blob: c431c6a72cf4021aa4d683691edd7d30e0396262 [file] [log] [blame]
/*
* Copyright 2012 Advanced Micro Devices, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* on the rights to use, copy, modify, merge, publish, distribute, sub
* license, and/or sell copies of the Software, and to permit persons to whom
* the Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "si_build_pm4.h"
#include "util/u_upload_mgr.h"
#include "util/u_viewport.h"
#define SI_MAX_SCISSOR 16384
void si_get_small_prim_cull_info(struct si_context *sctx, struct si_small_prim_cull_info *out)
{
/* This is needed by the small primitive culling, because it's done
* in screen space.
*/
struct si_small_prim_cull_info info;
unsigned num_samples = si_get_num_coverage_samples(sctx);
assert(num_samples >= 1);
info.scale[0] = sctx->viewports.states[0].scale[0];
info.scale[1] = sctx->viewports.states[0].scale[1];
info.translate[0] = sctx->viewports.states[0].translate[0];
info.translate[1] = sctx->viewports.states[0].translate[1];
/* The viewport shouldn't flip the X axis for the small prim culling to work. */
assert(-info.scale[0] + info.translate[0] <= info.scale[0] + info.translate[0]);
/* If the Y axis is inverted (OpenGL default framebuffer), reverse it.
* This is because the viewport transformation inverts the clip space
* bounding box, so min becomes max, which breaks small primitive
* culling.
*/
if (sctx->viewports.y_inverted) {
info.scale[1] = -info.scale[1];
info.translate[1] = -info.translate[1];
}
/* Scale the framebuffer up, so that samples become pixels and small
* primitive culling is the same for all sample counts.
* This only works with the standard DX sample positions, because
* the samples are evenly spaced on both X and Y axes.
*/
for (unsigned i = 0; i < 2; i++) {
info.scale[i] *= num_samples;
info.translate[i] *= num_samples;
}
/* Better subpixel precision increases the efficiency of small
* primitive culling. (more precision means a tighter bounding box
* around primitives and more accurate elimination)
*/
unsigned quant_mode = sctx->viewports.as_scissor[0].quant_mode;
if (quant_mode == SI_QUANT_MODE_12_12_FIXED_POINT_1_4096TH)
info.small_prim_precision = num_samples / 4096.0;
else if (quant_mode == SI_QUANT_MODE_14_10_FIXED_POINT_1_1024TH)
info.small_prim_precision = num_samples / 1024.0;
else
info.small_prim_precision = num_samples / 256.0;
*out = info;
}
static void si_emit_cull_state(struct si_context *sctx)
{
assert(sctx->screen->use_ngg_culling);
struct si_small_prim_cull_info info;
si_get_small_prim_cull_info(sctx, &info);
if (!sctx->small_prim_cull_info_buf ||
memcmp(&info, &sctx->last_small_prim_cull_info, sizeof(info))) {
unsigned offset = 0;
/* Align to 256, because the address is shifted by 8 bits. */
u_upload_data(sctx->b.const_uploader, 0, sizeof(info), 256, &info, &offset,
(struct pipe_resource **)&sctx->small_prim_cull_info_buf);
sctx->small_prim_cull_info_address = sctx->small_prim_cull_info_buf->gpu_address + offset;
sctx->last_small_prim_cull_info = info;
}
/* This will end up in SGPR6 as (value << 8), shifted by the hw. */
radeon_add_to_buffer_list(sctx, sctx->gfx_cs, sctx->small_prim_cull_info_buf,
RADEON_USAGE_READ, RADEON_PRIO_CONST_BUFFER);
radeon_set_sh_reg(sctx->gfx_cs, R_00B220_SPI_SHADER_PGM_LO_GS,
sctx->small_prim_cull_info_address >> 8);
/* Set VS_STATE.SMALL_PRIM_PRECISION for NGG culling.
*
* small_prim_precision is 1 / 2^n. We only need n between 5 (1/32) and 12 (1/4096).
* Such a floating point value can be packed into 4 bits as follows:
* If we pass the first 4 bits of the exponent to the shader and set the next 3 bits
* to 1, we'll get the number exactly because all other bits are always 0. See:
* 1
* value = (0x70 | value.exponent[0:3]) << 23 = ------------------------------
* 2 ^ (15 - value.exponent[0:3])
*
* So pass only the first 4 bits of the float exponent to the shader.
