blob: 8e4b382ebd3c65bbfcc1ff3ef6744dd997a6e901 [file] [log] [blame]
/*
* Copyright © 2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include <string.h>
#include "main/core.h" /* for MAX2 */
#include "ir.h"
#include "compiler/glsl_types.h"
ir_rvalue::ir_rvalue(enum ir_node_type t)
: ir_instruction(t)
{
this->type = glsl_type::error_type;
}
bool ir_rvalue::is_zero() const
{
return false;
}
bool ir_rvalue::is_one() const
{
return false;
}
bool ir_rvalue::is_negative_one() const
{
return false;
}
/**
* Modify the swizzle make to move one component to another
*
* \param m IR swizzle to be modified
* \param from Component in the RHS that is to be swizzled
* \param to Desired swizzle location of \c from
*/
static void
update_rhs_swizzle(ir_swizzle_mask &m, unsigned from, unsigned to)
{
switch (to) {
case 0: m.x = from; break;
case 1: m.y = from; break;
case 2: m.z = from; break;
case 3: m.w = from; break;
default: assert(!"Should not get here.");
}
}
void
ir_assignment::set_lhs(ir_rvalue *lhs)
{
void *mem_ctx = this;
bool swizzled = false;
while (lhs != NULL) {
ir_swizzle *swiz = lhs->as_swizzle();
if (swiz == NULL)
break;
unsigned write_mask = 0;
ir_swizzle_mask rhs_swiz = { 0, 0, 0, 0, 0, 0 };
for (unsigned i = 0; i < swiz->mask.num_components; i++) {
unsigned c = 0;
switch (i) {
case 0: c = swiz->mask.x; break;
case 1: c = swiz->mask.y; break;
case 2: c = swiz->mask.z; break;
case 3: c = swiz->mask.w; break;
default: assert(!"Should not get here.");
}
write_mask |= (((this->write_mask >> i) & 1) << c);
update_rhs_swizzle(rhs_swiz, i, c);
rhs_swiz.num_components = swiz->val->type->vector_elements;
}
this->write_mask = write_mask;
lhs = swiz->val;
this->rhs = new(mem_ctx) ir_swizzle(this->rhs, rhs_swiz);
swizzled = true;
}
if (swizzled) {
/* Now, RHS channels line up with the LHS writemask. Collapse it
* to just the channels that will be written.
*/
ir_swizzle_mask rhs_swiz = { 0, 0, 0, 0, 0, 0 };
int rhs_chan = 0;
for (int i = 0; i < 4; i++) {
if (write_mask & (1 << i))
update_rhs_swizzle(rhs_swiz, i, rhs_chan++);
}
rhs_swiz.num_components = rhs_chan;
this->rhs = new(mem_ctx) ir_swizzle(this->rhs, rhs_swiz);
}
assert((lhs == NULL) || lhs->as_dereference());
this->lhs = (ir_dereference *) lhs;
}
ir_variable *
ir_assignment::whole_variable_written()
{
ir_variable *v = this->lhs->whole_variable_referenced();
if (v == NULL)
return NULL;
if (v->type->is_scalar())
return v;
if (v->type->is_vector()) {
const unsigned mask = (1U << v->type->vector_elements) - 1;
if (mask != this->write_mask)
return NULL;
}
/* Either all the vector components are assigned or the variable is some
* composite type (and the whole thing is assigned.
