, data);
for (unsigned i = 0; i < write_count; i++) {
aco_opcode op = opcodes[i];
if (op == aco_opcode::num_opcodes)
continue;
Temp data = write_datas[i];
unsigned second = write_count;
if (usable_write2 && (op == aco_opcode::ds_write_b32 || op == aco_opcode::ds_write_b64)) {
for (second = i + 1; second < write_count; second++) {
if (opcodes[second] == op && (offsets[second] - offsets[i]) % data.bytes() == 0) {
op = data.bytes() == 4 ? aco_opcode::ds_write2_b32 : aco_opcode::ds_write2_b64;
opcodes[second] = aco_opcode::num_opcodes;
break;
}
}
}
bool write2 = op == aco_opcode::ds_write2_b32 || op == aco_opcode::ds_write2_b64;
unsigned write2_off = (offsets[second] - offsets[i]) / data.bytes();
unsigned inline_offset = base_offset + offsets[i];
unsigned max_offset = write2 ? (255 - write2_off) * data.bytes() : 65535;
Temp address_offset = address;
if (inline_offset > max_offset) {
address_offset = bld.vadd32(bld.def(v1), Operand(base_offset), address_offset);
inline_offset = offsets[i];
}
assert(inline_offset <= max_offset); /* offsets[i] shouldn't be large enough for this to happen */
Instruction *instr;
if (write2) {
Temp second_data = write_datas[second];
inline_offset /= data.bytes();
instr = bld.ds(op, address_offset, data, second_data, m, inline_offset, inline_offset + write2_off);
} else {
instr = bld.ds(op, address_offset, data, m, inline_offset);
}
static_cast<DS_instruction *>(instr)->sync =
memory_sync_info(storage_shared);
}
}
unsigned calculate_lds_alignment(isel_context *ctx, unsigned const_offset)
{
unsigned align = 16;
if (const_offset)
align = std::min(align, 1u << (ffs(const_offset) - 1));
return align;
}
aco_opcode get_buffer_store_op(bool smem, unsigned bytes)
{
switch (bytes) {
case 1:
assert(!smem);
return aco_opcode::buffer_store_byte;
case 2:
assert(!smem);
return aco_opcode::buffer_store_short;
case 4:
return smem ? aco_opcode::s_buffer_store_dword : aco_opcode::buffer_store_dword;
case 8:
return smem ? aco_opcode::s_buffer_store_dwordx2 : aco_opcode::buffer_store_dwordx2;
case 12:
assert(!smem);
return aco_opcode::buffer_store_dwordx3;
case 16:
return smem ? aco_opcode::s_buffer_store_dwordx4 : aco_opcode::buffer_store_dwordx4;
}
unreachable("Unexpected store size");
return aco_opcode::num_opcodes;
}
void split_buffer_store(isel_context *ctx, nir_intrinsic_instr *instr, bool smem, RegType dst_type,
Temp data, unsigned writemask, int swizzle_element_size,
unsigned *write_count, Temp *write_datas, unsigned *offsets)
{
unsigned write_count_with_skips = 0;
bool skips[16];
/* determine how to split the data */
unsigned todo = u_bit_consecutive(0, data.bytes());
while (todo) {
int offset, bytes;
skips[write_count_with_skips] = !scan_write_mask(writemask, todo, &offset, &bytes);
offsets[write_count_with_skips] = offset;
if (skips[write_count_with_skips]) {
advance_write_mask(&todo, offset, bytes);
write_count_with_skips++;
continue;
}
/* only supported sizes are 1, 2, 4, 8, 12 and 16 bytes and can't be
* larger than swizzle_element_size */
bytes = MIN2(bytes, swizzle_element_size);
if (bytes % 4)
bytes = bytes > 4 ? bytes & ~0x3 : MIN2(bytes, 2);
/* SMEM and GFX6 VMEM can't emit 12-byte stores */
if ((ctx->program->chip_class == GFX6 || smem) && bytes == 12)
bytes = 8;
/* dword or larger stores have to be dword-aligned */
unsigned align_mul = instr ? nir_intrinsic_align_mul(instr) : 4;
unsigned align_offset = (instr ? nir_intrinsic_align_offset(instr) : 0) + offset;
bool dword_aligned = align_offset % 4 == 0 && align_mul % 4 == 0;
if (!dword_aligned)
bytes = MIN2(bytes, (align_offset % 2 == 0 && align_mul % 2 == 0) ? 2 : 1);
advance_write_mask(&todo, offset, bytes);
write_count_with_skips++;
}
/* actually split data */
split_store_data(ctx, dst_type, write_count_with_skips, write_datas, offsets, data);
/* remove skips */
for (unsigned i = 0; i < write_count_with_skips; i++) {
if (skips[i])
continue;
write_datas[*write_count] = write_datas[i];
offsets[*write_count] = offsets[i];
(*write_count)++;
}
}
Temp create_vec_from_array(isel_context *ctx, Temp arr[], unsigned cnt, RegType reg_type, unsigned elem_size_bytes,
unsigned split_cnt = 0u, Temp dst = Temp())
{
Builder bld(ctx->program, ctx->block);
unsigned dword_size = elem_size_bytes / 4;
if (!dst.id())
dst = bld.tmp(RegClass(reg_type, cnt * dword_size));
std::array<Temp, NIR_MAX_VEC_COMPONENTS> allocated_vec;
aco_ptr<Pseudo_instruction> instr {create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, cnt, 1)};
instr->definitions[0] = Definition(dst);
for (unsigned i = 0; i < cnt; ++i) {
if (arr[i].id()) {
assert(arr[i].size() == dword_size);
allocated_vec[i] = arr[i];
instr->operands[i] = Operand(arr[i]);
} else {
Temp zero = bld.copy(bld.def(RegClass(reg_type, dword_size)), Operand(0u, dword_size == 2));
allocated_vec[i] = zero;
instr->operands[i] = Operand(zero);
}
}
bld.insert(std::move(instr));
if (split_cnt)
emit_split_vector(ctx, dst, split_cnt);
else
ctx->allocated_vec.emplace(dst.id(), allocated_vec); /* emit_split_vector already does this */
return dst;
}
inline unsigned resolve_excess_vmem_const_offset(Builder &bld, Temp &voffset, unsigned const_offset)
{
if (const_offset >= 4096) {
unsigned excess_const_offset = const_offset / 4096u * 4096u;
const_offset %= 4096u;
if (!voffset.id())
voffset = bld.copy(bld.def(v1), Operand(excess_const_offset));
else if (unlikely(voffset.regClass() == s1))
voffset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), Operand(excess_const_offset), Operand(voffset));
else if (likely(voffset.regClass() == v1))
voffset = bld.vadd32(bld.def(v1), Operand(voffset), Operand(excess_const_offset));
else
unreachable("Unsupported register class of voffset");
}
return const_offset;
}
void emit_single_mubuf_store(isel_context *ctx, Temp descriptor, Temp voffset, Temp soffset, Temp vdata,
unsigned const_offset = 0u, memory_sync_info sync=memory_sync_info(),
bool slc = false, bool swizzled = false)
{
assert(vdata.id());
assert(vdata.size() != 3 || ctx->program->chip_class != GFX6);
assert(vdata.size() >= 1 && vdata.size() <= 4);
Builder bld(ctx->program, ctx->block);
aco_opcode op = get_buffer_store_op(false, vdata.bytes());
const_offset = resolve_excess_vmem_const_offset(bld, voffset, const_offset);
Operand voffset_op = voffset.id() ? Operand(as_vgpr(ctx, voffset)) : Operand(v1);
Operand soffset_op = soffset.id() ? Operand(soffset) : Operand(0u);
Builder::Result r = bld.mubuf(op, Operand(descriptor), voffset_op, soffset_op, Operand(vdata), const_offset,
/* offen */ !voffset_op.isUndefined(), /* swizzled */ swizzled,
/* idxen*/ false, /* addr64 */ false, /* disable_wqm */ false, /* glc */ true,
/* dlc*/ false, /* slc */ slc);
static_cast<MUBUF_instruction *>(r.instr)->sync = sync;
}
void store_vmem_mubuf(isel_context *ctx, Temp src, Temp descriptor, Temp voffset, Temp soffset,
unsigned base_const_offset, unsigned elem_size_bytes, unsigned write_mask,
bool allow_combining = true, memory_sync_info sync=memory_sync_info(), bool slc = false)
{
Builder bld(ctx->program, ctx->block);
assert(elem_size_bytes == 2 || elem_size_bytes == 4 || elem_size_bytes == 8);
assert(write_mask);
write_mask = widen_mask(write_mask, elem_size_bytes);
unsigned write_count = 0;
Temp write_datas[32];
unsigned offsets[32];
split_buffer_store(ctx, NULL, false, RegType::vgpr, src, write_mask,
allow_combining ? 16 : 4, &write_count, write_datas, offsets);
for (unsigned i = 0; i < write_count; i++) {
unsigned const_offset = offsets[i] + base_const_offset;
emit_single_mubuf_store(ctx, descriptor, voffset, soffset, write_datas[i], const_offset, sync, slc, !allow_combining);
}
}
void load_vmem_mubuf(isel_context *ctx, Temp dst, Temp descriptor, Temp voffset, Temp soffset,
unsigned base_const_offset, unsigned elem_size_bytes, unsigned num_components,
unsigned stride = 0u, bool allow_combining = true, bool allow_reorder = true)
{
assert(elem_size_bytes == 2 || elem_size_bytes == 4 || elem_size_bytes == 8);
assert((num_components * elem_size_bytes) == dst.bytes());
assert(!!stride != allow_combining);
Builder bld(ctx->program, ctx->block);
LoadEmitInfo info = {Operand(voffset), dst, num_components, elem_size_bytes, descriptor};
info.component_stride = allow_combining ? 0 : stride;
info.glc = true;
info.swizzle_component_size = allow_combining ? 0 : 4;
info.align_mul = MIN2(elem_size_bytes, 4);
info.align_offset = 0;
info.soffset = soffset;
info.const_offset = base_const_offset;
emit_mubuf_load(ctx, bld, &info);
}
std::pair<Temp, unsigned> offset_add_from_nir(isel_context *ctx, const std::pair<Temp, unsigned> &base_offset, nir_src *off_src, unsigned stride = 1u)
{
Builder bld(ctx->program, ctx->block);
Temp offset = base_offset.first;
unsigned const_offset = base_offset.second;
if (!nir_src_is_const(*off_src)) {
Temp indirect_offset_arg = get_ssa_temp(ctx, off_src->ssa);
Temp with_stride;
/* Calculate indirect offset with stride */
if (likely(indirect_offset_arg.regClass() == v1))
with_stride = bld.v_mul24_imm(bld.def(v1), indirect_offset_arg, stride);
else if (indirect_offset_arg.regClass() == s1)
with_stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), indirect_offset_arg);
else
unreachable("Unsupported register class of indirect offset");
/* Add to the supplied base offset */
if (offset.id() == 0)
offset = with_stride;
else if (unlikely(offset.regClass() == s1 && with_stride.regClass() == s1))
offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), with_stride, offset);
else if (offset.size() == 1 && with_stride.size() == 1)
offset = bld.vadd32(bld.def(v1), with_stride, offset);
else
unreachable("Unsupported register class of indirect offset");
} else {
unsigned const_offset_arg = nir_src_as_uint(*off_src);
const_offset += const_offset_arg * stride;
}
return std::make_pair(offset, const_offset);
}
std::pair<Temp, unsigned> offset_add(isel_context *ctx, const std::pair<Temp, unsigned> &off1, const std::pair<Temp, unsigned> &off2)
{
Builder bld(ctx->program, ctx->block);
Temp offset;
if (off1.first.id() && off2.first.id()) {
if (unlikely(off1.first.regClass() == s1 && off2.first.regClass() == s1))
offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), off1.first, off2.first);
else if (off1.first.size() == 1 && off2.first.size() == 1)
offset = bld.vadd32(bld.def(v1), off1.first, off2.first);
else
unreachable("Unsupported register class of indirect offset");
} else {
offset = off1.first.id() ? off1.first : off2.first;
}
return std::make_pair(offset, off1.second + off2.second);
}
std::pair<Temp, unsigned> offset_mul(isel_context *ctx, const std::pair<Temp, unsigned> &offs, unsigned multiplier)
{
Builder bld(ctx->program, ctx->block);
unsigned const_offset = offs.second * multiplier;
if (!offs.first.id())
return std::make_pair(offs.first, const_offset);
Temp offset = unlikely(offs.first.regClass() == s1)
? bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(multiplier), offs.first)
: bld.v_mul24_imm(bld.def(v1), offs.first, multiplier);
return std::make_pair(offset, const_offset);
}
std::pair<Temp, unsigned> get_intrinsic_io_basic_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned base_stride, unsigned component_stride)
{
Builder bld(ctx->program, ctx->block);
/* base is the driver_location, which is already multiplied by 4, so is in dwords */
unsigned const_offset = nir_intrinsic_base(instr) * base_stride;
/* component is in bytes */
const_offset += nir_intrinsic_component(instr) * component_stride;
/* offset should be interpreted in relation to the base, so the instruction effectively reads/writes another input/output when it has an offset */
nir_src *off_src = nir_get_io_offset_src(instr);
return offset_add_from_nir(ctx, std::make_pair(Temp(), const_offset), off_src, 4u * base_stride);
}
std::pair<Temp, unsigned> get_intrinsic_io_basic_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned stride = 1u)
{
return get_intrinsic_io_basic_offset(ctx, instr, stride, stride);
}
Temp get_tess_rel_patch_id(isel_context *ctx)
{
Builder bld(ctx->program, ctx->block);
switch (ctx->shader->info.stage) {
case MESA_SHADER_TESS_CTRL:
return bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffu),
get_arg(ctx, ctx->args->ac.tcs_rel_ids));
case MESA_SHADER_TESS_EVAL:
return get_arg(ctx, ctx->args->tes_rel_patch_id);
default:
unreachable("Unsupported stage in get_tess_rel_patch_id");
}
}
std::pair<Temp, unsigned> get_tcs_per_vertex_input_lds_offset(isel_context *ctx, nir_intrinsic_instr *instr)
{
assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
Builder bld(ctx->program, ctx->block);
uint32_t tcs_in_patch_stride = ctx->args->options->key.tcs.input_vertices * ctx->tcs_num_inputs * 4;
uint32_t tcs_in_vertex_stride = ctx->tcs_num_inputs * 4;
std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr);
nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
offs = offset_add_from_nir(ctx, offs, vertex_index_src, tcs_in_vertex_stride);
Temp rel_patch_id = get_tess_rel_patch_id(ctx);
Temp tcs_in_current_patch_offset = bld.v_mul24_imm(bld.def(v1), rel_patch_id, tcs_in_patch_stride);
offs = offset_add(ctx, offs, std::make_pair(tcs_in_current_patch_offset, 0));
return offset_mul(ctx, offs, 4u);
}
std::pair<Temp, unsigned> get_tcs_output_lds_offset(isel_context *ctx, nir_intrinsic_instr *instr = nullptr, bool per_vertex = false)
{
assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
Builder bld(ctx->program, ctx->block);
uint32_t input_patch_size = ctx->args->options->key.tcs.input_vertices * ctx->tcs_num_inputs * 16;
uint32_t output_vertex_size = ctx->tcs_num_outputs * 16;
uint32_t pervertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size;
uint32_t output_patch_stride = pervertex_output_patch_size + ctx->tcs_num_patch_outputs * 16;
std::pair<Temp, unsigned> offs = instr
? get_intrinsic_io_basic_offset(ctx, instr, 4u)
: std::make_pair(Temp(), 0u);
Temp rel_patch_id = get_tess_rel_patch_id(ctx);
Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, output_patch_stride);
if (per_vertex) {
assert(instr);
nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
offs = offset_add_from_nir(ctx, offs, vertex_index_src, output_vertex_size);
uint32_t output_patch0_offset = (input_patch_size * ctx->tcs_num_patches);
offs = offset_add(ctx, offs, std::make_pair(patch_off, output_patch0_offset));
} else {
uint32_t output_patch0_patch_data_offset = (input_patch_size * ctx->tcs_num_patches + pervertex_output_patch_size);
offs = offset_add(ctx, offs, std::make_pair(patch_off, output_patch0_patch_data_offset));
}
return offs;
}
std::pair<Temp, unsigned> get_tcs_per_vertex_output_vmem_offset(isel_context *ctx, nir_intrinsic_instr *instr)
{
Builder bld(ctx->program, ctx->block);
unsigned vertices_per_patch = ctx->shader->info.tess.tcs_vertices_out;
unsigned attr_stride = vertices_per_patch * ctx->tcs_num_patches;
std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, attr_stride * 4u, 4u);
Temp rel_patch_id = get_tess_rel_patch_id(ctx);
Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, vertices_per_patch * 16u);
offs = offset_add(ctx, offs, std::make_pair(patch_off, 0u));
nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
offs = offset_add_from_nir(ctx, offs, vertex_index_src, 16u);
return offs;
}
std::pair<Temp, unsigned> get_tcs_per_patch_output_vmem_offset(isel_context *ctx, nir_intrinsic_instr *instr = nullptr, unsigned const_base_offset = 0u)
{
Builder bld(ctx->program, ctx->block);
unsigned output_vertex_size = ctx->tcs_num_outputs * 16;
unsigned per_vertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size;
unsigned per_patch_data_offset = per_vertex_output_patch_size * ctx->tcs_num_patches;
unsigned attr_stride = ctx->tcs_num_patches;
std::pair<Temp, unsigned> offs = instr
? get_intrinsic_io_basic_offset(ctx, instr, attr_stride * 4u, 4u)
: std::make_pair(Temp(), 0u);
if (const_base_offset)
offs.second += const_base_offset * attr_stride;
Temp rel_patch_id = get_tess_rel_patch_id(ctx);
Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, 16u);
offs = offset_add(ctx, offs, std::make_pair(patch_off, per_patch_data_offset));
return offs;
}
bool tcs_driver_location_matches_api_mask(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex, uint64_t mask, bool *indirect)
{
assert(per_vertex || ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
if (mask == 0)
return false;
unsigned drv_loc = nir_intrinsic_base(instr);
nir_src *off_src = nir_get_io_offset_src(instr);
if (!nir_src_is_const(*off_src)) {
*indirect = true;
return false;
}
*indirect = false;
uint64_t slot = per_vertex
? ctx->output_drv_loc_to_var_slot[ctx->shader->info.stage][drv_loc / 4]
: (ctx->output_tcs_patch_drv_loc_to_var_slot[drv_loc / 4] - VARYING_SLOT_PATCH0);
return (((uint64_t) 1) << slot) & mask;
}
bool store_output_to_temps(isel_context *ctx, nir_intrinsic_instr *instr)
{
unsigned write_mask = nir_intrinsic_write_mask(instr);
unsigned component = nir_intrinsic_component(instr);
unsigned idx = nir_intrinsic_base(instr) + component;
nir_instr *off_instr = instr->src[1].ssa->parent_instr;
if (off_instr->type != nir_instr_type_load_const)
return false;
Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
idx += nir_src_as_uint(instr->src[1]) * 4u;
if (instr->src[0].ssa->bit_size == 64)
write_mask = widen_mask(write_mask, 2);
RegClass rc = instr->src[0].ssa->bit_size == 16 ? v2b : v1;
for (unsigned i = 0; i < 8; ++i) {
if (write_mask & (1 << i)) {
ctx->outputs.mask[idx / 4u] |= 1 << (idx % 4u);
ctx->outputs.temps[idx] = emit_extract_vector(ctx, src, i, rc);
}
idx++;
}
return true;
}
bool load_input_from_temps(isel_context *ctx, nir_intrinsic_instr *instr, Temp dst)
{
/* Only TCS per-vertex inputs are supported by this function.
* Per-vertex inputs only match between the VS/TCS invocation id when the number of invocations is the same.
*/
if (ctx->shader->info.stage != MESA_SHADER_TESS_CTRL || !ctx->tcs_in_out_eq)
return false;
nir_src *off_src = nir_get_io_offset_src(instr);
nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
nir_instr *vertex_index_instr = vertex_index_src->ssa->parent_instr;
bool can_use_temps = nir_src_is_const(*off_src) &&
vertex_index_instr->type == nir_instr_type_intrinsic &&
nir_instr_as_intrinsic(vertex_index_instr)->intrinsic == nir_intrinsic_load_invocation_id;
if (!can_use_temps)
return false;
unsigned idx = nir_intrinsic_base(instr) + nir_intrinsic_component(instr) + 4 * nir_src_as_uint(*off_src);
Temp *src = &ctx->inputs.temps[idx];
create_vec_from_array(ctx, src, dst.size(), dst.regClass().type(), 4u, 0, dst);
return true;
}
void visit_store_ls_or_es_output(isel_context *ctx, nir_intrinsic_instr *instr)
{
Builder bld(ctx->program, ctx->block);
if (ctx->tcs_in_out_eq && store_output_to_temps(ctx, instr)) {
/* When the TCS only reads this output directly and for the same vertices as its invocation id, it is unnecessary to store the VS output to LDS. */
bool indirect_write;
bool temp_only_input = tcs_driver_location_matches_api_mask(ctx, instr, true, ctx->tcs_temp_only_inputs, &indirect_write);
if (temp_only_input && !indirect_write)
return;
}
std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, 4u);
Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
unsigned write_mask = nir_intrinsic_write_mask(instr);
unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8u;
if (ctx->stage == vertex_es || ctx->stage == tess_eval_es) {
/* GFX6-8: ES stage is not merged into GS, data is passed from ES to GS in VMEM. */
Temp esgs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_VS * 16u));
Temp es2gs_offset = get_arg(ctx, ctx->args->es2gs_offset);
store_vmem_mubuf(ctx, src, esgs_ring, offs.first, es2gs_offset, offs.second, elem_size_bytes, write_mask, false, memory_sync_info(), true);
} else {
Temp lds_base;
if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
/* GFX9+: ES stage is merged into GS, data is passed between them using LDS. */
unsigned itemsize = ctx->stage == vertex_geometry_gs
? ctx->program->info->vs.es_info.esgs_itemsize
: ctx->program->info->tes.es_info.esgs_itemsize;
Temp thread_id = emit_mbcnt(ctx, bld.def(v1));
Temp wave_idx = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), get_arg(ctx, ctx->args->merged_wave_info), Operand(4u << 16 | 24));
Temp vertex_idx = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), thread_id,
bld.v_mul24_imm(bld.def(v1), as_vgpr(ctx, wave_idx), ctx->program->wave_size));
lds_base = bld.v_mul24_imm(bld.def(v1), vertex_idx, itemsize);
} else if (ctx->stage == vertex_ls || ctx->stage == vertex_tess_control_hs) {
/* GFX6-8: VS runs on LS stage when tessellation is used, but LS shares LDS space with HS.
* GFX9+: LS is merged into HS, but still uses the same LDS layout.
*/
Temp vertex_idx = get_arg(ctx, ctx->args->rel_auto_id);
lds_base = bld.v_mul24_imm(bld.def(v1), vertex_idx, ctx->tcs_num_inputs * 16u);
} else {
unreachable("Invalid LS or ES stage");
}
offs = offset_add(ctx, offs, std::make_pair(lds_base, 0u));
unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
store_lds(ctx, elem_size_bytes, src, write_mask, offs.first, offs.second, lds_align);
}
}
bool tcs_output_is_tess_factor(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
{
if (per_vertex)
return false;
unsigned off = nir_intrinsic_base(instr) * 4u;
return off == ctx->tcs_tess_lvl_out_loc ||
off == ctx->tcs_tess_lvl_in_loc;
}
bool tcs_output_is_read_by_tes(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
{
uint64_t mask = per_vertex
? ctx->program->info->tcs.tes_inputs_read
: ctx->program->info->tcs.tes_patch_inputs_read;
bool indirect_write = false;
bool output_read_by_tes = tcs_driver_location_matches_api_mask(ctx, instr, per_vertex, mask, &indirect_write);
return indirect_write || output_read_by_tes;
}
bool tcs_output_is_read_by_tcs(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
{
uint64_t mask = per_vertex
? ctx->shader->info.outputs_read
: ctx->shader->info.patch_outputs_read;
bool indirect_write = false;
bool output_read = tcs_driver_location_matches_api_mask(ctx, instr, per_vertex, mask, &indirect_write);
return indirect_write || output_read;
}
void visit_store_tcs_output(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
{
assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
Builder bld(ctx->program, ctx->block);
Temp store_val = get_ssa_temp(ctx, instr->src[0].ssa);
unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
unsigned write_mask = nir_intrinsic_write_mask(instr);
bool is_tess_factor = tcs_output_is_tess_factor(ctx, instr, per_vertex);
bool write_to_vmem = !is_tess_factor && tcs_output_is_read_by_tes(ctx, instr, per_vertex);
bool write_to_lds = is_tess_factor || tcs_output_is_read_by_tcs(ctx, instr, per_vertex);
if (write_to_vmem) {
std::pair<Temp, unsigned> vmem_offs = per_vertex
? get_tcs_per_vertex_output_vmem_offset(ctx, instr)
: get_tcs_per_patch_output_vmem_offset(ctx, instr);
Temp hs_ring_tess_offchip = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
store_vmem_mubuf(ctx, store_val, hs_ring_tess_offchip, vmem_offs.first, oc_lds, vmem_offs.second, elem_size_bytes, write_mask, true, memory_sync_info(storage_vmem_output));
}
if (write_to_lds) {
std::pair<Temp, unsigned> lds_offs = get_tcs_output_lds_offset(ctx, instr, per_vertex);
unsigned lds_align = calculate_lds_alignment(ctx, lds_offs.second);
store_lds(ctx, elem_size_bytes, store_val, write_mask, lds_offs.first, lds_offs.second, lds_align);
}
}
void visit_load_tcs_output(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
{
assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
Builder bld(ctx->program, ctx->block);
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
std::pair<Temp, unsigned> lds_offs = get_tcs_output_lds_offset(ctx, instr, per_vertex);
unsigned lds_align = calculate_lds_alignment(ctx, lds_offs.second);
unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
load_lds(ctx, elem_size_bytes, dst, lds_offs.first, lds_offs.second, lds_align);
}
void visit_store_output(isel_context *ctx, nir_intrinsic_instr *instr)
{
if (ctx->stage == vertex_vs ||
ctx->stage == tess_eval_vs ||
ctx->stage == fragment_fs ||
ctx->stage == ngg_vertex_gs ||
ctx->stage == ngg_tess_eval_gs ||
ctx->shader->info.stage == MESA_SHADER_GEOMETRY) {
bool stored_to_temps = store_output_to_temps(ctx, instr);
if (!stored_to_temps) {
isel_err(instr->src[1].ssa->parent_instr, "Unimplemented output offset instruction");
abort();
}
} else if (ctx->stage == vertex_es ||
ctx->stage == vertex_ls ||
ctx->stage == tess_eval_es ||
(ctx->stage == vertex_tess_control_hs && ctx->shader->info.stage == MESA_SHADER_VERTEX) ||
(ctx->stage == vertex_geometry_gs && ctx->shader->info.stage == MESA_SHADER_VERTEX) ||
(ctx->stage == tess_eval_geometry_gs && ctx->shader->info.stage == MESA_SHADER_TESS_EVAL)) {
visit_store_ls_or_es_output(ctx, instr);
} else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
visit_store_tcs_output(ctx, instr, false);
} else {
unreachable("Shader stage not implemented");
}
}
void visit_load_output(isel_context *ctx, nir_intrinsic_instr *instr)
{
visit_load_tcs_output(ctx, instr, false);
}
void emit_interp_instr(isel_context *ctx, unsigned idx, unsigned component, Temp src, Temp dst, Temp prim_mask)
{
Temp coord1 = emit_extract_vector(ctx, src, 0, v1);
Temp coord2 = emit_extract_vector(ctx, src, 1, v1);
Builder bld(ctx->program, ctx->block);
if (dst.regClass() == v2b) {
if (ctx->program->has_16bank_lds) {
assert(ctx->options->chip_class <= GFX8);
Builder::Result interp_p1 =
bld.vintrp(aco_opcode::v_interp_mov_f32, bld.def(v1),
Operand(2u) /* P0 */, bld.m0(prim_mask), idx, component);
interp_p1 = bld.vintrp(aco_opcode::v_interp_p1lv_f16, bld.def(v2b),
coord1, bld.m0(prim_mask), interp_p1, idx, component);
bld.vintrp(aco_opcode::v_interp_p2_legacy_f16, Definition(dst), coord2,
bld.m0(prim_mask), interp_p1, idx, component);
} else {
aco_opcode interp_p2_op = aco_opcode::v_interp_p2_f16;
if (ctx->options->chip_class == GFX8)
interp_p2_op = aco_opcode::v_interp_p2_legacy_f16;
Builder::Result interp_p1 =
bld.vintrp(aco_opcode::v_interp_p1ll_f16, bld.def(v1),
coord1, bld.m0(prim_mask), idx, component);
bld.vintrp(interp_p2_op, Definition(dst), coord2, bld.m0(prim_mask),
interp_p1, idx, component);
}
} else {
Builder::Result interp_p1 =
bld.vintrp(aco_opcode::v_interp_p1_f32, bld.def(v1), coord1,
bld.m0(prim_mask), idx, component);
if (ctx->program->has_16bank_lds)
interp_p1.instr->operands[0].setLateKill(true);
bld.vintrp(aco_opcode::v_interp_p2_f32, Definition(dst), coord2,
bld.m0(prim_mask), interp_p1, idx, component);
}
}
void emit_load_frag_coord(isel_context *ctx, Temp dst, unsigned num_components)
{
aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1));
for (unsigned i = 0; i < num_components; i++)
vec->operands[i] = Operand(get_arg(ctx, ctx->args->ac.frag_pos[i]));
if (G_0286CC_POS_W_FLOAT_ENA(ctx->program->config->spi_ps_input_ena)) {
assert(num_components == 4);
Builder bld(ctx->program, ctx->block);
vec->operands[3] = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), get_arg(ctx, ctx->args->ac.frag_pos[3]));
}
for (Operand& op : vec->operands)
op = op.isUndefined() ? Operand(0u) : op;
vec->definitions[0] = Definition(dst);
ctx->block->instructions.emplace_back(std::move(vec));
emit_split_vector(ctx, dst, num_components);
return;
}
void visit_load_interpolated_input(isel_context *ctx, nir_intrinsic_instr *instr)
{
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
Temp coords = get_ssa_temp(ctx, instr->src[0].ssa);
unsigned idx = nir_intrinsic_base(instr);
unsigned component = nir_intrinsic_component(instr);
Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
nir_const_value* offset = nir_src_as_const_value(instr->src[1]);
if (offset) {
assert(offset->u32 == 0);
} else {
/* the lower 15bit of the prim_mask contain the offset into LDS
* while the upper bits contain the number of prims */
Temp offset_src = get_ssa_temp(ctx, instr->src[1].ssa);
assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
Builder bld(ctx->program, ctx->block);
Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
}
if (instr->dest.ssa.num_components == 1) {
emit_interp_instr(ctx, idx, component, coords, dst, prim_mask);
} else {
aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.ssa.num_components, 1));
for (unsigned i = 0; i < instr->dest.ssa.num_components; i++)
{
Temp tmp = {ctx->program->allocateId(), v1};
emit_interp_instr(ctx, idx, component+i, coords, tmp, prim_mask);
vec->operands[i] = Operand(tmp);
}
vec->definitions[0] = Definition(dst);
ctx->block->instructions.emplace_back(std::move(vec));
}
}
bool check_vertex_fetch_size(isel_context *ctx, const ac_data_format_info *vtx_info,
unsigned offset, unsigned stride, unsigned channels)
{
unsigned vertex_byte_size = vtx_info->chan_byte_size * channels;
if (vtx_info->chan_byte_size != 4 && channels == 3)
return false;
return (ctx->options->chip_class != GFX6 && ctx->options->chip_class != GFX10) ||
(offset % vertex_byte_size == 0 && stride % vertex_byte_size == 0);
}
uint8_t get_fetch_data_format(isel_context *ctx, const ac_data_format_info *vtx_info,
unsigned offset, unsigned stride, unsigned *channels)
{
if (!vtx_info->chan_byte_size) {
*channels = vtx_info->num_channels;
return vtx_info->chan_format;
}
unsigned num_channels = *channels;
if (!check_vertex_fetch_size(ctx, vtx_info, offset, stride, *channels)) {
unsigned new_channels = num_channels + 1;
/* first, assume more loads is worse and try using a larger data format */
while (new_channels <= 4 && !check_vertex_fetch_size(ctx, vtx_info, offset, stride, new_channels)) {
new_channels++;
/* don't make the attribute potentially out-of-bounds */
if (offset + new_channels * vtx_info->chan_byte_size > stride)
new_channels = 5;
}
if (new_channels == 5) {
/* then try decreasing load size (at the cost of more loads) */
new_channels = *channels;
while (new_channels > 1 && !check_vertex_fetch_size(ctx, vtx_info, offset, stride, new_channels))
new_channels--;
}
if (new_channels < *channels)
*channels = new_channels;
num_channels = new_channels;
}
switch (vtx_info->chan_format) {
case V_008F0C_BUF_DATA_FORMAT_8:
return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_8, V_008F0C_BUF_DATA_FORMAT_8_8,
V_008F0C_BUF_DATA_FORMAT_INVALID, V_008F0C_BUF_DATA_FORMAT_8_8_8_8}[num_channels - 1];
case V_008F0C_BUF_DATA_FORMAT_16:
return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_16, V_008F0C_BUF_DATA_FORMAT_16_16,
V_008F0C_BUF_DATA_FORMAT_INVALID, V_008F0C_BUF_DATA_FORMAT_16_16_16_16}[num_channels - 1];
case V_008F0C_BUF_DATA_FORMAT_32:
return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_32, V_008F0C_BUF_DATA_FORMAT_32_32,
V_008F0C_BUF_DATA_FORMAT_32_32_32, V_008F0C_BUF_DATA_FORMAT_32_32_32_32}[num_channels - 1];
}
unreachable("shouldn't reach here");
return V_008F0C_BUF_DATA_FORMAT_INVALID;
}
/* For 2_10_10_10 formats the alpha is handled as unsigned by pre-vega HW.