*/
sctx->current_vs_state &= C_VS_STATE_SMALL_PRIM_PRECISION;
sctx->current_vs_state |= S_VS_STATE_SMALL_PRIM_PRECISION(fui(info.small_prim_precision) >> 23);
}
static void si_set_scissor_states(struct pipe_context *pctx, unsigned start_slot,
unsigned num_scissors, const struct pipe_scissor_state *state)
{
struct si_context *ctx = (struct si_context *)pctx;
int i;
for (i = 0; i < num_scissors; i++)
ctx->scissors[start_slot + i] = state[i];
if (!ctx->queued.named.rasterizer->scissor_enable)
return;
si_mark_atom_dirty(ctx, &ctx->atoms.s.scissors);
}
/* Since the guard band disables clipping, we have to clip per-pixel
* using a scissor.
*/
static void si_get_scissor_from_viewport(struct si_context *ctx,
const struct pipe_viewport_state *vp,
struct si_signed_scissor *scissor)
{
float tmp, minx, miny, maxx, maxy;
/* Convert (-1, -1) and (1, 1) from clip space into window space. */
minx = -vp->scale[0] + vp->translate[0];
miny = -vp->scale[1] + vp->translate[1];
maxx = vp->scale[0] + vp->translate[0];
maxy = vp->scale[1] + vp->translate[1];
/* Handle inverted viewports. */
if (minx > maxx) {
tmp = minx;
minx = maxx;
maxx = tmp;
}
if (miny > maxy) {
tmp = miny;
miny = maxy;
maxy = tmp;
}
/* Convert to integer and round up the max bounds. */
scissor->minx = minx;
scissor->miny = miny;
scissor->maxx = ceilf(maxx);
scissor->maxy = ceilf(maxy);
}
static void si_clamp_scissor(struct si_context *ctx, struct pipe_scissor_state *out,
struct si_signed_scissor *scissor)
{
out->minx = CLAMP(scissor->minx, 0, SI_MAX_SCISSOR);
out->miny = CLAMP(scissor->miny, 0, SI_MAX_SCISSOR);
out->maxx = CLAMP(scissor->maxx, 0, SI_MAX_SCISSOR);
out->maxy = CLAMP(scissor->maxy, 0, SI_MAX_SCISSOR);
}
static void si_clip_scissor(struct pipe_scissor_state *out, struct pipe_scissor_state *clip)
{
out->minx = MAX2(out->minx, clip->minx);
out->miny = MAX2(out->miny, clip->miny);
out->maxx = MIN2(out->maxx, clip->maxx);
out->maxy = MIN2(out->maxy, clip->maxy);
}
static void si_scissor_make_union(struct si_signed_scissor *out, struct si_signed_scissor *in)
{
out->minx = MIN2(out->minx, in->minx);
out->miny = MIN2(out->miny, in->miny);
out->maxx = MAX2(out->maxx, in->maxx);
out->maxy = MAX2(out->maxy, in->maxy);
out->quant_mode = MIN2(out->quant_mode, in->quant_mode);
}
static void si_emit_one_scissor(struct si_context *ctx, struct radeon_cmdbuf *cs,
struct si_signed_scissor *vp_scissor,
struct pipe_scissor_state *scissor)
{
struct pipe_scissor_state final;
if (ctx->vs_disables_clipping_viewport) {
final.minx = final.miny = 0;
final.maxx = final.maxy = SI_MAX_SCISSOR;
} else {
si_clamp_scissor(ctx, &final, vp_scissor);
}
if (scissor)
si_clip_scissor(&final, scissor);
/* Workaround for a hw bug on GFX6 that occurs when PA_SU_HARDWARE_-
* SCREEN_OFFSET != 0 and any_scissor.BR_X/Y <= 0.