*/
return v;
}
ir_assignment::ir_assignment(ir_dereference *lhs, ir_rvalue *rhs,
ir_rvalue *condition, unsigned write_mask)
: ir_instruction(ir_type_assignment)
{
this->condition = condition;
this->rhs = rhs;
this->lhs = lhs;
this->write_mask = write_mask;
if (lhs->type->is_scalar() || lhs->type->is_vector()) {
int lhs_components = 0;
for (int i = 0; i < 4; i++) {
if (write_mask & (1 << i))
lhs_components++;
}
assert(lhs_components == this->rhs->type->vector_elements);
}
}
ir_assignment::ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs,
ir_rvalue *condition)
: ir_instruction(ir_type_assignment)
{
this->condition = condition;
this->rhs = rhs;
/* If the RHS is a vector type, assume that all components of the vector
* type are being written to the LHS. The write mask comes from the RHS
* because we can have a case where the LHS is a vec4 and the RHS is a
* vec3. In that case, the assignment is:
*
* (assign (...) (xyz) (var_ref lhs) (var_ref rhs))
*/
if (rhs->type->is_vector())
this->write_mask = (1U << rhs->type->vector_elements) - 1;
else if (rhs->type->is_scalar())
this->write_mask = 1;
else
this->write_mask = 0;
this->set_lhs(lhs);
}
ir_expression::ir_expression(int op, const struct glsl_type *type,
ir_rvalue *op0, ir_rvalue *op1,
ir_rvalue *op2, ir_rvalue *op3)
: ir_rvalue(ir_type_expression)
{
this->type = type;
this->operation = ir_expression_operation(op);
this->operands[0] = op0;
this->operands[1] = op1;
this->operands[2] = op2;
this->operands[3] = op3;
#ifndef NDEBUG
int num_operands = get_num_operands(this->operation);
for (int i = num_operands; i < 4; i++) {
assert(this->operands[i] == NULL);
}
#endif
}
ir_expression::ir_expression(int op, ir_rvalue *op0)
: ir_rvalue(ir_type_expression)
{
this->operation = ir_expression_operation(op);
this->operands[0] = op0;
this->operands[1] = NULL;
this->operands[2] = NULL;
this->operands[3] = NULL;
assert(op <= ir_last_unop);
switch (this->operation) {
case ir_unop_bit_not:
case ir_unop_logic_not:
case ir_unop_neg:
case ir_unop_abs:
case ir_unop_sign:
case ir_unop_rcp:
case ir_unop_rsq:
case ir_unop_sqrt:
case ir_unop_exp:
case ir_unop_log:
case ir_unop_exp2:
case ir_unop_log2:
case ir_unop_trunc:
case ir_unop_ceil:
case ir_unop_floor:
case ir_unop_fract:
case ir_unop_round_even:
case ir_unop_sin:
case ir_unop_cos:
case ir_unop_dFdx:
case ir_unop_dFdx_coarse:
case ir_unop_dFdx_fine:
case ir_unop_dFdy:
case ir_unop_dFdy_coarse:
case ir_unop_dFdy_fine:
case ir_unop_bitfield_reverse:
case ir_unop_interpolate_at_centroid:
case ir_unop_saturate:
this->type = op0->type;
break;
case ir_unop_f2i:
case ir_unop_b2i:
case ir_unop_u2i:
case ir_unop_d2i:
case ir_unop_bitcast_f2i:
case ir_unop_bit_count:
case ir_unop_find_msb:
case ir_unop_find_lsb:
case ir_unop_subroutine_to_int:
this->type = glsl_type::get_instance(GLSL_TYPE_INT,
op0->type->vector_elements, 1);
break;
case ir_unop_b2f:
case ir_unop_i2f:
case ir_unop_u2f:
case ir_unop_d2f:
case ir_unop_bitcast_i2f:
case ir_unop_bitcast_u2f:
this->type = glsl_type::get_instance(GLSL_TYPE_FLOAT,
op0->type->vector_elements, 1);
break;
case ir_unop_f2b:
case ir_unop_i2b:
case ir_unop_d2b:
this->type = glsl_type::get_instance(GLSL_TYPE_BOOL,
op0->type->vector_elements, 1);
break;
case ir_unop_f2d:
case ir_unop_i2d:
case ir_unop_u2d:
this->type = glsl_type::get_instance(GLSL_TYPE_DOUBLE,
op0->type->vector_elements, 1);
break;
case ir_unop_i2u:
case ir_unop_f2u:
case ir_unop_d2u:
case ir_unop_bitcast_f2u:
this->type = glsl_type::get_instance(GLSL_TYPE_UINT,
op0->type->vector_elements, 1);
break;
case ir_unop_noise:
this->type = glsl_type::float_type;
break;
case ir_unop_unpack_double_2x32:
this->type = glsl_type::uvec2_type;
break;
case ir_unop_pack_snorm_2x16:
case ir_unop_pack_snorm_4x8:
case ir_unop_pack_unorm_2x16:
case ir_unop_pack_unorm_4x8:
case ir_unop_pack_half_2x16:
this->type = glsl_type::uint_type;
break;
case ir_unop_pack_double_2x32:
this->type = glsl_type::double_type;
break;
case ir_unop_unpack_snorm_2x16:
case ir_unop_unpack_unorm_2x16:
case ir_unop_unpack_half_2x16:
this->type = glsl_type::vec2_type;
break;
case ir_unop_unpack_snorm_4x8:
case ir_unop_unpack_unorm_4x8:
this->type = glsl_type::vec4_type;
break;
case ir_unop_frexp_sig:
this->type = op0->type;
break;
case ir_unop_frexp_exp:
this->type = glsl_type::get_instance(GLSL_TYPE_INT,