* so we may need to fix it up. */
Temp adjust_vertex_fetch_alpha(isel_context *ctx, unsigned adjustment, Temp alpha)
{
Builder bld(ctx->program, ctx->block);
if (adjustment == RADV_ALPHA_ADJUST_SSCALED)
alpha = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), alpha);
/* For the integer-like cases, do a natural sign extension.
*
* For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0
* and happen to contain 0, 1, 2, 3 as the two LSBs of the
* exponent.
*/
alpha = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(adjustment == RADV_ALPHA_ADJUST_SNORM ? 7u : 30u), alpha);
alpha = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(30u), alpha);
/* Convert back to the right type. */
if (adjustment == RADV_ALPHA_ADJUST_SNORM) {
alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
Temp clamp = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0xbf800000u), alpha);
alpha = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xbf800000u), alpha, clamp);
} else if (adjustment == RADV_ALPHA_ADJUST_SSCALED) {
alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
}
return alpha;
}
void visit_load_input(isel_context *ctx, nir_intrinsic_instr *instr)
{
Builder bld(ctx->program, ctx->block);
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
if (ctx->shader->info.stage == MESA_SHADER_VERTEX) {
nir_instr *off_instr = instr->src[0].ssa->parent_instr;
if (off_instr->type != nir_instr_type_load_const) {
isel_err(off_instr, "Unimplemented nir_intrinsic_load_input offset");
}
uint32_t offset = nir_instr_as_load_const(off_instr)->value[0].u32;
Temp vertex_buffers = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->vertex_buffers));
unsigned location = nir_intrinsic_base(instr) / 4 - VERT_ATTRIB_GENERIC0 + offset;
unsigned component = nir_intrinsic_component(instr);
unsigned bitsize = instr->dest.ssa.bit_size;
unsigned attrib_binding = ctx->options->key.vs.vertex_attribute_bindings[location];
uint32_t attrib_offset = ctx->options->key.vs.vertex_attribute_offsets[location];
uint32_t attrib_stride = ctx->options->key.vs.vertex_attribute_strides[location];
unsigned attrib_format = ctx->options->key.vs.vertex_attribute_formats[location];
unsigned dfmt = attrib_format & 0xf;
unsigned nfmt = (attrib_format >> 4) & 0x7;
const struct ac_data_format_info *vtx_info = ac_get_data_format_info(dfmt);
unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa) << component;
unsigned num_channels = MIN2(util_last_bit(mask), vtx_info->num_channels);
unsigned alpha_adjust = (ctx->options->key.vs.alpha_adjust >> (location * 2)) & 3;
bool post_shuffle = ctx->options->key.vs.post_shuffle & (1 << location);
if (post_shuffle)
num_channels = MAX2(num_channels, 3);
Operand off = bld.copy(bld.def(s1), Operand(attrib_binding * 16u));
Temp list = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), vertex_buffers, off);
Temp index;
if (ctx->options->key.vs.instance_rate_inputs & (1u << location)) {
uint32_t divisor = ctx->options->key.vs.instance_rate_divisors[location];
Temp start_instance = get_arg(ctx, ctx->args->ac.start_instance);
if (divisor) {
Temp instance_id = get_arg(ctx, ctx->args->ac.instance_id);
if (divisor != 1) {
Temp divided = bld.tmp(v1);
emit_v_div_u32(ctx, divided, as_vgpr(ctx, instance_id), divisor);
index = bld.vadd32(bld.def(v1), start_instance, divided);
} else {
index = bld.vadd32(bld.def(v1), start_instance, instance_id);
}
} else {
index = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), start_instance);
}
} else {
index = bld.vadd32(bld.def(v1),
get_arg(ctx, ctx->args->ac.base_vertex),
get_arg(ctx, ctx->args->ac.vertex_id));
}
Temp channels[num_channels];
unsigned channel_start = 0;
bool direct_fetch = false;
/* skip unused channels at the start */
if (vtx_info->chan_byte_size && !post_shuffle) {
channel_start = ffs(mask) - 1;
for (unsigned i = 0; i < channel_start; i++)
channels[i] = Temp(0, s1);
} else if (vtx_info->chan_byte_size && post_shuffle && !(mask & 0x8)) {
num_channels = 3 - (ffs(mask) - 1);
}
/* load channels */
while (channel_start < num_channels) {
unsigned fetch_component = num_channels - channel_start;
unsigned fetch_offset = attrib_offset + channel_start * vtx_info->chan_byte_size;
bool expanded = false;
/* use MUBUF when possible to avoid possible alignment issues */
/* TODO: we could use SDWA to unpack 8/16-bit attributes without extra instructions */
bool use_mubuf = (nfmt == V_008F0C_BUF_NUM_FORMAT_FLOAT ||
nfmt == V_008F0C_BUF_NUM_FORMAT_UINT ||
nfmt == V_008F0C_BUF_NUM_FORMAT_SINT) &&
vtx_info->chan_byte_size == 4;
unsigned fetch_dfmt = V_008F0C_BUF_DATA_FORMAT_INVALID;
if (!use_mubuf) {
fetch_dfmt = get_fetch_data_format(ctx, vtx_info, fetch_offset, attrib_stride, &fetch_component);
} else {
if (fetch_component == 3 && ctx->options->chip_class == GFX6) {
/* GFX6 only supports loading vec3 with MTBUF, expand to vec4. */
fetch_component = 4;
expanded = true;
}
}
unsigned fetch_bytes = fetch_component * bitsize / 8;
Temp fetch_index = index;
if (attrib_stride != 0 && fetch_offset > attrib_stride) {
fetch_index = bld.vadd32(bld.def(v1), Operand(fetch_offset / attrib_stride), fetch_index);
fetch_offset = fetch_offset % attrib_stride;
}
Operand soffset(0u);
if (fetch_offset >= 4096) {
soffset = bld.copy(bld.def(s1), Operand(fetch_offset / 4096 * 4096));
fetch_offset %= 4096;
}
aco_opcode opcode;
switch (fetch_bytes) {
case 2:
assert(!use_mubuf && bitsize == 16);
opcode = aco_opcode::tbuffer_load_format_d16_x;
break;
case 4:
if (bitsize == 16) {
assert(!use_mubuf);
opcode = aco_opcode::tbuffer_load_format_d16_xy;
} else {
opcode = use_mubuf ? aco_opcode::buffer_load_dword : aco_opcode::tbuffer_load_format_x;
}
break;
case 6:
assert(!use_mubuf && bitsize == 16);
opcode = aco_opcode::tbuffer_load_format_d16_xyz;
break;
case 8:
if (bitsize == 16) {
assert(!use_mubuf);
opcode = aco_opcode::tbuffer_load_format_d16_xyzw;
} else {
opcode = use_mubuf ? aco_opcode::buffer_load_dwordx2 : aco_opcode::tbuffer_load_format_xy;
}
break;
case 12:
assert(ctx->options->chip_class >= GFX7 ||
(!use_mubuf && ctx->options->chip_class == GFX6));
opcode = use_mubuf ? aco_opcode::buffer_load_dwordx3 : aco_opcode::tbuffer_load_format_xyz;
break;
case 16:
opcode = use_mubuf ? aco_opcode::buffer_load_dwordx4 : aco_opcode::tbuffer_load_format_xyzw;
break;
default:
unreachable("Unimplemented load_input vector size");
}
Temp fetch_dst;
if (channel_start == 0 && fetch_bytes == dst.bytes() && !post_shuffle &&
!expanded && (alpha_adjust == RADV_ALPHA_ADJUST_NONE ||
num_channels <= 3)) {
direct_fetch = true;
fetch_dst = dst;
} else {
fetch_dst = bld.tmp(RegClass::get(RegType::vgpr, fetch_bytes));
}
if (use_mubuf) {
bld.mubuf(opcode,
Definition(fetch_dst), list, fetch_index, soffset,
fetch_offset, false, false, true).instr;
} else {
bld.mtbuf(opcode,
Definition(fetch_dst), list, fetch_index, soffset,
fetch_dfmt, nfmt, fetch_offset, false, true).instr;
}
emit_split_vector(ctx, fetch_dst, fetch_dst.size());
if (fetch_component == 1) {
channels[channel_start] = fetch_dst;
} else {
for (unsigned i = 0; i < MIN2(fetch_component, num_channels - channel_start); i++)
channels[channel_start + i] = emit_extract_vector(ctx, fetch_dst, i,
bitsize == 16 ? v2b : v1);
}
channel_start += fetch_component;
}
if (!direct_fetch) {
bool is_float = nfmt != V_008F0C_BUF_NUM_FORMAT_UINT &&
nfmt != V_008F0C_BUF_NUM_FORMAT_SINT;
static const unsigned swizzle_normal[4] = {0, 1, 2, 3};
static const unsigned swizzle_post_shuffle[4] = {2, 1, 0, 3};
const unsigned *swizzle = post_shuffle ? swizzle_post_shuffle : swizzle_normal;
aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
unsigned num_temp = 0;
for (unsigned i = 0; i < dst.size(); i++) {
unsigned idx = i + component;
if (swizzle[idx] < num_channels && channels[swizzle[idx]].id()) {
Temp channel = channels[swizzle[idx]];
if (idx == 3 && alpha_adjust != RADV_ALPHA_ADJUST_NONE)
channel = adjust_vertex_fetch_alpha(ctx, alpha_adjust, channel);
vec->operands[i] = Operand(channel);
num_temp++;
elems[i] = channel;
} else if (is_float && idx == 3) {
vec->operands[i] = Operand(0x3f800000u);
} else if (!is_float && idx == 3) {
vec->operands[i] = Operand(1u);
} else {
vec->operands[i] = Operand(0u);
}
}
vec->definitions[0] = Definition(dst);
ctx->block->instructions.emplace_back(std::move(vec));
emit_split_vector(ctx, dst, dst.size());
if (num_temp == dst.size())
ctx->allocated_vec.emplace(dst.id(), elems);
}
} else if (ctx->shader->info.stage == MESA_SHADER_FRAGMENT) {
unsigned offset_idx = instr->intrinsic == nir_intrinsic_load_input ? 0 : 1;
nir_instr *off_instr = instr->src[offset_idx].ssa->parent_instr;
if (off_instr->type != nir_instr_type_load_const ||
nir_instr_as_load_const(off_instr)->value[0].u32 != 0) {
isel_err(off_instr, "Unimplemented nir_intrinsic_load_input offset");
}
Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
nir_const_value* offset = nir_src_as_const_value(instr->src[offset_idx]);
if (offset) {
assert(offset->u32 == 0);
} else {
/* the lower 15bit of the prim_mask contain the offset into LDS
* while the upper bits contain the number of prims */
Temp offset_src = get_ssa_temp(ctx, instr->src[offset_idx].ssa);
assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
Builder bld(ctx->program, ctx->block);
Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
}
unsigned idx = nir_intrinsic_base(instr);
unsigned component = nir_intrinsic_component(instr);
unsigned vertex_id = 2; /* P0 */
if (instr->intrinsic == nir_intrinsic_load_input_vertex) {
nir_const_value* src0 = nir_src_as_const_value(instr->src[0]);
switch (src0->u32) {
case 0:
vertex_id = 2; /* P0 */
break;
case 1:
vertex_id = 0; /* P10 */
break;
case 2:
vertex_id = 1; /* P20 */
break;
default:
unreachable("invalid vertex index");
}
}
if (dst.size() == 1) {
bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(dst), Operand(vertex_id), bld.m0(prim_mask), idx, component);
} else {
aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
for (unsigned i = 0; i < dst.size(); i++)
vec->operands[i] = bld.vintrp(aco_opcode::v_interp_mov_f32, bld.def(v1), Operand(vertex_id), bld.m0(prim_mask), idx, component + i);
vec->definitions[0] = Definition(dst);
bld.insert(std::move(vec));
}
} else if (ctx->shader->info.stage == MESA_SHADER_TESS_EVAL) {
Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
Temp soffset = get_arg(ctx, ctx->args->oc_lds);
std::pair<Temp, unsigned> offs = get_tcs_per_patch_output_vmem_offset(ctx, instr);
unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8u;
load_vmem_mubuf(ctx, dst, ring, offs.first, soffset, offs.second, elem_size_bytes, instr->dest.ssa.num_components);
} else {
unreachable("Shader stage not implemented");
}
}
std::pair<Temp, unsigned> get_gs_per_vertex_input_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned base_stride = 1u)
{
assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
Builder bld(ctx->program, ctx->block);
nir_src *vertex_src = nir_get_io_vertex_index_src(instr);
Temp vertex_offset;
if (!nir_src_is_const(*vertex_src)) {
/* better code could be created, but this case probably doesn't happen
* much in practice */
Temp indirect_vertex = as_vgpr(ctx, get_ssa_temp(ctx, vertex_src->ssa));
for (unsigned i = 0; i < ctx->shader->info.gs.vertices_in; i++) {
Temp elem;
if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
elem = get_arg(ctx, ctx->args->gs_vtx_offset[i / 2u * 2u]);
if (i % 2u)
elem = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), elem);
} else {
elem = get_arg(ctx, ctx->args->gs_vtx_offset[i]);
}
if (vertex_offset.id()) {
Temp cond = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)),
Operand(i), indirect_vertex);
vertex_offset = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), vertex_offset, elem, cond);
} else {
vertex_offset = elem;
}
}
if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs)
vertex_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu), vertex_offset);
} else {
unsigned vertex = nir_src_as_uint(*vertex_src);
if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs)
vertex_offset = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
get_arg(ctx, ctx->args->gs_vtx_offset[vertex / 2u * 2u]),
Operand((vertex % 2u) * 16u), Operand(16u));
else
vertex_offset = get_arg(ctx, ctx->args->gs_vtx_offset[vertex]);
}
std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, base_stride);
offs = offset_add(ctx, offs, std::make_pair(vertex_offset, 0u));
return offset_mul(ctx, offs, 4u);
}
void visit_load_gs_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
{
assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
Builder bld(ctx->program, ctx->block);
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
if (ctx->stage == geometry_gs) {
std::pair<Temp, unsigned> offs = get_gs_per_vertex_input_offset(ctx, instr, ctx->program->wave_size);
Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_GS * 16u));
load_vmem_mubuf(ctx, dst, ring, offs.first, Temp(), offs.second, elem_size_bytes, instr->dest.ssa.num_components, 4u * ctx->program->wave_size, false, true);
} else if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
std::pair<Temp, unsigned> offs = get_gs_per_vertex_input_offset(ctx, instr);
unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
load_lds(ctx, elem_size_bytes, dst, offs.first, offs.second, lds_align);
} else {
unreachable("Unsupported GS stage.");
}
}
void visit_load_tcs_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
{
assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
Builder bld(ctx->program, ctx->block);
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
if (load_input_from_temps(ctx, instr, dst))
return;
std::pair<Temp, unsigned> offs = get_tcs_per_vertex_input_lds_offset(ctx, instr);
unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
load_lds(ctx, elem_size_bytes, dst, offs.first, offs.second, lds_align);
}
void visit_load_tes_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
{
assert(ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
Builder bld(ctx->program, ctx->block);
Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
std::pair<Temp, unsigned> offs = get_tcs_per_vertex_output_vmem_offset(ctx, instr);
load_vmem_mubuf(ctx, dst, ring, offs.first, oc_lds, offs.second, elem_size_bytes, instr->dest.ssa.num_components, 0u, true, true);
}
void visit_load_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
{
switch (ctx->shader->info.stage) {
case MESA_SHADER_GEOMETRY:
visit_load_gs_per_vertex_input(ctx, instr);
break;
case MESA_SHADER_TESS_CTRL:
visit_load_tcs_per_vertex_input(ctx, instr);
break;
case MESA_SHADER_TESS_EVAL:
visit_load_tes_per_vertex_input(ctx, instr);
break;
default:
unreachable("Unimplemented shader stage");
}
}
void visit_load_per_vertex_output(isel_context *ctx, nir_intrinsic_instr *instr)
{
visit_load_tcs_output(ctx, instr, true);
}
void visit_store_per_vertex_output(isel_context *ctx, nir_intrinsic_instr *instr)
{
assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
visit_store_tcs_output(ctx, instr, true);
}
void visit_load_tess_coord(isel_context *ctx, nir_intrinsic_instr *instr)
{
assert(ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
Builder bld(ctx->program, ctx->block);
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
Operand tes_u(get_arg(ctx, ctx->args->tes_u));
Operand tes_v(get_arg(ctx, ctx->args->tes_v));
Operand tes_w(0u);
if (ctx->shader->info.tess.primitive_mode == GL_TRIANGLES) {
Temp tmp = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), tes_u, tes_v);
tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0x3f800000u /* 1.0f */), tmp);
tes_w = Operand(tmp);
}
Temp tess_coord = bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tes_u, tes_v, tes_w);
emit_split_vector(ctx, tess_coord, 3);
}
Temp load_desc_ptr(isel_context *ctx, unsigned desc_set)
{
if (ctx->program->info->need_indirect_descriptor_sets) {
Builder bld(ctx->program, ctx->block);
Temp ptr64 = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->descriptor_sets[0]));
Operand off = bld.copy(bld.def(s1), Operand(desc_set << 2));
return bld.smem(aco_opcode::s_load_dword, bld.def(s1), ptr64, off);//, false, false, false);
}
return get_arg(ctx, ctx->args->descriptor_sets[desc_set]);
}
void visit_load_resource(isel_context *ctx, nir_intrinsic_instr *instr)
{
Builder bld(ctx->program, ctx->block);
Temp index = get_ssa_temp(ctx, instr->src[0].ssa);
if (!nir_dest_is_divergent(instr->dest))
index = bld.as_uniform(index);
unsigned desc_set = nir_intrinsic_desc_set(instr);
unsigned binding = nir_intrinsic_binding(instr);
Temp desc_ptr;
radv_pipeline_layout *pipeline_layout = ctx->options->layout;
radv_descriptor_set_layout *layout = pipeline_layout->set[desc_set].layout;
unsigned offset = layout->binding[binding].offset;
unsigned stride;
if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
layout->binding[binding].type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
unsigned idx = pipeline_layout->set[desc_set].dynamic_offset_start + layout->binding[binding].dynamic_offset_offset;
desc_ptr = get_arg(ctx, ctx->args->ac.push_constants);
offset = pipeline_layout->push_constant_size + 16 * idx;
stride = 16;
} else {
desc_ptr = load_desc_ptr(ctx, desc_set);
stride = layout->binding[binding].size;
}
nir_const_value* nir_const_index = nir_src_as_const_value(instr->src[0]);
unsigned const_index = nir_const_index ? nir_const_index->u32 : 0;
if (stride != 1) {
if (nir_const_index) {
const_index = const_index * stride;
} else if (index.type() == RegType::vgpr) {
bool index24bit = layout->binding[binding].array_size <= 0x1000000;
index = bld.v_mul_imm(bld.def(v1), index, stride, index24bit);
} else {
index = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), Operand(index));
}
}
if (offset) {
if (nir_const_index) {
const_index = const_index + offset;
} else if (index.type() == RegType::vgpr) {
index = bld.vadd32(bld.def(v1), Operand(offset), index);
} else {
index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), Operand(index));
}
}
if (nir_const_index && const_index == 0) {
index = desc_ptr;
} else if (index.type() == RegType::vgpr) {
index = bld.vadd32(bld.def(v1),
nir_const_index ? Operand(const_index) : Operand(index),
Operand(desc_ptr));
} else {
index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
nir_const_index ? Operand(const_index) : Operand(index),
Operand(desc_ptr));
}
bld.copy(Definition(get_ssa_temp(ctx, &instr->dest.ssa)), index);
}
void load_buffer(isel_context *ctx, unsigned num_components, unsigned component_size,
Temp dst, Temp rsrc, Temp offset, unsigned align_mul, unsigned align_offset,
bool glc=false, bool allow_smem=true, memory_sync_info sync=memory_sync_info())
{
Builder bld(ctx->program, ctx->block);
bool use_smem = dst.type() != RegType::vgpr && (!glc || ctx->options->chip_class >= GFX8) && allow_smem;
if (use_smem)
offset = bld.as_uniform(offset);
LoadEmitInfo info = {Operand(offset), dst, num_components, component_size, rsrc};
info.glc = glc;
info.sync = sync;
info.align_mul = align_mul;
info.align_offset = align_offset;
if (use_smem)
emit_smem_load(ctx, bld, &info);
else
emit_mubuf_load(ctx, bld, &info);
}
void visit_load_ubo(isel_context *ctx, nir_intrinsic_instr *instr)
{
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
Temp rsrc = get_ssa_temp(ctx, instr->src[0].ssa);
Builder bld(ctx->program, ctx->block);
nir_intrinsic_instr* idx_instr = nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
unsigned desc_set = nir_intrinsic_desc_set(idx_instr);
unsigned binding = nir_intrinsic_binding(idx_instr);
radv_descriptor_set_layout *layout = ctx->options->layout->set[desc_set].layout;
if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) {
uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
if (ctx->options->chip_class >= GFX10) {
desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
S_008F0C_RESOURCE_LEVEL(1);
} else {
desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
}
Temp upper_dwords = bld.pseudo(aco_opcode::p_create_vector, bld.def(s3),
Operand(S_008F04_BASE_ADDRESS_HI(ctx->options->address32_hi)),
Operand(0xFFFFFFFFu),
Operand(desc_type));
rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
rsrc, upper_dwords);
} else {
rsrc = convert_pointer_to_64_bit(ctx, rsrc);
rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
}
unsigned size = instr->dest.ssa.bit_size / 8;
load_buffer(ctx, instr->num_components, size, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa),
nir_intrinsic_align_mul(instr), nir_intrinsic_align_offset(instr));
}
void visit_load_push_constant(isel_context *ctx, nir_intrinsic_instr *instr)
{
Builder bld(ctx->program, ctx->block);
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
unsigned offset = nir_intrinsic_base(instr);
unsigned count = instr->dest.ssa.num_components;
nir_const_value *index_cv = nir_src_as_const_value(instr->src[0]);
if (index_cv && instr->dest.ssa.bit_size == 32) {
unsigned start = (offset + index_cv->u32) / 4u;
start -= ctx->args->ac.base_inline_push_consts;
if (start + count <= ctx->args->ac.num_inline_push_consts) {
std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
for (unsigned i = 0; i < count; ++i) {
elems[i] = get_arg(ctx, ctx->args->ac.inline_push_consts[start + i]);
vec->operands[i] = Operand{elems[i]};
}
vec->definitions[0] = Definition(dst);
ctx->block->instructions.emplace_back(std::move(vec));
ctx->allocated_vec.emplace(dst.id(), elems);
return;
}
}
Temp index = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa));
if (offset != 0) // TODO check if index != 0 as well
index = bld.nuw().sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), index);
Temp ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->ac.push_constants));
Temp vec = dst;
bool trim = false;
bool aligned = true;
if (instr->dest.ssa.bit_size == 8) {
aligned = index_cv && (offset + index_cv->u32) % 4 == 0;
bool fits_in_dword = count == 1 || (index_cv && ((offset + index_cv->u32) % 4 + count) <= 4);
if (!aligned)
vec = fits_in_dword ? bld.tmp(s1) : bld.tmp(s2);
} else if (instr->dest.ssa.bit_size == 16) {
aligned = index_cv && (offset + index_cv->u32) % 4 == 0;
if (!aligned)
vec = count == 4 ? bld.tmp(s4) : count > 1 ? bld.tmp(s2) : bld.tmp(s1);
}
aco_opcode op;
switch (vec.size()) {
case 1:
op = aco_opcode::s_load_dword;
break;
case 2:
op = aco_opcode::s_load_dwordx2;
break;
case 3:
vec = bld.tmp(s4);
trim = true;
case 4:
op = aco_opcode::s_load_dwordx4;
break;
case 6:
vec = bld.tmp(s8);
trim = true;
case 8:
op = aco_opcode::s_load_dwordx8;
break;
default:
unreachable("unimplemented or forbidden load_push_constant.");
}
static_cast<SMEM_instruction*>(bld.smem(op, Definition(vec), ptr, index).instr)->prevent_overflow = true;
if (!aligned) {
Operand byte_offset = index_cv ? Operand((offset + index_cv->u32) % 4) : Operand(index);
byte_align_scalar(ctx, vec, byte_offset, dst);
return;
}
if (trim) {
emit_split_vector(ctx, vec, 4);
RegClass rc = dst.size() == 3 ? s1 : s2;
bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
emit_extract_vector(ctx, vec, 0, rc),
emit_extract_vector(ctx, vec, 1, rc),
emit_extract_vector(ctx, vec, 2, rc));
}
emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
}
void visit_load_constant(isel_context *ctx, nir_intrinsic_instr *instr)
{
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
Builder bld(ctx->program, ctx->block);
uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
if (ctx->options->chip_class >= GFX10) {
desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
S_008F0C_RESOURCE_LEVEL(1);
} else {
desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
}
unsigned base = nir_intrinsic_base(instr);
unsigned range = nir_intrinsic_range(instr);
Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
if (base && offset.type() == RegType::sgpr)
offset = bld.nuw().sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), offset, Operand(base));
else if (base && offset.type() == RegType::vgpr)
offset = bld.vadd32(bld.def(v1), Operand(base), offset);
Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
bld.sop1(aco_opcode::p_constaddr, bld.def(s2), bld.def(s1, scc), Operand(ctx->constant_data_offset)),
Operand(MIN2(base + range, ctx->shader->constant_data_size)),
Operand(desc_type));
unsigned size = instr->dest.ssa.bit_size / 8;
// TODO: get alignment information for subdword constants
load_buffer(ctx, instr->num_components, size, dst, rsrc, offset, size, 0);
}
void visit_discard_if(isel_context *ctx, nir_intrinsic_instr *instr)
{
if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
ctx->cf_info.exec_potentially_empty_discard = true;
ctx->program->needs_exact = true;
// TODO: optimize uniform conditions
Builder bld(ctx->program, ctx->block);
Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
assert(src.regClass() == bld.lm);
src = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
bld.pseudo(aco_opcode::p_discard_if, src);
ctx->block->kind |= block_kind_uses_discard_if;
return;
}
void visit_discard(isel_context* ctx, nir_intrinsic_instr *instr)
{
Builder bld(ctx->program, ctx->block);
if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
ctx->cf_info.exec_potentially_empty_discard = true;
bool divergent = ctx->cf_info.parent_if.is_divergent ||
ctx->cf_info.parent_loop.has_divergent_continue;
if (ctx->block->loop_nest_depth &&
((nir_instr_is_last(&instr->instr) && !divergent) || divergent)) {
/* we handle discards the same way as jump instructions */
append_logical_end(ctx->block);
/* in loops, discard behaves like break */
Block *linear_target = ctx->cf_info.parent_loop.exit;
ctx->block->kind |= block_kind_discard;
if (!divergent) {
/* uniform discard - loop ends here */
assert(nir_instr_is_last(&instr->instr));
ctx->block->kind |= block_kind_uniform;
ctx->cf_info.has_branch = true;
bld.branch(aco_opcode::p_branch);
add_linear_edge(ctx->block->index, linear_target);
return;
}
/* we add a break right behind the discard() instructions */
ctx->block->kind |= block_kind_break;
unsigned idx = ctx->block->index;
ctx->cf_info.parent_loop.has_divergent_branch = true;
ctx->cf_info.nir_to_aco[instr->instr.block->index] = idx;
/* remove critical edges from linear CFG */
bld.branch(aco_opcode::p_branch);
Block* break_block = ctx->program->create_and_insert_block();
break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
break_block->kind |= block_kind_uniform;
add_linear_edge(idx, break_block);
add_linear_edge(break_block->index, linear_target);
bld.reset(break_block);
bld.branch(aco_opcode::p_branch);
Block* continue_block = ctx->program->create_and_insert_block();
continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
add_linear_edge(idx, continue_block);
append_logical_start(continue_block);
ctx->block = continue_block;
return;
}
/* it can currently happen that NIR doesn't remove the unreachable code */
if (!nir_instr_is_last(&instr->instr)) {
ctx->program->needs_exact = true;
/* save exec somewhere temporarily so that it doesn't get
* overwritten before the discard from outer exec masks */
Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), Operand(0xFFFFFFFF), Operand(exec, bld.lm));
bld.pseudo(aco_opcode::p_discard_if, cond);
ctx->block->kind |= block_kind_uses_discard_if;
return;
}
/* This condition is incorrect for uniformly branched discards in a loop
* predicated by a divergent condition, but the above code catches that case
* and the discard would end up turning into a discard_if.
* For example:
* if (divergent) {
* while (...) {
* if (uniform) {
* discard;
* }
* }
* }
*/
if (!ctx->cf_info.parent_if.is_divergent) {
/* program just ends here */
ctx->block->kind |= block_kind_uniform;
bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
0 /* enabled mask */, 9 /* dest */,
false /* compressed */, true/* done */, true /* valid mask */);
bld.sopp(aco_opcode::s_endpgm);
// TODO: it will potentially be followed by a branch which is dead code to sanitize NIR phis
} else {
ctx->block->kind |= block_kind_discard;
/* branch and linear edge is added by visit_if() */
}
}
enum aco_descriptor_type {
ACO_DESC_IMAGE,
ACO_DESC_FMASK,
ACO_DESC_SAMPLER,
ACO_DESC_BUFFER,
ACO_DESC_PLANE_0,
ACO_DESC_PLANE_1,
ACO_DESC_PLANE_2,
};
static bool
should_declare_array(isel_context *ctx, enum glsl_sampler_dim sampler_dim, bool is_array) {
if (sampler_dim == GLSL_SAMPLER_DIM_BUF)
return false;
ac_image_dim dim = ac_get_sampler_dim(ctx->options->chip_class, sampler_dim, is_array);
return dim == ac_image_cube ||
dim == ac_image_1darray ||
dim == ac_image_2darray ||
dim == ac_image_2darraymsaa;
}
Temp get_sampler_desc(isel_context *ctx, nir_deref_instr *deref_instr,
enum aco_descriptor_type desc_type,
const nir_tex_instr *tex_instr, bool image, bool write)
{
/* FIXME: we should lower the deref with some new nir_intrinsic_load_desc
std::unordered_map<uint64_t, Temp>::iterator it = ctx->tex_desc.find((uint64_t) desc_type << 32 | deref_instr->dest.ssa.index);
if (it != ctx->tex_desc.end())
return it->second;
*/
Temp index = Temp();
bool index_set = false;
unsigned constant_index = 0;
unsigned descriptor_set;
unsigned base_index;
Builder bld(ctx->program, ctx->block);
if (!deref_instr) {
assert(tex_instr && !image);
descriptor_set = 0;
base_index = tex_instr->sampler_index;
} else {
while(deref_instr->deref_type != nir_deref_type_var) {
unsigned array_size = glsl_get_aoa_size(deref_instr->type);
if (!array_size)
array_size = 1;
assert(deref_instr->deref_type == nir_deref_type_array);
nir_const_value *const_value = nir_src_as_const_value(deref_instr->arr.index);
if (const_value) {
constant_index += array_size * const_value->u32;
} else {
Temp indirect = get_ssa_temp(ctx, deref_instr->arr.index.ssa);
if (indirect.type() == RegType::vgpr)
indirect = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), indirect);
if (array_size != 1)
indirect = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(array_size), indirect);
if (!index_set) {
index = indirect;
index_set = true;
} else {
index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), index, indirect);
}
}
deref_instr = nir_src_as_deref(deref_instr->parent);
}
descriptor_set = deref_instr->var->data.descriptor_set;
base_index = deref_instr->var->data.binding;
}
Temp list = load_desc_ptr(ctx, descriptor_set);
list = convert_pointer_to_64_bit(ctx, list);
struct radv_descriptor_set_layout *layout = ctx->options->layout->set[descriptor_set].layout;
struct radv_descriptor_set_binding_layout *binding = layout->binding + base_index;
unsigned offset = binding->offset;
unsigned stride = binding->size;
aco_opcode opcode;
RegClass type;
assert(base_index < layout->binding_count);
switch (desc_type) {
case ACO_DESC_IMAGE:
type = s8;
opcode = aco_opcode::s_load_dwordx8;
break;
case ACO_DESC_FMASK:
type = s8;
opcode = aco_opcode::s_load_dwordx8;
offset += 32;
break;
case ACO_DESC_SAMPLER:
type = s4;
opcode = aco_opcode::s_load_dwordx4;
if (binding->type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
offset += radv_combined_image_descriptor_sampler_offset(binding);
break;
case ACO_DESC_BUFFER:
type = s4;
opcode = aco_opcode::s_load_dwordx4;
break;
case ACO_DESC_PLANE_0:
case ACO_DESC_PLANE_1:
type = s8;
opcode = aco_opcode::s_load_dwordx8;
offset += 32 * (desc_type - ACO_DESC_PLANE_0);
break;
case ACO_DESC_PLANE_2:
type = s4;
opcode = aco_opcode::s_load_dwordx4;
offset += 64;
break;
default:
unreachable("invalid desc_type\n");
}
offset += constant_index * stride;
if (desc_type == ACO_DESC_SAMPLER && binding->immutable_samplers_offset &&
(!index_set || binding->immutable_samplers_equal)) {
if (binding->immutable_samplers_equal)
constant_index = 0;
const uint32_t *samplers = radv_immutable_samplers(layout, binding);
return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
Operand(samplers[constant_index * 4 + 0]),
Operand(samplers[constant_index * 4 + 1]),
Operand(samplers[constant_index * 4 + 2]),
Operand(samplers[constant_index * 4 + 3]));
}
Operand off;
if (!index_set) {
off = bld.copy(bld.def(s1), Operand(offset));
} else {
off = Operand((Temp)bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset),
bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), index)));
}
Temp res = bld.smem(opcode, bld.def(type), list, off);
if (desc_type == ACO_DESC_PLANE_2) {
Temp components[8];
for (unsigned i = 0; i < 8; i++)
components[i] = bld.tmp(s1);
bld.pseudo(aco_opcode::p_split_vector,
Definition(components[0]),
Definition(components[1]),
Definition(components[2]),
Definition(components[3]),
res);
Temp desc2 = get_sampler_desc(ctx, deref_instr, ACO_DESC_PLANE_1, tex_instr, image, write);
bld.pseudo(aco_opcode::p_split_vector,
bld.def(s1), bld.def(s1), bld.def(s1), bld.def(s1),
Definition(components[4]),
Definition(components[5]),
Definition(components[6]),
Definition(components[7]),
desc2);
res = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
components[0], components[1], components[2], components[3],
components[4], components[5], components[6], components[7]);
}
return res;
}
static int image_type_to_components_count(enum glsl_sampler_dim dim, bool array)
{
switch (dim) {
case GLSL_SAMPLER_DIM_BUF:
return 1;
case GLSL_SAMPLER_DIM_1D:
return array ? 2 : 1;
case GLSL_SAMPLER_DIM_2D:
return array ? 3 : 2;
case GLSL_SAMPLER_DIM_MS:
return array ? 4 : 3;
case GLSL_SAMPLER_DIM_3D:
case GLSL_SAMPLER_DIM_CUBE:
return 3;
case GLSL_SAMPLER_DIM_RECT:
case GLSL_SAMPLER_DIM_SUBPASS:
return 2;
case GLSL_SAMPLER_DIM_SUBPASS_MS:
return 3;
default:
break;
}
return 0;
}
/* Adjust the sample index according to FMASK.