*/
if (ctx->chip_class == GFX6 && (final.maxx == 0 || final.maxy == 0)) {
radeon_emit(cs, S_028250_TL_X(1) | S_028250_TL_Y(1) | S_028250_WINDOW_OFFSET_DISABLE(1));
radeon_emit(cs, S_028254_BR_X(1) | S_028254_BR_Y(1));
return;
}
radeon_emit(cs, S_028250_TL_X(final.minx) | S_028250_TL_Y(final.miny) |
S_028250_WINDOW_OFFSET_DISABLE(1));
radeon_emit(cs, S_028254_BR_X(final.maxx) | S_028254_BR_Y(final.maxy));
}
#define MAX_PA_SU_HARDWARE_SCREEN_OFFSET 8176
static void si_emit_guardband(struct si_context *ctx)
{
const struct si_state_rasterizer *rs = ctx->queued.named.rasterizer;
struct si_signed_scissor vp_as_scissor;
struct pipe_viewport_state vp;
float left, top, right, bottom, max_range, guardband_x, guardband_y;
float discard_x, discard_y;
if (ctx->vs_writes_viewport_index) {
/* Shaders can draw to any viewport. Make a union of all
* viewports. */
vp_as_scissor = ctx->viewports.as_scissor[0];
for (unsigned i = 1; i < SI_MAX_VIEWPORTS; i++) {
si_scissor_make_union(&vp_as_scissor, &ctx->viewports.as_scissor[i]);
}
} else {
vp_as_scissor = ctx->viewports.as_scissor[0];
}
/* Blits don't set the viewport state. The vertex shader determines
* the viewport size by scaling the coordinates, so we don't know
* how large the viewport is. Assume the worst case.
*/
if (ctx->vs_disables_clipping_viewport)
vp_as_scissor.quant_mode = SI_QUANT_MODE_16_8_FIXED_POINT_1_256TH;
/* Determine the optimal hardware screen offset to center the viewport
* within the viewport range in order to maximize the guardband size.
*/
int hw_screen_offset_x = (vp_as_scissor.maxx + vp_as_scissor.minx) / 2;
int hw_screen_offset_y = (vp_as_scissor.maxy + vp_as_scissor.miny) / 2;
/* GFX6-GFX7 need to align the offset to an ubertile consisting of all SEs. */
const unsigned hw_screen_offset_alignment =
ctx->chip_class >= GFX8 ? 16 : MAX2(ctx->screen->se_tile_repeat, 16);
/* Indexed by quantization modes */
static int max_viewport_size[] = {65535, 16383, 4095};
/* Ensure that the whole viewport stays representable in
* absolute coordinates.
* See comment in si_set_viewport_states.
*/
assert(vp_as_scissor.maxx <= max_viewport_size[vp_as_scissor.quant_mode] &&
vp_as_scissor.maxy <= max_viewport_size[vp_as_scissor.quant_mode]);
hw_screen_offset_x = CLAMP(hw_screen_offset_x, 0, MAX_PA_SU_HARDWARE_SCREEN_OFFSET);
hw_screen_offset_y = CLAMP(hw_screen_offset_y, 0, MAX_PA_SU_HARDWARE_SCREEN_OFFSET);
/* Align the screen offset by dropping the low bits. */
hw_screen_offset_x &= ~(hw_screen_offset_alignment - 1);
hw_screen_offset_y &= ~(hw_screen_offset_alignment - 1);
/* Apply the offset to center the viewport and maximize the guardband. */
vp_as_scissor.minx -= hw_screen_offset_x;
vp_as_scissor.maxx -= hw_screen_offset_x;
vp_as_scissor.miny -= hw_screen_offset_y;
vp_as_scissor.maxy -= hw_screen_offset_y;
/* Reconstruct the viewport transformation from the scissor. */
vp.translate[0] = (vp_as_scissor.minx + vp_as_scissor.maxx) / 2.0;
vp.translate[1] = (vp_as_scissor.miny + vp_as_scissor.maxy) / 2.0;
vp.scale[0] = vp_as_scissor.maxx - vp.translate[0];
vp.scale[1] = vp_as_scissor.maxy - vp.translate[1];
/* Treat a 0x0 viewport as 1x1 to prevent division by zero. */
if (vp_as_scissor.minx == vp_as_scissor.maxx)
vp.scale[0] = 0.5;
if (vp_as_scissor.miny == vp_as_scissor.maxy)
vp.scale[1] = 0.5;
/* Find the biggest guard band that is inside the supported viewport
* range. The guard band is specified as a horizontal and vertical
* distance from (0,0) in clip space.