op0->type->vector_elements, 1);
break;
case ir_unop_get_buffer_size:
case ir_unop_ssbo_unsized_array_length:
this->type = glsl_type::int_type;
break;
case ir_unop_vote_any:
case ir_unop_vote_all:
case ir_unop_vote_eq:
this->type = glsl_type::bool_type;
break;
default:
assert(!"not reached: missing automatic type setup for ir_expression");
this->type = op0->type;
break;
}
}
ir_expression::ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1)
: ir_rvalue(ir_type_expression)
{
this->operation = ir_expression_operation(op);
this->operands[0] = op0;
this->operands[1] = op1;
this->operands[2] = NULL;
this->operands[3] = NULL;
assert(op > ir_last_unop);
switch (this->operation) {
case ir_binop_all_equal:
case ir_binop_any_nequal:
this->type = glsl_type::bool_type;
break;
case ir_binop_add:
case ir_binop_sub:
case ir_binop_min:
case ir_binop_max:
case ir_binop_pow:
case ir_binop_mul:
case ir_binop_div:
case ir_binop_mod:
if (op0->type->is_scalar()) {
this->type = op1->type;
} else if (op1->type->is_scalar()) {
this->type = op0->type;
} else {
if (this->operation == ir_binop_mul) {
this->type = glsl_type::get_mul_type(op0->type, op1->type);
} else {
assert(op0->type == op1->type);
this->type = op0->type;
}
}
break;
case ir_binop_logic_and:
case ir_binop_logic_xor:
case ir_binop_logic_or:
case ir_binop_bit_and:
case ir_binop_bit_xor:
case ir_binop_bit_or:
assert(!op0->type->is_matrix());
assert(!op1->type->is_matrix());
if (op0->type->is_scalar()) {
this->type = op1->type;
} else if (op1->type->is_scalar()) {
this->type = op0->type;
} else {
assert(op0->type->vector_elements == op1->type->vector_elements);
this->type = op0->type;
}
break;
case ir_binop_equal:
case ir_binop_nequal:
case ir_binop_lequal:
case ir_binop_gequal:
case ir_binop_less:
case ir_binop_greater:
assert(op0->type == op1->type);
this->type = glsl_type::get_instance(GLSL_TYPE_BOOL,
op0->type->vector_elements, 1);
break;
case ir_binop_dot:
this->type = op0->type->get_base_type();
break;
case ir_binop_imul_high:
case ir_binop_carry:
case ir_binop_borrow:
case ir_binop_lshift:
case ir_binop_rshift:
case ir_binop_ldexp:
case ir_binop_interpolate_at_offset:
case ir_binop_interpolate_at_sample:
this->type = op0->type;
break;
case ir_binop_vector_extract:
this->type = op0->type->get_scalar_type();
break;
default:
assert(!"not reached: missing automatic type setup for ir_expression");
this->type = glsl_type::float_type;
}
}
ir_expression::ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1,
ir_rvalue *op2)
: ir_rvalue(ir_type_expression)
{
this->operation = ir_expression_operation(op);
this->operands[0] = op0;
this->operands[1] = op1;
this->operands[2] = op2;
this->operands[3] = NULL;
assert(op > ir_last_binop && op <= ir_last_triop);
switch (this->operation) {
case ir_triop_fma:
case ir_triop_lrp:
case ir_triop_bitfield_extract:
case ir_triop_vector_insert:
this->type = op0->type;
break;
case ir_triop_csel:
this->type = op1->type;
break;
default:
assert(!"not reached: missing automatic type setup for ir_expression");
this->type = glsl_type::float_type;
}
}
unsigned int
ir_expression::get_num_operands(ir_expression_operation op)
{
assert(op <= ir_last_opcode);
if (op <= ir_last_unop)
return 1;
if (op <= ir_last_binop)
return 2;
if (op <= ir_last_triop)
return 3;
if (op <= ir_last_quadop)
return 4;
assert(false);
return 0;
}
#include "ir_expression_operation_strings.h"
const char*
depth_layout_string(ir_depth_layout layout)
{
switch(layout) {
case ir_depth_layout_none: return "";
case ir_depth_layout_any: return "depth_any";
case ir_depth_layout_greater: return "depth_greater";
case ir_depth_layout_less: return "depth_less";
case ir_depth_layout_unchanged: return "depth_unchanged";
default:
assert(0);
return "";
}
}
ir_expression_operation
ir_expression::get_operator(const char *str)
{
for (int op = 0; op <= int(ir_last_opcode); op++) {
if (strcmp(str, ir_expression_operation_strings[op]) == 0)
return (ir_expression_operation) op;
}
return (ir_expression_operation) -1;
}
ir_variable *
ir_expression::variable_referenced() const
{
switch (operation) {
case ir_binop_vector_extract:
case ir_triop_vector_insert:
/* We get these for things like a[0] where a is a vector type. In these
* cases we want variable_referenced() to return the actual vector
* variable this is wrapping.