*
* For uncompressed MSAA surfaces, FMASK should return 0x76543210,
* which is the identity mapping. Each nibble says which physical sample
* should be fetched to get that sample.
*
* For example, 0x11111100 means there are only 2 samples stored and
* the second sample covers 3/4 of the pixel. When reading samples 0
* and 1, return physical sample 0 (determined by the first two 0s
* in FMASK), otherwise return physical sample 1.
*
* The sample index should be adjusted as follows:
* sample_index = (fmask >> (sample_index * 4)) & 0xF;
*/
static Temp adjust_sample_index_using_fmask(isel_context *ctx, bool da, std::vector<Temp>& coords, Operand sample_index, Temp fmask_desc_ptr)
{
Builder bld(ctx->program, ctx->block);
Temp fmask = bld.tmp(v1);
unsigned dim = ctx->options->chip_class >= GFX10
? ac_get_sampler_dim(ctx->options->chip_class, GLSL_SAMPLER_DIM_2D, da)
: 0;
Temp coord = da ? bld.pseudo(aco_opcode::p_create_vector, bld.def(v3), coords[0], coords[1], coords[2]) :
bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), coords[0], coords[1]);
aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(aco_opcode::image_load, Format::MIMG, 3, 1)};
load->operands[0] = Operand(fmask_desc_ptr);
load->operands[1] = Operand(s4); /* no sampler */
load->operands[2] = Operand(coord);
load->definitions[0] = Definition(fmask);
load->glc = false;
load->dlc = false;
load->dmask = 0x1;
load->unrm = true;
load->da = da;
load->dim = dim;
ctx->block->instructions.emplace_back(std::move(load));
Operand sample_index4;
if (sample_index.isConstant()) {
if (sample_index.constantValue() < 16) {
sample_index4 = Operand(sample_index.constantValue() << 2);
} else {
sample_index4 = Operand(0u);
}
} else if (sample_index.regClass() == s1) {
sample_index4 = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), sample_index, Operand(2u));
} else {
assert(sample_index.regClass() == v1);
sample_index4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), sample_index);
}
Temp final_sample;
if (sample_index4.isConstant() && sample_index4.constantValue() == 0)
final_sample = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(15u), fmask);
else if (sample_index4.isConstant() && sample_index4.constantValue() == 28)
final_sample = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(28u), fmask);
else
final_sample = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), fmask, sample_index4, Operand(4u));
/* Don't rewrite the sample index if WORD1.DATA_FORMAT of the FMASK
* resource descriptor is 0 (invalid),
*/
Temp compare = bld.tmp(bld.lm);
bld.vopc_e64(aco_opcode::v_cmp_lg_u32, Definition(compare),
Operand(0u), emit_extract_vector(ctx, fmask_desc_ptr, 1, s1)).def(0).setHint(vcc);
Temp sample_index_v = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), sample_index);
/* Replace the MSAA sample index. */
return bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), sample_index_v, final_sample, compare);
}
static Temp get_image_coords(isel_context *ctx, const nir_intrinsic_instr *instr, const struct glsl_type *type)
{
Temp src0 = get_ssa_temp(ctx, instr->src[1].ssa);
enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
bool is_array = glsl_sampler_type_is_array(type);
ASSERTED bool add_frag_pos = (dim == GLSL_SAMPLER_DIM_SUBPASS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
assert(!add_frag_pos && "Input attachments should be lowered.");
bool is_ms = (dim == GLSL_SAMPLER_DIM_MS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
bool gfx9_1d = ctx->options->chip_class == GFX9 && dim == GLSL_SAMPLER_DIM_1D;
int count = image_type_to_components_count(dim, is_array);
std::vector<Temp> coords(count);
Builder bld(ctx->program, ctx->block);
if (is_ms) {
count--;
Temp src2 = get_ssa_temp(ctx, instr->src[2].ssa);
/* get sample index */
if (instr->intrinsic == nir_intrinsic_image_deref_load) {
nir_const_value *sample_cv = nir_src_as_const_value(instr->src[2]);
Operand sample_index = sample_cv ? Operand(sample_cv->u32) : Operand(emit_extract_vector(ctx, src2, 0, v1));
std::vector<Temp> fmask_load_address;
for (unsigned i = 0; i < (is_array ? 3 : 2); i++)
fmask_load_address.emplace_back(emit_extract_vector(ctx, src0, i, v1));
Temp fmask_desc_ptr = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_FMASK, nullptr, false, false);
coords[count] = adjust_sample_index_using_fmask(ctx, is_array, fmask_load_address, sample_index, fmask_desc_ptr);
} else {
coords[count] = emit_extract_vector(ctx, src2, 0, v1);
}
}
if (gfx9_1d) {
coords[0] = emit_extract_vector(ctx, src0, 0, v1);
coords.resize(coords.size() + 1);
coords[1] = bld.copy(bld.def(v1), Operand(0u));
if (is_array)
coords[2] = emit_extract_vector(ctx, src0, 1, v1);
} else {
for (int i = 0; i < count; i++)
coords[i] = emit_extract_vector(ctx, src0, i, v1);
}
if (instr->intrinsic == nir_intrinsic_image_deref_load ||
instr->intrinsic == nir_intrinsic_image_deref_store) {
int lod_index = instr->intrinsic == nir_intrinsic_image_deref_load ? 3 : 4;
bool level_zero = nir_src_is_const(instr->src[lod_index]) && nir_src_as_uint(instr->src[lod_index]) == 0;
if (!level_zero)
coords.emplace_back(get_ssa_temp(ctx, instr->src[lod_index].ssa));
}
aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size(), 1)};
for (unsigned i = 0; i < coords.size(); i++)
vec->operands[i] = Operand(coords[i]);
Temp res = {ctx->program->allocateId(), RegClass(RegType::vgpr, coords.size())};
vec->definitions[0] = Definition(res);
ctx->block->instructions.emplace_back(std::move(vec));
return res;
}
memory_sync_info get_memory_sync_info(nir_intrinsic_instr *instr, storage_class storage, unsigned semantics)
{
/* atomicrmw might not have NIR_INTRINSIC_ACCESS and there's nothing interesting there anyway */
if (semantics & semantic_atomicrmw)
return memory_sync_info(storage, semantics);
unsigned access = nir_intrinsic_access(instr);
if (access & ACCESS_VOLATILE)
semantics |= semantic_volatile;
if (access & ACCESS_CAN_REORDER)
semantics |= semantic_can_reorder | semantic_private;
return memory_sync_info(storage, semantics);
}
void visit_image_load(isel_context *ctx, nir_intrinsic_instr *instr)
{
Builder bld(ctx->program, ctx->block);
const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
const struct glsl_type *type = glsl_without_array(var->type);
const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
bool is_array = glsl_sampler_type_is_array(type);
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
memory_sync_info sync = get_memory_sync_info(instr, storage_image, 0);
unsigned access = var->data.access | nir_intrinsic_access(instr);
if (dim == GLSL_SAMPLER_DIM_BUF) {
unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa);
unsigned num_channels = util_last_bit(mask);
Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
aco_opcode opcode;
switch (num_channels) {
case 1:
opcode = aco_opcode::buffer_load_format_x;
break;
case 2:
opcode = aco_opcode::buffer_load_format_xy;
break;
case 3:
opcode = aco_opcode::buffer_load_format_xyz;
break;
case 4:
opcode = aco_opcode::buffer_load_format_xyzw;
break;
default:
unreachable(">4 channel buffer image load");
}
aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 3, 1)};
load->operands[0] = Operand(rsrc);
load->operands[1] = Operand(vindex);
load->operands[2] = Operand((uint32_t) 0);
Temp tmp;
if (num_channels == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
tmp = dst;
else
tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_channels)};
load->definitions[0] = Definition(tmp);
load->idxen = true;
load->glc = access & (ACCESS_VOLATILE | ACCESS_COHERENT);
load->dlc = load->glc && ctx->options->chip_class >= GFX10;
load->sync = sync;
ctx->block->instructions.emplace_back(std::move(load));
expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, (1 << num_channels) - 1);
return;
}
Temp coords = get_image_coords(ctx, instr, type);
Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
unsigned num_components = util_bitcount(dmask);
Temp tmp;
if (num_components == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
tmp = dst;
else
tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_components)};
bool level_zero = nir_src_is_const(instr->src[3]) && nir_src_as_uint(instr->src[3]) == 0;
aco_opcode opcode = level_zero ? aco_opcode::image_load : aco_opcode::image_load_mip;
aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1)};
load->operands[0] = Operand(resource);
load->operands[1] = Operand(s4); /* no sampler */
load->operands[2] = Operand(coords);
load->definitions[0] = Definition(tmp);
load->glc = access & (ACCESS_VOLATILE | ACCESS_COHERENT) ? 1 : 0;
load->dlc = load->glc && ctx->options->chip_class >= GFX10;
load->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
load->dmask = dmask;
load->unrm = true;
load->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
load->sync = sync;
ctx->block->instructions.emplace_back(std::move(load));
expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, dmask);
return;
}
void visit_image_store(isel_context *ctx, nir_intrinsic_instr *instr)
{
const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
const struct glsl_type *type = glsl_without_array(var->type);
const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
bool is_array = glsl_sampler_type_is_array(type);
Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
memory_sync_info sync = get_memory_sync_info(instr, storage_image, 0);
unsigned access = var->data.access | nir_intrinsic_access(instr);
bool glc = ctx->options->chip_class == GFX6 || access & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE) ? 1 : 0;
if (dim == GLSL_SAMPLER_DIM_BUF) {
Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
aco_opcode opcode;
switch (data.size()) {
case 1:
opcode = aco_opcode::buffer_store_format_x;
break;
case 2:
opcode = aco_opcode::buffer_store_format_xy;
break;
case 3:
opcode = aco_opcode::buffer_store_format_xyz;
break;
case 4:
opcode = aco_opcode::buffer_store_format_xyzw;
break;
default:
unreachable(">4 channel buffer image store");
}
aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
store->operands[0] = Operand(rsrc);
store->operands[1] = Operand(vindex);
store->operands[2] = Operand((uint32_t) 0);
store->operands[3] = Operand(data);
store->idxen = true;
store->glc = glc;
store->dlc = false;
store->disable_wqm = true;
store->sync = sync;
ctx->program->needs_exact = true;
ctx->block->instructions.emplace_back(std::move(store));
return;
}
assert(data.type() == RegType::vgpr);
Temp coords = get_image_coords(ctx, instr, type);
Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
bool level_zero = nir_src_is_const(instr->src[4]) && nir_src_as_uint(instr->src[4]) == 0;
aco_opcode opcode = level_zero ? aco_opcode::image_store : aco_opcode::image_store_mip;
aco_ptr<MIMG_instruction> store{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 0)};
store->operands[0] = Operand(resource);
store->operands[1] = Operand(data);
store->operands[2] = Operand(coords);
store->glc = glc;
store->dlc = false;
store->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
store->dmask = (1 << data.size()) - 1;
store->unrm = true;
store->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
store->disable_wqm = true;
store->sync = sync;
ctx->program->needs_exact = true;
ctx->block->instructions.emplace_back(std::move(store));
return;
}
void visit_image_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
{
/* return the previous value if dest is ever used */
bool return_previous = false;
nir_foreach_use_safe(use_src, &instr->dest.ssa) {
return_previous = true;
break;
}
nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
return_previous = true;
break;
}
const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
const struct glsl_type *type = glsl_without_array(var->type);
const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
bool is_array = glsl_sampler_type_is_array(type);
Builder bld(ctx->program, ctx->block);
Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
assert(data.size() == 1 && "64bit ssbo atomics not yet implemented.");
if (instr->intrinsic == nir_intrinsic_image_deref_atomic_comp_swap)
data = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), get_ssa_temp(ctx, instr->src[4].ssa), data);
aco_opcode buf_op, image_op;
switch (instr->intrinsic) {
case nir_intrinsic_image_deref_atomic_add:
buf_op = aco_opcode::buffer_atomic_add;
image_op = aco_opcode::image_atomic_add;
break;
case nir_intrinsic_image_deref_atomic_umin:
buf_op = aco_opcode::buffer_atomic_umin;
image_op = aco_opcode::image_atomic_umin;
break;
case nir_intrinsic_image_deref_atomic_imin:
buf_op = aco_opcode::buffer_atomic_smin;
image_op = aco_opcode::image_atomic_smin;
break;
case nir_intrinsic_image_deref_atomic_umax:
buf_op = aco_opcode::buffer_atomic_umax;
image_op = aco_opcode::image_atomic_umax;
break;
case nir_intrinsic_image_deref_atomic_imax:
buf_op = aco_opcode::buffer_atomic_smax;
image_op = aco_opcode::image_atomic_smax;
break;
case nir_intrinsic_image_deref_atomic_and:
buf_op = aco_opcode::buffer_atomic_and;
image_op = aco_opcode::image_atomic_and;
break;
case nir_intrinsic_image_deref_atomic_or:
buf_op = aco_opcode::buffer_atomic_or;
image_op = aco_opcode::image_atomic_or;
break;
case nir_intrinsic_image_deref_atomic_xor:
buf_op = aco_opcode::buffer_atomic_xor;
image_op = aco_opcode::image_atomic_xor;
break;
case nir_intrinsic_image_deref_atomic_exchange:
buf_op = aco_opcode::buffer_atomic_swap;
image_op = aco_opcode::image_atomic_swap;
break;
case nir_intrinsic_image_deref_atomic_comp_swap:
buf_op = aco_opcode::buffer_atomic_cmpswap;
image_op = aco_opcode::image_atomic_cmpswap;
break;
default:
unreachable("visit_image_atomic should only be called with nir_intrinsic_image_deref_atomic_* instructions.");
}
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
memory_sync_info sync = get_memory_sync_info(instr, storage_image, semantic_atomicrmw);
if (dim == GLSL_SAMPLER_DIM_BUF) {
Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
//assert(ctx->options->chip_class < GFX9 && "GFX9 stride size workaround not yet implemented.");
aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(buf_op, Format::MUBUF, 4, return_previous ? 1 : 0)};
mubuf->operands[0] = Operand(resource);
mubuf->operands[1] = Operand(vindex);
mubuf->operands[2] = Operand((uint32_t)0);
mubuf->operands[3] = Operand(data);
if (return_previous)
mubuf->definitions[0] = Definition(dst);
mubuf->offset = 0;
mubuf->idxen = true;
mubuf->glc = return_previous;
mubuf->dlc = false; /* Not needed for atomics */
mubuf->disable_wqm = true;
mubuf->sync = sync;
ctx->program->needs_exact = true;
ctx->block->instructions.emplace_back(std::move(mubuf));
return;
}
Temp coords = get_image_coords(ctx, instr, type);
Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(image_op, Format::MIMG, 3, return_previous ? 1 : 0)};
mimg->operands[0] = Operand(resource);
mimg->operands[1] = Operand(data);
mimg->operands[2] = Operand(coords);
if (return_previous)
mimg->definitions[0] = Definition(dst);
mimg->glc = return_previous;
mimg->dlc = false; /* Not needed for atomics */
mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
mimg->dmask = (1 << data.size()) - 1;
mimg->unrm = true;
mimg->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
mimg->disable_wqm = true;
mimg->sync = sync;
ctx->program->needs_exact = true;
ctx->block->instructions.emplace_back(std::move(mimg));
return;
}
void get_buffer_size(isel_context *ctx, Temp desc, Temp dst, bool in_elements)
{
if (in_elements && ctx->options->chip_class == GFX8) {
/* we only have to divide by 1, 2, 4, 8, 12 or 16 */
Builder bld(ctx->program, ctx->block);
Temp size = emit_extract_vector(ctx, desc, 2, s1);
Temp size_div3 = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), bld.copy(bld.def(v1), Operand(0xaaaaaaabu)), size);
size_div3 = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.as_uniform(size_div3), Operand(1u));
Temp stride = emit_extract_vector(ctx, desc, 1, s1);
stride = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), stride, Operand((5u << 16) | 16u));
Temp is12 = bld.sopc(aco_opcode::s_cmp_eq_i32, bld.def(s1, scc), stride, Operand(12u));
size = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), size_div3, size, bld.scc(is12));
Temp shr_dst = dst.type() == RegType::vgpr ? bld.tmp(s1) : dst;
bld.sop2(aco_opcode::s_lshr_b32, Definition(shr_dst), bld.def(s1, scc),
size, bld.sop1(aco_opcode::s_ff1_i32_b32, bld.def(s1), stride));
if (dst.type() == RegType::vgpr)
bld.copy(Definition(dst), shr_dst);
/* TODO: we can probably calculate this faster with v_skip when stride != 12 */
} else {
emit_extract_vector(ctx, desc, 2, dst);
}
}
void visit_image_size(isel_context *ctx, nir_intrinsic_instr *instr)
{
const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
const struct glsl_type *type = glsl_without_array(var->type);
const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
bool is_array = glsl_sampler_type_is_array(type);
Builder bld(ctx->program, ctx->block);
if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_BUF) {
Temp desc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, NULL, true, false);
return get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), true);
}
/* LOD */
assert(nir_src_as_uint(instr->src[1]) == 0);
Temp lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
/* Resource */
Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, NULL, true, false);
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1)};
mimg->operands[0] = Operand(resource);
mimg->operands[1] = Operand(s4); /* no sampler */
mimg->operands[2] = Operand(lod);
uint8_t& dmask = mimg->dmask;
mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
mimg->dmask = (1 << instr->dest.ssa.num_components) - 1;
mimg->da = glsl_sampler_type_is_array(type);
Definition& def = mimg->definitions[0];
ctx->block->instructions.emplace_back(std::move(mimg));
if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_CUBE &&
glsl_sampler_type_is_array(type)) {
assert(instr->dest.ssa.num_components == 3);
Temp tmp = {ctx->program->allocateId(), v3};
def = Definition(tmp);
emit_split_vector(ctx, tmp, 3);
/* divide 3rd value by 6 by multiplying with magic number */
Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp, 2, v1), c);
bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
emit_extract_vector(ctx, tmp, 0, v1),
emit_extract_vector(ctx, tmp, 1, v1),
by_6);
} else if (ctx->options->chip_class == GFX9 &&
glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_1D &&
glsl_sampler_type_is_array(type)) {
assert(instr->dest.ssa.num_components == 2);
def = Definition(dst);
dmask = 0x5;
} else {
def = Definition(dst);
}
emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
}
void visit_load_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
{
Builder bld(ctx->program, ctx->block);
unsigned num_components = instr->num_components;
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
unsigned access = nir_intrinsic_access(instr);
bool glc = access & (ACCESS_VOLATILE | ACCESS_COHERENT);
unsigned size = instr->dest.ssa.bit_size / 8;
uint32_t flags = get_all_buffer_resource_flags(ctx, instr->src[0].ssa, access);
/* GLC bypasses VMEM/SMEM caches, so GLC SMEM loads/stores are coherent with GLC VMEM loads/stores
* TODO: this optimization is disabled for now because we still need to ensure correct ordering
*/
bool allow_smem = !(flags & (0 && glc ? has_nonglc_vmem_store : has_vmem_store));
allow_smem |= ((access & ACCESS_RESTRICT) && (access & ACCESS_NON_WRITEABLE)) || (access & ACCESS_CAN_REORDER);
load_buffer(ctx, num_components, size, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa),
nir_intrinsic_align_mul(instr), nir_intrinsic_align_offset(instr), glc, allow_smem,
get_memory_sync_info(instr, storage_buffer, 0));
}
void visit_store_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
{
Builder bld(ctx->program, ctx->block);
Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
unsigned writemask = widen_mask(nir_intrinsic_write_mask(instr), elem_size_bytes);
Temp offset = get_ssa_temp(ctx, instr->src[2].ssa);
Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
memory_sync_info sync = get_memory_sync_info(instr, storage_buffer, 0);
bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
uint32_t flags = get_all_buffer_resource_flags(ctx, instr->src[1].ssa, nir_intrinsic_access(instr));
/* GLC bypasses VMEM/SMEM caches, so GLC SMEM loads/stores are coherent with GLC VMEM loads/stores
* TODO: this optimization is disabled for now because we still need to ensure correct ordering
*/
bool allow_smem = !(flags & (0 && glc ? has_nonglc_vmem_loadstore : has_vmem_loadstore));
bool smem = !nir_src_is_divergent(instr->src[2]) &&
ctx->options->chip_class >= GFX8 &&
ctx->options->chip_class < GFX10_3 &&
(elem_size_bytes >= 4 || can_subdword_ssbo_store_use_smem(instr)) &&
allow_smem;
if (smem)
offset = bld.as_uniform(offset);
bool smem_nonfs = smem && ctx->stage != fragment_fs;
unsigned write_count = 0;
Temp write_datas[32];
unsigned offsets[32];
split_buffer_store(ctx, instr, smem, smem_nonfs ? RegType::sgpr : (smem ? data.type() : RegType::vgpr),
data, writemask, 16, &write_count, write_datas, offsets);
for (unsigned i = 0; i < write_count; i++) {
aco_opcode op = get_buffer_store_op(smem, write_datas[i].bytes());
if (smem && ctx->stage == fragment_fs)
op = aco_opcode::p_fs_buffer_store_smem;
if (smem) {
aco_ptr<SMEM_instruction> store{create_instruction<SMEM_instruction>(op, Format::SMEM, 3, 0)};
store->operands[0] = Operand(rsrc);
if (offsets[i]) {
Temp off = bld.nuw().sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
offset, Operand(offsets[i]));
store->operands[1] = Operand(off);
} else {
store->operands[1] = Operand(offset);
}
if (op != aco_opcode::p_fs_buffer_store_smem)
store->operands[1].setFixed(m0);
store->operands[2] = Operand(write_datas[i]);
store->glc = glc;
store->dlc = false;
store->disable_wqm = true;
store->sync = sync;
ctx->block->instructions.emplace_back(std::move(store));
ctx->program->wb_smem_l1_on_end = true;
if (op == aco_opcode::p_fs_buffer_store_smem) {
ctx->block->kind |= block_kind_needs_lowering;
ctx->program->needs_exact = true;
}
} else {
aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, 0)};
store->operands[0] = Operand(rsrc);
store->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
store->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
store->operands[3] = Operand(write_datas[i]);
store->offset = offsets[i];
store->offen = (offset.type() == RegType::vgpr);
store->glc = glc;
store->dlc = false;
store->disable_wqm = true;
store->sync = sync;
ctx->program->needs_exact = true;
ctx->block->instructions.emplace_back(std::move(store));
}
}
}
void visit_atomic_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
{
/* return the previous value if dest is ever used */
bool return_previous = false;
nir_foreach_use_safe(use_src, &instr->dest.ssa) {
return_previous = true;
break;
}
nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
return_previous = true;
break;
}
Builder bld(ctx->program, ctx->block);
Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[2].ssa));
if (instr->intrinsic == nir_intrinsic_ssbo_atomic_comp_swap)
data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
get_ssa_temp(ctx, instr->src[3].ssa), data);
Temp offset = get_ssa_temp(ctx, instr->src[1].ssa);
Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
aco_opcode op32, op64;
switch (instr->intrinsic) {
case nir_intrinsic_ssbo_atomic_add:
op32 = aco_opcode::buffer_atomic_add;
op64 = aco_opcode::buffer_atomic_add_x2;
break;
case nir_intrinsic_ssbo_atomic_imin:
op32 = aco_opcode::buffer_atomic_smin;
op64 = aco_opcode::buffer_atomic_smin_x2;
break;
case nir_intrinsic_ssbo_atomic_umin:
op32 = aco_opcode::buffer_atomic_umin;
op64 = aco_opcode::buffer_atomic_umin_x2;
break;
case nir_intrinsic_ssbo_atomic_imax:
op32 = aco_opcode::buffer_atomic_smax;
op64 = aco_opcode::buffer_atomic_smax_x2;
break;
case nir_intrinsic_ssbo_atomic_umax:
op32 = aco_opcode::buffer_atomic_umax;
op64 = aco_opcode::buffer_atomic_umax_x2;
break;
case nir_intrinsic_ssbo_atomic_and:
op32 = aco_opcode::buffer_atomic_and;
op64 = aco_opcode::buffer_atomic_and_x2;
break;
case nir_intrinsic_ssbo_atomic_or:
op32 = aco_opcode::buffer_atomic_or;
op64 = aco_opcode::buffer_atomic_or_x2;
break;
case nir_intrinsic_ssbo_atomic_xor:
op32 = aco_opcode::buffer_atomic_xor;
op64 = aco_opcode::buffer_atomic_xor_x2;
break;
case nir_intrinsic_ssbo_atomic_exchange:
op32 = aco_opcode::buffer_atomic_swap;
op64 = aco_opcode::buffer_atomic_swap_x2;
break;
case nir_intrinsic_ssbo_atomic_comp_swap:
op32 = aco_opcode::buffer_atomic_cmpswap;
op64 = aco_opcode::buffer_atomic_cmpswap_x2;
break;
default:
unreachable("visit_atomic_ssbo should only be called with nir_intrinsic_ssbo_atomic_* instructions.");
}
aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
mubuf->operands[0] = Operand(rsrc);
mubuf->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
mubuf->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
mubuf->operands[3] = Operand(data);
if (return_previous)
mubuf->definitions[0] = Definition(dst);
mubuf->offset = 0;
mubuf->offen = (offset.type() == RegType::vgpr);
mubuf->glc = return_previous;
mubuf->dlc = false; /* Not needed for atomics */
mubuf->disable_wqm = true;
mubuf->sync = get_memory_sync_info(instr, storage_buffer, semantic_atomicrmw);
ctx->program->needs_exact = true;
ctx->block->instructions.emplace_back(std::move(mubuf));
}
void visit_get_buffer_size(isel_context *ctx, nir_intrinsic_instr *instr) {
Temp index = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
Builder bld(ctx->program, ctx->block);
Temp desc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), index, Operand(0u));
get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), false);
}
void visit_load_global(isel_context *ctx, nir_intrinsic_instr *instr)
{
Builder bld(ctx->program, ctx->block);
unsigned num_components = instr->num_components;
unsigned component_size = instr->dest.ssa.bit_size / 8;
LoadEmitInfo info = {Operand(get_ssa_temp(ctx, instr->src[0].ssa)),
get_ssa_temp(ctx, &instr->dest.ssa),
num_components, component_size};
info.glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
info.align_mul = nir_intrinsic_align_mul(instr);
info.align_offset = nir_intrinsic_align_offset(instr);
info.sync = get_memory_sync_info(instr, storage_buffer, 0);
/* VMEM stores don't update the SMEM cache and it's difficult to prove that
* it's safe to use SMEM */
bool can_use_smem = nir_intrinsic_access(instr) & ACCESS_NON_WRITEABLE;
if (info.dst.type() == RegType::vgpr || (info.glc && ctx->options->chip_class < GFX8) || !can_use_smem) {
emit_global_load(ctx, bld, &info);
} else {
info.offset = Operand(bld.as_uniform(info.offset));
emit_smem_load(ctx, bld, &info);
}
}
void visit_store_global(isel_context *ctx, nir_intrinsic_instr *instr)
{
Builder bld(ctx->program, ctx->block);
unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
unsigned writemask = widen_mask(nir_intrinsic_write_mask(instr), elem_size_bytes);
Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
Temp addr = get_ssa_temp(ctx, instr->src[1].ssa);
memory_sync_info sync = get_memory_sync_info(instr, storage_buffer, 0);
bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
if (ctx->options->chip_class >= GFX7)
addr = as_vgpr(ctx, addr);
unsigned write_count = 0;
Temp write_datas[32];
unsigned offsets[32];
split_buffer_store(ctx, instr, false, RegType::vgpr, data, writemask,
16, &write_count, write_datas, offsets);
for (unsigned i = 0; i < write_count; i++) {
if (ctx->options->chip_class >= GFX7) {
unsigned offset = offsets[i];
Temp store_addr = addr;
if (offset > 0 && ctx->options->chip_class < GFX9) {
Temp addr0 = bld.tmp(v1), addr1 = bld.tmp(v1);
Temp new_addr0 = bld.tmp(v1), new_addr1 = bld.tmp(v1);
Temp carry = bld.tmp(bld.lm);
bld.pseudo(aco_opcode::p_split_vector, Definition(addr0), Definition(addr1), addr);
bld.vop2(aco_opcode::v_add_co_u32, Definition(new_addr0), bld.hint_vcc(Definition(carry)),
Operand(offset), addr0);
bld.vop2(aco_opcode::v_addc_co_u32, Definition(new_addr1), bld.def(bld.lm),
Operand(0u), addr1,
carry).def(1).setHint(vcc);
store_addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), new_addr0, new_addr1);
offset = 0;
}
bool global = ctx->options->chip_class >= GFX9;
aco_opcode op;
switch (write_datas[i].bytes()) {
case 1:
op = global ? aco_opcode::global_store_byte : aco_opcode::flat_store_byte;
break;
case 2:
op = global ? aco_opcode::global_store_short : aco_opcode::flat_store_short;
break;
case 4:
op = global ? aco_opcode::global_store_dword : aco_opcode::flat_store_dword;
break;
case 8:
op = global ? aco_opcode::global_store_dwordx2 : aco_opcode::flat_store_dwordx2;
break;
case 12:
op = global ? aco_opcode::global_store_dwordx3 : aco_opcode::flat_store_dwordx3;
break;
case 16:
op = global ? aco_opcode::global_store_dwordx4 : aco_opcode::flat_store_dwordx4;
break;
default:
unreachable("store_global not implemented for this size.");
}
aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, 0)};
flat->operands[0] = Operand(store_addr);
flat->operands[1] = Operand(s1);
flat->operands[2] = Operand(write_datas[i]);
flat->glc = glc;
flat->dlc = false;
flat->offset = offset;
flat->disable_wqm = true;
flat->sync = sync;
ctx->program->needs_exact = true;