*
* This is done by applying the inverse viewport transformation
* on the viewport limits to get those limits in clip space.
*
* The viewport range is [-max_viewport_size/2 - 1, max_viewport_size/2].
* (-1 to the min coord because max_viewport_size is odd and ViewportBounds
* Min/Max are -32768, 32767).
*/
assert(vp_as_scissor.quant_mode < ARRAY_SIZE(max_viewport_size));
max_range = max_viewport_size[vp_as_scissor.quant_mode] / 2;
left = (-max_range - 1 - vp.translate[0]) / vp.scale[0];
right = (max_range - vp.translate[0]) / vp.scale[0];
top = (-max_range - 1 - vp.translate[1]) / vp.scale[1];
bottom = (max_range - vp.translate[1]) / vp.scale[1];
assert(left <= -1 && top <= -1 && right >= 1 && bottom >= 1);
guardband_x = MIN2(-left, right);
guardband_y = MIN2(-top, bottom);
discard_x = 1.0;
discard_y = 1.0;
if (unlikely(util_prim_is_points_or_lines(ctx->current_rast_prim))) {
/* When rendering wide points or lines, we need to be more
* conservative about when to discard them entirely. */
float pixels;
if (ctx->current_rast_prim == PIPE_PRIM_POINTS)
pixels = rs->max_point_size;
else
pixels = rs->line_width;
/* Add half the point size / line width */
discard_x += pixels / (2.0 * vp.scale[0]);
discard_y += pixels / (2.0 * vp.scale[1]);
/* Discard primitives that would lie entirely outside the clip
* region. */
discard_x = MIN2(discard_x, guardband_x);
discard_y = MIN2(discard_y, guardband_y);
}
/* If any of the GB registers is updated, all of them must be updated.
* R_028BE8_PA_CL_GB_VERT_CLIP_ADJ, R_028BEC_PA_CL_GB_VERT_DISC_ADJ
* R_028BF0_PA_CL_GB_HORZ_CLIP_ADJ, R_028BF4_PA_CL_GB_HORZ_DISC_ADJ
*/
unsigned initial_cdw = ctx->gfx_cs->current.cdw;
radeon_opt_set_context_reg4(ctx, R_028BE8_PA_CL_GB_VERT_CLIP_ADJ,
SI_TRACKED_PA_CL_GB_VERT_CLIP_ADJ, fui(guardband_y), fui(discard_y),
fui(guardband_x), fui(discard_x));
radeon_opt_set_context_reg(ctx, R_028234_PA_SU_HARDWARE_SCREEN_OFFSET,
SI_TRACKED_PA_SU_HARDWARE_SCREEN_OFFSET,
S_028234_HW_SCREEN_OFFSET_X(hw_screen_offset_x >> 4) |
S_028234_HW_SCREEN_OFFSET_Y(hw_screen_offset_y >> 4));
radeon_opt_set_context_reg(
ctx, R_028BE4_PA_SU_VTX_CNTL, SI_TRACKED_PA_SU_VTX_CNTL,
S_028BE4_PIX_CENTER(rs->half_pixel_center) |
S_028BE4_QUANT_MODE(V_028BE4_X_16_8_FIXED_POINT_1_256TH + vp_as_scissor.quant_mode));
if (initial_cdw != ctx->gfx_cs->current.cdw)
ctx->context_roll = true;
}
static void si_emit_scissors(struct si_context *ctx)
{
struct radeon_cmdbuf *cs = ctx->gfx_cs;
struct pipe_scissor_state *states = ctx->scissors;
bool scissor_enabled = ctx->queued.named.rasterizer->scissor_enable;
/* The simple case: Only 1 viewport is active. */
if (!ctx->vs_writes_viewport_index) {
struct si_signed_scissor *vp = &ctx->viewports.as_scissor[0];
radeon_set_context_reg_seq(cs, R_028250_PA_SC_VPORT_SCISSOR_0_TL, 2);
si_emit_one_scissor(ctx, cs, vp, scissor_enabled ? &states[0] : NULL);
return;
}
/* All registers in the array need to be updated if any of them is changed.
* This is a hardware requirement.