*/
return operands[0]->variable_referenced();
default:
return ir_rvalue::variable_referenced();
}
}
ir_constant::ir_constant()
: ir_rvalue(ir_type_constant)
{
this->array_elements = NULL;
}
ir_constant::ir_constant(const struct glsl_type *type,
const ir_constant_data *data)
: ir_rvalue(ir_type_constant)
{
this->array_elements = NULL;
assert((type->base_type >= GLSL_TYPE_UINT)
&& (type->base_type <= GLSL_TYPE_BOOL));
this->type = type;
memcpy(& this->value, data, sizeof(this->value));
}
ir_constant::ir_constant(float f, unsigned vector_elements)
: ir_rvalue(ir_type_constant)
{
assert(vector_elements <= 4);
this->type = glsl_type::get_instance(GLSL_TYPE_FLOAT, vector_elements, 1);
for (unsigned i = 0; i < vector_elements; i++) {
this->value.f[i] = f;
}
for (unsigned i = vector_elements; i < 16; i++) {
this->value.f[i] = 0;
}
}
ir_constant::ir_constant(double d, unsigned vector_elements)
: ir_rvalue(ir_type_constant)
{
assert(vector_elements <= 4);
this->type = glsl_type::get_instance(GLSL_TYPE_DOUBLE, vector_elements, 1);
for (unsigned i = 0; i < vector_elements; i++) {
this->value.d[i] = d;
}
for (unsigned i = vector_elements; i < 16; i++) {
this->value.d[i] = 0.0;
}
}
ir_constant::ir_constant(unsigned int u, unsigned vector_elements)
: ir_rvalue(ir_type_constant)
{
assert(vector_elements <= 4);
this->type = glsl_type::get_instance(GLSL_TYPE_UINT, vector_elements, 1);
for (unsigned i = 0; i < vector_elements; i++) {
this->value.u[i] = u;
}
for (unsigned i = vector_elements; i < 16; i++) {
this->value.u[i] = 0;
}
}
ir_constant::ir_constant(int integer, unsigned vector_elements)
: ir_rvalue(ir_type_constant)
{
assert(vector_elements <= 4);
this->type = glsl_type::get_instance(GLSL_TYPE_INT, vector_elements, 1);
for (unsigned i = 0; i < vector_elements; i++) {
this->value.i[i] = integer;
}
for (unsigned i = vector_elements; i < 16; i++) {
this->value.i[i] = 0;
}
}
ir_constant::ir_constant(bool b, unsigned vector_elements)
: ir_rvalue(ir_type_constant)
{
assert(vector_elements <= 4);
this->type = glsl_type::get_instance(GLSL_TYPE_BOOL, vector_elements, 1);
for (unsigned i = 0; i < vector_elements; i++) {
this->value.b[i] = b;
}
for (unsigned i = vector_elements; i < 16; i++) {
this->value.b[i] = false;
}
}
ir_constant::ir_constant(const ir_constant *c, unsigned i)
: ir_rvalue(ir_type_constant)
{
this->array_elements = NULL;
this->type = c->type->get_base_type();
switch (this->type->base_type) {
case GLSL_TYPE_UINT: this->value.u[0] = c->value.u[i]; break;
case GLSL_TYPE_INT: this->value.i[0] = c->value.i[i]; break;
case GLSL_TYPE_FLOAT: this->value.f[0] = c->value.f[i]; break;
case GLSL_TYPE_BOOL: this->value.b[0] = c->value.b[i]; break;
case GLSL_TYPE_DOUBLE: this->value.d[0] = c->value.d[i]; break;
default: assert(!"Should not get here."); break;
}
}
ir_constant::ir_constant(const struct glsl_type *type, exec_list *value_list)
: ir_rvalue(ir_type_constant)
{
this->array_elements = NULL;
this->type = type;
assert(type->is_scalar() || type->is_vector() || type->is_matrix()
|| type->is_record() || type->is_array());
if (type->is_array()) {
this->array_elements = ralloc_array(this, ir_constant *, type->length);
unsigned i = 0;
foreach_in_list(ir_constant, value, value_list) {
assert(value->as_constant() != NULL);
this->array_elements[i++] = value;
}
return;
}
/* If the constant is a record, the types of each of the entries in
* value_list must be a 1-for-1 match with the structure components. Each
* entry must also be a constant. Just move the nodes from the value_list
* to the list in the ir_constant.