ctx->block->instructions.emplace_back(std::move(flat));
} else {
assert(ctx->options->chip_class == GFX6);
aco_opcode op = get_buffer_store_op(false, write_datas[i].bytes());
Temp rsrc = get_gfx6_global_rsrc(bld, addr);
aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, 0)};
mubuf->operands[0] = Operand(rsrc);
mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
mubuf->operands[2] = Operand(0u);
mubuf->operands[3] = Operand(write_datas[i]);
mubuf->glc = glc;
mubuf->dlc = false;
mubuf->offset = offsets[i];
mubuf->addr64 = addr.type() == RegType::vgpr;
mubuf->disable_wqm = true;
mubuf->sync = sync;
ctx->program->needs_exact = true;
ctx->block->instructions.emplace_back(std::move(mubuf));
}
}
}
void visit_global_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
{
/* return the previous value if dest is ever used */
bool return_previous = false;
nir_foreach_use_safe(use_src, &instr->dest.ssa) {
return_previous = true;
break;
}
nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
return_previous = true;
break;
}
Builder bld(ctx->program, ctx->block);
Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
if (ctx->options->chip_class >= GFX7)
addr = as_vgpr(ctx, addr);
if (instr->intrinsic == nir_intrinsic_global_atomic_comp_swap)
data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
get_ssa_temp(ctx, instr->src[2].ssa), data);
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
aco_opcode op32, op64;
if (ctx->options->chip_class >= GFX7) {
bool global = ctx->options->chip_class >= GFX9;
switch (instr->intrinsic) {
case nir_intrinsic_global_atomic_add:
op32 = global ? aco_opcode::global_atomic_add : aco_opcode::flat_atomic_add;
op64 = global ? aco_opcode::global_atomic_add_x2 : aco_opcode::flat_atomic_add_x2;
break;
case nir_intrinsic_global_atomic_imin:
op32 = global ? aco_opcode::global_atomic_smin : aco_opcode::flat_atomic_smin;
op64 = global ? aco_opcode::global_atomic_smin_x2 : aco_opcode::flat_atomic_smin_x2;
break;
case nir_intrinsic_global_atomic_umin:
op32 = global ? aco_opcode::global_atomic_umin : aco_opcode::flat_atomic_umin;
op64 = global ? aco_opcode::global_atomic_umin_x2 : aco_opcode::flat_atomic_umin_x2;
break;
case nir_intrinsic_global_atomic_imax:
op32 = global ? aco_opcode::global_atomic_smax : aco_opcode::flat_atomic_smax;
op64 = global ? aco_opcode::global_atomic_smax_x2 : aco_opcode::flat_atomic_smax_x2;
break;
case nir_intrinsic_global_atomic_umax:
op32 = global ? aco_opcode::global_atomic_umax : aco_opcode::flat_atomic_umax;
op64 = global ? aco_opcode::global_atomic_umax_x2 : aco_opcode::flat_atomic_umax_x2;
break;
case nir_intrinsic_global_atomic_and:
op32 = global ? aco_opcode::global_atomic_and : aco_opcode::flat_atomic_and;
op64 = global ? aco_opcode::global_atomic_and_x2 : aco_opcode::flat_atomic_and_x2;
break;
case nir_intrinsic_global_atomic_or:
op32 = global ? aco_opcode::global_atomic_or : aco_opcode::flat_atomic_or;
op64 = global ? aco_opcode::global_atomic_or_x2 : aco_opcode::flat_atomic_or_x2;
break;
case nir_intrinsic_global_atomic_xor:
op32 = global ? aco_opcode::global_atomic_xor : aco_opcode::flat_atomic_xor;
op64 = global ? aco_opcode::global_atomic_xor_x2 : aco_opcode::flat_atomic_xor_x2;
break;
case nir_intrinsic_global_atomic_exchange:
op32 = global ? aco_opcode::global_atomic_swap : aco_opcode::flat_atomic_swap;
op64 = global ? aco_opcode::global_atomic_swap_x2 : aco_opcode::flat_atomic_swap_x2;
break;
case nir_intrinsic_global_atomic_comp_swap:
op32 = global ? aco_opcode::global_atomic_cmpswap : aco_opcode::flat_atomic_cmpswap;
op64 = global ? aco_opcode::global_atomic_cmpswap_x2 : aco_opcode::flat_atomic_cmpswap_x2;
break;
default:
unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
}
aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, return_previous ? 1 : 0)};
flat->operands[0] = Operand(addr);
flat->operands[1] = Operand(s1);
flat->operands[2] = Operand(data);
if (return_previous)
flat->definitions[0] = Definition(dst);
flat->glc = return_previous;
flat->dlc = false; /* Not needed for atomics */
flat->offset = 0;
flat->disable_wqm = true;
flat->sync = get_memory_sync_info(instr, storage_buffer, semantic_atomicrmw);
ctx->program->needs_exact = true;
ctx->block->instructions.emplace_back(std::move(flat));
} else {
assert(ctx->options->chip_class == GFX6);
switch (instr->intrinsic) {
case nir_intrinsic_global_atomic_add:
op32 = aco_opcode::buffer_atomic_add;
op64 = aco_opcode::buffer_atomic_add_x2;
break;
case nir_intrinsic_global_atomic_imin:
op32 = aco_opcode::buffer_atomic_smin;
op64 = aco_opcode::buffer_atomic_smin_x2;
break;
case nir_intrinsic_global_atomic_umin:
op32 = aco_opcode::buffer_atomic_umin;
op64 = aco_opcode::buffer_atomic_umin_x2;
break;
case nir_intrinsic_global_atomic_imax:
op32 = aco_opcode::buffer_atomic_smax;
op64 = aco_opcode::buffer_atomic_smax_x2;
break;
case nir_intrinsic_global_atomic_umax:
op32 = aco_opcode::buffer_atomic_umax;
op64 = aco_opcode::buffer_atomic_umax_x2;
break;
case nir_intrinsic_global_atomic_and:
op32 = aco_opcode::buffer_atomic_and;
op64 = aco_opcode::buffer_atomic_and_x2;
break;
case nir_intrinsic_global_atomic_or:
op32 = aco_opcode::buffer_atomic_or;
op64 = aco_opcode::buffer_atomic_or_x2;
break;
case nir_intrinsic_global_atomic_xor:
op32 = aco_opcode::buffer_atomic_xor;
op64 = aco_opcode::buffer_atomic_xor_x2;
break;
case nir_intrinsic_global_atomic_exchange:
op32 = aco_opcode::buffer_atomic_swap;
op64 = aco_opcode::buffer_atomic_swap_x2;
break;
case nir_intrinsic_global_atomic_comp_swap:
op32 = aco_opcode::buffer_atomic_cmpswap;
op64 = aco_opcode::buffer_atomic_cmpswap_x2;
break;
default:
unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
}
Temp rsrc = get_gfx6_global_rsrc(bld, addr);
aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
mubuf->operands[0] = Operand(rsrc);
mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
mubuf->operands[2] = Operand(0u);
mubuf->operands[3] = Operand(data);
if (return_previous)
mubuf->definitions[0] = Definition(dst);
mubuf->glc = return_previous;
mubuf->dlc = false;
mubuf->offset = 0;
mubuf->addr64 = addr.type() == RegType::vgpr;
mubuf->disable_wqm = true;
mubuf->sync = get_memory_sync_info(instr, storage_buffer, semantic_atomicrmw);
ctx->program->needs_exact = true;
ctx->block->instructions.emplace_back(std::move(mubuf));
}
}
sync_scope translate_nir_scope(nir_scope scope)
{
switch (scope) {
case NIR_SCOPE_NONE:
case NIR_SCOPE_INVOCATION:
return scope_invocation;
case NIR_SCOPE_SUBGROUP:
return scope_subgroup;
case NIR_SCOPE_WORKGROUP:
return scope_workgroup;
case NIR_SCOPE_QUEUE_FAMILY:
return scope_queuefamily;
case NIR_SCOPE_DEVICE:
return scope_device;
}
unreachable("invalid scope");
}
void emit_scoped_barrier(isel_context *ctx, nir_intrinsic_instr *instr) {
Builder bld(ctx->program, ctx->block);
unsigned semantics = 0;
unsigned storage = 0;
sync_scope mem_scope = translate_nir_scope(nir_intrinsic_memory_scope(instr));
sync_scope exec_scope = translate_nir_scope(nir_intrinsic_execution_scope(instr));
unsigned nir_storage = nir_intrinsic_memory_modes(instr);
if (nir_storage & (nir_var_mem_ssbo | nir_var_mem_global))
storage |= storage_buffer | storage_image; //TODO: split this when NIR gets nir_var_mem_image
if (ctx->shader->info.stage == MESA_SHADER_COMPUTE && (nir_storage & nir_var_mem_shared))
storage |= storage_shared;
if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL && (nir_storage & nir_var_shader_out))
storage |= storage_shared;
unsigned nir_semantics = nir_intrinsic_memory_semantics(instr);
if (nir_semantics & NIR_MEMORY_ACQUIRE)
semantics |= semantic_acquire | semantic_release;
if (nir_semantics & NIR_MEMORY_RELEASE)
semantics |= semantic_acquire | semantic_release;
assert(!(nir_semantics & (NIR_MEMORY_MAKE_AVAILABLE | NIR_MEMORY_MAKE_VISIBLE)));
bld.barrier(aco_opcode::p_barrier,
memory_sync_info((storage_class)storage, (memory_semantics)semantics, mem_scope),
exec_scope);
}
void visit_load_shared(isel_context *ctx, nir_intrinsic_instr *instr)
{
// TODO: implement sparse reads using ds_read2_b32 and nir_ssa_def_components_read()
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
Builder bld(ctx->program, ctx->block);
unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
load_lds(ctx, elem_size_bytes, dst, address, nir_intrinsic_base(instr), align);
}
void visit_store_shared(isel_context *ctx, nir_intrinsic_instr *instr)
{
unsigned writemask = nir_intrinsic_write_mask(instr);
Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
store_lds(ctx, elem_size_bytes, data, writemask, address, nir_intrinsic_base(instr), align);
}
void visit_shared_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
{
unsigned offset = nir_intrinsic_base(instr);
Builder bld(ctx->program, ctx->block);
Operand m = load_lds_size_m0(bld);
Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
unsigned num_operands = 3;
aco_opcode op32, op64, op32_rtn, op64_rtn;
switch(instr->intrinsic) {
case nir_intrinsic_shared_atomic_add:
op32 = aco_opcode::ds_add_u32;
op64 = aco_opcode::ds_add_u64;
op32_rtn = aco_opcode::ds_add_rtn_u32;
op64_rtn = aco_opcode::ds_add_rtn_u64;
break;
case nir_intrinsic_shared_atomic_imin:
op32 = aco_opcode::ds_min_i32;
op64 = aco_opcode::ds_min_i64;
op32_rtn = aco_opcode::ds_min_rtn_i32;
op64_rtn = aco_opcode::ds_min_rtn_i64;
break;
case nir_intrinsic_shared_atomic_umin:
op32 = aco_opcode::ds_min_u32;
op64 = aco_opcode::ds_min_u64;
op32_rtn = aco_opcode::ds_min_rtn_u32;
op64_rtn = aco_opcode::ds_min_rtn_u64;
break;
case nir_intrinsic_shared_atomic_imax:
op32 = aco_opcode::ds_max_i32;
op64 = aco_opcode::ds_max_i64;
op32_rtn = aco_opcode::ds_max_rtn_i32;
op64_rtn = aco_opcode::ds_max_rtn_i64;
break;
case nir_intrinsic_shared_atomic_umax:
op32 = aco_opcode::ds_max_u32;
op64 = aco_opcode::ds_max_u64;
op32_rtn = aco_opcode::ds_max_rtn_u32;
op64_rtn = aco_opcode::ds_max_rtn_u64;
break;
case nir_intrinsic_shared_atomic_and:
op32 = aco_opcode::ds_and_b32;
op64 = aco_opcode::ds_and_b64;
op32_rtn = aco_opcode::ds_and_rtn_b32;
op64_rtn = aco_opcode::ds_and_rtn_b64;
break;
case nir_intrinsic_shared_atomic_or:
op32 = aco_opcode::ds_or_b32;
op64 = aco_opcode::ds_or_b64;
op32_rtn = aco_opcode::ds_or_rtn_b32;
op64_rtn = aco_opcode::ds_or_rtn_b64;
break;
case nir_intrinsic_shared_atomic_xor:
op32 = aco_opcode::ds_xor_b32;
op64 = aco_opcode::ds_xor_b64;
op32_rtn = aco_opcode::ds_xor_rtn_b32;
op64_rtn = aco_opcode::ds_xor_rtn_b64;
break;
case nir_intrinsic_shared_atomic_exchange:
op32 = aco_opcode::ds_write_b32;
op64 = aco_opcode::ds_write_b64;
op32_rtn = aco_opcode::ds_wrxchg_rtn_b32;
op64_rtn = aco_opcode::ds_wrxchg_rtn_b64;
break;
case nir_intrinsic_shared_atomic_comp_swap:
op32 = aco_opcode::ds_cmpst_b32;
op64 = aco_opcode::ds_cmpst_b64;
op32_rtn = aco_opcode::ds_cmpst_rtn_b32;
op64_rtn = aco_opcode::ds_cmpst_rtn_b64;
num_operands = 4;
break;
case nir_intrinsic_shared_atomic_fadd:
op32 = aco_opcode::ds_add_f32;
op32_rtn = aco_opcode::ds_add_rtn_f32;
op64 = aco_opcode::num_opcodes;
op64_rtn = aco_opcode::num_opcodes;
break;
default:
unreachable("Unhandled shared atomic intrinsic");
}
/* return the previous value if dest is ever used */
bool return_previous = false;
nir_foreach_use_safe(use_src, &instr->dest.ssa) {
return_previous = true;
break;
}
nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
return_previous = true;
break;
}
aco_opcode op;
if (data.size() == 1) {
assert(instr->dest.ssa.bit_size == 32);
op = return_previous ? op32_rtn : op32;
} else {
assert(instr->dest.ssa.bit_size == 64);
op = return_previous ? op64_rtn : op64;
}
if (offset > 65535) {
address = bld.vadd32(bld.def(v1), Operand(offset), address);
offset = 0;
}
aco_ptr<DS_instruction> ds;
ds.reset(create_instruction<DS_instruction>(op, Format::DS, num_operands, return_previous ? 1 : 0));
ds->operands[0] = Operand(address);
ds->operands[1] = Operand(data);
if (num_operands == 4)
ds->operands[2] = Operand(get_ssa_temp(ctx, instr->src[2].ssa));
ds->operands[num_operands - 1] = m;
ds->offset0 = offset;
if (return_previous)
ds->definitions[0] = Definition(get_ssa_temp(ctx, &instr->dest.ssa));
ds->sync = memory_sync_info(storage_shared, semantic_atomicrmw);
ctx->block->instructions.emplace_back(std::move(ds));
}
Temp get_scratch_resource(isel_context *ctx)
{
Builder bld(ctx->program, ctx->block);
Temp scratch_addr = ctx->program->private_segment_buffer;
if (ctx->stage != compute_cs)
scratch_addr = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), scratch_addr, Operand(0u));
uint32_t rsrc_conf = S_008F0C_ADD_TID_ENABLE(1) |
S_008F0C_INDEX_STRIDE(ctx->program->wave_size == 64 ? 3 : 2);
if (ctx->program->chip_class >= GFX10) {
rsrc_conf |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
S_008F0C_RESOURCE_LEVEL(1);
} else if (ctx->program->chip_class <= GFX7) { /* dfmt modifies stride on GFX8/GFX9 when ADD_TID_EN=1 */
rsrc_conf |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
}
/* older generations need element size = 4 bytes. element size removed in GFX9 */
if (ctx->program->chip_class <= GFX8)
rsrc_conf |= S_008F0C_ELEMENT_SIZE(1);
return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), scratch_addr, Operand(-1u), Operand(rsrc_conf));
}
void visit_load_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
Builder bld(ctx->program, ctx->block);
Temp rsrc = get_scratch_resource(ctx);
Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
LoadEmitInfo info = {Operand(offset), dst, instr->dest.ssa.num_components,
instr->dest.ssa.bit_size / 8u, rsrc};
info.align_mul = nir_intrinsic_align_mul(instr);
info.align_offset = nir_intrinsic_align_offset(instr);
info.swizzle_component_size = ctx->program->chip_class <= GFX8 ? 4 : 0;
info.sync = memory_sync_info(storage_scratch, semantic_private);
info.soffset = ctx->program->scratch_offset;
emit_scratch_load(ctx, bld, &info);
}
void visit_store_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
Builder bld(ctx->program, ctx->block);
Temp rsrc = get_scratch_resource(ctx);
Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
unsigned writemask = widen_mask(nir_intrinsic_write_mask(instr), elem_size_bytes);
unsigned write_count = 0;
Temp write_datas[32];
unsigned offsets[32];
unsigned swizzle_component_size = ctx->program->chip_class <= GFX8 ? 4 : 16;
split_buffer_store(ctx, instr, false, RegType::vgpr, data, writemask,
swizzle_component_size, &write_count, write_datas, offsets);
for (unsigned i = 0; i < write_count; i++) {
aco_opcode op = get_buffer_store_op(false, write_datas[i].bytes());
Instruction *instr = bld.mubuf(op, rsrc, offset, ctx->program->scratch_offset, write_datas[i], offsets[i], true, true);
static_cast<MUBUF_instruction *>(instr)->sync = memory_sync_info(storage_scratch, semantic_private);
}
}
void visit_load_sample_mask_in(isel_context *ctx, nir_intrinsic_instr *instr) {
uint8_t log2_ps_iter_samples;
if (ctx->program->info->ps.force_persample) {
log2_ps_iter_samples =
util_logbase2(ctx->options->key.fs.num_samples);
} else {
log2_ps_iter_samples = ctx->options->key.fs.log2_ps_iter_samples;
}
/* The bit pattern matches that used by fixed function fragment
* processing. */
static const unsigned ps_iter_masks[] = {
0xffff, /* not used */
0x5555,
0x1111,
0x0101,
0x0001,
};
assert(log2_ps_iter_samples < ARRAY_SIZE(ps_iter_masks));
Builder bld(ctx->program, ctx->block);
Temp sample_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
Temp ps_iter_mask = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(ps_iter_masks[log2_ps_iter_samples]));
Temp mask = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), sample_id, ps_iter_mask);
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
bld.vop2(aco_opcode::v_and_b32, Definition(dst), mask, get_arg(ctx, ctx->args->ac.sample_coverage));
}
void visit_emit_vertex_with_counter(isel_context *ctx, nir_intrinsic_instr *instr) {
Builder bld(ctx->program, ctx->block);
unsigned stream = nir_intrinsic_stream_id(instr);
Temp next_vertex = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
next_vertex = bld.v_mul_imm(bld.def(v1), next_vertex, 4u);
nir_const_value *next_vertex_cv = nir_src_as_const_value(instr->src[0]);
/* get GSVS ring */
Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_GSVS_GS * 16u));
unsigned num_components =
ctx->program->info->gs.num_stream_output_components[stream];
assert(num_components);
unsigned stride = 4u * num_components * ctx->shader->info.gs.vertices_out;
unsigned stream_offset = 0;
for (unsigned i = 0; i < stream; i++) {
unsigned prev_stride = 4u * ctx->program->info->gs.num_stream_output_components[i] * ctx->shader->info.gs.vertices_out;
stream_offset += prev_stride * ctx->program->wave_size;
}
/* Limit on the stride field for <= GFX7. */
assert(stride < (1 << 14));
Temp gsvs_dwords[4];
for (unsigned i = 0; i < 4; i++)
gsvs_dwords[i] = bld.tmp(s1);
bld.pseudo(aco_opcode::p_split_vector,
Definition(gsvs_dwords[0]),
Definition(gsvs_dwords[1]),
Definition(gsvs_dwords[2]),
Definition(gsvs_dwords[3]),
gsvs_ring);
if (stream_offset) {
Temp stream_offset_tmp = bld.copy(bld.def(s1), Operand(stream_offset));
Temp carry = bld.tmp(s1);
gsvs_dwords[0] = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), gsvs_dwords[0], stream_offset_tmp);
gsvs_dwords[1] = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(0u), bld.scc(carry));
}
gsvs_dwords[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(S_008F04_STRIDE(stride)));
gsvs_dwords[2] = bld.copy(bld.def(s1), Operand((uint32_t)ctx->program->wave_size));
gsvs_ring = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
gsvs_dwords[0], gsvs_dwords[1], gsvs_dwords[2], gsvs_dwords[3]);
unsigned offset = 0;
for (unsigned i = 0; i <= VARYING_SLOT_VAR31; i++) {
if (ctx->program->info->gs.output_streams[i] != stream)
continue;
for (unsigned j = 0; j < 4; j++) {
if (!(ctx->program->info->gs.output_usage_mask[i] & (1 << j)))
continue;
if (ctx->outputs.mask[i] & (1 << j)) {
Operand vaddr_offset = next_vertex_cv ? Operand(v1) : Operand(next_vertex);
unsigned const_offset = (offset + (next_vertex_cv ? next_vertex_cv->u32 : 0u)) * 4u;
if (const_offset >= 4096u) {
if (vaddr_offset.isUndefined())
vaddr_offset = bld.copy(bld.def(v1), Operand(const_offset / 4096u * 4096u));
else
vaddr_offset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), vaddr_offset);
const_offset %= 4096u;
}
aco_ptr<MTBUF_instruction> mtbuf{create_instruction<MTBUF_instruction>(aco_opcode::tbuffer_store_format_x, Format::MTBUF, 4, 0)};
mtbuf->operands[0] = Operand(gsvs_ring);
mtbuf->operands[1] = vaddr_offset;
mtbuf->operands[2] = Operand(get_arg(ctx, ctx->args->gs2vs_offset));
mtbuf->operands[3] = Operand(ctx->outputs.temps[i * 4u + j]);
mtbuf->offen = !vaddr_offset.isUndefined();
mtbuf->dfmt = V_008F0C_BUF_DATA_FORMAT_32;
mtbuf->nfmt = V_008F0C_BUF_NUM_FORMAT_UINT;
mtbuf->offset = const_offset;
mtbuf->glc = true;
mtbuf->slc = true;
mtbuf->sync = memory_sync_info(storage_vmem_output, semantic_can_reorder);
bld.insert(std::move(mtbuf));
}
offset += ctx->shader->info.gs.vertices_out;
}
/* outputs for the next vertex are undefined and keeping them around can
* create invalid IR with control flow */
ctx->outputs.mask[i] = 0;
}
bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(false, true, stream));
}
Temp emit_boolean_reduce(isel_context *ctx, nir_op op, unsigned cluster_size, Temp src)
{
Builder bld(ctx->program, ctx->block);
if (cluster_size == 1) {
return src;
} if (op == nir_op_iand && cluster_size == 4) {
//subgroupClusteredAnd(val, 4) -> ~wqm(exec & ~val)
Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc),
bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc), tmp));
} else if (op == nir_op_ior && cluster_size == 4) {
//subgroupClusteredOr(val, 4) -> wqm(val & exec)
return bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc),
bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)));
} else if (op == nir_op_iand && cluster_size == ctx->program->wave_size) {
//subgroupAnd(val) -> (exec & ~val) == 0
Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), cond);
} else if (op == nir_op_ior && cluster_size == ctx->program->wave_size) {
//subgroupOr(val) -> (val & exec) != 0
Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)).def(1).getTemp();
return bool_to_vector_condition(ctx, tmp);
} else if (op == nir_op_ixor && cluster_size == ctx->program->wave_size) {
//subgroupXor(val) -> s_bcnt1_i32_b64(val & exec) & 1
Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
tmp = bld.sop1(Builder::s_bcnt1_i32, bld.def(s1), bld.def(s1, scc), tmp);
tmp = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), tmp, Operand(1u)).def(1).getTemp();
return bool_to_vector_condition(ctx, tmp);
} else {
//subgroupClustered{And,Or,Xor}(val, n) ->
//lane_id = v_mbcnt_hi_u32_b32(-1, v_mbcnt_lo_u32_b32(-1, 0)) ; just v_mbcnt_lo_u32_b32 on wave32
//cluster_offset = ~(n - 1) & lane_id
//cluster_mask = ((1 << n) - 1)
//subgroupClusteredAnd():
// return ((val | ~exec) >> cluster_offset) & cluster_mask == cluster_mask
//subgroupClusteredOr():
// return ((val & exec) >> cluster_offset) & cluster_mask != 0
//subgroupClusteredXor():
// return v_bnt_u32_b32(((val & exec) >> cluster_offset) & cluster_mask, 0) & 1 != 0
Temp lane_id = emit_mbcnt(ctx, bld.def(v1));
Temp cluster_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(~uint32_t(cluster_size - 1)), lane_id);
Temp tmp;
if (op == nir_op_iand)
tmp = bld.sop2(Builder::s_orn2, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
else
tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
uint32_t cluster_mask = cluster_size == 32 ? -1 : (1u << cluster_size) - 1u;
if (ctx->program->chip_class <= GFX7)
tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), tmp, cluster_offset);
else if (ctx->program->wave_size == 64)
tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), cluster_offset, tmp);
else
tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), cluster_offset, tmp);
tmp = emit_extract_vector(ctx, tmp, 0, v1);
if (cluster_mask != 0xffffffff)
tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(cluster_mask), tmp);
Definition cmp_def = Definition();
if (op == nir_op_iand) {
cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(cluster_mask), tmp).def(0);
} else if (op == nir_op_ior) {
cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
} else if (op == nir_op_ixor) {
tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u),
bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1), tmp, Operand(0u)));
cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
}
cmp_def.setHint(vcc);
return cmp_def.getTemp();
}
}
Temp emit_boolean_exclusive_scan(isel_context *ctx, nir_op op, Temp src)
{
Builder bld(ctx->program, ctx->block);
//subgroupExclusiveAnd(val) -> mbcnt(exec & ~val) == 0
//subgroupExclusiveOr(val) -> mbcnt(val & exec) != 0
//subgroupExclusiveXor(val) -> mbcnt(val & exec) & 1 != 0
Temp tmp;
if (op == nir_op_iand)
tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
else
tmp = bld.sop2(Builder::s_and, bld.def(s2), bld.def(s1, scc), src, Operand(exec, bld.lm));
Builder::Result lohi = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), bld.def(s1), tmp);
Temp lo = lohi.def(0).getTemp();
Temp hi = lohi.def(1).getTemp();
Temp mbcnt = emit_mbcnt(ctx, bld.def(v1), Operand(lo), Operand(hi));
Definition cmp_def = Definition();
if (op == nir_op_iand)
cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
else if (op == nir_op_ior)
cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
else if (op == nir_op_ixor)
cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u),
bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), mbcnt)).def(0);
cmp_def.setHint(vcc);
return cmp_def.getTemp();
}
Temp emit_boolean_inclusive_scan(isel_context *ctx, nir_op op, Temp src)
{
Builder bld(ctx->program, ctx->block);
//subgroupInclusiveAnd(val) -> subgroupExclusiveAnd(val) && val
//subgroupInclusiveOr(val) -> subgroupExclusiveOr(val) || val
//subgroupInclusiveXor(val) -> subgroupExclusiveXor(val) ^^ val
Temp tmp = emit_boolean_exclusive_scan(ctx, op, src);
if (op == nir_op_iand)
return bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
else if (op == nir_op_ior)
return bld.sop2(Builder::s_or, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
else if (op == nir_op_ixor)
return bld.sop2(Builder::s_xor, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
assert(false);
return Temp();
}
void emit_uniform_subgroup(isel_context *ctx, nir_intrinsic_instr *instr, Temp src)
{
Builder bld(ctx->program, ctx->block);
Definition dst(get_ssa_temp(ctx, &instr->dest.ssa));
if (src.regClass().type() == RegType::vgpr) {
bld.pseudo(aco_opcode::p_as_uniform, dst, src);
} else if (src.regClass() == s1) {
bld.sop1(aco_opcode::s_mov_b32, dst, src);
} else if (src.regClass() == s2) {
bld.sop1(aco_opcode::s_mov_b64, dst, src);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
}
void emit_interp_center(isel_context *ctx, Temp dst, Temp pos1, Temp pos2)
{
Builder bld(ctx->program, ctx->block);
Temp persp_center = get_arg(ctx, ctx->args->ac.persp_center);
Temp p1 = emit_extract_vector(ctx, persp_center, 0, v1);
Temp p2 = emit_extract_vector(ctx, persp_center, 1, v1);
Temp ddx_1, ddx_2, ddy_1, ddy_2;
uint32_t dpp_ctrl0 = dpp_quad_perm(0, 0, 0, 0);
uint32_t dpp_ctrl1 = dpp_quad_perm(1, 1, 1, 1);
uint32_t dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
/* Build DD X/Y */
if (ctx->program->chip_class >= GFX8) {
Temp tl_1 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p1, dpp_ctrl0);
ddx_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl1);
ddy_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl2);
Temp tl_2 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p2, dpp_ctrl0);
ddx_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl1);
ddy_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl2);
} else {
Temp tl_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl0);
ddx_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl1);
ddx_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_1, tl_1);
ddx_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl2);
ddx_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_2, tl_1);
Temp tl_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl0);
ddy_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl1);
ddy_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_1, tl_2);
ddy_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl2);
ddy_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_2, tl_2);
}
/* res_k = p_k + ddx_k * pos1 + ddy_k * pos2 */
aco_opcode mad = ctx->program->chip_class >= GFX10_3 ? aco_opcode::v_fma_f32 : aco_opcode::v_mad_f32;
Temp tmp1 = bld.vop3(mad, bld.def(v1), ddx_1, pos1, p1);
Temp tmp2 = bld.vop3(mad, bld.def(v1), ddx_2, pos1, p2);
tmp1 = bld.vop3(mad, bld.def(v1), ddy_1, pos2, tmp1);
tmp2 = bld.vop3(mad, bld.def(v1), ddy_2, pos2, tmp2);
Temp wqm1 = bld.tmp(v1);
emit_wqm(ctx, tmp1, wqm1, true);
Temp wqm2 = bld.tmp(v1);
emit_wqm(ctx, tmp2, wqm2, true);
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), wqm1, wqm2);
return;
}
void visit_intrinsic(isel_context *ctx, nir_intrinsic_instr *instr)
{
Builder bld(ctx->program, ctx->block);
switch(instr->intrinsic) {
case nir_intrinsic_load_barycentric_sample:
case nir_intrinsic_load_barycentric_pixel:
case nir_intrinsic_load_barycentric_centroid: {
glsl_interp_mode mode = (glsl_interp_mode)nir_intrinsic_interp_mode(instr);
Temp bary = Temp(0, s2);
switch (mode) {
case INTERP_MODE_SMOOTH:
case INTERP_MODE_NONE:
if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
bary = get_arg(ctx, ctx->args->ac.persp_center);
else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
bary = ctx->persp_centroid;
else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
bary = get_arg(ctx, ctx->args->ac.persp_sample);
break;
case INTERP_MODE_NOPERSPECTIVE:
if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
bary = get_arg(ctx, ctx->args->ac.linear_center);
else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
bary = ctx->linear_centroid;
else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
bary = get_arg(ctx, ctx->args->ac.linear_sample);
break;
default:
break;
}
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
Temp p1 = emit_extract_vector(ctx, bary, 0, v1);
Temp p2 = emit_extract_vector(ctx, bary, 1, v1);
bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
Operand(p1), Operand(p2));
emit_split_vector(ctx, dst, 2);
break;
}
case nir_intrinsic_load_barycentric_model: {
Temp model = get_arg(ctx, ctx->args->ac.pull_model);
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
Temp p1 = emit_extract_vector(ctx, model, 0, v1);
Temp p2 = emit_extract_vector(ctx, model, 1, v1);
Temp p3 = emit_extract_vector(ctx, model, 2, v1);
bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
Operand(p1), Operand(p2), Operand(p3));
emit_split_vector(ctx, dst, 3);
break;
}
case nir_intrinsic_load_barycentric_at_sample: {
uint32_t sample_pos_offset = RING_PS_SAMPLE_POSITIONS * 16;
switch (ctx->options->key.fs.num_samples) {
case 2: sample_pos_offset += 1 << 3; break;
case 4: sample_pos_offset += 3 << 3; break;
case 8: sample_pos_offset += 7 << 3; break;
default: break;
}
Temp sample_pos;
Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
nir_const_value* const_addr = nir_src_as_const_value(instr->src[0]);
Temp private_segment_buffer = ctx->program->private_segment_buffer;
//TODO: bounds checking?