*/
radeon_set_context_reg_seq(cs, R_028250_PA_SC_VPORT_SCISSOR_0_TL, SI_MAX_VIEWPORTS * 2);
for (unsigned i = 0; i < SI_MAX_VIEWPORTS; i++) {
si_emit_one_scissor(ctx, cs, &ctx->viewports.as_scissor[i],
scissor_enabled ? &states[i] : NULL);
}
}
static void si_set_viewport_states(struct pipe_context *pctx, unsigned start_slot,
unsigned num_viewports, const struct pipe_viewport_state *state)
{
struct si_context *ctx = (struct si_context *)pctx;
int i;
for (i = 0; i < num_viewports; i++) {
unsigned index = start_slot + i;
struct si_signed_scissor *scissor = &ctx->viewports.as_scissor[index];
ctx->viewports.states[index] = state[i];
si_get_scissor_from_viewport(ctx, &state[i], scissor);
unsigned w = scissor->maxx - scissor->minx;
unsigned h = scissor->maxy - scissor->miny;
unsigned max_extent = MAX2(w, h);
int max_corner = MAX2(
MAX2(abs(scissor->maxx), abs(scissor->maxy)),
MAX2(abs(scissor->minx), abs(scissor->miny)));
unsigned center_x = (scissor->maxx + scissor->minx) / 2;
unsigned center_y = (scissor->maxy + scissor->miny) / 2;
unsigned max_center = MAX2(center_x, center_y);
/* PA_SU_HARDWARE_SCREEN_OFFSET can't center viewports whose
* center start farther than MAX_PA_SU_HARDWARE_SCREEN_OFFSET.
* (for example, a 1x1 viewport in the lower right corner of
* 16Kx16K) Such viewports need a greater guardband, so they
* have to use a worse quantization mode.
*/
unsigned distance_off_center = MAX2(0, (int)max_center - MAX_PA_SU_HARDWARE_SCREEN_OFFSET);
max_extent += distance_off_center;
/* Determine the best quantization mode (subpixel precision),
* but also leave enough space for the guardband.
*
* Note that primitive binning requires QUANT_MODE == 16_8 on Vega10
* and Raven1 for line and rectangle primitive types to work correctly.
* Always use 16_8 if primitive binning is possible to occur.
*/
if ((ctx->family == CHIP_VEGA10 || ctx->family == CHIP_RAVEN) && ctx->screen->dpbb_allowed)
max_extent = 16384; /* Use QUANT_MODE == 16_8. */
/* Another constraint is that all coordinates in the viewport
* are representable in fixed point with respect to the
* surface origin.
*
* It means that PA_SU_HARDWARE_SCREEN_OFFSET can't be given
* an offset that would make the upper corner of the viewport
* greater than the maximum representable number post
* quantization, ie 2^quant_bits.
*
* This does not matter for 14.10 and 16.8 formats since the
* offset is already limited at 8k, but it means we can't use
* 12.12 if we are drawing to some pixels outside the lower
* 4k x 4k of the render target.
*/
if (max_extent <= 1024 && max_corner < (1 << 12)) /* 4K scanline area for guardband */
scissor->quant_mode = SI_QUANT_MODE_12_12_FIXED_POINT_1_4096TH;
else if (max_extent <= 4096 && max_corner < (1 << 14)) /* 16K scanline area for guardband */
scissor->quant_mode = SI_QUANT_MODE_14_10_FIXED_POINT_1_1024TH;
else /* 64K scanline area for guardband */
scissor->quant_mode = SI_QUANT_MODE_16_8_FIXED_POINT_1_256TH;
}
if (start_slot == 0) {
ctx->viewports.y_inverted =
-state->scale[1] + state->translate[1] > state->scale[1] + state->translate[1];
/* NGG cull state uses the viewport and quant mode. */
if (ctx->screen->use_ngg_culling)
si_mark_atom_dirty(ctx, &ctx->atoms.s.ngg_cull_state);
}
si_mark_atom_dirty(ctx, &ctx->atoms.s.viewports);
si_mark_atom_dirty(ctx, &ctx->atoms.s.guardband);
si_mark_atom_dirty(ctx, &ctx->atoms.s.scissors);
}
static void si_emit_one_viewport(struct si_context *ctx, struct pipe_viewport_state *state)
{
struct radeon_cmdbuf *cs = ctx->gfx_cs;
radeon_emit(cs, fui(state->scale[0]));
radeon_emit(cs, fui(state->translate[0]));
radeon_emit(cs, fui(state->scale[1]));
radeon_emit(cs, fui(state->translate[1]));
radeon_emit(cs, fui(state->scale[2]));
radeon_emit(cs, fui(state->translate[2]));
}
static void si_emit_viewports(struct si_context *ctx)
{
struct radeon_cmdbuf *cs = ctx->gfx_cs;
struct pipe_viewport_state *states = ctx->viewports.states;
/* The simple case: Only 1 viewport is active. */
if (!ctx->vs_writes_viewport_index) {
radeon_set_context_reg_seq(cs, R_02843C_PA_CL_VPORT_XSCALE, 6);
si_emit_one_viewport(ctx, &states[0]);
return;
}
/* All registers in the array need to be updated if any of them is changed.