*/
/* FINISHME: Should there be some type checking and / or assertions here? */
/* FINISHME: Should the new constant take ownership of the nodes from
* FINISHME: value_list, or should it make copies?
*/
if (type->is_record()) {
value_list->move_nodes_to(& this->components);
return;
}
for (unsigned i = 0; i < 16; i++) {
this->value.u[i] = 0;
}
ir_constant *value = (ir_constant *) (value_list->get_head_raw());
/* Constructors with exactly one scalar argument are special for vectors
* and matrices. For vectors, the scalar value is replicated to fill all
* the components. For matrices, the scalar fills the components of the
* diagonal while the rest is filled with 0.
*/
if (value->type->is_scalar() && value->next->is_tail_sentinel()) {
if (type->is_matrix()) {
/* Matrix - fill diagonal (rest is already set to 0) */
assert(type->base_type == GLSL_TYPE_FLOAT ||
type->base_type == GLSL_TYPE_DOUBLE);
for (unsigned i = 0; i < type->matrix_columns; i++) {
if (type->base_type == GLSL_TYPE_FLOAT)
this->value.f[i * type->vector_elements + i] =
value->value.f[0];
else
this->value.d[i * type->vector_elements + i] =
value->value.d[0];
}
} else {
/* Vector or scalar - fill all components */
switch (type->base_type) {
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT:
for (unsigned i = 0; i < type->components(); i++)
this->value.u[i] = value->value.u[0];
break;
case GLSL_TYPE_FLOAT:
for (unsigned i = 0; i < type->components(); i++)
this->value.f[i] = value->value.f[0];
break;
case GLSL_TYPE_DOUBLE:
for (unsigned i = 0; i < type->components(); i++)
this->value.d[i] = value->value.d[0];
break;
case GLSL_TYPE_BOOL:
for (unsigned i = 0; i < type->components(); i++)
this->value.b[i] = value->value.b[0];
break;
default:
assert(!"Should not get here.");
break;
}
}
return;
}
if (type->is_matrix() && value->type->is_matrix()) {
assert(value->next->is_tail_sentinel());
/* From section 5.4.2 of the GLSL 1.20 spec:
* "If a matrix is constructed from a matrix, then each component
* (column i, row j) in the result that has a corresponding component
* (column i, row j) in the argument will be initialized from there."
*/
unsigned cols = MIN2(type->matrix_columns, value->type->matrix_columns);
unsigned rows = MIN2(type->vector_elements, value->type->vector_elements);
for (unsigned i = 0; i < cols; i++) {
for (unsigned j = 0; j < rows; j++) {
const unsigned src = i * value->type->vector_elements + j;
const unsigned dst = i * type->vector_elements + j;
this->value.f[dst] = value->value.f[src];
}
}
/* "All other components will be initialized to the identity matrix." */
for (unsigned i = cols; i < type->matrix_columns; i++)
this->value.f[i * type->vector_elements + i] = 1.0;
return;
}
/* Use each component from each entry in the value_list to initialize one
* component of the constant being constructed.
*/
unsigned i = 0;
for (;;) {
assert(value->as_constant() != NULL);
assert(!value->is_tail_sentinel());
for (unsigned j = 0; j < value->type->components(); j++) {
switch (type->base_type) {
case GLSL_TYPE_UINT:
this->value.u[i] = value->get_uint_component(j);
break;
case GLSL_TYPE_INT:
this->value.i[i] = value->get_int_component(j);
break;
case GLSL_TYPE_FLOAT:
this->value.f[i] = value->get_float_component(j);
break;
case GLSL_TYPE_BOOL:
this->value.b[i] = value->get_bool_component(j);
break;
case GLSL_TYPE_DOUBLE:
this->value.d[i] = value->get_double_component(j);
break;
default:
/* FINISHME: What to do? Exceptions are not the answer.