if (addr.type() == RegType::sgpr) {
Operand offset;
if (const_addr) {
sample_pos_offset += const_addr->u32 << 3;
offset = Operand(sample_pos_offset);
} else if (ctx->options->chip_class >= GFX9) {
offset = bld.sop2(aco_opcode::s_lshl3_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
} else {
offset = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), addr, Operand(3u));
offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
}
Operand off = bld.copy(bld.def(s1), Operand(offset));
sample_pos = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), private_segment_buffer, off);
} else if (ctx->options->chip_class >= GFX9) {
addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
sample_pos = bld.global(aco_opcode::global_load_dwordx2, bld.def(v2), addr, private_segment_buffer, sample_pos_offset);
} else if (ctx->options->chip_class >= GFX7) {
/* addr += private_segment_buffer + sample_pos_offset */
Temp tmp0 = bld.tmp(s1);
Temp tmp1 = bld.tmp(s1);
bld.pseudo(aco_opcode::p_split_vector, Definition(tmp0), Definition(tmp1), private_segment_buffer);
Definition scc_tmp = bld.def(s1, scc);
tmp0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), scc_tmp, tmp0, Operand(sample_pos_offset));
tmp1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), tmp1, Operand(0u), bld.scc(scc_tmp.getTemp()));
addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
Temp pck0 = bld.tmp(v1);
Temp carry = bld.vadd32(Definition(pck0), tmp0, addr, true).def(1).getTemp();
tmp1 = as_vgpr(ctx, tmp1);
Temp pck1 = bld.vop2_e64(aco_opcode::v_addc_co_u32, bld.def(v1), bld.hint_vcc(bld.def(bld.lm)), tmp1, Operand(0u), carry);
addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), pck0, pck1);
/* sample_pos = flat_load_dwordx2 addr */
sample_pos = bld.flat(aco_opcode::flat_load_dwordx2, bld.def(v2), addr, Operand(s1));
} else {
assert(ctx->options->chip_class == GFX6);
uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), private_segment_buffer, Operand(0u), Operand(rsrc_conf));
addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), addr, Operand(0u));
sample_pos = bld.tmp(v2);
aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dwordx2, Format::MUBUF, 3, 1)};
load->definitions[0] = Definition(sample_pos);
load->operands[0] = Operand(rsrc);
load->operands[1] = Operand(addr);
load->operands[2] = Operand(0u);
load->offset = sample_pos_offset;
load->offen = 0;
load->addr64 = true;
load->glc = false;
load->dlc = false;
load->disable_wqm = false;
ctx->block->instructions.emplace_back(std::move(load));
}
/* sample_pos -= 0.5 */
Temp pos1 = bld.tmp(RegClass(sample_pos.type(), 1));
Temp pos2 = bld.tmp(RegClass(sample_pos.type(), 1));
bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), sample_pos);
pos1 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos1, Operand(0x3f000000u));
pos2 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos2, Operand(0x3f000000u));
emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
break;
}
case nir_intrinsic_load_barycentric_at_offset: {
Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
RegClass rc = RegClass(offset.type(), 1);
Temp pos1 = bld.tmp(rc), pos2 = bld.tmp(rc);
bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), offset);
emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
break;
}
case nir_intrinsic_load_front_face: {
bld.vopc(aco_opcode::v_cmp_lg_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
Operand(0u), get_arg(ctx, ctx->args->ac.front_face)).def(0).setHint(vcc);
break;
}
case nir_intrinsic_load_view_index: {
if (ctx->stage & (sw_vs | sw_gs | sw_tcs | sw_tes)) {
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.view_index)));
break;
}
/* fallthrough */
}
case nir_intrinsic_load_layer_id: {
unsigned idx = nir_intrinsic_base(instr);
bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
Operand(2u), bld.m0(get_arg(ctx, ctx->args->ac.prim_mask)), idx, 0);
break;
}
case nir_intrinsic_load_frag_coord: {
emit_load_frag_coord(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 4);
break;
}
case nir_intrinsic_load_sample_pos: {
Temp posx = get_arg(ctx, ctx->args->ac.frag_pos[0]);
Temp posy = get_arg(ctx, ctx->args->ac.frag_pos[1]);
bld.pseudo(aco_opcode::p_create_vector, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
posx.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posx) : Operand(0u),
posy.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posy) : Operand(0u));
break;
}
case nir_intrinsic_load_tess_coord:
visit_load_tess_coord(ctx, instr);
break;
case nir_intrinsic_load_interpolated_input:
visit_load_interpolated_input(ctx, instr);
break;
case nir_intrinsic_store_output:
visit_store_output(ctx, instr);
break;
case nir_intrinsic_load_input:
case nir_intrinsic_load_input_vertex:
visit_load_input(ctx, instr);
break;
case nir_intrinsic_load_output:
visit_load_output(ctx, instr);
break;
case nir_intrinsic_load_per_vertex_input:
visit_load_per_vertex_input(ctx, instr);
break;
case nir_intrinsic_load_per_vertex_output:
visit_load_per_vertex_output(ctx, instr);
break;
case nir_intrinsic_store_per_vertex_output:
visit_store_per_vertex_output(ctx, instr);
break;
case nir_intrinsic_load_ubo:
visit_load_ubo(ctx, instr);
break;
case nir_intrinsic_load_push_constant:
visit_load_push_constant(ctx, instr);
break;
case nir_intrinsic_load_constant:
visit_load_constant(ctx, instr);
break;
case nir_intrinsic_vulkan_resource_index:
visit_load_resource(ctx, instr);
break;
case nir_intrinsic_discard:
visit_discard(ctx, instr);
break;
case nir_intrinsic_discard_if:
visit_discard_if(ctx, instr);
break;
case nir_intrinsic_load_shared:
visit_load_shared(ctx, instr);
break;
case nir_intrinsic_store_shared:
visit_store_shared(ctx, instr);
break;
case nir_intrinsic_shared_atomic_add:
case nir_intrinsic_shared_atomic_imin:
case nir_intrinsic_shared_atomic_umin:
case nir_intrinsic_shared_atomic_imax:
case nir_intrinsic_shared_atomic_umax:
case nir_intrinsic_shared_atomic_and:
case nir_intrinsic_shared_atomic_or:
case nir_intrinsic_shared_atomic_xor:
case nir_intrinsic_shared_atomic_exchange:
case nir_intrinsic_shared_atomic_comp_swap:
case nir_intrinsic_shared_atomic_fadd:
visit_shared_atomic(ctx, instr);
break;
case nir_intrinsic_image_deref_load:
visit_image_load(ctx, instr);
break;
case nir_intrinsic_image_deref_store:
visit_image_store(ctx, instr);
break;
case nir_intrinsic_image_deref_atomic_add:
case nir_intrinsic_image_deref_atomic_umin:
case nir_intrinsic_image_deref_atomic_imin:
case nir_intrinsic_image_deref_atomic_umax:
case nir_intrinsic_image_deref_atomic_imax:
case nir_intrinsic_image_deref_atomic_and:
case nir_intrinsic_image_deref_atomic_or:
case nir_intrinsic_image_deref_atomic_xor:
case nir_intrinsic_image_deref_atomic_exchange:
case nir_intrinsic_image_deref_atomic_comp_swap:
visit_image_atomic(ctx, instr);
break;
case nir_intrinsic_image_deref_size:
visit_image_size(ctx, instr);
break;
case nir_intrinsic_load_ssbo:
visit_load_ssbo(ctx, instr);
break;
case nir_intrinsic_store_ssbo:
visit_store_ssbo(ctx, instr);
break;
case nir_intrinsic_load_global:
visit_load_global(ctx, instr);
break;
case nir_intrinsic_store_global:
visit_store_global(ctx, instr);
break;
case nir_intrinsic_global_atomic_add:
case nir_intrinsic_global_atomic_imin:
case nir_intrinsic_global_atomic_umin:
case nir_intrinsic_global_atomic_imax:
case nir_intrinsic_global_atomic_umax:
case nir_intrinsic_global_atomic_and:
case nir_intrinsic_global_atomic_or:
case nir_intrinsic_global_atomic_xor:
case nir_intrinsic_global_atomic_exchange:
case nir_intrinsic_global_atomic_comp_swap:
visit_global_atomic(ctx, instr);
break;
case nir_intrinsic_ssbo_atomic_add:
case nir_intrinsic_ssbo_atomic_imin:
case nir_intrinsic_ssbo_atomic_umin:
case nir_intrinsic_ssbo_atomic_imax:
case nir_intrinsic_ssbo_atomic_umax:
case nir_intrinsic_ssbo_atomic_and:
case nir_intrinsic_ssbo_atomic_or:
case nir_intrinsic_ssbo_atomic_xor:
case nir_intrinsic_ssbo_atomic_exchange:
case nir_intrinsic_ssbo_atomic_comp_swap:
visit_atomic_ssbo(ctx, instr);
break;
case nir_intrinsic_load_scratch:
visit_load_scratch(ctx, instr);
break;
case nir_intrinsic_store_scratch:
visit_store_scratch(ctx, instr);
break;
case nir_intrinsic_get_buffer_size:
visit_get_buffer_size(ctx, instr);
break;
case nir_intrinsic_scoped_barrier:
emit_scoped_barrier(ctx, instr);
break;
case nir_intrinsic_load_num_work_groups: {
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.num_work_groups)));
emit_split_vector(ctx, dst, 3);
break;
}
case nir_intrinsic_load_local_invocation_id: {
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.local_invocation_ids)));
emit_split_vector(ctx, dst, 3);
break;
}
case nir_intrinsic_load_work_group_id: {
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
struct ac_arg *args = ctx->args->ac.workgroup_ids;
bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
args[0].used ? Operand(get_arg(ctx, args[0])) : Operand(0u),
args[1].used ? Operand(get_arg(ctx, args[1])) : Operand(0u),
args[2].used ? Operand(get_arg(ctx, args[2])) : Operand(0u));
emit_split_vector(ctx, dst, 3);
break;
}
case nir_intrinsic_load_local_invocation_index: {
Temp id = emit_mbcnt(ctx, bld.def(v1));
/* The tg_size bits [6:11] contain the subgroup id,
* we need this multiplied by the wave size, and then OR the thread id to it.
*/
if (ctx->program->wave_size == 64) {
/* After the s_and the bits are already multiplied by 64 (left shifted by 6) so we can just feed that to v_or */
Temp tg_num = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0xfc0u),
get_arg(ctx, ctx->args->ac.tg_size));
bld.vop2(aco_opcode::v_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, id);
} else {
/* Extract the bit field and multiply the result by 32 (left shift by 5), then do the OR */
Temp tg_num = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
bld.vop3(aco_opcode::v_lshl_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, Operand(0x5u), id);
}
break;
}
case nir_intrinsic_load_subgroup_id: {
if (ctx->stage == compute_cs) {
bld.sop2(aco_opcode::s_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc),
get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
} else {
bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x0u));
}
break;
}
case nir_intrinsic_load_subgroup_invocation: {
emit_mbcnt(ctx, Definition(get_ssa_temp(ctx, &instr->dest.ssa)));
break;
}
case nir_intrinsic_load_num_subgroups: {
if (ctx->stage == compute_cs)
bld.sop2(aco_opcode::s_and_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc), Operand(0x3fu),
get_arg(ctx, ctx->args->ac.tg_size));
else
bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x1u));
break;
}
case nir_intrinsic_ballot: {
Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
Definition tmp = bld.def(dst.regClass());
Definition lanemask_tmp = dst.size() == bld.lm.size() ? tmp : bld.def(src.regClass());
if (instr->src[0].ssa->bit_size == 1) {
assert(src.regClass() == bld.lm);
bld.sop2(Builder::s_and, lanemask_tmp, bld.def(s1, scc), Operand(exec, bld.lm), src);
} else if (instr->src[0].ssa->bit_size == 32 && src.regClass() == v1) {
bld.vopc(aco_opcode::v_cmp_lg_u32, lanemask_tmp, Operand(0u), src);
} else if (instr->src[0].ssa->bit_size == 64 && src.regClass() == v2) {
bld.vopc(aco_opcode::v_cmp_lg_u64, lanemask_tmp, Operand(0u), src);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
if (dst.size() != bld.lm.size()) {
/* Wave32 with ballot size set to 64 */
bld.pseudo(aco_opcode::p_create_vector, Definition(tmp), lanemask_tmp.getTemp(), Operand(0u));
}
emit_wqm(ctx, tmp.getTemp(), dst);
break;
}
case nir_intrinsic_shuffle:
case nir_intrinsic_read_invocation: {
Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
if (!nir_src_is_divergent(instr->src[0])) {
emit_uniform_subgroup(ctx, instr, src);
} else {
Temp tid = get_ssa_temp(ctx, instr->src[1].ssa);
if (instr->intrinsic == nir_intrinsic_read_invocation || !nir_src_is_divergent(instr->src[1]))
tid = bld.as_uniform(tid);
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
if (src.regClass() == v1b || src.regClass() == v2b) {
Temp tmp = bld.tmp(v1);
tmp = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, src), tmp);
if (dst.type() == RegType::vgpr)
bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(src.regClass() == v1b ? v3b : v2b), tmp);
else
bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
} else if (src.regClass() == v1) {
emit_wqm(ctx, emit_bpermute(ctx, bld, tid, src), dst);
} else if (src.regClass() == v2) {
Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
lo = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, lo));
hi = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, hi));
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
emit_split_vector(ctx, dst, 2);
} else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == s1) {
assert(src.regClass() == bld.lm);
Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src, tid);
bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
} else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == v1) {
assert(src.regClass() == bld.lm);
Temp tmp;
if (ctx->program->chip_class <= GFX7)
tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), src, tid);
else if (ctx->program->wave_size == 64)
tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), tid, src);
else
tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), tid, src);
tmp = emit_extract_vector(ctx, tmp, 0, v1);
tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), tmp);
emit_wqm(ctx, bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp), dst);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
}
break;
}
case nir_intrinsic_load_sample_id: {
bld.vop3(aco_opcode::v_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
break;
}
case nir_intrinsic_load_sample_mask_in: {
visit_load_sample_mask_in(ctx, instr);
break;
}
case nir_intrinsic_read_first_invocation: {
Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
if (src.regClass() == v1b || src.regClass() == v2b || src.regClass() == v1) {
emit_wqm(ctx,
bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), src),
dst);
} else if (src.regClass() == v2) {
Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
lo = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), lo));
hi = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), hi));
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
emit_split_vector(ctx, dst, 2);
} else if (instr->dest.ssa.bit_size == 1) {
assert(src.regClass() == bld.lm);
Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src,
bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)));
bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
} else if (src.regClass() == s1) {
bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
} else if (src.regClass() == s2) {
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_intrinsic_vote_all: {
Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
assert(src.regClass() == bld.lm);
assert(dst.regClass() == bld.lm);
Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
bld.sop1(Builder::s_not, Definition(dst), bld.def(s1, scc), cond);
break;
}
case nir_intrinsic_vote_any: {
Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
assert(src.regClass() == bld.lm);
assert(dst.regClass() == bld.lm);
Temp tmp = bool_to_scalar_condition(ctx, src);
bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
break;
}
case nir_intrinsic_reduce:
case nir_intrinsic_inclusive_scan:
case nir_intrinsic_exclusive_scan: {
Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
nir_op op = (nir_op) nir_intrinsic_reduction_op(instr);
unsigned cluster_size = instr->intrinsic == nir_intrinsic_reduce ?
nir_intrinsic_cluster_size(instr) : 0;
cluster_size = util_next_power_of_two(MIN2(cluster_size ? cluster_size : ctx->program->wave_size, ctx->program->wave_size));
if (!nir_src_is_divergent(instr->src[0]) && (op == nir_op_ior || op == nir_op_iand)) {
emit_uniform_subgroup(ctx, instr, src);
} else if (instr->dest.ssa.bit_size == 1) {
if (op == nir_op_imul || op == nir_op_umin || op == nir_op_imin)
op = nir_op_iand;
else if (op == nir_op_iadd)
op = nir_op_ixor;
else if (op == nir_op_umax || op == nir_op_imax)
op = nir_op_ior;
assert(op == nir_op_iand || op == nir_op_ior || op == nir_op_ixor);
switch (instr->intrinsic) {
case nir_intrinsic_reduce:
emit_wqm(ctx, emit_boolean_reduce(ctx, op, cluster_size, src), dst);
break;
case nir_intrinsic_exclusive_scan:
emit_wqm(ctx, emit_boolean_exclusive_scan(ctx, op, src), dst);
break;
case nir_intrinsic_inclusive_scan:
emit_wqm(ctx, emit_boolean_inclusive_scan(ctx, op, src), dst);
break;
default:
assert(false);
}
} else if (cluster_size == 1) {
bld.copy(Definition(dst), src);
} else {
unsigned bit_size = instr->src[0].ssa->bit_size;
src = emit_extract_vector(ctx, src, 0, RegClass::get(RegType::vgpr, bit_size / 8));
ReduceOp reduce_op;
switch (op) {
#define CASEI(name) case nir_op_##name: reduce_op = (bit_size == 32) ? name##32 : (bit_size == 16) ? name##16 : (bit_size == 8) ? name##8 : name##64; break;
#define CASEF(name) case nir_op_##name: reduce_op = (bit_size == 32) ? name##32 : (bit_size == 16) ? name##16 : name##64; break;
CASEI(iadd)
CASEI(imul)
CASEI(imin)
CASEI(umin)
CASEI(imax)
CASEI(umax)
CASEI(iand)
CASEI(ior)
CASEI(ixor)
CASEF(fadd)
CASEF(fmul)
CASEF(fmin)
CASEF(fmax)
default:
unreachable("unknown reduction op");
#undef CASEI
#undef CASEF
}
aco_opcode aco_op;
switch (instr->intrinsic) {
case nir_intrinsic_reduce: aco_op = aco_opcode::p_reduce; break;
case nir_intrinsic_inclusive_scan: aco_op = aco_opcode::p_inclusive_scan; break;
case nir_intrinsic_exclusive_scan: aco_op = aco_opcode::p_exclusive_scan; break;
default:
unreachable("unknown reduce intrinsic");
}
aco_ptr<Pseudo_reduction_instruction> reduce{create_instruction<Pseudo_reduction_instruction>(aco_op, Format::PSEUDO_REDUCTION, 3, 5)};
reduce->operands[0] = Operand(src);
// filled in by aco_reduce_assign.cpp, used internally as part of the
// reduce sequence
assert(dst.size() == 1 || dst.size() == 2);
reduce->operands[1] = Operand(RegClass(RegType::vgpr, dst.size()).as_linear());
reduce->operands[2] = Operand(v1.as_linear());
Temp tmp_dst = bld.tmp(dst.regClass());
reduce->definitions[0] = Definition(tmp_dst);
reduce->definitions[1] = bld.def(ctx->program->lane_mask); // used internally
reduce->definitions[2] = Definition();
reduce->definitions[3] = Definition(scc, s1);
reduce->definitions[4] = Definition();
reduce->reduce_op = reduce_op;
reduce->cluster_size = cluster_size;
ctx->block->instructions.emplace_back(std::move(reduce));
emit_wqm(ctx, tmp_dst, dst);
}
break;
}
case nir_intrinsic_quad_broadcast: {
Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
if (!nir_dest_is_divergent(instr->dest)) {
emit_uniform_subgroup(ctx, instr, src);
} else {
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
unsigned lane = nir_src_as_const_value(instr->src[1])->u32;
uint32_t dpp_ctrl = dpp_quad_perm(lane, lane, lane, lane);
if (instr->dest.ssa.bit_size == 1) {
assert(src.regClass() == bld.lm);
assert(dst.regClass() == bld.lm);
uint32_t half_mask = 0x11111111u << lane;
Temp mask_tmp = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(half_mask), Operand(half_mask));
Temp tmp = bld.tmp(bld.lm);
bld.sop1(Builder::s_wqm, Definition(tmp),
bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), mask_tmp,
bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm))));
emit_wqm(ctx, tmp, dst);
} else if (instr->dest.ssa.bit_size == 8) {
Temp tmp = bld.tmp(v1);
if (ctx->program->chip_class >= GFX8)
emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), tmp);
else
emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl), tmp);
bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v3b), tmp);
} else if (instr->dest.ssa.bit_size == 16) {
Temp tmp = bld.tmp(v1);
if (ctx->program->chip_class >= GFX8)
emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), tmp);
else
emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl), tmp);
bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
} else if (instr->dest.ssa.bit_size == 32) {
if (ctx->program->chip_class >= GFX8)
emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), dst);
else
emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl), dst);
} else if (instr->dest.ssa.bit_size == 64) {
Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
if (ctx->program->chip_class >= GFX8) {
lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
} else {
lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, (1 << 15) | dpp_ctrl));
hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, (1 << 15) | dpp_ctrl));
}
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
emit_split_vector(ctx, dst, 2);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
}
break;
}
case nir_intrinsic_quad_swap_horizontal:
case nir_intrinsic_quad_swap_vertical:
case nir_intrinsic_quad_swap_diagonal:
case nir_intrinsic_quad_swizzle_amd: {
Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
if (!nir_dest_is_divergent(instr->dest)) {
emit_uniform_subgroup(ctx, instr, src);
break;
}
uint16_t dpp_ctrl = 0;
switch (instr->intrinsic) {
case nir_intrinsic_quad_swap_horizontal:
dpp_ctrl = dpp_quad_perm(1, 0, 3, 2);
break;
case nir_intrinsic_quad_swap_vertical:
dpp_ctrl = dpp_quad_perm(2, 3, 0, 1);
break;
case nir_intrinsic_quad_swap_diagonal:
dpp_ctrl = dpp_quad_perm(3, 2, 1, 0);
break;
case nir_intrinsic_quad_swizzle_amd:
dpp_ctrl = nir_intrinsic_swizzle_mask(instr);
break;
default:
break;
}
if (ctx->program->chip_class < GFX8)
dpp_ctrl |= (1 << 15);
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
if (instr->dest.ssa.bit_size == 1) {
assert(src.regClass() == bld.lm);
src = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand((uint32_t)-1), src);
if (ctx->program->chip_class >= GFX8)
src = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
else
src = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
Temp tmp = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), src);
emit_wqm(ctx, tmp, dst);
} else if (instr->dest.ssa.bit_size == 8) {
Temp tmp = bld.tmp(v1);
if (ctx->program->chip_class >= GFX8)
emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), tmp);
else
emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl), tmp);
bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v3b), tmp);
} else if (instr->dest.ssa.bit_size == 16) {
Temp tmp = bld.tmp(v1);
if (ctx->program->chip_class >= GFX8)
emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), tmp);
else
emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl), tmp);
bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
} else if (instr->dest.ssa.bit_size == 32) {
Temp tmp;
if (ctx->program->chip_class >= GFX8)
tmp = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
else
tmp = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
emit_wqm(ctx, tmp, dst);
} else if (instr->dest.ssa.bit_size == 64) {
Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
if (ctx->program->chip_class >= GFX8) {
lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
} else {
lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, dpp_ctrl));
hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, dpp_ctrl));
}
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
emit_split_vector(ctx, dst, 2);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_intrinsic_masked_swizzle_amd: {
Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
if (!nir_dest_is_divergent(instr->dest)) {
emit_uniform_subgroup(ctx, instr, src);
break;
}
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
uint32_t mask = nir_intrinsic_swizzle_mask(instr);
if (instr->dest.ssa.bit_size == 1) {
assert(src.regClass() == bld.lm);
src = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand((uint32_t)-1), src);
src = emit_masked_swizzle(ctx, bld, src, mask);
Temp tmp = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), src);
emit_wqm(ctx, tmp, dst);
} else if (dst.regClass() == v1b) {
Temp tmp = emit_wqm(ctx, emit_masked_swizzle(ctx, bld, src, mask));
emit_extract_vector(ctx, tmp, 0, dst);
} else if (dst.regClass() == v2b) {
Temp tmp = emit_wqm(ctx, emit_masked_swizzle(ctx, bld, src, mask));
emit_extract_vector(ctx, tmp, 0, dst);
} else if (dst.regClass() == v1) {
emit_wqm(ctx, emit_masked_swizzle(ctx, bld, src, mask), dst);
} else if (dst.regClass() == v2) {
Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
lo = emit_wqm(ctx, emit_masked_swizzle(ctx, bld, lo, mask));
hi = emit_wqm(ctx, emit_masked_swizzle(ctx, bld, hi, mask));
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
emit_split_vector(ctx, dst, 2);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_intrinsic_write_invocation_amd: {
Temp src = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
Temp val = bld.as_uniform(get_ssa_temp(ctx, instr->src[1].ssa));
Temp lane = bld.as_uniform(get_ssa_temp(ctx, instr->src[2].ssa));
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
if (dst.regClass() == v1) {
/* src2 is ignored for writelane. RA assigns the same reg for dst */
emit_wqm(ctx, bld.writelane(bld.def(v1), val, lane, src), dst);
} else if (dst.regClass() == v2) {
Temp src_lo = bld.tmp(v1), src_hi = bld.tmp(v1);
Temp val_lo = bld.tmp(s1), val_hi = bld.tmp(s1);
bld.pseudo(aco_opcode::p_split_vector, Definition(src_lo), Definition(src_hi), src);
bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
Temp lo = emit_wqm(ctx, bld.writelane(bld.def(v1), val_lo, lane, src_hi));
Temp hi = emit_wqm(ctx, bld.writelane(bld.def(v1), val_hi, lane, src_hi));
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
emit_split_vector(ctx, dst, 2);
} else {
isel_err(&instr->instr, "Unimplemented NIR instr bit size");
}
break;
}
case nir_intrinsic_mbcnt_amd: {
Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
RegClass rc = RegClass(src.type(), 1);
Temp mask_lo = bld.tmp(rc), mask_hi = bld.tmp(rc);
bld.pseudo(aco_opcode::p_split_vector, Definition(mask_lo), Definition(mask_hi), src);
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
Temp wqm_tmp = emit_mbcnt(ctx, bld.def(v1), Operand(mask_lo), Operand(mask_hi));
emit_wqm(ctx, wqm_tmp, dst);
break;
}
case nir_intrinsic_load_helper_invocation: {
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
bld.pseudo(aco_opcode::p_load_helper, Definition(dst));
ctx->block->kind |= block_kind_needs_lowering;
ctx->program->needs_exact = true;
break;
}
case nir_intrinsic_is_helper_invocation: {
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
bld.pseudo(aco_opcode::p_is_helper, Definition(dst));
ctx->block->kind |= block_kind_needs_lowering;
ctx->program->needs_exact = true;
break;
}
case nir_intrinsic_demote:
bld.pseudo(aco_opcode::p_demote_to_helper, Operand(-1u));
if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
ctx->cf_info.exec_potentially_empty_discard = true;
ctx->block->kind |= block_kind_uses_demote;
ctx->program->needs_exact = true;
break;
case nir_intrinsic_demote_if: {
Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
assert(src.regClass() == bld.lm);
Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
bld.pseudo(aco_opcode::p_demote_to_helper, cond);
if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
ctx->cf_info.exec_potentially_empty_discard = true;
ctx->block->kind |= block_kind_uses_demote;
ctx->program->needs_exact = true;
break;
}
case nir_intrinsic_first_invocation: {
emit_wqm(ctx, bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)),
get_ssa_temp(ctx, &instr->dest.ssa));
break;
}
case nir_intrinsic_shader_clock: {
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
if (nir_intrinsic_memory_scope(instr) == NIR_SCOPE_SUBGROUP && ctx->options->chip_class >= GFX10_3) {
/* "((size - 1) << 11) | register" (SHADER_CYCLES is encoded as register 29) */
Temp clock = bld.sopk(aco_opcode::s_getreg_b32, bld.def(s1), ((20 - 1) << 11) | 29);
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), clock, Operand(0u));
} else {
aco_opcode opcode =
nir_intrinsic_memory_scope(instr) == NIR_SCOPE_DEVICE ?
aco_opcode::s_memrealtime : aco_opcode::s_memtime;
bld.smem(opcode, Definition(dst), memory_sync_info(0, semantic_volatile));
}
emit_split_vector(ctx, dst, 2);
break;
}
case nir_intrinsic_load_vertex_id_zero_base: {
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.vertex_id));
break;
}
case nir_intrinsic_load_first_vertex: {
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.base_vertex));
break;
}
case nir_intrinsic_load_base_instance: {
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.start_instance));
break;
}
case nir_intrinsic_load_instance_id: {
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.instance_id));
break;
}
case nir_intrinsic_load_draw_id: {
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.draw_id));
break;
}
case nir_intrinsic_load_invocation_id: {
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
if (ctx->shader->info.stage == MESA_SHADER_GEOMETRY) {
if (ctx->options->chip_class >= GFX10)
bld.vop2_e64(aco_opcode::v_and_b32, Definition(dst), Operand(127u), get_arg(ctx, ctx->args->ac.gs_invocation_id));
else
bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_invocation_id));
} else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
bld.vop3(aco_opcode::v_bfe_u32, Definition(dst),
get_arg(ctx, ctx->args->ac.tcs_rel_ids), Operand(8u), Operand(5u));
} else {
unreachable("Unsupported stage for load_invocation_id");
}
break;
}
case nir_intrinsic_load_primitive_id: {
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
switch (ctx->shader->info.stage) {
case MESA_SHADER_GEOMETRY:
bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_prim_id));
break;
case MESA_SHADER_TESS_CTRL:
bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.tcs_patch_id));
break;
case MESA_SHADER_TESS_EVAL:
bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.tes_patch_id));
break;
default:
unreachable("Unimplemented shader stage for nir_intrinsic_load_primitive_id");
}
break;
}
case nir_intrinsic_load_patch_vertices_in: {
assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL ||
ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
bld.copy(Definition(dst), Operand(ctx->args->options->key.tcs.input_vertices));
break;
}
case nir_intrinsic_emit_vertex_with_counter: {
visit_emit_vertex_with_counter(ctx, instr);
break;
}
case nir_intrinsic_end_primitive_with_counter: {
unsigned stream = nir_intrinsic_stream_id(instr);
bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(true, false, stream));
break;
}
case nir_intrinsic_set_vertex_count: {
/* unused, the HW keeps track of this for us */
break;
}
default:
isel_err(&instr->instr, "Unimplemented intrinsic instr");
abort();
break;
}
}
void tex_fetch_ptrs(isel_context *ctx, nir_tex_instr *instr,
Temp *res_ptr, Temp *samp_ptr, Temp *fmask_ptr,
enum glsl_base_type *stype)
{
nir_deref_instr *texture_deref_instr = NULL;
nir_deref_instr *sampler_deref_instr = NULL;
int plane = -1;
for (unsigned i = 0; i < instr->num_srcs; i++) {
switch (instr->src[i].src_type) {
case nir_tex_src_texture_deref:
texture_deref_instr = nir_src_as_deref(instr->src[i].src);
break;
case nir_tex_src_sampler_deref:
sampler_deref_instr = nir_src_as_deref(instr->src[i].src);
break;
case nir_tex_src_plane:
plane = nir_src_as_int(instr->src[i].src);
break;
default:
break;
}
}
*stype = glsl_get_sampler_result_type(texture_deref_instr->type);
if (!sampler_deref_instr)
sampler_deref_instr = texture_deref_instr;
if (plane >= 0) {
assert(instr->op != nir_texop_txf_ms &&
instr->op != nir_texop_samples_identical);
assert(instr->sampler_dim != GLSL_SAMPLER_DIM_BUF);
*res_ptr = get_sampler_desc(ctx, texture_deref_instr, (aco_descriptor_type)(ACO_DESC_PLANE_0 + plane), instr, false, false);
} else if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
*res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_BUFFER, instr, false, false);
} else if (instr->op == nir_texop_fragment_mask_fetch) {
*res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
} else {
*res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_IMAGE, instr, false, false);
}
if (samp_ptr) {
*samp_ptr = get_sampler_desc(ctx, sampler_deref_instr, ACO_DESC_SAMPLER, instr, false, false);
if (instr->sampler_dim < GLSL_SAMPLER_DIM_RECT && ctx->options->chip_class < GFX8) {
/* fix sampler aniso on SI/CI: samp[0] = samp[0] & img[7] */
Builder bld(ctx->program, ctx->block);
/* to avoid unnecessary moves, we split and recombine sampler and image */
Temp img[8] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1),
bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
Temp samp[4] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
bld.pseudo(aco_opcode::p_split_vector, Definition(img[0]), Definition(img[1]),
Definition(img[2]), Definition(img[3]), Definition(img[4]),
Definition(img[5]), Definition(img[6]), Definition(img[7]), *res_ptr);
bld.pseudo(aco_opcode::p_split_vector, Definition(samp[0]), Definition(samp[1]),
Definition(samp[2]), Definition(samp[3]), *samp_ptr);
samp[0] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), samp[0], img[7]);
*res_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
img[0], img[1], img[2], img[3],
img[4], img[5], img[6], img[7]);
*samp_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
samp[0], samp[1], samp[2], samp[3]);
}
}
if (fmask_ptr && (instr->op == nir_texop_txf_ms ||
instr->op == nir_texop_samples_identical))
*fmask_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
}
void build_cube_select(isel_context *ctx, Temp ma, Temp id, Temp deriv,
Temp *out_ma, Temp *out_sc, Temp *out_tc)
{
Builder bld(ctx->program, ctx->block);
Temp deriv_x = emit_extract_vector(ctx, deriv, 0, v1);
Temp deriv_y = emit_extract_vector(ctx, deriv, 1, v1);
Temp deriv_z = emit_extract_vector(ctx, deriv, 2, v1);
Operand neg_one(0xbf800000u);
Operand one(0x3f800000u);
Operand two(0x40000000u);
Operand four(0x40800000u);
Temp is_ma_positive = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), ma);
Temp sgn_ma = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, one, is_ma_positive);
Temp neg_sgn_ma = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0u), sgn_ma);
Temp is_ma_z = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), four, id);
Temp is_ma_y = bld.vopc(aco_opcode::v_cmp_le_f32, bld.def(bld.lm), two, id);
is_ma_y = bld.sop2(Builder::s_andn2, bld.hint_vcc(bld.def(bld.lm)), is_ma_y, is_ma_z);
Temp is_not_ma_x = bld.sop2(aco_opcode::s_or_b64, bld.hint_vcc(bld.def(bld.lm)), bld.def(s1, scc), is_ma_z, is_ma_y);
// select sc
Temp tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_z, deriv_x, is_not_ma_x);
Temp sgn = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1),
bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_sgn_ma, sgn_ma, is_ma_z),
one, is_ma_y);
*out_sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
// select tc
tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_y, deriv_z, is_ma_y);
sgn = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, sgn_ma, is_ma_y);
*out_tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
// select ma
tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_x, deriv_y, is_ma_y),
deriv_z, is_ma_z);
tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffffu), tmp);
*out_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), two, tmp);
}
void prepare_cube_coords(isel_context *ctx, std::vector<Temp>& coords, Temp* ddx, Temp* ddy, bool is_deriv, bool is_array)
{
Builder bld(ctx->program, ctx->block);
Temp ma, tc, sc, id;
aco_opcode madak = ctx->program->chip_class >= GFX10_3 ? aco_opcode::v_fmaak_f32 : aco_opcode::v_madak_f32;
aco_opcode madmk = ctx->program->chip_class >= GFX10_3 ? aco_opcode::v_fmamk_f32 : aco_opcode::v_madmk_f32;
if (is_array) {
coords[3] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[3]);
// see comment in ac_prepare_cube_coords()
if (ctx->options->chip_class <= GFX8)
coords[3] = bld.vop2(aco_opcode::v_max_f32, bld.def(v1), Operand(0u), coords[3]);
}
ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), coords[0], coords[1], coords[2]);
aco_ptr<VOP3A_instruction> vop3a{create_instruction<VOP3A_instruction>(aco_opcode::v_rcp_f32, asVOP3(Format::VOP1), 1, 1)};
vop3a->operands[0] = Operand(ma);
vop3a->abs[0] = true;
Temp invma = bld.tmp(v1);
vop3a->definitions[0] = Definition(invma);
ctx->block->instructions.emplace_back(std::move(vop3a));
sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), coords[0], coords[1], coords[2]);
if (!is_deriv)
sc = bld.vop2(madak, bld.def(v1), sc, invma, Operand(0x3fc00000u/*1.5*/));
tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), coords[0], coords[1], coords[2]);
if (!is_deriv)
tc = bld.vop2(madak, bld.def(v1), tc, invma, Operand(0x3fc00000u/*1.5*/));
id = bld.vop3(aco_opcode::v_cubeid_f32, bld.def(v1), coords[0], coords[1], coords[2]);
if (is_deriv) {
sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), sc, invma);
tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tc, invma);
for (unsigned i = 0; i < 2; i++) {
// see comment in ac_prepare_cube_coords()
Temp deriv_ma;
Temp deriv_sc, deriv_tc;
build_cube_select(ctx, ma, id, i ? *ddy : *ddx,
&deriv_ma, &deriv_sc, &deriv_tc);
deriv_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, invma);
Temp x = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_sc, invma),
bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, sc));
Temp y = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_tc, invma),
bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, tc));
*(i ? ddy : ddx) = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), x, y);
}
sc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), sc);
tc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), tc);
}
if (is_array)
id = bld.vop2(madmk, bld.def(v1), coords[3], id, Operand(0x41000000u/*8.0*/));
coords.resize(3);
coords[0] = sc;
coords[1] = tc;
coords[2] = id;
}
void get_const_vec(nir_ssa_def *vec, nir_const_value *cv[4])
{
if (vec->parent_instr->type != nir_instr_type_alu)
return;
nir_alu_instr *vec_instr = nir_instr_as_alu(vec->parent_instr);
if (vec_instr->op != nir_op_vec(vec->num_components))
return;
for (unsigned i = 0; i < vec->num_components; i++) {
cv[i] = vec_instr->src[i].swizzle[0] == 0 ?
nir_src_as_const_value(vec_instr->src[i].src) : NULL;
}
}
void visit_tex(isel_context *ctx, nir_tex_instr *instr)
{
Builder bld(ctx->program, ctx->block);
bool has_bias = false, has_lod = false, level_zero = false, has_compare = false,
has_offset = false, has_ddx = false, has_ddy = false, has_derivs = false, has_sample_index = false,
has_clamped_lod = false;
Temp resource, sampler, fmask_ptr, bias = Temp(), compare = Temp(), sample_index = Temp(),
lod = Temp(), offset = Temp(), ddx = Temp(), ddy = Temp(),
clamped_lod = Temp();
std::vector<Temp> coords;
std::vector<Temp> derivs;
nir_const_value *sample_index_cv = NULL;
nir_const_value *const_offset[4] = {NULL, NULL, NULL, NULL};
enum glsl_base_type stype;
tex_fetch_ptrs(ctx, instr, &resource, &sampler, &fmask_ptr, &stype);
bool tg4_integer_workarounds = ctx->options->chip_class <= GFX8 && instr->op == nir_texop_tg4 &&
(stype == GLSL_TYPE_UINT || stype == GLSL_TYPE_INT);
bool tg4_integer_cube_workaround = tg4_integer_workarounds &&
instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE;
for (unsigned i = 0; i < instr->num_srcs; i++) {
switch (instr->src[i].src_type) {
case nir_tex_src_coord: {
Temp coord = get_ssa_temp(ctx, instr->src[i].src.ssa);
for (unsigned i = 0; i < coord.size(); i++)
coords.emplace_back(emit_extract_vector(ctx, coord, i, v1));
break;
}
case nir_tex_src_bias:
bias = get_ssa_temp(ctx, instr->src[i].src.ssa);
has_bias = true;
break;
case nir_tex_src_lod: {
nir_const_value *val = nir_src_as_const_value(instr->src[i].src);
if (val && val->f32 <= 0.0) {
level_zero = true;
} else {
lod = get_ssa_temp(ctx, instr->src[i].src.ssa);
has_lod = true;
}
break;
}
case nir_tex_src_min_lod:
clamped_lod = get_ssa_temp(ctx, instr->src[i].src.ssa);
has_clamped_lod = true;
break;
case nir_tex_src_comparator:
if (instr->is_shadow) {
compare = get_ssa_temp(ctx, instr->src[i].src.ssa);
has_compare = true;
}
break;
case nir_tex_src_offset:
offset = get_ssa_temp(ctx, instr->src[i].src.ssa);
get_const_vec(instr->src[i].src.ssa, const_offset);
has_offset = true;
break;
case nir_tex_src_ddx:
ddx = get_ssa_temp(ctx, instr->src[i].src.ssa);
has_ddx = true;
break;
case nir_tex_src_ddy:
ddy = get_ssa_temp(ctx, instr->src[i].src.ssa);
has_ddy = true;
break;
case nir_tex_src_ms_index:
sample_index = get_ssa_temp(ctx, instr->src[i].src.ssa);
sample_index_cv = nir_src_as_const_value(instr->src[i].src);
has_sample_index = true;
break;
case nir_tex_src_texture_offset:
case nir_tex_src_sampler_offset:
default:
break;
}
}
if (instr->op == nir_texop_txs && instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
return get_buffer_size(ctx, resource, get_ssa_temp(ctx, &instr->dest.ssa), true);
if (instr->op == nir_texop_texture_samples) {
Temp dword3 = emit_extract_vector(ctx, resource, 3, s1);
Temp samples_log2 = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(16u | 4u<<16));
Temp samples = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), Operand(1u), samples_log2);
Temp type = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(28u | 4u<<16 /* offset=28, width=4 */));
Operand default_sample = Operand(1u);
if (ctx->options->robust_buffer_access) {
/* Extract the second dword of the descriptor, if it's
* all zero, then it's a null descriptor.