* This is a hardware requirement.
*/
radeon_set_context_reg_seq(cs, R_02843C_PA_CL_VPORT_XSCALE + 0, SI_MAX_VIEWPORTS * 6);
for (unsigned i = 0; i < SI_MAX_VIEWPORTS; i++)
si_emit_one_viewport(ctx, &states[i]);
}
static inline void si_viewport_zmin_zmax(const struct pipe_viewport_state *vp, bool halfz,
bool window_space_position, float *zmin, float *zmax)
{
if (window_space_position) {
*zmin = 0;
*zmax = 1;
return;
}
util_viewport_zmin_zmax(vp, halfz, zmin, zmax);
}
static void si_emit_depth_ranges(struct si_context *ctx)
{
struct radeon_cmdbuf *cs = ctx->gfx_cs;
struct pipe_viewport_state *states = ctx->viewports.states;
bool clip_halfz = ctx->queued.named.rasterizer->clip_halfz;
bool window_space = ctx->vs_disables_clipping_viewport;
float zmin, zmax;
/* The simple case: Only 1 viewport is active. */
if (!ctx->vs_writes_viewport_index) {
si_viewport_zmin_zmax(&states[0], clip_halfz, window_space, &zmin, &zmax);
radeon_set_context_reg_seq(cs, R_0282D0_PA_SC_VPORT_ZMIN_0, 2);
radeon_emit(cs, fui(zmin));
radeon_emit(cs, fui(zmax));
return;
}
/* All registers in the array need to be updated if any of them is changed.
* This is a hardware requirement.
*/
radeon_set_context_reg_seq(cs, R_0282D0_PA_SC_VPORT_ZMIN_0, SI_MAX_VIEWPORTS * 2);
for (unsigned i = 0; i < SI_MAX_VIEWPORTS; i++) {
si_viewport_zmin_zmax(&states[i], clip_halfz, window_space, &zmin, &zmax);
radeon_emit(cs, fui(zmin));
radeon_emit(cs, fui(zmax));
}
}
static void si_emit_viewport_states(struct si_context *ctx)
{
si_emit_viewports(ctx);
si_emit_depth_ranges(ctx);
}
/**
* This reacts to 2 state changes:
* - VS.writes_viewport_index
* - VS output position in window space (enable/disable)
*
* Normally, we only emit 1 viewport and 1 scissor if no shader is using
* the VIEWPORT_INDEX output, and emitting the other viewports and scissors
* is delayed. When a shader with VIEWPORT_INDEX appears, this should be
* called to emit the rest.
*/
void si_update_vs_viewport_state(struct si_context *ctx)
{
struct si_shader_info *info = si_get_vs_info(ctx);
bool vs_window_space;
if (!info)
return;
/* When the VS disables clipping and viewport transformation. */
vs_window_space = info->stage == MESA_SHADER_VERTEX && info->base.vs.window_space_position;
if (ctx->vs_disables_clipping_viewport != vs_window_space) {
ctx->vs_disables_clipping_viewport = vs_window_space;
si_mark_atom_dirty(ctx, &ctx->atoms.s.scissors);
si_mark_atom_dirty(ctx, &ctx->atoms.s.viewports);
}
/* Viewport index handling. */
if (ctx->vs_writes_viewport_index == info->writes_viewport_index)
return;
/* This changes how the guardband is computed. */
ctx->vs_writes_viewport_index = info->writes_viewport_index;
si_mark_atom_dirty(ctx, &ctx->atoms.s.guardband);
/* Emit scissors and viewports that were enabled by having
* the ViewportIndex output.