*/
break;
}
i++;
if (i >= type->components())
break;
}
if (i >= type->components())
break; /* avoid downcasting a list sentinel */
value = (ir_constant *) value->next;
}
}
ir_constant *
ir_constant::zero(void *mem_ctx, const glsl_type *type)
{
assert(type->is_scalar() || type->is_vector() || type->is_matrix()
|| type->is_record() || type->is_array());
ir_constant *c = new(mem_ctx) ir_constant;
c->type = type;
memset(&c->value, 0, sizeof(c->value));
if (type->is_array()) {
c->array_elements = ralloc_array(c, ir_constant *, type->length);
for (unsigned i = 0; i < type->length; i++)
c->array_elements[i] = ir_constant::zero(c, type->fields.array);
}
if (type->is_record()) {
for (unsigned i = 0; i < type->length; i++) {
ir_constant *comp = ir_constant::zero(mem_ctx, type->fields.structure[i].type);
c->components.push_tail(comp);
}
}
return c;
}
bool
ir_constant::get_bool_component(unsigned i) const
{
switch (this->type->base_type) {
case GLSL_TYPE_UINT: return this->value.u[i] != 0;
case GLSL_TYPE_INT: return this->value.i[i] != 0;
case GLSL_TYPE_FLOAT: return ((int)this->value.f[i]) != 0;
case GLSL_TYPE_BOOL: return this->value.b[i];
case GLSL_TYPE_DOUBLE: return this->value.d[i] != 0.0;
default: assert(!"Should not get here."); break;
}
/* Must return something to make the compiler happy. This is clearly an
* error case.
*/
return false;
}
float
ir_constant::get_float_component(unsigned i) const
{
switch (this->type->base_type) {
case GLSL_TYPE_UINT: return (float) this->value.u[i];
case GLSL_TYPE_INT: return (float) this->value.i[i];
case GLSL_TYPE_FLOAT: return this->value.f[i];
case GLSL_TYPE_BOOL: return this->value.b[i] ? 1.0f : 0.0f;
case GLSL_TYPE_DOUBLE: return (float) this->value.d[i];
default: assert(!"Should not get here."); break;
}
/* Must return something to make the compiler happy. This is clearly an
* error case.
*/
return 0.0;
}
double
ir_constant::get_double_component(unsigned i) const
{
switch (this->type->base_type) {
case GLSL_TYPE_UINT: return (double) this->value.u[i];
case GLSL_TYPE_INT: return (double) this->value.i[i];
case GLSL_TYPE_FLOAT: return (double) this->value.f[i];
case GLSL_TYPE_BOOL: return this->value.b[i] ? 1.0 : 0.0;
case GLSL_TYPE_DOUBLE: return this->value.d[i];
default: assert(!"Should not get here."); break;
}
/* Must return something to make the compiler happy. This is clearly an
* error case.
*/
return 0.0;
}
int
ir_constant::get_int_component(unsigned i) const
{
switch (this->type->base_type) {
case GLSL_TYPE_UINT: return this->value.u[i];
case GLSL_TYPE_INT: return this->value.i[i];
case GLSL_TYPE_FLOAT: return (int) this->value.f[i];
case GLSL_TYPE_BOOL: return this->value.b[i] ? 1 : 0;
case GLSL_TYPE_DOUBLE: return (int) this->value.d[i];
default: assert(!"Should not get here."); break;
}
/* Must return something to make the compiler happy. This is clearly an
* error case.
*/
return 0;
}
unsigned
ir_constant::get_uint_component(unsigned i) const
{
switch (this->type->base_type) {
case GLSL_TYPE_UINT: return this->value.u[i];
case GLSL_TYPE_INT: return this->value.i[i];
case GLSL_TYPE_FLOAT: return (unsigned) this->value.f[i];
case GLSL_TYPE_BOOL: return this->value.b[i] ? 1 : 0;
case GLSL_TYPE_DOUBLE: return (unsigned) this->value.d[i];
default: assert(!"Should not get here."); break;
}
/* Must return something to make the compiler happy. This is clearly an
* error case.
*/
return 0;
}
ir_constant *
ir_constant::get_array_element(unsigned i) const
{
assert(this->type->is_array());
/* From page 35 (page 41 of the PDF) of the GLSL 1.20 spec:
*
* "Behavior is undefined if a shader subscripts an array with an index
* less than 0 or greater than or equal to the size the array was
* declared with."
*
* Most out-of-bounds accesses are removed before things could get this far.
* There are cases where non-constant array index values can get constant
* folded.