*/
Temp dword1 = emit_extract_vector(ctx, resource, 1, s1);
Temp is_non_null_descriptor = bld.sopc(aco_opcode::s_cmp_gt_u32, bld.def(s1, scc), dword1, Operand(0u));
default_sample = Operand(is_non_null_descriptor);
}
Temp is_msaa = bld.sopc(aco_opcode::s_cmp_ge_u32, bld.def(s1, scc), type, Operand(14u));
bld.sop2(aco_opcode::s_cselect_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
samples, default_sample, bld.scc(is_msaa));
return;
}
if (has_offset && instr->op != nir_texop_txf && instr->op != nir_texop_txf_ms) {
aco_ptr<Instruction> tmp_instr;
Temp acc, pack = Temp();
uint32_t pack_const = 0;
for (unsigned i = 0; i < offset.size(); i++) {
if (!const_offset[i])
continue;
pack_const |= (const_offset[i]->u32 & 0x3Fu) << (8u * i);
}
if (offset.type() == RegType::sgpr) {
for (unsigned i = 0; i < offset.size(); i++) {
if (const_offset[i])
continue;
acc = emit_extract_vector(ctx, offset, i, s1);
acc = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(0x3Fu));
if (i) {
acc = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(8u * i));
}
if (pack == Temp()) {
pack = acc;
} else {
pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), pack, acc);
}
}
if (pack_const && pack != Temp())
pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(pack_const), pack);
} else {
for (unsigned i = 0; i < offset.size(); i++) {
if (const_offset[i])
continue;
acc = emit_extract_vector(ctx, offset, i, v1);
acc = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x3Fu), acc);
if (i) {
acc = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(8u * i), acc);
}
if (pack == Temp()) {
pack = acc;
} else {
pack = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), pack, acc);
}
}
if (pack_const && pack != Temp())
pack = bld.sop2(aco_opcode::v_or_b32, bld.def(v1), Operand(pack_const), pack);
}
if (pack_const && pack == Temp())
offset = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(pack_const));
else if (pack == Temp())
has_offset = false;
else
offset = pack;
}
if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE && instr->coord_components)
prepare_cube_coords(ctx, coords, &ddx, &ddy, instr->op == nir_texop_txd, instr->is_array && instr->op != nir_texop_lod);
/* pack derivatives */
if (has_ddx || has_ddy) {
if (instr->sampler_dim == GLSL_SAMPLER_DIM_1D && ctx->options->chip_class == GFX9) {
assert(has_ddx && has_ddy && ddx.size() == 1 && ddy.size() == 1);
Temp zero = bld.copy(bld.def(v1), Operand(0u));
derivs = {ddx, zero, ddy, zero};
} else {
for (unsigned i = 0; has_ddx && i < ddx.size(); i++)
derivs.emplace_back(emit_extract_vector(ctx, ddx, i, v1));
for (unsigned i = 0; has_ddy && i < ddy.size(); i++)
derivs.emplace_back(emit_extract_vector(ctx, ddy, i, v1));
}
has_derivs = true;
}
if (instr->coord_components > 1 &&
instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
instr->is_array &&
instr->op != nir_texop_txf)
coords[1] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[1]);
if (instr->coord_components > 2 &&
(instr->sampler_dim == GLSL_SAMPLER_DIM_2D ||
instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS ||
instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
instr->is_array &&
instr->op != nir_texop_txf &&
instr->op != nir_texop_txf_ms &&
instr->op != nir_texop_fragment_fetch &&
instr->op != nir_texop_fragment_mask_fetch)
coords[2] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[2]);
if (ctx->options->chip_class == GFX9 &&
instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
instr->op != nir_texop_lod && instr->coord_components) {
assert(coords.size() > 0 && coords.size() < 3);
coords.insert(std::next(coords.begin()), bld.copy(bld.def(v1), instr->op == nir_texop_txf ?
Operand((uint32_t) 0) :
Operand((uint32_t) 0x3f000000)));
}
bool da = should_declare_array(ctx, instr->sampler_dim, instr->is_array);
if (instr->op == nir_texop_samples_identical)
resource = fmask_ptr;
else if ((instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
instr->op != nir_texop_txs &&
instr->op != nir_texop_fragment_fetch &&
instr->op != nir_texop_fragment_mask_fetch) {
assert(has_sample_index);
Operand op(sample_index);
if (sample_index_cv)
op = Operand(sample_index_cv->u32);
sample_index = adjust_sample_index_using_fmask(ctx, da, coords, op, fmask_ptr);
}
if (has_offset && (instr->op == nir_texop_txf || instr->op == nir_texop_txf_ms)) {
for (unsigned i = 0; i < std::min(offset.size(), instr->coord_components); i++) {
Temp off = emit_extract_vector(ctx, offset, i, v1);
coords[i] = bld.vadd32(bld.def(v1), coords[i], off);
}
has_offset = false;
}
/* Build tex instruction */
unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
unsigned dim = ctx->options->chip_class >= GFX10 && instr->sampler_dim != GLSL_SAMPLER_DIM_BUF
? ac_get_sampler_dim(ctx->options->chip_class, instr->sampler_dim, instr->is_array)
: 0;
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
Temp tmp_dst = dst;
/* gather4 selects the component by dmask and always returns vec4 */
if (instr->op == nir_texop_tg4) {
assert(instr->dest.ssa.num_components == 4);
if (instr->is_shadow)
dmask = 1;
else
dmask = 1 << instr->component;
if (tg4_integer_cube_workaround || dst.type() == RegType::sgpr)
tmp_dst = bld.tmp(v4);
} else if (instr->op == nir_texop_samples_identical) {
tmp_dst = bld.tmp(v1);
} else if (util_bitcount(dmask) != instr->dest.ssa.num_components || dst.type() == RegType::sgpr) {
tmp_dst = bld.tmp(RegClass(RegType::vgpr, util_bitcount(dmask)));
}
aco_ptr<MIMG_instruction> tex;
if (instr->op == nir_texop_txs || instr->op == nir_texop_query_levels) {
if (!has_lod)
lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
bool div_by_6 = instr->op == nir_texop_txs &&
instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
instr->is_array &&
(dmask & (1 << 2));
if (tmp_dst.id() == dst.id() && div_by_6)
tmp_dst = bld.tmp(tmp_dst.regClass());
tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1));
tex->operands[0] = Operand(resource);
tex->operands[1] = Operand(s4); /* no sampler */
tex->operands[2] = Operand(as_vgpr(ctx,lod));
if (ctx->options->chip_class == GFX9 &&
instr->op == nir_texop_txs &&
instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
instr->is_array) {
tex->dmask = (dmask & 0x1) | ((dmask & 0x2) << 1);
} else if (instr->op == nir_texop_query_levels) {
tex->dmask = 1 << 3;
} else {
tex->dmask = dmask;
}
tex->da = da;
tex->definitions[0] = Definition(tmp_dst);
tex->dim = dim;
ctx->block->instructions.emplace_back(std::move(tex));
if (div_by_6) {
/* divide 3rd value by 6 by multiplying with magic number */
emit_split_vector(ctx, tmp_dst, tmp_dst.size());
Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp_dst, 2, v1), c);
assert(instr->dest.ssa.num_components == 3);
Temp tmp = dst.type() == RegType::vgpr ? dst : bld.tmp(v3);
tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
emit_extract_vector(ctx, tmp_dst, 0, v1),
emit_extract_vector(ctx, tmp_dst, 1, v1),
by_6);
}
expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
return;
}
Temp tg4_compare_cube_wa64 = Temp();
if (tg4_integer_workarounds) {
tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1));
tex->operands[0] = Operand(resource);
tex->operands[1] = Operand(s4); /* no sampler */
tex->operands[2] = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
tex->dim = dim;
tex->dmask = 0x3;
tex->da = da;
Temp size = bld.tmp(v2);
tex->definitions[0] = Definition(size);
ctx->block->instructions.emplace_back(std::move(tex));
emit_split_vector(ctx, size, size.size());
Temp half_texel[2];
for (unsigned i = 0; i < 2; i++) {
half_texel[i] = emit_extract_vector(ctx, size, i, v1);
half_texel[i] = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), half_texel[i]);
half_texel[i] = bld.vop1(aco_opcode::v_rcp_iflag_f32, bld.def(v1), half_texel[i]);
half_texel[i] = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0xbf000000/*-0.5*/), half_texel[i]);
}
Temp new_coords[2] = {
bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[0], half_texel[0]),
bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[1], half_texel[1])
};
if (tg4_integer_cube_workaround) {
// see comment in ac_nir_to_llvm.c's lower_gather4_integer()
Temp desc[resource.size()];
aco_ptr<Instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector,
Format::PSEUDO, 1, resource.size())};
split->operands[0] = Operand(resource);
for (unsigned i = 0; i < resource.size(); i++) {
desc[i] = bld.tmp(s1);
split->definitions[i] = Definition(desc[i]);
}
ctx->block->instructions.emplace_back(std::move(split));
Temp dfmt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), desc[1], Operand(20u | (6u << 16)));
Temp compare_cube_wa = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), dfmt,
Operand((uint32_t)V_008F14_IMG_DATA_FORMAT_8_8_8_8));
Temp nfmt;
if (stype == GLSL_TYPE_UINT) {
nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_USCALED),
Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_UINT),
bld.scc(compare_cube_wa));
} else {
nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SSCALED),
Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SINT),
bld.scc(compare_cube_wa));
}
tg4_compare_cube_wa64 = bld.tmp(bld.lm);
bool_to_vector_condition(ctx, compare_cube_wa, tg4_compare_cube_wa64);
nfmt = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), nfmt, Operand(26u));
desc[1] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), desc[1],
Operand((uint32_t)C_008F14_NUM_FORMAT));
desc[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), desc[1], nfmt);
aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
Format::PSEUDO, resource.size(), 1)};
for (unsigned i = 0; i < resource.size(); i++)
vec->operands[i] = Operand(desc[i]);
resource = bld.tmp(resource.regClass());
vec->definitions[0] = Definition(resource);
ctx->block->instructions.emplace_back(std::move(vec));
new_coords[0] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
new_coords[0], coords[0], tg4_compare_cube_wa64);
new_coords[1] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
new_coords[1], coords[1], tg4_compare_cube_wa64);
}
coords[0] = new_coords[0];
coords[1] = new_coords[1];
}
if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
//FIXME: if (ctx->abi->gfx9_stride_size_workaround) return ac_build_buffer_load_format_gfx9_safe()
assert(coords.size() == 1);
unsigned last_bit = util_last_bit(nir_ssa_def_components_read(&instr->dest.ssa));
aco_opcode op;
switch (last_bit) {
case 1:
op = aco_opcode::buffer_load_format_x; break;
case 2:
op = aco_opcode::buffer_load_format_xy; break;
case 3:
op = aco_opcode::buffer_load_format_xyz; break;
case 4:
op = aco_opcode::buffer_load_format_xyzw; break;
default:
unreachable("Tex instruction loads more than 4 components.");
}
/* if the instruction return value matches exactly the nir dest ssa, we can use it directly */
if (last_bit == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
tmp_dst = dst;
else
tmp_dst = bld.tmp(RegType::vgpr, last_bit);
aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
mubuf->operands[0] = Operand(resource);
mubuf->operands[1] = Operand(coords[0]);
mubuf->operands[2] = Operand((uint32_t) 0);
mubuf->definitions[0] = Definition(tmp_dst);
mubuf->idxen = true;
ctx->block->instructions.emplace_back(std::move(mubuf));
expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, (1 << last_bit) - 1);
return;
}
/* gather MIMG address components */
std::vector<Temp> args;
if (has_offset)
args.emplace_back(offset);
if (has_bias)
args.emplace_back(bias);
if (has_compare)
args.emplace_back(compare);
if (has_derivs)
args.insert(args.end(), derivs.begin(), derivs.end());
args.insert(args.end(), coords.begin(), coords.end());
if (has_sample_index)
args.emplace_back(sample_index);
if (has_lod)
args.emplace_back(lod);
if (has_clamped_lod)
args.emplace_back(clamped_lod);
Temp arg = bld.tmp(RegClass(RegType::vgpr, args.size()));
aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, args.size(), 1)};
vec->definitions[0] = Definition(arg);
for (unsigned i = 0; i < args.size(); i++)
vec->operands[i] = Operand(args[i]);
ctx->block->instructions.emplace_back(std::move(vec));
if (instr->op == nir_texop_txf ||
instr->op == nir_texop_txf_ms ||
instr->op == nir_texop_samples_identical ||
instr->op == nir_texop_fragment_fetch ||
instr->op == nir_texop_fragment_mask_fetch) {
aco_opcode op = level_zero || instr->sampler_dim == GLSL_SAMPLER_DIM_MS || instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS ? aco_opcode::image_load : aco_opcode::image_load_mip;
tex.reset(create_instruction<MIMG_instruction>(op, Format::MIMG, 3, 1));
tex->operands[0] = Operand(resource);
tex->operands[1] = Operand(s4); /* no sampler */
tex->operands[2] = Operand(arg);
tex->dim = dim;
tex->dmask = dmask;
tex->unrm = true;
tex->da = da;
tex->definitions[0] = Definition(tmp_dst);
ctx->block->instructions.emplace_back(std::move(tex));
if (instr->op == nir_texop_samples_identical) {
assert(dmask == 1 && dst.regClass() == v1);
assert(dst.id() != tmp_dst.id());
Temp tmp = bld.tmp(bld.lm);
bld.vopc(aco_opcode::v_cmp_eq_u32, Definition(tmp), Operand(0u), tmp_dst).def(0).setHint(vcc);
bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand((uint32_t)-1), tmp);
} else {
expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
}
return;
}
// TODO: would be better to do this by adding offsets, but needs the opcodes ordered.
aco_opcode opcode = aco_opcode::image_sample;
if (has_offset) { /* image_sample_*_o */
if (has_clamped_lod) {
if (has_compare) {
opcode = aco_opcode::image_sample_c_cl_o;
if (has_derivs)
opcode = aco_opcode::image_sample_c_d_cl_o;
if (has_bias)
opcode = aco_opcode::image_sample_c_b_cl_o;
} else {
opcode = aco_opcode::image_sample_cl_o;
if (has_derivs)
opcode = aco_opcode::image_sample_d_cl_o;
if (has_bias)
opcode = aco_opcode::image_sample_b_cl_o;
}
} else if (has_compare) {
opcode = aco_opcode::image_sample_c_o;
if (has_derivs)
opcode = aco_opcode::image_sample_c_d_o;
if (has_bias)
opcode = aco_opcode::image_sample_c_b_o;
if (level_zero)
opcode = aco_opcode::image_sample_c_lz_o;
if (has_lod)
opcode = aco_opcode::image_sample_c_l_o;
} else {
opcode = aco_opcode::image_sample_o;
if (has_derivs)
opcode = aco_opcode::image_sample_d_o;
if (has_bias)
opcode = aco_opcode::image_sample_b_o;
if (level_zero)
opcode = aco_opcode::image_sample_lz_o;
if (has_lod)
opcode = aco_opcode::image_sample_l_o;
}
} else if (has_clamped_lod) { /* image_sample_*_cl */
if (has_compare) {
opcode = aco_opcode::image_sample_c_cl;
if (has_derivs)
opcode = aco_opcode::image_sample_c_d_cl;
if (has_bias)
opcode = aco_opcode::image_sample_c_b_cl;
} else {
opcode = aco_opcode::image_sample_cl;
if (has_derivs)
opcode = aco_opcode::image_sample_d_cl;
if (has_bias)
opcode = aco_opcode::image_sample_b_cl;
}
} else { /* no offset */
if (has_compare) {
opcode = aco_opcode::image_sample_c;
if (has_derivs)
opcode = aco_opcode::image_sample_c_d;
if (has_bias)
opcode = aco_opcode::image_sample_c_b;
if (level_zero)
opcode = aco_opcode::image_sample_c_lz;
if (has_lod)
opcode = aco_opcode::image_sample_c_l;
} else {
opcode = aco_opcode::image_sample;
if (has_derivs)
opcode = aco_opcode::image_sample_d;
if (has_bias)
opcode = aco_opcode::image_sample_b;
if (level_zero)
opcode = aco_opcode::image_sample_lz;
if (has_lod)
opcode = aco_opcode::image_sample_l;
}
}
if (instr->op == nir_texop_tg4) {
if (has_offset) { /* image_gather4_*_o */
if (has_compare) {
opcode = aco_opcode::image_gather4_c_lz_o;
if (has_lod)
opcode = aco_opcode::image_gather4_c_l_o;
if (has_bias)
opcode = aco_opcode::image_gather4_c_b_o;
} else {
opcode = aco_opcode::image_gather4_lz_o;
if (has_lod)
opcode = aco_opcode::image_gather4_l_o;
if (has_bias)
opcode = aco_opcode::image_gather4_b_o;
}
} else {
if (has_compare) {
opcode = aco_opcode::image_gather4_c_lz;
if (has_lod)
opcode = aco_opcode::image_gather4_c_l;
if (has_bias)
opcode = aco_opcode::image_gather4_c_b;
} else {
opcode = aco_opcode::image_gather4_lz;
if (has_lod)
opcode = aco_opcode::image_gather4_l;
if (has_bias)
opcode = aco_opcode::image_gather4_b;
}
}
} else if (instr->op == nir_texop_lod) {
opcode = aco_opcode::image_get_lod;
}
/* we don't need the bias, sample index, compare value or offset to be
* computed in WQM but if the p_create_vector copies the coordinates, then it
* needs to be in WQM */
if (ctx->stage == fragment_fs &&
!has_derivs && !has_lod && !level_zero &&
instr->sampler_dim != GLSL_SAMPLER_DIM_MS &&
instr->sampler_dim != GLSL_SAMPLER_DIM_SUBPASS_MS)
arg = emit_wqm(ctx, arg, bld.tmp(arg.regClass()), true);
tex.reset(create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1));
tex->operands[0] = Operand(resource);
tex->operands[1] = Operand(sampler);
tex->operands[2] = Operand(arg);
tex->dim = dim;
tex->dmask = dmask;
tex->da = da;
tex->definitions[0] = Definition(tmp_dst);
ctx->block->instructions.emplace_back(std::move(tex));
if (tg4_integer_cube_workaround) {
assert(tmp_dst.id() != dst.id());
assert(tmp_dst.size() == dst.size() && dst.size() == 4);
emit_split_vector(ctx, tmp_dst, tmp_dst.size());
Temp val[4];
for (unsigned i = 0; i < dst.size(); i++) {
val[i] = emit_extract_vector(ctx, tmp_dst, i, v1);
Temp cvt_val;
if (stype == GLSL_TYPE_UINT)
cvt_val = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), val[i]);
else
cvt_val = bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), val[i]);
val[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), val[i], cvt_val, tg4_compare_cube_wa64);
}
Temp tmp = dst.regClass() == v4 ? dst : bld.tmp(v4);
tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
val[0], val[1], val[2], val[3]);
}
unsigned mask = instr->op == nir_texop_tg4 ? 0xF : dmask;
expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, mask);
}
Operand get_phi_operand(isel_context *ctx, nir_ssa_def *ssa, RegClass rc, bool logical)
{
Temp tmp = get_ssa_temp(ctx, ssa);
if (ssa->parent_instr->type == nir_instr_type_ssa_undef) {
return Operand(rc);
} else if (logical && ssa->bit_size == 1 && ssa->parent_instr->type == nir_instr_type_load_const) {
if (ctx->program->wave_size == 64)
return Operand(nir_instr_as_load_const(ssa->parent_instr)->value[0].b ? UINT64_MAX : 0u);
else
return Operand(nir_instr_as_load_const(ssa->parent_instr)->value[0].b ? UINT32_MAX : 0u);
} else {
return Operand(tmp);
}
}
void visit_phi(isel_context *ctx, nir_phi_instr *instr)
{
aco_ptr<Pseudo_instruction> phi;
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
assert(instr->dest.ssa.bit_size != 1 || dst.regClass() == ctx->program->lane_mask);
bool logical = !dst.is_linear() || nir_dest_is_divergent(instr->dest);
logical |= ctx->block->kind & block_kind_merge;
aco_opcode opcode = logical ? aco_opcode::p_phi : aco_opcode::p_linear_phi;
/* we want a sorted list of sources, since the predecessor list is also sorted */
std::map<unsigned, nir_ssa_def*> phi_src;
nir_foreach_phi_src(src, instr)
phi_src[src->pred->index] = src->src.ssa;
std::vector<unsigned>& preds = logical ? ctx->block->logical_preds : ctx->block->linear_preds;
unsigned num_operands = 0;
Operand operands[std::max(exec_list_length(&instr->srcs), (unsigned)preds.size()) + 1];
unsigned num_defined = 0;
unsigned cur_pred_idx = 0;
for (std::pair<unsigned, nir_ssa_def *> src : phi_src) {
if (cur_pred_idx < preds.size()) {
/* handle missing preds (IF merges with discard/break) and extra preds (loop exit with discard) */
unsigned block = ctx->cf_info.nir_to_aco[src.first];
unsigned skipped = 0;
while (cur_pred_idx + skipped < preds.size() && preds[cur_pred_idx + skipped] != block)
skipped++;
if (cur_pred_idx + skipped < preds.size()) {
for (unsigned i = 0; i < skipped; i++)
operands[num_operands++] = Operand(dst.regClass());
cur_pred_idx += skipped;
} else {
continue;
}
}
/* Handle missing predecessors at the end. This shouldn't happen with loop
* headers and we can't ignore these sources for loop header phis. */
if (!(ctx->block->kind & block_kind_loop_header) && cur_pred_idx >= preds.size())
continue;
cur_pred_idx++;
Operand op = get_phi_operand(ctx, src.second, dst.regClass(), logical);
operands[num_operands++] = op;
num_defined += !op.isUndefined();
}
/* handle block_kind_continue_or_break at loop exit blocks */
while (cur_pred_idx++ < preds.size())
operands[num_operands++] = Operand(dst.regClass());
/* If the loop ends with a break, still add a linear continue edge in case
* that break is divergent or continue_or_break is used. We'll either remove
* this operand later in visit_loop() if it's not necessary or replace the
* undef with something correct. */
if (!logical && ctx->block->kind & block_kind_loop_header) {
nir_loop *loop = nir_cf_node_as_loop(instr->instr.block->cf_node.parent);
nir_block *last = nir_loop_last_block(loop);
if (last->successors[0] != instr->instr.block)
operands[num_operands++] = Operand(RegClass());
}
if (num_defined == 0) {
Builder bld(ctx->program, ctx->block);
if (dst.regClass() == s1) {
bld.sop1(aco_opcode::s_mov_b32, Definition(dst), Operand(0u));
} else if (dst.regClass() == v1) {
bld.vop1(aco_opcode::v_mov_b32, Definition(dst), Operand(0u));
} else {
aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
for (unsigned i = 0; i < dst.size(); i++)
vec->operands[i] = Operand(0u);
vec->definitions[0] = Definition(dst);
ctx->block->instructions.emplace_back(std::move(vec));
}
return;
}
/* we can use a linear phi in some cases if one src is undef */
if (dst.is_linear() && ctx->block->kind & block_kind_merge && num_defined == 1) {
phi.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, num_operands, 1));
Block *linear_else = &ctx->program->blocks[ctx->block->linear_preds[1]];
Block *invert = &ctx->program->blocks[linear_else->linear_preds[0]];
assert(invert->kind & block_kind_invert);
unsigned then_block = invert->linear_preds[0];
Block* insert_block = NULL;
for (unsigned i = 0; i < num_operands; i++) {
Operand op = operands[i];
if (op.isUndefined())
continue;
insert_block = ctx->block->logical_preds[i] == then_block ? invert : ctx->block;
phi->operands[0] = op;
break;
}
assert(insert_block); /* should be handled by the "num_defined == 0" case above */
phi->operands[1] = Operand(dst.regClass());
phi->definitions[0] = Definition(dst);
insert_block->instructions.emplace(insert_block->instructions.begin(), std::move(phi));
return;
}
/* try to scalarize vector phis */
if (instr->dest.ssa.bit_size != 1 && dst.size() > 1) {
// TODO: scalarize linear phis on divergent ifs
bool can_scalarize = (opcode == aco_opcode::p_phi || !(ctx->block->kind & block_kind_merge));
std::array<Temp, NIR_MAX_VEC_COMPONENTS> new_vec;
for (unsigned i = 0; can_scalarize && (i < num_operands); i++) {
Operand src = operands[i];
if (src.isTemp() && ctx->allocated_vec.find(src.tempId()) == ctx->allocated_vec.end())
can_scalarize = false;
}
if (can_scalarize) {
unsigned num_components = instr->dest.ssa.num_components;
assert(dst.size() % num_components == 0);
RegClass rc = RegClass(dst.type(), dst.size() / num_components);
aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
for (unsigned k = 0; k < num_components; k++) {
phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
for (unsigned i = 0; i < num_operands; i++) {
Operand src = operands[i];
phi->operands[i] = src.isTemp() ? Operand(ctx->allocated_vec[src.tempId()][k]) : Operand(rc);
}
Temp phi_dst = {ctx->program->allocateId(), rc};
phi->definitions[0] = Definition(phi_dst);
ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
new_vec[k] = phi_dst;
vec->operands[k] = Operand(phi_dst);
}
vec->definitions[0] = Definition(dst);
ctx->block->instructions.emplace_back(std::move(vec));
ctx->allocated_vec.emplace(dst.id(), new_vec);
return;
}
}
phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
for (unsigned i = 0; i < num_operands; i++)
phi->operands[i] = operands[i];
phi->definitions[0] = Definition(dst);
ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
}
void visit_undef(isel_context *ctx, nir_ssa_undef_instr *instr)
{
Temp dst = get_ssa_temp(ctx, &instr->def);
assert(dst.type() == RegType::sgpr);
if (dst.size() == 1) {
Builder(ctx->program, ctx->block).copy(Definition(dst), Operand(0u));
} else {
aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
for (unsigned i = 0; i < dst.size(); i++)
vec->operands[i] = Operand(0u);
vec->definitions[0] = Definition(dst);
ctx->block->instructions.emplace_back(std::move(vec));
}
}
void visit_jump(isel_context *ctx, nir_jump_instr *instr)
{
Builder bld(ctx->program, ctx->block);
Block *logical_target;
append_logical_end(ctx->block);
unsigned idx = ctx->block->index;
switch (instr->type) {
case nir_jump_break:
logical_target = ctx->cf_info.parent_loop.exit;
add_logical_edge(idx, logical_target);
ctx->block->kind |= block_kind_break;
if (!ctx->cf_info.parent_if.is_divergent &&
!ctx->cf_info.parent_loop.has_divergent_continue) {
/* uniform break - directly jump out of the loop */
ctx->block->kind |= block_kind_uniform;
ctx->cf_info.has_branch = true;
bld.branch(aco_opcode::p_branch);
add_linear_edge(idx, logical_target);
return;
}
ctx->cf_info.parent_loop.has_divergent_branch = true;
ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
break;
case nir_jump_continue:
logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
add_logical_edge(idx, logical_target);
ctx->block->kind |= block_kind_continue;
if (ctx->cf_info.parent_if.is_divergent) {
/* for potential uniform breaks after this continue,
we must ensure that they are handled correctly */
ctx->cf_info.parent_loop.has_divergent_continue = true;
ctx->cf_info.parent_loop.has_divergent_branch = true;
ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
} else {
/* uniform continue - directly jump to the loop header */
ctx->block->kind |= block_kind_uniform;
ctx->cf_info.has_branch = true;
bld.branch(aco_opcode::p_branch);
add_linear_edge(idx, logical_target);
return;
}
break;
default:
isel_err(&instr->instr, "Unknown NIR jump instr");
abort();
}
if (ctx->cf_info.parent_if.is_divergent && !ctx->cf_info.exec_potentially_empty_break) {
ctx->cf_info.exec_potentially_empty_break = true;
ctx->cf_info.exec_potentially_empty_break_depth = ctx->cf_info.loop_nest_depth;
}
/* remove critical edges from linear CFG */
bld.branch(aco_opcode::p_branch);
Block* break_block = ctx->program->create_and_insert_block();
break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
break_block->kind |= block_kind_uniform;
add_linear_edge(idx, break_block);
/* the loop_header pointer might be invalidated by this point */
if (instr->type == nir_jump_continue)
logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
add_linear_edge(break_block->index, logical_target);
bld.reset(break_block);
bld.branch(aco_opcode::p_branch);
Block* continue_block = ctx->program->create_and_insert_block();
continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
add_linear_edge(idx, continue_block);
append_logical_start(continue_block);
ctx->block = continue_block;
return;
}
void visit_block(isel_context *ctx, nir_block *block)
{
nir_foreach_instr(instr, block) {
switch (instr->type) {
case nir_instr_type_alu:
visit_alu_instr(ctx, nir_instr_as_alu(instr));
break;
case nir_instr_type_load_const:
visit_load_const(ctx, nir_instr_as_load_const(instr));
break;
case nir_instr_type_intrinsic:
visit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
break;
case nir_instr_type_tex:
visit_tex(ctx, nir_instr_as_tex(instr));
break;
case nir_instr_type_phi:
visit_phi(ctx, nir_instr_as_phi(instr));
break;
case nir_instr_type_ssa_undef:
visit_undef(ctx, nir_instr_as_ssa_undef(instr));
break;
case nir_instr_type_deref:
break;
case nir_instr_type_jump:
visit_jump(ctx, nir_instr_as_jump(instr));
break;
default:
isel_err(instr, "Unknown NIR instr type");
//abort();
}
}
if (!ctx->cf_info.parent_loop.has_divergent_branch)
ctx->cf_info.nir_to_aco[block->index] = ctx->block->index;
}
static Operand create_continue_phis(isel_context *ctx, unsigned first, unsigned last,
aco_ptr<Instruction>& header_phi, Operand *vals)
{
vals[0] = Operand(header_phi->definitions[0].getTemp());
RegClass rc = vals[0].regClass();
unsigned loop_nest_depth = ctx->program->blocks[first].loop_nest_depth;
unsigned next_pred = 1;
for (unsigned idx = first + 1; idx <= last; idx++) {
Block& block = ctx->program->blocks[idx];
if (block.loop_nest_depth != loop_nest_depth) {
vals[idx - first] = vals[idx - 1 - first];
continue;
}
if (block.kind & block_kind_continue) {
vals[idx - first] = header_phi->operands[next_pred];
next_pred++;
continue;
}
bool all_same = true;
for (unsigned i = 1; all_same && (i < block.linear_preds.size()); i++)
all_same = vals[block.linear_preds[i] - first] == vals[block.linear_preds[0] - first];
Operand val;
if (all_same) {
val = vals[block.linear_preds[0] - first];
} else {
aco_ptr<Instruction> phi(create_instruction<Pseudo_instruction>(
aco_opcode::p_linear_phi, Format::PSEUDO, block.linear_preds.size(), 1));
for (unsigned i = 0; i < block.linear_preds.size(); i++)
phi->operands[i] = vals[block.linear_preds[i] - first];
val = Operand(Temp(ctx->program->allocateId(), rc));
phi->definitions[0] = Definition(val.getTemp());
block.instructions.emplace(block.instructions.begin(), std::move(phi));
}
vals[idx - first] = val;
}
return vals[last - first];
}
static void visit_loop(isel_context *ctx, nir_loop *loop)
{
//TODO: we might want to wrap the loop around a branch if exec_potentially_empty=true
append_logical_end(ctx->block);
ctx->block->kind |= block_kind_loop_preheader | block_kind_uniform;
Builder bld(ctx->program, ctx->block);
bld.branch(aco_opcode::p_branch);
unsigned loop_preheader_idx = ctx->block->index;
Block loop_exit = Block();
loop_exit.loop_nest_depth = ctx->cf_info.loop_nest_depth;
loop_exit.kind |= (block_kind_loop_exit | (ctx->block->kind & block_kind_top_level));
Block* loop_header = ctx->program->create_and_insert_block();
loop_header->loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
loop_header->kind |= block_kind_loop_header;
add_edge(loop_preheader_idx, loop_header);
ctx->block = loop_header;
/* emit loop body */
unsigned loop_header_idx = loop_header->index;
loop_info_RAII loop_raii(ctx, loop_header_idx, &loop_exit);
append_logical_start(ctx->block);
bool unreachable = visit_cf_list(ctx, &loop->body);
//TODO: what if a loop ends with a unconditional or uniformly branched continue and this branch is never taken?
if (!ctx->cf_info.has_branch) {
append_logical_end(ctx->block);
if (ctx->cf_info.exec_potentially_empty_discard || ctx->cf_info.exec_potentially_empty_break) {
/* Discards can result in code running with an empty exec mask.