*/
if (info->writes_viewport_index) {
si_mark_atom_dirty(ctx, &ctx->atoms.s.scissors);
si_mark_atom_dirty(ctx, &ctx->atoms.s.viewports);
}
}
static void si_emit_window_rectangles(struct si_context *sctx)
{
/* There are four clipping rectangles. Their corner coordinates are inclusive.
* Every pixel is assigned a number from 0 and 15 by setting bits 0-3 depending
* on whether the pixel is inside cliprects 0-3, respectively. For example,
* if a pixel is inside cliprects 0 and 1, but outside 2 and 3, it is assigned
* the number 3 (binary 0011).
*
* If CLIPRECT_RULE & (1 << number), the pixel is rasterized.
*/
struct radeon_cmdbuf *cs = sctx->gfx_cs;
static const unsigned outside[4] = {
/* outside rectangle 0 */
V_02820C_OUT | V_02820C_IN_1 | V_02820C_IN_2 | V_02820C_IN_21 | V_02820C_IN_3 |
V_02820C_IN_31 | V_02820C_IN_32 | V_02820C_IN_321,
/* outside rectangles 0, 1 */
V_02820C_OUT | V_02820C_IN_2 | V_02820C_IN_3 | V_02820C_IN_32,
/* outside rectangles 0, 1, 2 */
V_02820C_OUT | V_02820C_IN_3,
/* outside rectangles 0, 1, 2, 3 */
V_02820C_OUT,
};
const unsigned disabled = 0xffff; /* all inside and outside cases */
unsigned num_rectangles = sctx->num_window_rectangles;
struct pipe_scissor_state *rects = sctx->window_rectangles;
unsigned rule;
assert(num_rectangles <= 4);
if (num_rectangles == 0)
rule = disabled;
else if (sctx->window_rectangles_include)
rule = ~outside[num_rectangles - 1];
else
rule = outside[num_rectangles - 1];
radeon_opt_set_context_reg(sctx, R_02820C_PA_SC_CLIPRECT_RULE, SI_TRACKED_PA_SC_CLIPRECT_RULE,
rule);
if (num_rectangles == 0)
return;
radeon_set_context_reg_seq(cs, R_028210_PA_SC_CLIPRECT_0_TL, num_rectangles * 2);
for (unsigned i = 0; i < num_rectangles; i++) {
radeon_emit(cs, S_028210_TL_X(rects[i].minx) | S_028210_TL_Y(rects[i].miny));
radeon_emit(cs, S_028214_BR_X(rects[i].maxx) | S_028214_BR_Y(rects[i].maxy));
}
}
static void si_set_window_rectangles(struct pipe_context *ctx, bool include,
unsigned num_rectangles,
const struct pipe_scissor_state *rects)
{
struct si_context *sctx = (struct si_context *)ctx;
sctx->num_window_rectangles = num_rectangles;
sctx->window_rectangles_include = include;
if (num_rectangles) {
memcpy(sctx->window_rectangles, rects, sizeof(*rects) * num_rectangles);
}
si_mark_atom_dirty(sctx, &sctx->atoms.s.window_rectangles);
}
void si_init_viewport_functions(struct si_context *ctx)
{
ctx->atoms.s.guardband.emit = si_emit_guardband;
ctx->atoms.s.scissors.emit = si_emit_scissors;
ctx->atoms.s.viewports.emit = si_emit_viewport_states;
ctx->atoms.s.window_rectangles.emit = si_emit_window_rectangles;
ctx->atoms.s.ngg_cull_state.emit = si_emit_cull_state;
ctx->b.set_scissor_states = si_set_scissor_states;
ctx->b.set_viewport_states = si_set_viewport_states;
ctx->b.set_window_rectangles = si_set_window_rectangles;
for (unsigned i = 0; i < 16; i++)
ctx->viewports.as_scissor[i].quant_mode = SI_QUANT_MODE_16_8_FIXED_POINT_1_256TH;
}