*/
if (int(i) < 0)
i = 0;
else if (i >= this->type->length)
i = this->type->length - 1;
return array_elements[i];
}
ir_constant *
ir_constant::get_record_field(const char *name)
{
int idx = this->type->field_index(name);
if (idx < 0)
return NULL;
if (this->components.is_empty())
return NULL;
exec_node *node = this->components.get_head_raw();
for (int i = 0; i < idx; i++) {
node = node->next;
/* If the end of the list is encountered before the element matching the
* requested field is found, return NULL.
*/
if (node->is_tail_sentinel())
return NULL;
}
return (ir_constant *) node;
}
void
ir_constant::copy_offset(ir_constant *src, int offset)
{
switch (this->type->base_type) {
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT:
case GLSL_TYPE_FLOAT:
case GLSL_TYPE_DOUBLE:
case GLSL_TYPE_BOOL: {
unsigned int size = src->type->components();
assert (size <= this->type->components() - offset);
for (unsigned int i=0; i<size; i++) {
switch (this->type->base_type) {
case GLSL_TYPE_UINT:
value.u[i+offset] = src->get_uint_component(i);
break;
case GLSL_TYPE_INT:
value.i[i+offset] = src->get_int_component(i);
break;
case GLSL_TYPE_FLOAT:
value.f[i+offset] = src->get_float_component(i);
break;
case GLSL_TYPE_BOOL:
value.b[i+offset] = src->get_bool_component(i);
break;
case GLSL_TYPE_DOUBLE:
value.d[i+offset] = src->get_double_component(i);
break;
default: // Shut up the compiler
break;
}
}
break;
}
case GLSL_TYPE_STRUCT: {
assert (src->type == this->type);
this->components.make_empty();
foreach_in_list(ir_constant, orig, &src->components) {
this->components.push_tail(orig->clone(this, NULL));
}
break;
}
case GLSL_TYPE_ARRAY: {
assert (src->type == this->type);
for (unsigned i = 0; i < this->type->length; i++) {
this->array_elements[i] = src->array_elements[i]->clone(this, NULL);
}
break;
}
default:
assert(!"Should not get here.");
break;
}
}
void
ir_constant::copy_masked_offset(ir_constant *src, int offset, unsigned int mask)
{
assert (!type->is_array() && !type->is_record());
if (!type->is_vector() && !type->is_matrix()) {
offset = 0;
mask = 1;
}
int id = 0;
for (int i=0; i<4; i++) {
if (mask & (1 << i)) {
switch (this->type->base_type) {
case GLSL_TYPE_UINT:
value.u[i+offset] = src->get_uint_component(id++);
break;
case GLSL_TYPE_INT:
value.i[i+offset] = src->get_int_component(id++);
break;
case GLSL_TYPE_FLOAT:
value.f[i+offset] = src->get_float_component(id++);
break;
case GLSL_TYPE_BOOL:
value.b[i+offset] = src->get_bool_component(id++);
break;
case GLSL_TYPE_DOUBLE:
value.d[i+offset] = src->get_double_component(id++);
break;
default:
assert(!"Should not get here.");
return;
}
}
}
}
bool
ir_constant::has_value(const ir_constant *c) const
{
if (this->type != c->type)
return false;
if (this->type->is_array()) {
for (unsigned i = 0; i < this->type->length; i++) {
if (!this->array_elements[i]->has_value(c->array_elements[i]))
return false;
}
return true;
}
if (this->type->base_type == GLSL_TYPE_STRUCT) {
const exec_node *a_node = this->components.get_head_raw();
const exec_node *b_node = c->components.get_head_raw();
while (!a_node->is_tail_sentinel()) {
assert(!b_node->is_tail_sentinel());
const ir_constant *const a_field = (ir_constant *) a_node;
const ir_constant *const b_field = (ir_constant *) b_node;
if (!a_field->has_value(b_field))
return false;
a_node = a_node->next;
b_node = b_node->next;
}
return true;
}
for (unsigned i = 0; i < this->type->components(); i++) {
switch (this->type->base_type) {
case GLSL_TYPE_UINT:
if (this->value.u[i] != c->value.u[i])
return false;
break;
case GLSL_TYPE_INT:
if (this->value.i[i] != c->value.i[i])
return false;
break;
case GLSL_TYPE_FLOAT:
if (this->value.f[i] != c->value.f[i])
return false;
break;
case GLSL_TYPE_BOOL:
if (this->value.b[i] != c->value.b[i])
return false;
break;
case GLSL_TYPE_DOUBLE:
if (this->value.d[i] != c->value.d[i])
return false;
break;
default:
assert(!"Should not get here.");
return false;
}
}
return true;
}
bool
ir_constant::is_value(float f, int i) const
{
if (!this->type->is_scalar() && !this->type->is_vector())
return false;
/* Only accept boolean values for 0/1. */
if (int(bool(i)) != i && this->type->is_boolean())
return false;
for (unsigned c = 0; c < this->type->vector_elements; c++) {
switch (this->type->base_type) {
case GLSL_TYPE_FLOAT:
if (this->value.f[c] != f)
return false;
break;
case GLSL_TYPE_INT:
if (this->value.i[c] != i)
return false;
break;
case GLSL_TYPE_UINT:
if (this->value.u[c] != unsigned(i))
return false;
break;
case GLSL_TYPE_BOOL:
if (this->value.b[c] != bool(i))
return false;
break;
case GLSL_TYPE_DOUBLE:
if (this->value.d[c] != double(f))
return false;
break;
default:
/* The only other base types are structures, arrays, and samplers.