* This would result in divergent breaks not ever being taken. As a
* workaround, break the loop when the loop mask is empty instead of
* always continuing. */
ctx->block->kind |= (block_kind_continue_or_break | block_kind_uniform);
unsigned block_idx = ctx->block->index;
/* create helper blocks to avoid critical edges */
Block *break_block = ctx->program->create_and_insert_block();
break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
break_block->kind = block_kind_uniform;
bld.reset(break_block);
bld.branch(aco_opcode::p_branch);
add_linear_edge(block_idx, break_block);
add_linear_edge(break_block->index, &loop_exit);
Block *continue_block = ctx->program->create_and_insert_block();
continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
continue_block->kind = block_kind_uniform;
bld.reset(continue_block);
bld.branch(aco_opcode::p_branch);
add_linear_edge(block_idx, continue_block);
add_linear_edge(continue_block->index, &ctx->program->blocks[loop_header_idx]);
if (!ctx->cf_info.parent_loop.has_divergent_branch)
add_logical_edge(block_idx, &ctx->program->blocks[loop_header_idx]);
ctx->block = &ctx->program->blocks[block_idx];
} else {
ctx->block->kind |= (block_kind_continue | block_kind_uniform);
if (!ctx->cf_info.parent_loop.has_divergent_branch)
add_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
else
add_linear_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
}
bld.reset(ctx->block);
bld.branch(aco_opcode::p_branch);
}
/* Fixup phis in loop header from unreachable blocks.
* has_branch/has_divergent_branch also indicates if the loop ends with a
* break/continue instruction, but we don't emit those if unreachable=true */
if (unreachable) {
assert(ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch);
bool linear = ctx->cf_info.has_branch;
bool logical = ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch;
for (aco_ptr<Instruction>& instr : ctx->program->blocks[loop_header_idx].instructions) {
if ((logical && instr->opcode == aco_opcode::p_phi) ||
(linear && instr->opcode == aco_opcode::p_linear_phi)) {
/* the last operand should be the one that needs to be removed */
instr->operands.pop_back();
} else if (!is_phi(instr)) {
break;
}
}
}
/* Fixup linear phis in loop header from expecting a continue. Both this fixup
* and the previous one shouldn't both happen at once because a break in the
* merge block would get CSE'd */
if (nir_loop_last_block(loop)->successors[0] != nir_loop_first_block(loop)) {
unsigned num_vals = ctx->cf_info.has_branch ? 1 : (ctx->block->index - loop_header_idx + 1);
Operand vals[num_vals];
for (aco_ptr<Instruction>& instr : ctx->program->blocks[loop_header_idx].instructions) {
if (instr->opcode == aco_opcode::p_linear_phi) {
if (ctx->cf_info.has_branch)
instr->operands.pop_back();
else
instr->operands.back() = create_continue_phis(ctx, loop_header_idx, ctx->block->index, instr, vals);
} else if (!is_phi(instr)) {
break;
}
}
}
ctx->cf_info.has_branch = false;
// TODO: if the loop has not a single exit, we must add one °°
/* emit loop successor block */
ctx->block = ctx->program->insert_block(std::move(loop_exit));
append_logical_start(ctx->block);
#if 0
// TODO: check if it is beneficial to not branch on continues
/* trim linear phis in loop header */
for (auto&& instr : loop_entry->instructions) {
if (instr->opcode == aco_opcode::p_linear_phi) {
aco_ptr<Pseudo_instruction> new_phi{create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, loop_entry->linear_predecessors.size(), 1)};
new_phi->definitions[0] = instr->definitions[0];
for (unsigned i = 0; i < new_phi->operands.size(); i++)
new_phi->operands[i] = instr->operands[i];
/* check that the remaining operands are all the same */
for (unsigned i = new_phi->operands.size(); i < instr->operands.size(); i++)
assert(instr->operands[i].tempId() == instr->operands.back().tempId());
instr.swap(new_phi);
} else if (instr->opcode == aco_opcode::p_phi) {
continue;
} else {
break;
}
}
#endif
}
static void begin_divergent_if_then(isel_context *ctx, if_context *ic, Temp cond)
{
ic->cond = cond;
append_logical_end(ctx->block);
ctx->block->kind |= block_kind_branch;
/* branch to linear then block */
assert(cond.regClass() == ctx->program->lane_mask);
aco_ptr<Pseudo_branch_instruction> branch;
branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_z, Format::PSEUDO_BRANCH, 1, 0));
branch->operands[0] = Operand(cond);
ctx->block->instructions.push_back(std::move(branch));
ic->BB_if_idx = ctx->block->index;
ic->BB_invert = Block();
ic->BB_invert.loop_nest_depth = ctx->cf_info.loop_nest_depth;
/* Invert blocks are intentionally not marked as top level because they
* are not part of the logical cfg. */
ic->BB_invert.kind |= block_kind_invert;
ic->BB_endif = Block();
ic->BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
ic->BB_endif.kind |= (block_kind_merge | (ctx->block->kind & block_kind_top_level));
ic->exec_potentially_empty_discard_old = ctx->cf_info.exec_potentially_empty_discard;
ic->exec_potentially_empty_break_old = ctx->cf_info.exec_potentially_empty_break;
ic->exec_potentially_empty_break_depth_old = ctx->cf_info.exec_potentially_empty_break_depth;
ic->divergent_old = ctx->cf_info.parent_if.is_divergent;
ctx->cf_info.parent_if.is_divergent = true;
/* divergent branches use cbranch_execz */
ctx->cf_info.exec_potentially_empty_discard = false;
ctx->cf_info.exec_potentially_empty_break = false;
ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
/** emit logical then block */
Block* BB_then_logical = ctx->program->create_and_insert_block();
BB_then_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
add_edge(ic->BB_if_idx, BB_then_logical);
ctx->block = BB_then_logical;
append_logical_start(BB_then_logical);
}
static void begin_divergent_if_else(isel_context *ctx, if_context *ic)
{
Block *BB_then_logical = ctx->block;
append_logical_end(BB_then_logical);
/* branch from logical then block to invert block */
aco_ptr<Pseudo_branch_instruction> branch;
branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
BB_then_logical->instructions.emplace_back(std::move(branch));
add_linear_edge(BB_then_logical->index, &ic->BB_invert);
if (!ctx->cf_info.parent_loop.has_divergent_branch)
add_logical_edge(BB_then_logical->index, &ic->BB_endif);
BB_then_logical->kind |= block_kind_uniform;
assert(!ctx->cf_info.has_branch);
ic->then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
ctx->cf_info.parent_loop.has_divergent_branch = false;
/** emit linear then block */
Block* BB_then_linear = ctx->program->create_and_insert_block();
BB_then_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
BB_then_linear->kind |= block_kind_uniform;
add_linear_edge(ic->BB_if_idx, BB_then_linear);
/* branch from linear then block to invert block */
branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
BB_then_linear->instructions.emplace_back(std::move(branch));
add_linear_edge(BB_then_linear->index, &ic->BB_invert);
/** emit invert merge block */
ctx->block = ctx->program->insert_block(std::move(ic->BB_invert));
ic->invert_idx = ctx->block->index;
/* branch to linear else block (skip else) */
branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_nz, Format::PSEUDO_BRANCH, 1, 0));
branch->operands[0] = Operand(ic->cond);
ctx->block->instructions.push_back(std::move(branch));
ic->exec_potentially_empty_discard_old |= ctx->cf_info.exec_potentially_empty_discard;
ic->exec_potentially_empty_break_old |= ctx->cf_info.exec_potentially_empty_break;
ic->exec_potentially_empty_break_depth_old =
std::min(ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth);
/* divergent branches use cbranch_execz */
ctx->cf_info.exec_potentially_empty_discard = false;
ctx->cf_info.exec_potentially_empty_break = false;
ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
/** emit logical else block */
Block* BB_else_logical = ctx->program->create_and_insert_block();
BB_else_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
add_logical_edge(ic->BB_if_idx, BB_else_logical);
add_linear_edge(ic->invert_idx, BB_else_logical);
ctx->block = BB_else_logical;
append_logical_start(BB_else_logical);
}
static void end_divergent_if(isel_context *ctx, if_context *ic)
{
Block *BB_else_logical = ctx->block;
append_logical_end(BB_else_logical);
/* branch from logical else block to endif block */
aco_ptr<Pseudo_branch_instruction> branch;
branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
BB_else_logical->instructions.emplace_back(std::move(branch));
add_linear_edge(BB_else_logical->index, &ic->BB_endif);
if (!ctx->cf_info.parent_loop.has_divergent_branch)
add_logical_edge(BB_else_logical->index, &ic->BB_endif);
BB_else_logical->kind |= block_kind_uniform;
assert(!ctx->cf_info.has_branch);
ctx->cf_info.parent_loop.has_divergent_branch &= ic->then_branch_divergent;
/** emit linear else block */
Block* BB_else_linear = ctx->program->create_and_insert_block();
BB_else_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
BB_else_linear->kind |= block_kind_uniform;
add_linear_edge(ic->invert_idx, BB_else_linear);
/* branch from linear else block to endif block */
branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
BB_else_linear->instructions.emplace_back(std::move(branch));
add_linear_edge(BB_else_linear->index, &ic->BB_endif);
/** emit endif merge block */
ctx->block = ctx->program->insert_block(std::move(ic->BB_endif));
append_logical_start(ctx->block);
ctx->cf_info.parent_if.is_divergent = ic->divergent_old;
ctx->cf_info.exec_potentially_empty_discard |= ic->exec_potentially_empty_discard_old;
ctx->cf_info.exec_potentially_empty_break |= ic->exec_potentially_empty_break_old;
ctx->cf_info.exec_potentially_empty_break_depth =
std::min(ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth);
if (ctx->cf_info.loop_nest_depth == ctx->cf_info.exec_potentially_empty_break_depth &&
!ctx->cf_info.parent_if.is_divergent) {
ctx->cf_info.exec_potentially_empty_break = false;
ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
}
/* uniform control flow never has an empty exec-mask */
if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent) {
ctx->cf_info.exec_potentially_empty_discard = false;
ctx->cf_info.exec_potentially_empty_break = false;
ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
}
}
static void begin_uniform_if_then(isel_context *ctx, if_context *ic, Temp cond)
{
assert(cond.regClass() == s1);
append_logical_end(ctx->block);
ctx->block->kind |= block_kind_uniform;
aco_ptr<Pseudo_branch_instruction> branch;
aco_opcode branch_opcode = aco_opcode::p_cbranch_z;
branch.reset(create_instruction<Pseudo_branch_instruction>(branch_opcode, Format::PSEUDO_BRANCH, 1, 0));
branch->operands[0] = Operand(cond);
branch->operands[0].setFixed(scc);
ctx->block->instructions.emplace_back(std::move(branch));
ic->BB_if_idx = ctx->block->index;
ic->BB_endif = Block();
ic->BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
ic->BB_endif.kind |= ctx->block->kind & block_kind_top_level;
ctx->cf_info.has_branch = false;
ctx->cf_info.parent_loop.has_divergent_branch = false;
/** emit then block */
Block* BB_then = ctx->program->create_and_insert_block();
BB_then->loop_nest_depth = ctx->cf_info.loop_nest_depth;
add_edge(ic->BB_if_idx, BB_then);
append_logical_start(BB_then);
ctx->block = BB_then;
}
static void begin_uniform_if_else(isel_context *ctx, if_context *ic)
{
Block *BB_then = ctx->block;
ic->uniform_has_then_branch = ctx->cf_info.has_branch;
ic->then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
if (!ic->uniform_has_then_branch) {
append_logical_end(BB_then);
/* branch from then block to endif block */
aco_ptr<Pseudo_branch_instruction> branch;
branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
BB_then->instructions.emplace_back(std::move(branch));
add_linear_edge(BB_then->index, &ic->BB_endif);
if (!ic->then_branch_divergent)
add_logical_edge(BB_then->index, &ic->BB_endif);
BB_then->kind |= block_kind_uniform;
}
ctx->cf_info.has_branch = false;
ctx->cf_info.parent_loop.has_divergent_branch = false;
/** emit else block */
Block* BB_else = ctx->program->create_and_insert_block();
BB_else->loop_nest_depth = ctx->cf_info.loop_nest_depth;
add_edge(ic->BB_if_idx, BB_else);
append_logical_start(BB_else);
ctx->block = BB_else;
}
static void end_uniform_if(isel_context *ctx, if_context *ic)
{
Block *BB_else = ctx->block;
if (!ctx->cf_info.has_branch) {
append_logical_end(BB_else);
/* branch from then block to endif block */
aco_ptr<Pseudo_branch_instruction> branch;
branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
BB_else->instructions.emplace_back(std::move(branch));
add_linear_edge(BB_else->index, &ic->BB_endif);
if (!ctx->cf_info.parent_loop.has_divergent_branch)
add_logical_edge(BB_else->index, &ic->BB_endif);
BB_else->kind |= block_kind_uniform;
}
ctx->cf_info.has_branch &= ic->uniform_has_then_branch;
ctx->cf_info.parent_loop.has_divergent_branch &= ic->then_branch_divergent;
/** emit endif merge block */
if (!ctx->cf_info.has_branch) {
ctx->block = ctx->program->insert_block(std::move(ic->BB_endif));
append_logical_start(ctx->block);
}
}
static bool visit_if(isel_context *ctx, nir_if *if_stmt)
{
Temp cond = get_ssa_temp(ctx, if_stmt->condition.ssa);
Builder bld(ctx->program, ctx->block);
aco_ptr<Pseudo_branch_instruction> branch;
if_context ic;
if (!nir_src_is_divergent(if_stmt->condition)) { /* uniform condition */
/**
* Uniform conditionals are represented in the following way*) :
*
* The linear and logical CFG:
* BB_IF
* / \
* BB_THEN (logical) BB_ELSE (logical)
* \ /
* BB_ENDIF
*
* *) Exceptions may be due to break and continue statements within loops
* If a break/continue happens within uniform control flow, it branches
* to the loop exit/entry block. Otherwise, it branches to the next
* merge block.
**/
// TODO: in a post-RA optimizer, we could check if the condition is in VCC and omit this instruction
assert(cond.regClass() == ctx->program->lane_mask);
cond = bool_to_scalar_condition(ctx, cond);
begin_uniform_if_then(ctx, &ic, cond);
visit_cf_list(ctx, &if_stmt->then_list);
begin_uniform_if_else(ctx, &ic);
visit_cf_list(ctx, &if_stmt->else_list);
end_uniform_if(ctx, &ic);
} else { /* non-uniform condition */
/**
* To maintain a logical and linear CFG without critical edges,
* non-uniform conditionals are represented in the following way*) :
*
* The linear CFG:
* BB_IF
* / \
* BB_THEN (logical) BB_THEN (linear)
* \ /
* BB_INVERT (linear)
* / \
* BB_ELSE (logical) BB_ELSE (linear)
* \ /
* BB_ENDIF
*
* The logical CFG:
* BB_IF
* / \
* BB_THEN (logical) BB_ELSE (logical)
* \ /
* BB_ENDIF
*
* *) Exceptions may be due to break and continue statements within loops
**/
begin_divergent_if_then(ctx, &ic, cond);
visit_cf_list(ctx, &if_stmt->then_list);
begin_divergent_if_else(ctx, &ic);
visit_cf_list(ctx, &if_stmt->else_list);
end_divergent_if(ctx, &ic);
}
return !ctx->cf_info.has_branch && !ctx->block->logical_preds.empty();
}
static bool visit_cf_list(isel_context *ctx,
struct exec_list *list)
{
foreach_list_typed(nir_cf_node, node, node, list) {
switch (node->type) {
case nir_cf_node_block:
visit_block(ctx, nir_cf_node_as_block(node));
break;
case nir_cf_node_if:
if (!visit_if(ctx, nir_cf_node_as_if(node)))
return true;
break;
case nir_cf_node_loop:
visit_loop(ctx, nir_cf_node_as_loop(node));
break;
default:
unreachable("unimplemented cf list type");
}
}
return false;
}
static void create_null_export(isel_context *ctx)
{
/* Some shader stages always need to have exports.
* So when there is none, we need to add a null export.
*/
unsigned dest = (ctx->program->stage & hw_fs) ? 9 /* NULL */ : V_008DFC_SQ_EXP_POS;
bool vm = (ctx->program->stage & hw_fs) || ctx->program->chip_class >= GFX10;
Builder bld(ctx->program, ctx->block);
bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
/* enabled_mask */ 0, dest, /* compr */ false, /* done */ true, vm);
}
static bool export_vs_varying(isel_context *ctx, int slot, bool is_pos, int *next_pos)
{
assert(ctx->stage == vertex_vs ||
ctx->stage == tess_eval_vs ||
ctx->stage == gs_copy_vs ||
ctx->stage == ngg_vertex_gs ||
ctx->stage == ngg_tess_eval_gs);
int offset = (ctx->stage & sw_tes)
? ctx->program->info->tes.outinfo.vs_output_param_offset[slot]
: ctx->program->info->vs.outinfo.vs_output_param_offset[slot];
uint64_t mask = ctx->outputs.mask[slot];
if (!is_pos && !mask)
return false;
if (!is_pos && offset == AC_EXP_PARAM_UNDEFINED)
return false;
aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
exp->enabled_mask = mask;
for (unsigned i = 0; i < 4; ++i) {
if (mask & (1 << i))
exp->operands[i] = Operand(ctx->outputs.temps[slot * 4u + i]);
else
exp->operands[i] = Operand(v1);
}
/* GFX10 (Navi1x) skip POS0 exports if EXEC=0 and DONE=0, causing a hang.
* Setting valid_mask=1 prevents it and has no other effect.
*/
exp->valid_mask = ctx->options->chip_class == GFX10 && is_pos && *next_pos == 0;
exp->done = false;
exp->compressed = false;
if (is_pos)
exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
else
exp->dest = V_008DFC_SQ_EXP_PARAM + offset;
ctx->block->instructions.emplace_back(std::move(exp));
return true;
}
static void export_vs_psiz_layer_viewport(isel_context *ctx, int *next_pos)
{
aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
exp->enabled_mask = 0;
for (unsigned i = 0; i < 4; ++i)
exp->operands[i] = Operand(v1);
if (ctx->outputs.mask[VARYING_SLOT_PSIZ]) {
exp->operands[0] = Operand(ctx->outputs.temps[VARYING_SLOT_PSIZ * 4u]);
exp->enabled_mask |= 0x1;
}
if (ctx->outputs.mask[VARYING_SLOT_LAYER]) {
exp->operands[2] = Operand(ctx->outputs.temps[VARYING_SLOT_LAYER * 4u]);
exp->enabled_mask |= 0x4;
}
if (ctx->outputs.mask[VARYING_SLOT_VIEWPORT]) {
if (ctx->options->chip_class < GFX9) {
exp->operands[3] = Operand(ctx->outputs.temps[VARYING_SLOT_VIEWPORT * 4u]);
exp->enabled_mask |= 0x8;
} else {
Builder bld(ctx->program, ctx->block);
Temp out = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u),
Operand(ctx->outputs.temps[VARYING_SLOT_VIEWPORT * 4u]));
if (exp->operands[2].isTemp())
out = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(out), exp->operands[2]);
exp->operands[2] = Operand(out);
exp->enabled_mask |= 0x4;
}
}
exp->valid_mask = ctx->options->chip_class == GFX10 && *next_pos == 0;
exp->done = false;
exp->compressed = false;
exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
ctx->block->instructions.emplace_back(std::move(exp));
}
static void create_export_phis(isel_context *ctx)
{
/* Used when exports are needed, but the output temps are defined in a preceding block.
* This function will set up phis in order to access the outputs in the next block.
*/
assert(ctx->block->instructions.back()->opcode == aco_opcode::p_logical_start);
aco_ptr<Instruction> logical_start = aco_ptr<Instruction>(ctx->block->instructions.back().release());
ctx->block->instructions.pop_back();
Builder bld(ctx->program, ctx->block);
for (unsigned slot = 0; slot <= VARYING_SLOT_VAR31; ++slot) {
uint64_t mask = ctx->outputs.mask[slot];
for (unsigned i = 0; i < 4; ++i) {
if (!(mask & (1 << i)))
continue;
Temp old = ctx->outputs.temps[slot * 4 + i];
Temp phi = bld.pseudo(aco_opcode::p_phi, bld.def(v1), old, Operand(v1));
ctx->outputs.temps[slot * 4 + i] = phi;
}
}
bld.insert(std::move(logical_start));
}
static void create_vs_exports(isel_context *ctx)
{
assert(ctx->stage == vertex_vs ||
ctx->stage == tess_eval_vs ||
ctx->stage == gs_copy_vs ||
ctx->stage == ngg_vertex_gs ||
ctx->stage == ngg_tess_eval_gs);
radv_vs_output_info *outinfo = (ctx->stage & sw_tes)
? &ctx->program->info->tes.outinfo
: &ctx->program->info->vs.outinfo;
if (outinfo->export_prim_id && !(ctx->stage & hw_ngg_gs)) {
ctx->outputs.mask[VARYING_SLOT_PRIMITIVE_ID] |= 0x1;
ctx->outputs.temps[VARYING_SLOT_PRIMITIVE_ID * 4u] = get_arg(ctx, ctx->args->vs_prim_id);
}
if (ctx->options->key.has_multiview_view_index) {
ctx->outputs.mask[VARYING_SLOT_LAYER] |= 0x1;
ctx->outputs.temps[VARYING_SLOT_LAYER * 4u] = as_vgpr(ctx, get_arg(ctx, ctx->args->ac.view_index));
}
/* the order these position exports are created is important */
int next_pos = 0;
bool exported_pos = export_vs_varying(ctx, VARYING_SLOT_POS, true, &next_pos);
if (outinfo->writes_pointsize || outinfo->writes_layer || outinfo->writes_viewport_index) {
export_vs_psiz_layer_viewport(ctx, &next_pos);
exported_pos = true;
}
if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
exported_pos |= export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, true, &next_pos);
if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
exported_pos |= export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, true, &next_pos);
if (ctx->export_clip_dists) {
if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, false, &next_pos);
if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, false, &next_pos);
}
for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
if (i < VARYING_SLOT_VAR0 &&
i != VARYING_SLOT_LAYER &&
i != VARYING_SLOT_PRIMITIVE_ID &&
i != VARYING_SLOT_VIEWPORT)
continue;
export_vs_varying(ctx, i, false, NULL);
}
if (!exported_pos)
create_null_export(ctx);
}
static bool export_fs_mrt_z(isel_context *ctx)
{
Builder bld(ctx->program, ctx->block);
unsigned enabled_channels = 0;
bool compr = false;
Operand values[4];
for (unsigned i = 0; i < 4; ++i) {
values[i] = Operand(v1);
}
/* Both stencil and sample mask only need 16-bits. */
if (!ctx->program->info->ps.writes_z &&
(ctx->program->info->ps.writes_stencil ||
ctx->program->info->ps.writes_sample_mask)) {
compr = true; /* COMPR flag */
if (ctx->program->info->ps.writes_stencil) {
/* Stencil should be in X[23:16]. */
values[0] = Operand(ctx->outputs.temps[FRAG_RESULT_STENCIL * 4u]);
values[0] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u), values[0]);
enabled_channels |= 0x3;
}
if (ctx->program->info->ps.writes_sample_mask) {
/* SampleMask should be in Y[15:0]. */
values[1] = Operand(ctx->outputs.temps[FRAG_RESULT_SAMPLE_MASK * 4u]);
enabled_channels |= 0xc;
}
} else {
if (ctx->program->info->ps.writes_z) {
values[0] = Operand(ctx->outputs.temps[FRAG_RESULT_DEPTH * 4u]);
enabled_channels |= 0x1;
}
if (ctx->program->info->ps.writes_stencil) {
values[1] = Operand(ctx->outputs.temps[FRAG_RESULT_STENCIL * 4u]);
enabled_channels |= 0x2;
}
if (ctx->program->info->ps.writes_sample_mask) {
values[2] = Operand(ctx->outputs.temps[FRAG_RESULT_SAMPLE_MASK * 4u]);
enabled_channels |= 0x4;
}
}
/* GFX6 (except OLAND and HAINAN) has a bug that it only looks at the X
* writemask component.
*/
if (ctx->options->chip_class == GFX6 &&
ctx->options->family != CHIP_OLAND &&
ctx->options->family != CHIP_HAINAN) {
enabled_channels |= 0x1;
}
bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
enabled_channels, V_008DFC_SQ_EXP_MRTZ, compr);
return true;
}
static bool export_fs_mrt_color(isel_context *ctx, int slot)
{
Builder bld(ctx->program, ctx->block);
unsigned write_mask = ctx->outputs.mask[slot];
Operand values[4];
for (unsigned i = 0; i < 4; ++i) {
if (write_mask & (1 << i)) {
values[i] = Operand(ctx->outputs.temps[slot * 4u + i]);
} else {
values[i] = Operand(v1);
}
}
unsigned target, col_format;
unsigned enabled_channels = 0;
aco_opcode compr_op = (aco_opcode)0;
slot -= FRAG_RESULT_DATA0;
target = V_008DFC_SQ_EXP_MRT + slot;
col_format = (ctx->options->key.fs.col_format >> (4 * slot)) & 0xf;
bool is_int8 = (ctx->options->key.fs.is_int8 >> slot) & 1;
bool is_int10 = (ctx->options->key.fs.is_int10 >> slot) & 1;
bool is_16bit = values[0].regClass() == v2b;
switch (col_format)
{
case V_028714_SPI_SHADER_ZERO:
enabled_channels = 0; /* writemask */
target = V_008DFC_SQ_EXP_NULL;
break;
case V_028714_SPI_SHADER_32_R:
enabled_channels = 1;
break;
case V_028714_SPI_SHADER_32_GR:
enabled_channels = 0x3;
break;
case V_028714_SPI_SHADER_32_AR:
if (ctx->options->chip_class >= GFX10) {
/* Special case: on GFX10, the outputs are different for 32_AR */
enabled_channels = 0x3;
values[1] = values[3];
values[3] = Operand(v1);
} else {
enabled_channels = 0x9;
}
break;
case V_028714_SPI_SHADER_FP16_ABGR:
enabled_channels = 0x5;
compr_op = aco_opcode::v_cvt_pkrtz_f16_f32;
if (is_16bit) {
if (ctx->options->chip_class >= GFX9) {
/* Pack the FP16 values together instead of converting them to
* FP32 and back to FP16.
* TODO: use p_create_vector and let the compiler optimizes.
*/
compr_op = aco_opcode::v_pack_b32_f16;
} else {
for (unsigned i = 0; i < 4; i++) {
if ((write_mask >> i) & 1)
values[i] = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), values[i]);
}
}
}
break;
case V_028714_SPI_SHADER_UNORM16_ABGR:
enabled_channels = 0x5;
if (is_16bit && ctx->options->chip_class >= GFX9) {
compr_op = aco_opcode::v_cvt_pknorm_u16_f16;
} else {
compr_op = aco_opcode::v_cvt_pknorm_u16_f32;
}
break;
case V_028714_SPI_SHADER_SNORM16_ABGR:
enabled_channels = 0x5;
if (is_16bit && ctx->options->chip_class >= GFX9) {
compr_op = aco_opcode::v_cvt_pknorm_i16_f16;
} else {
compr_op = aco_opcode::v_cvt_pknorm_i16_f32;
}
break;
case V_028714_SPI_SHADER_UINT16_ABGR: {
enabled_channels = 0x5;
compr_op = aco_opcode::v_cvt_pk_u16_u32;
if (is_int8 || is_int10) {
/* clamp */
uint32_t max_rgb = is_int8 ? 255 : is_int10 ? 1023 : 0;
Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
for (unsigned i = 0; i < 4; i++) {
if ((write_mask >> i) & 1) {
values[i] = bld.vop2(aco_opcode::v_min_u32, bld.def(v1),
i == 3 && is_int10 ? Operand(3u) : Operand(max_rgb_val),
values[i]);
}
}
} else if (is_16bit) {
for (unsigned i = 0; i < 4; i++) {
if ((write_mask >> i) & 1) {
Temp tmp = convert_int(ctx, bld, values[i].getTemp(), 16, 32, false);
values[i] = Operand(tmp);
}
}
}
break;
}
case V_028714_SPI_SHADER_SINT16_ABGR:
enabled_channels = 0x5;
compr_op = aco_opcode::v_cvt_pk_i16_i32;
if (is_int8 || is_int10) {
/* clamp */
uint32_t max_rgb = is_int8 ? 127 : is_int10 ? 511 : 0;
uint32_t min_rgb = is_int8 ? -128 :is_int10 ? -512 : 0;
Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
Temp min_rgb_val = bld.copy(bld.def(s1), Operand(min_rgb));
for (unsigned i = 0; i < 4; i++) {
if ((write_mask >> i) & 1) {
values[i] = bld.vop2(aco_opcode::v_min_i32, bld.def(v1),
i == 3 && is_int10 ? Operand(1u) : Operand(max_rgb_val),
values[i]);
values[i] = bld.vop2(aco_opcode::v_max_i32, bld.def(v1),
i == 3 && is_int10 ? Operand(-2u) : Operand(min_rgb_val),
values[i]);
}
}
} else if (is_16bit) {
for (unsigned i = 0; i < 4; i++) {
if ((write_mask >> i) & 1) {
Temp tmp = convert_int(ctx, bld, values[i].getTemp(), 16, 32, true);
values[i] = Operand(tmp);
}
}
}
break;
case V_028714_SPI_SHADER_32_ABGR:
enabled_channels = 0xF;
break;
default:
break;
}
if (target == V_008DFC_SQ_EXP_NULL)
return false;
/* Replace NaN by zero (only 32-bit) to fix game bugs if requested. */
if (ctx->options->enable_mrt_output_nan_fixup &&
!is_16bit &&
(col_format == V_028714_SPI_SHADER_32_R ||
col_format == V_028714_SPI_SHADER_32_GR ||
col_format == V_028714_SPI_SHADER_32_AR ||
col_format == V_028714_SPI_SHADER_32_ABGR ||
col_format == V_028714_SPI_SHADER_FP16_ABGR)) {
for (int i = 0; i < 4; i++) {
if (!(write_mask & (1 << i)))
continue;
Temp isnan = bld.vopc(aco_opcode::v_cmp_class_f32,
bld.hint_vcc(bld.def(bld.lm)), values[i],
bld.copy(bld.def(v1), Operand(3u)));
values[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), values[i],
bld.copy(bld.def(v1), Operand(0u)), isnan);
}
}
if ((bool) compr_op) {
for (int i = 0; i < 2; i++) {
/* check if at least one of the values to be compressed is enabled */
unsigned enabled = (write_mask >> (i*2) | write_mask >> (i*2+1)) & 0x1;
if (enabled) {
enabled_channels |= enabled << (i*2);
values[i] = bld.vop3(compr_op, bld.def(v1),
values[i*2].isUndefined() ? Operand(0u) : values[i*2],
values[i*2+1].isUndefined() ? Operand(0u): values[i*2+1]);
} else {
values[i] = Operand(v1);
}
}
values[2] = Operand(v1);
values[3] = Operand(v1);
} else {
for (int i = 0; i < 4; i++)
values[i] = enabled_channels & (1 << i) ? values[i] : Operand(v1);
}
bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
enabled_channels, target, (bool) compr_op);
return true;
}
static void create_fs_exports(isel_context *ctx)
{
bool exported = false;
/* Export depth, stencil and sample mask. */
if (ctx->outputs.mask[FRAG_RESULT_DEPTH] ||
ctx->outputs.mask[FRAG_RESULT_STENCIL] ||
ctx->outputs.mask[FRAG_RESULT_SAMPLE_MASK])
exported |= export_fs_mrt_z(ctx);
/* Export all color render targets. */
for (unsigned i = FRAG_RESULT_DATA0; i < FRAG_RESULT_DATA7 + 1; ++i)
if (ctx->outputs.mask[i])
exported |= export_fs_mrt_color(ctx, i);
if (!exported)
create_null_export(ctx);
}
static void create_workgroup_barrier(Builder& bld)
{
bld.barrier(aco_opcode::p_barrier,
memory_sync_info(storage_shared, semantic_acqrel, scope_workgroup),
scope_workgroup);
}
static void write_tcs_tess_factors(isel_context *ctx)
{
unsigned outer_comps;
unsigned inner_comps;
switch (ctx->args->options->key.tcs.primitive_mode) {
case GL_ISOLINES:
outer_comps = 2;
inner_comps = 0;
break;
case GL_TRIANGLES:
outer_comps = 3;
inner_comps = 1;
break;
case GL_QUADS:
outer_comps = 4;
inner_comps = 2;
break;
default:
return;
}
Builder bld(ctx->program, ctx->block);
create_workgroup_barrier(bld);
Temp tcs_rel_ids = get_arg(ctx, ctx->args->ac.tcs_rel_ids);
Temp invocation_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), tcs_rel_ids, Operand(8u), Operand(5u));
Temp invocation_id_is_zero = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), invocation_id);
if_context ic_invocation_id_is_zero;
begin_divergent_if_then(ctx, &ic_invocation_id_is_zero, invocation_id_is_zero);
bld.reset(ctx->block);
Temp hs_ring_tess_factor = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_FACTOR * 16u));
std::pair<Temp, unsigned> lds_base = get_tcs_output_lds_offset(ctx);
unsigned stride = inner_comps + outer_comps;
unsigned lds_align = calculate_lds_alignment(ctx, lds_base.second);
Temp tf_inner_vec;
Temp tf_outer_vec;
Temp out[6];
assert(stride <= (sizeof(out) / sizeof(Temp)));
if (ctx->args->options->key.tcs.primitive_mode == GL_ISOLINES) {
// LINES reversal
tf_outer_vec = load_lds(ctx, 4, bld.tmp(v2), lds_base.first, lds_base.second + ctx->tcs_tess_lvl_out_loc, lds_align);
out[1] = emit_extract_vector(ctx, tf_outer_vec, 0, v1);
out[0] = emit_extract_vector(ctx, tf_outer_vec, 1, v1);
} else {
tf_outer_vec = load_lds(ctx, 4, bld.tmp(RegClass(RegType::vgpr, outer_comps)), lds_base.first, lds_base.second + ctx->tcs_tess_lvl_out_loc, lds_align);
tf_inner_vec = load_lds(ctx, 4, bld.tmp(RegClass(RegType::vgpr, inner_comps)), lds_base.first, lds_base.second + ctx->tcs_tess_lvl_in_loc, lds_align);
for (unsigned i = 0; i < outer_comps; ++i)
out[i] = emit_extract_vector(ctx, tf_outer_vec, i, v1);
for (unsigned i = 0; i < inner_comps; ++i)
out[outer_comps + i] = emit_extract_vector(ctx, tf_inner_vec, i, v1);
}
Temp rel_patch_id = get_tess_rel_patch_id(ctx);
Temp tf_base = get_arg(ctx, ctx->args->tess_factor_offset);
Temp byte_offset = bld.v_mul24_imm(bld.def(v1), rel_patch_id, stride * 4u);
unsigned tf_const_offset = 0;
if (ctx->program->chip_class <= GFX8) {
Temp rel_patch_id_is_zero = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), rel_patch_id);
if_context ic_rel_patch_id_is_zero;
begin_divergent_if_then(ctx, &ic_rel_patch_id_is_zero, rel_patch_id_is_zero);
bld.reset(ctx->block);
/* Store the dynamic HS control word. */
Temp control_word = bld.copy(bld.def(v1), Operand(0x80000000u));
bld.mubuf(aco_opcode::buffer_store_dword,
/* SRSRC */ hs_ring_tess_factor, /* VADDR */ Operand(v1), /* SOFFSET */ tf_base, /* VDATA */ control_word,
/* immediate OFFSET */ 0, /* OFFEN */ false, /* swizzled */ false, /* idxen*/ false,
/* addr64 */ false, /* disable_wqm */ false, /* glc */ true);
tf_const_offset += 4;
begin_divergent_if_else(ctx, &ic_rel_patch_id_is_zero);
end_divergent_if(ctx, &ic_rel_patch_id_is_zero);
bld.reset(ctx->block);
}
assert(stride == 2 || stride == 4 || stride == 6);
Temp tf_vec = create_vec_from_array(ctx, out, stride, RegType::vgpr, 4u);
store_vmem_mubuf(ctx, tf_vec, hs_ring_tess_factor, byte_offset, tf_base, tf_const_offset, 4, (1 << stride) - 1, true, memory_sync_info());
/* Store to offchip for TES to read - only if TES reads them */
if (ctx->args->options->key.tcs.tes_reads_tess_factors) {
Temp hs_ring_tess_offchip = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
std::pair<Temp, unsigned> vmem_offs_outer = get_tcs_per_patch_output_vmem_offset(ctx, nullptr, ctx->tcs_tess_lvl_out_loc);
store_vmem_mubuf(ctx, tf_outer_vec, hs_ring_tess_offchip, vmem_offs_outer.first, oc_lds, vmem_offs_outer.second, 4, (1 << outer_comps) - 1, true, memory_sync_info(storage_vmem_output));
if (likely(inner_comps)) {
std::pair<Temp, unsigned> vmem_offs_inner = get_tcs_per_patch_output_vmem_offset(ctx, nullptr, ctx->tcs_tess_lvl_in_loc);
store_vmem_mubuf(ctx, tf_inner_vec, hs_ring_tess_offchip, vmem_offs_inner.first, oc_lds, vmem_offs_inner.second, 4, (1 << inner_comps) - 1, true, memory_sync_info(storage_vmem_output));
}
}
begin_divergent_if_else(ctx, &ic_invocation_id_is_zero);
end_divergent_if(ctx, &ic_invocation_id_is_zero);
}
static void emit_stream_output(isel_context *ctx,
Temp const *so_buffers,
Temp const *so_write_offset,
const struct radv_stream_output *output)
{
unsigned num_comps = util_bitcount(output->component_mask);
unsigned writemask = (1 << num_comps) - 1;
unsigned loc = output->location;
unsigned buf = output->buffer;
assert(num_comps && num_comps <= 4);
if (!num_comps || num_comps > 4)
return;
unsigned start = ffs(output->component_mask) - 1;
Temp out[4];
bool all_undef = true;
assert(ctx->stage & hw_vs);
for (unsigned i = 0; i < num_comps; i++) {
out[i] = ctx->outputs.temps[loc * 4 + start + i];
all_undef = all_undef && !out[i].id();
}
if (all_undef)
return;
while (writemask) {
int start, count;
u_bit_scan_consecutive_range(&writemask, &start, &count);
if (count == 3 && ctx->options->chip_class == GFX6) {
/* GFX6 doesn't support storing vec3, split it. */
writemask |= 1u << (start + 2);
count = 2;
}
unsigned offset = output->offset + start * 4;
Temp write_data = {ctx->program->allocateId(), RegClass(RegType::vgpr, count)};
aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
for (int i = 0; i < count; ++i)
vec->operands[i] = (ctx->outputs.mask[loc] & 1 << (start + i)) ? Operand(out[start + i]) : Operand(0u);
vec->definitions[0] = Definition(write_data);
ctx->block->instructions.emplace_back(std::move(vec));
aco_opcode opcode;
switch (count) {
case 1:
opcode = aco_opcode::buffer_store_dword;
break;
case 2:
opcode = aco_opcode::buffer_store_dwordx2;
break;
case 3:
opcode = aco_opcode::buffer_store_dwordx3;
break;
case 4:
opcode = aco_opcode::buffer_store_dwordx4;
break;
default:
unreachable("Unsupported dword count.");
}
aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
store->operands[0] = Operand(so_buffers[buf]);
store->operands[1] = Operand(so_write_offset[buf]);
store->operands[2] = Operand((uint32_t) 0);
store->operands[3] = Operand(write_data);
if (offset > 4095) {
/* Don't think this can happen in RADV, but maybe GL? It's easy to do this anyway. */
Builder bld(ctx->program, ctx->block);
store->operands[0] = bld.vadd32(bld.def(v1), Operand(offset), Operand(so_write_offset[buf]));
} else {
store->offset = offset;
}
store->offen = true;
store->glc = true;
store->dlc = false;
store->slc = true;
ctx->block->instructions.emplace_back(std::move(store));
}
}
static void emit_streamout(isel_context *ctx, unsigned stream)
{
Builder bld(ctx->program, ctx->block);
Temp so_buffers[4];
Temp buf_ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->streamout_buffers));
for (unsigned i = 0; i < 4; i++) {
unsigned stride = ctx->program->info->so.strides[i];
if (!stride)
continue;
Operand off = bld.copy(bld.def(s1), Operand(i * 16u));
so_buffers[i] = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), buf_ptr, off);
}
Temp so_vtx_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
get_arg(ctx, ctx->args->streamout_config), Operand(0x70010u));
Temp tid = emit_mbcnt(ctx, bld.def(v1));
Temp can_emit = bld.vopc(aco_opcode::v_cmp_gt_i32, bld.def(bld.lm), so_vtx_count, tid);
if_context ic;
begin_divergent_if_then(ctx, &ic, can_emit);
bld.reset(ctx->block);
Temp so_write_index = bld.vadd32(bld.def(v1), get_arg(ctx, ctx->args->streamout_write_idx), tid);
Temp so_write_offset[4];
for (unsigned i = 0; i < 4; i++) {
unsigned stride = ctx->program->info->so.strides[i];
if (!stride)
continue;
if (stride == 1) {
Temp offset = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
get_arg(ctx, ctx->args->streamout_write_idx),
get_arg(ctx, ctx->args->streamout_offset[i]));
Temp new_offset = bld.vadd32(bld.def(v1), offset, tid);
so_write_offset[i] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), new_offset);
} else {
Temp offset = bld.v_mul_imm(bld.def(v1), so_write_index, stride * 4u);
Temp offset2 = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(4u),
get_arg(ctx, ctx->args->streamout_offset[i]));
so_write_offset[i] = bld.vadd32(bld.def(v1), offset, offset2);
}
}
for (unsigned i = 0; i < ctx->program->info->so.num_outputs; i++) {
struct radv_stream_output *output =
&ctx->program->info->so.outputs[i];
if (stream != output->stream)
continue;
emit_stream_output(ctx, so_buffers, so_write_offset, output);
}
begin_divergent_if_else(ctx, &ic);
end_divergent_if(ctx, &ic);
}
} /* end namespace */
void fix_ls_vgpr_init_bug(isel_context *ctx, Pseudo_instruction *startpgm)
{
assert(ctx->shader->info.stage == MESA_SHADER_VERTEX);
Builder bld(ctx->program, ctx->block);
constexpr unsigned hs_idx = 1u;
Builder::Result hs_thread_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
get_arg(ctx, ctx->args->merged_wave_info),
Operand((8u << 16) | (hs_idx * 8u)));
Temp ls_has_nonzero_hs_threads = bool_to_vector_condition(ctx, hs_thread_count.def(1).getTemp());
/* If there are no HS threads, SPI mistakenly loads the LS VGPRs starting at VGPR 0. */
Temp instance_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
get_arg(ctx, ctx->args->rel_auto_id),
get_arg(ctx, ctx->args->ac.instance_id),
ls_has_nonzero_hs_threads);
Temp rel_auto_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
get_arg(ctx, ctx->args->ac.tcs_rel_ids),
get_arg(ctx, ctx->args->rel_auto_id),
ls_has_nonzero_hs_threads);
Temp vertex_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
get_arg(ctx, ctx->args->ac.tcs_patch_id),
get_arg(ctx, ctx->args->ac.vertex_id),
ls_has_nonzero_hs_threads);
ctx->arg_temps[ctx->args->ac.instance_id.arg_index] = instance_id;
ctx->arg_temps[ctx->args->rel_auto_id.arg_index] = rel_auto_id;
ctx->arg_temps[ctx->args->ac.vertex_id.arg_index] = vertex_id;
}
void split_arguments(isel_context *ctx, Pseudo_instruction *startpgm)
{
/* Split all arguments except for the first (ring_offsets) and the last
* (exec) so that the dead channels don't stay live throughout the program.
*/
for (int i = 1; i < startpgm->definitions.size() - 1; i++) {
if (startpgm->definitions[i].regClass().size() > 1) {
emit_split_vector(ctx, startpgm->definitions[i].getTemp(),
startpgm->definitions[i].regClass().size());
}
}
}
void handle_bc_optimize(isel_context *ctx)
{
/* needed when SPI_PS_IN_CONTROL.BC_OPTIMIZE_DISABLE is set to 0 */
Builder bld(ctx->program, ctx->block);
uint32_t spi_ps_input_ena = ctx->program->config->spi_ps_input_ena;
bool uses_center = G_0286CC_PERSP_CENTER_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTER_ENA(spi_ps_input_ena);
bool uses_centroid = G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena);
ctx->persp_centroid = get_arg(ctx, ctx->args->ac.persp_centroid);
ctx->linear_centroid = get_arg(ctx, ctx->args->ac.linear_centroid);
if (uses_center && uses_centroid) {
Temp sel = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)),
get_arg(ctx, ctx->args->ac.prim_mask), Operand(0u));
if (G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena)) {
Temp new_coord[2];
for (unsigned i = 0; i < 2; i++) {
Temp persp_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_centroid), i, v1);
Temp persp_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_center), i, v1);
new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
persp_centroid, persp_center, sel);
}
ctx->persp_centroid = bld.tmp(v2);
bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->persp_centroid),
Operand(new_coord[0]), Operand(new_coord[1]));
emit_split_vector(ctx, ctx->persp_centroid, 2);
}
if (G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena)) {
Temp new_coord[2];
for (unsigned i = 0; i < 2; i++) {
Temp linear_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_centroid), i, v1);
Temp linear_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_center), i, v1);
new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
linear_centroid, linear_center, sel);
}
ctx->linear_centroid = bld.tmp(v2);
bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->linear_centroid),
Operand(new_coord[0]), Operand(new_coord[1]));
emit_split_vector(ctx, ctx->linear_centroid, 2);
}
}
}
void setup_fp_mode(isel_context *ctx, nir_shader *shader)
{
Program *program = ctx->program;
unsigned float_controls = shader->info.float_controls_execution_mode;
program->next_fp_mode.preserve_signed_zero_inf_nan32 =
float_controls & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP32;
program->next_fp_mode.preserve_signed_zero_inf_nan16_64 =
float_controls & (FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP16 |
FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP64);
program->next_fp_mode.must_flush_denorms32 =
float_controls & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32;
program->next_fp_mode.must_flush_denorms16_64 =
float_controls & (FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16 |
FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64);
program->next_fp_mode.care_about_round32 =
float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32);
program->next_fp_mode.care_about_round16_64 =
float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64 |
FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
/* default to preserving fp16 and fp64 denorms, since it's free for fp64 and
* the precision seems needed for Wolfenstein: Youngblood to render correctly */
if (program->next_fp_mode.must_flush_denorms16_64)
program->next_fp_mode.denorm16_64 = 0;
else
program->next_fp_mode.denorm16_64 = fp_denorm_keep;
/* preserving fp32 denorms is expensive, so only do it if asked */
if (float_controls & FLOAT_CONTROLS_DENORM_PRESERVE_FP32)
program->next_fp_mode.denorm32 = fp_denorm_keep;
else
program->next_fp_mode.denorm32 = 0;
if (float_controls & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32)
program->next_fp_mode.round32 = fp_round_tz;
else
program->next_fp_mode.round32 = fp_round_ne;
if (float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64))
program->next_fp_mode.round16_64 = fp_round_tz;
else
program->next_fp_mode.round16_64 = fp_round_ne;
ctx->block->fp_mode = program->next_fp_mode;
}
void cleanup_cfg(Program *program)
{
/* create linear_succs/logical_succs */
for (Block& BB : program->blocks) {
for (unsigned idx : BB.linear_preds)
program->blocks[idx].linear_succs.emplace_back(BB.index);
for (unsigned idx : BB.logical_preds)
program->blocks[idx].logical_succs.emplace_back(BB.index);
}
}
Temp merged_wave_info_to_mask(isel_context *ctx, unsigned i)
{
Builder bld(ctx->program, ctx->block);
/* The s_bfm only cares about s0.u[5:0] so we don't need either s_bfe nor s_and here */
Temp count = i == 0
? get_arg(ctx, ctx->args->merged_wave_info)
: bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc),
get_arg(ctx, ctx->args->merged_wave_info), Operand(i * 8u));
Temp mask = bld.sop2(aco_opcode::s_bfm_b64, bld.def(s2), count, Operand(0u));
Temp cond;
if (ctx->program->wave_size == 64) {
/* Special case for 64 active invocations, because 64 doesn't work with s_bfm */
Temp active_64 = bld.sopc(aco_opcode::s_bitcmp1_b32, bld.def(s1, scc), count, Operand(6u /* log2(64) */));
cond = bld.sop2(Builder::s_cselect, bld.def(bld.lm), Operand(-1u), mask, bld.scc(active_64));
} else {
/* We use s_bfm_b64 (not _b32) which works with 32, but we need to extract the lower half of the register */
cond = emit_extract_vector(ctx, mask, 0, bld.lm);
}
return cond;
}
bool ngg_early_prim_export(isel_context *ctx)
{
/* TODO: Check edge flags, and if they are written, return false. (Needed for OpenGL, not for Vulkan.) */
return true;
}
void ngg_emit_sendmsg_gs_alloc_req(isel_context *ctx)
{
Builder bld(ctx->program, ctx->block);
/* It is recommended to do the GS_ALLOC_REQ as soon and as quickly as possible, so we set the maximum priority (3). */
bld.sopp(aco_opcode::s_setprio, -1u, 0x3u);
/* Get the id of the current wave within the threadgroup (workgroup) */
Builder::Result wave_id_in_tg = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
get_arg(ctx, ctx->args->merged_wave_info), Operand(24u | (4u << 16)));
/* Execute the following code only on the first wave (wave id 0),
* use the SCC def to tell if the wave id is zero or not.
*/
Temp cond = wave_id_in_tg.def(1).getTemp();
if_context ic;
begin_uniform_if_then(ctx, &ic, cond);
begin_uniform_if_else(ctx, &ic);
bld.reset(ctx->block);
/* Number of vertices output by VS/TES */
Temp vtx_cnt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
get_arg(ctx, ctx->args->gs_tg_info), Operand(12u | (9u << 16u)));
/* Number of primitives output by VS/TES */
Temp prm_cnt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
get_arg(ctx, ctx->args->gs_tg_info), Operand(22u | (9u << 16u)));
/* Put the number of vertices and primitives into m0 for the GS_ALLOC_REQ */
Temp tmp = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), prm_cnt, Operand(12u));
tmp = bld.sop2(aco_opcode::s_or_b32, bld.m0(bld.def(s1)), bld.def(s1, scc), tmp, vtx_cnt);
/* Request the SPI to allocate space for the primitives and vertices that will be exported by the threadgroup. */
bld.sopp(aco_opcode::s_sendmsg, bld.m0(tmp), -1, sendmsg_gs_alloc_req);
end_uniform_if(ctx, &ic);
/* After the GS_ALLOC_REQ is done, reset priority to default (0). */
bld.reset(ctx->block);
bld.sopp(aco_opcode::s_setprio, -1u, 0x0u);
}
Temp ngg_get_prim_exp_arg(isel_context *ctx, unsigned num_vertices, const Temp vtxindex[])
{
Builder bld(ctx->program, ctx->block);
if (ctx->args->options->key.vs_common_out.as_ngg_passthrough) {
return get_arg(ctx, ctx->args->gs_vtx_offset[0]);
}
Temp gs_invocation_id = get_arg(ctx, ctx->args->ac.gs_invocation_id);
Temp tmp;
for (unsigned i = 0; i < num_vertices; ++i) {
assert(vtxindex[i].id());
if (i)
tmp = bld.vop3(aco_opcode::v_lshl_add_u32, bld.def(v1), vtxindex[i], Operand(10u * i), tmp);
else
tmp = vtxindex[i];
/* The initial edge flag is always false in tess eval shaders. */
if (ctx->stage == ngg_vertex_gs) {
Temp edgeflag = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), gs_invocation_id, Operand(8 + i), Operand(1u));
tmp = bld.vop3(aco_opcode::v_lshl_add_u32, bld.def(v1), edgeflag, Operand(10u * i + 9u), tmp);
}
}
/* TODO: Set isnull field in case of merged NGG VS+GS. */
return tmp;
}
void ngg_emit_prim_export(isel_context *ctx, unsigned num_vertices_per_primitive, const Temp vtxindex[])
{
Builder bld(ctx->program, ctx->block);
Temp prim_exp_arg = ngg_get_prim_exp_arg(ctx, num_vertices_per_primitive, vtxindex);
bld.exp(aco_opcode::exp, prim_exp_arg, Operand(v1), Operand(v1), Operand(v1),
1 /* enabled mask */, V_008DFC_SQ_EXP_PRIM /* dest */,
false /* compressed */, true/* done */, false /* valid mask */);
}
void ngg_emit_nogs_gsthreads(isel_context *ctx)
{
/* Emit the things that NGG GS threads need to do, for shaders that don't have SW GS.
* These must always come before VS exports.
*
* It is recommended to do these as early as possible. They can be at the beginning when
* there is no SW GS and the shader doesn't write edge flags.
*/
if_context ic;
Temp is_gs_thread = merged_wave_info_to_mask(ctx, 1);
begin_divergent_if_then(ctx, &ic, is_gs_thread);
Builder bld(ctx->program, ctx->block);
constexpr unsigned max_vertices_per_primitive = 3;
unsigned num_vertices_per_primitive = max_vertices_per_primitive;
if (ctx->stage == ngg_vertex_gs) {
/* TODO: optimize for points & lines */
} else if (ctx->stage == ngg_tess_eval_gs) {
if (ctx->shader->info.tess.point_mode)
num_vertices_per_primitive = 1;
else if (ctx->shader->info.tess.primitive_mode == GL_ISOLINES)
num_vertices_per_primitive = 2;
} else {
unreachable("Unsupported NGG shader stage");
}
Temp vtxindex[max_vertices_per_primitive];
vtxindex[0] = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu),
get_arg(ctx, ctx->args->gs_vtx_offset[0]));
vtxindex[1] = num_vertices_per_primitive < 2 ? Temp(0, v1) :
bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
get_arg(ctx, ctx->args->gs_vtx_offset[0]), Operand(16u), Operand(16u));
vtxindex[2] = num_vertices_per_primitive < 3 ? Temp(0, v1) :
bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu),
get_arg(ctx, ctx->args->gs_vtx_offset[2]));
/* Export primitive data to the index buffer. */
ngg_emit_prim_export(ctx, num_vertices_per_primitive, vtxindex);
/* Export primitive ID. */
if (ctx->stage == ngg_vertex_gs && ctx->args->options->key.vs_common_out.export_prim_id) {
/* Copy Primitive IDs from GS threads to the LDS address corresponding to the ES thread of the provoking vertex. */
Temp prim_id = get_arg(ctx, ctx->args->ac.gs_prim_id);
Temp provoking_vtx_index = vtxindex[0];
Temp addr = bld.v_mul_imm(bld.def(v1), provoking_vtx_index, 4u);
store_lds(ctx, 4, prim_id, 0x1u, addr, 0u, 4u);
}
begin_divergent_if_else(ctx, &ic);
end_divergent_if(ctx, &ic);
}
void ngg_emit_nogs_output(isel_context *ctx)
{
/* Emits NGG GS output, for stages that don't have SW GS. */
if_context ic;
Builder bld(ctx->program, ctx->block);
bool late_prim_export = !ngg_early_prim_export(ctx);
/* NGG streamout is currently disabled by default. */
assert(!ctx->args->shader_info->so.num_outputs);
if (late_prim_export) {
/* VS exports are output to registers in a predecessor block. Emit phis to get them into this block. */
create_export_phis(ctx);
/* Do what we need to do in the GS threads. */
ngg_emit_nogs_gsthreads(ctx);
/* What comes next should be executed on ES threads. */
Temp is_es_thread = merged_wave_info_to_mask(ctx, 0);
begin_divergent_if_then(ctx, &ic, is_es_thread);
bld.reset(ctx->block);
}
/* Export VS outputs */
ctx->block->kind |= block_kind_export_end;
create_vs_exports(ctx);
/* Export primitive ID */
if (ctx->args->options->key.vs_common_out.export_prim_id) {
Temp prim_id;
if (ctx->stage == ngg_vertex_gs) {
/* Wait for GS threads to store primitive ID in LDS. */
create_workgroup_barrier(bld);
/* Calculate LDS address where the GS threads stored the primitive ID. */
Temp wave_id_in_tg = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
get_arg(ctx, ctx->args->merged_wave_info), Operand(24u | (4u << 16)));
Temp thread_id_in_wave = emit_mbcnt(ctx, bld.def(v1));
Temp wave_id_mul = bld.v_mul24_imm(bld.def(v1), as_vgpr(ctx, wave_id_in_tg), ctx->program->wave_size);
Temp thread_id_in_tg = bld.vadd32(bld.def(v1), Operand(wave_id_mul), Operand(thread_id_in_wave));
Temp addr = bld.v_mul24_imm(bld.def(v1), thread_id_in_tg, 4u);
/* Load primitive ID from LDS. */
prim_id = load_lds(ctx, 4, bld.tmp(v1), addr, 0u, 4u);
} else if (ctx->stage == ngg_tess_eval_gs) {
/* TES: Just use the patch ID as the primitive ID. */
prim_id = get_arg(ctx, ctx->args->ac.tes_patch_id);
} else {
unreachable("unsupported NGG shader stage.");
}
ctx->outputs.mask[VARYING_SLOT_PRIMITIVE_ID] |= 0x1;
ctx->outputs.temps[VARYING_SLOT_PRIMITIVE_ID * 4u] = prim_id;
export_vs_varying(ctx, VARYING_SLOT_PRIMITIVE_ID, false, nullptr);
}
if (late_prim_export) {
begin_divergent_if_else(ctx, &ic);
end_divergent_if(ctx, &ic);
bld.reset(ctx->block);
}
}
void select_program(Program *program,
unsigned shader_count,
struct nir_shader *const *shaders,
ac_shader_config* config,
struct radv_shader_args *args)
{
isel_context ctx = setup_isel_context(program, shader_count, shaders, config, args, false);
if_context ic_merged_wave_info;
bool ngg_no_gs = ctx.stage == ngg_vertex_gs || ctx.stage == ngg_tess_eval_gs;
for (unsigned i = 0; i < shader_count; i++) {
nir_shader *nir = shaders[i];
init_context(&ctx, nir);
setup_fp_mode(&ctx, nir);
if (!i) {
/* needs to be after init_context() for FS */
Pseudo_instruction *startpgm = add_startpgm(&ctx);
append_logical_start(ctx.block);
if (unlikely(args->options->has_ls_vgpr_init_bug && ctx.stage == vertex_tess_control_hs))
fix_ls_vgpr_init_bug(&ctx, startpgm);
split_arguments(&ctx, startpgm);
}
if (ngg_no_gs) {
ngg_emit_sendmsg_gs_alloc_req(&ctx);
if (ngg_early_prim_export(&ctx))
ngg_emit_nogs_gsthreads(&ctx);
}
/* In a merged VS+TCS HS, the VS implementation can be completely empty. */
nir_function_impl *func = nir_shader_get_entrypoint(nir);
bool empty_shader = nir_cf_list_is_empty_block(&func->body) &&
((nir->info.stage == MESA_SHADER_VERTEX &&
(ctx.stage == vertex_tess_control_hs || ctx.stage == vertex_geometry_gs)) ||
(nir->info.stage == MESA_SHADER_TESS_EVAL &&
ctx.stage == tess_eval_geometry_gs));
bool check_merged_wave_info = ctx.tcs_in_out_eq ? i == 0 : ((shader_count >= 2 && !empty_shader) || ngg_no_gs);
bool endif_merged_wave_info = ctx.tcs_in_out_eq ? i == 1 : check_merged_wave_info;
if (check_merged_wave_info) {
Temp cond = merged_wave_info_to_mask(&ctx, i);
begin_divergent_if_then(&ctx, &ic_merged_wave_info, cond);
}
if (i) {
Builder bld(ctx.program, ctx.block);
create_workgroup_barrier(bld);
if (ctx.stage == vertex_geometry_gs || ctx.stage == tess_eval_geometry_gs) {
ctx.gs_wave_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1, m0), bld.def(s1, scc), get_arg(&ctx, args->merged_wave_info), Operand((8u << 16) | 16u));
}
} else if (ctx.stage == geometry_gs)
ctx.gs_wave_id = get_arg(&ctx, args->gs_wave_id);
if (ctx.stage == fragment_fs)
handle_bc_optimize(&ctx);
visit_cf_list(&ctx, &func->body);
if (ctx.program->info->so.num_outputs && (ctx.stage & hw_vs))
emit_streamout(&ctx, 0);
if (ctx.stage & hw_vs) {
create_vs_exports(&ctx);
ctx.block->kind |= block_kind_export_end;
} else if (ngg_no_gs && ngg_early_prim_export(&ctx)) {
ngg_emit_nogs_output(&ctx);
} else if (nir->info.stage == MESA_SHADER_GEOMETRY) {
Builder bld(ctx.program, ctx.block);
bld.barrier(aco_opcode::p_barrier,
memory_sync_info(storage_vmem_output, semantic_release, scope_device));
bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx.gs_wave_id), -1, sendmsg_gs_done(false, false, 0));
} else if (nir->info.stage == MESA_SHADER_TESS_CTRL) {
write_tcs_tess_factors(&ctx);
}
if (ctx.stage == fragment_fs) {
create_fs_exports(&ctx);
ctx.block->kind |= block_kind_export_end;
}
if (endif_merged_wave_info) {
begin_divergent_if_else(&ctx, &ic_merged_wave_info);
end_divergent_if(&ctx, &ic_merged_wave_info);
}
if (ngg_no_gs && !ngg_early_prim_export(&ctx))
ngg_emit_nogs_output(&ctx);
if (i == 0 && ctx.stage == vertex_tess_control_hs && ctx.tcs_in_out_eq) {
/* Outputs of the previous stage are inputs to the next stage */
ctx.inputs = ctx.outputs;
ctx.outputs = shader_io_state();
}
}
program->config->float_mode = program->blocks[0].fp_mode.val;
append_logical_end(ctx.block);
ctx.block->kind |= block_kind_uniform;
Builder bld(ctx.program, ctx.block);
if (ctx.program->wb_smem_l1_on_end)
bld.smem(aco_opcode::s_dcache_wb, memory_sync_info(storage_buffer, semantic_volatile));
bld.sopp(aco_opcode::s_endpgm);
cleanup_cfg(program);
}
void select_gs_copy_shader(Program *program, struct nir_shader *gs_shader,
ac_shader_config* config,
struct radv_shader_args *args)
{
isel_context ctx = setup_isel_context(program, 1, &gs_shader, config, args, true);
ctx.block->fp_mode = program->next_fp_mode;
add_startpgm(&ctx);
append_logical_start(ctx.block);
Builder bld(ctx.program, ctx.block);
Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), program->private_segment_buffer, Operand(RING_GSVS_VS * 16u));
Operand stream_id(0u);
if (args->shader_info->so.num_outputs)
stream_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
get_arg(&ctx, ctx.args->streamout_config), Operand(0x20018u));
Temp vtx_offset = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), get_arg(&ctx, ctx.args->ac.vertex_id));
std::stack<Block> endif_blocks;
for (unsigned stream = 0; stream < 4; stream++) {
if (stream_id.isConstant() && stream != stream_id.constantValue())
continue;
unsigned num_components = args->shader_info->gs.num_stream_output_components[stream];
if (stream > 0 && (!num_components || !args->shader_info->so.num_outputs))
continue;
memset(ctx.outputs.mask, 0, sizeof(ctx.outputs.mask));
unsigned BB_if_idx = ctx.block->index;
Block BB_endif = Block();
if (!stream_id.isConstant()) {
/* begin IF */
Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), stream_id, Operand(stream));
append_logical_end(ctx.block);
ctx.block->kind |= block_kind_uniform;
bld.branch(aco_opcode::p_cbranch_z, cond);
BB_endif.kind |= ctx.block->kind & block_kind_top_level;
ctx.block = ctx.program->create_and_insert_block();
add_edge(BB_if_idx, ctx.block);
bld.reset(ctx.block);
append_logical_start(ctx.block);
}
unsigned offset = 0;
for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
if (args->shader_info->gs.output_streams[i] != stream)
continue;
unsigned output_usage_mask = args->shader_info->gs.output_usage_mask[i];
unsigned length = util_last_bit(output_usage_mask);
for (unsigned j = 0; j < length; ++j) {
if (!(output_usage_mask & (1 << j)))
continue;
unsigned const_offset = offset * args->shader_info->gs.vertices_out * 16 * 4;
Temp voffset = vtx_offset;
if (const_offset >= 4096u) {
voffset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), voffset);
const_offset %= 4096u;
}
aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dword, Format::MUBUF, 3, 1)};
mubuf->definitions[0] = bld.def(v1);
mubuf->operands[0] = Operand(gsvs_ring);
mubuf->operands[1] = Operand(voffset);
mubuf->operands[2] = Operand(0u);
mubuf->offen = true;
mubuf->offset = const_offset;
mubuf->glc = true;
mubuf->slc = true;
mubuf->dlc = args->options->chip_class >= GFX10;
ctx.outputs.mask[i] |= 1 << j;
ctx.outputs.temps[i * 4u + j] = mubuf->definitions[0].getTemp();
bld.insert(std::move(mubuf));
offset++;
}
}
if (args->shader_info->so.num_outputs) {
emit_streamout(&ctx, stream);
bld.reset(ctx.block);
}
if (stream == 0) {
create_vs_exports(&ctx);
ctx.block->kind |= block_kind_export_end;
}
if (!stream_id.isConstant()) {
append_logical_end(ctx.block);
/* branch from then block to endif block */
bld.branch(aco_opcode::p_branch);
add_edge(ctx.block->index, &BB_endif);
ctx.block->kind |= block_kind_uniform;
/* emit else block */
ctx.block = ctx.program->create_and_insert_block();
add_edge(BB_if_idx, ctx.block);
bld.reset(ctx.block);
append_logical_start(ctx.block);
endif_blocks.push(std::move(BB_endif));
}
}
while (!endif_blocks.empty()) {
Block BB_endif = std::move(endif_blocks.top());
endif_blocks.pop();
Block *BB_else = ctx.block;
append_logical_end(BB_else);
/* branch from else block to endif block */
bld.branch(aco_opcode::p_branch);
add_edge(BB_else->index, &BB_endif);
BB_else->kind |= block_kind_uniform;
/** emit endif merge block */
ctx.block = program->insert_block(std::move(BB_endif));
bld.reset(ctx.block);
append_logical_start(ctx.block);
}
program->config->float_mode = program->blocks[0].fp_mode.val;
append_logical_end(ctx.block);
ctx.block->kind |= block_kind_uniform;
bld.sopp(aco_opcode::s_endpgm);
cleanup_cfg(program);
}
}