* Samplers cannot be constants, and the others should have been
* filtered out above.
*/
assert(!"Should not get here.");
return false;
}
}
return true;
}
bool
ir_constant::is_zero() const
{
return is_value(0.0, 0);
}
bool
ir_constant::is_one() const
{
return is_value(1.0, 1);
}
bool
ir_constant::is_negative_one() const
{
return is_value(-1.0, -1);
}
bool
ir_constant::is_uint16_constant() const
{
if (!type->is_integer())
return false;
return value.u[0] < (1 << 16);
}
ir_loop::ir_loop()
: ir_instruction(ir_type_loop)
{
}
ir_dereference_variable::ir_dereference_variable(ir_variable *var)
: ir_dereference(ir_type_dereference_variable)
{
assert(var != NULL);
this->var = var;
this->type = var->type;
}
ir_dereference_array::ir_dereference_array(ir_rvalue *value,
ir_rvalue *array_index)
: ir_dereference(ir_type_dereference_array)
{
this->array_index = array_index;
this->set_array(value);
}
ir_dereference_array::ir_dereference_array(ir_variable *var,
ir_rvalue *array_index)
: ir_dereference(ir_type_dereference_array)
{
void *ctx = ralloc_parent(var);
this->array_index = array_index;
this->set_array(new(ctx) ir_dereference_variable(var));
}
void
ir_dereference_array::set_array(ir_rvalue *value)
{
assert(value != NULL);
this->array = value;
const glsl_type *const vt = this->array->type;
if (vt->is_array()) {
type = vt->fields.array;
} else if (vt->is_matrix()) {
type = vt->column_type();
} else if (vt->is_vector()) {
type = vt->get_base_type();
}
}
ir_dereference_record::ir_dereference_record(ir_rvalue *value,
const char *field)
: ir_dereference(ir_type_dereference_record)
{
assert(value != NULL);
this->record = value;
this->field = ralloc_strdup(this, field);
this->type = this->record->type->field_type(field);
}
ir_dereference_record::ir_dereference_record(ir_variable *var,
const char *field)
: ir_dereference(ir_type_dereference_record)
{
void *ctx = ralloc_parent(var);
this->record = new(ctx) ir_dereference_variable(var);
this->field = ralloc_strdup(this, field);
this->type = this->record->type->field_type(field);
}
bool
ir_dereference::is_lvalue() const
{
ir_variable *var = this->variable_referenced();
/* Every l-value derference chain eventually ends in a variable.
*/
if ((var == NULL) || var->data.read_only)
return false;
/* From section 4.1.7 of the GLSL 4.40 spec:
*
* "Opaque variables cannot be treated as l-values; hence cannot
* be used as out or inout function parameters, nor can they be
* assigned into."
*/
if (this->type->contains_opaque())
return false;
return true;
}
static const char * const tex_opcode_strs[] = { "tex", "txb", "txl", "txd", "txf", "txf_ms", "txs", "lod", "tg4", "query_levels", "texture_samples", "samples_identical" };
const char *ir_texture::opcode_string()
{
assert((unsigned int) op < ARRAY_SIZE(tex_opcode_strs));
return tex_opcode_strs[op];
}
ir_texture_opcode
ir_texture::get_opcode(const char *str)
{
const int count = sizeof(tex_opcode_strs) / sizeof(tex_opcode_strs[0]);
for (int op = 0; op < count; op++) {
if (strcmp(str, tex_opcode_strs[op]) == 0)
return (ir_texture_opcode) op;
}
return (ir_texture_opcode) -1;
}
void
ir_texture::set_sampler(ir_dereference *sampler, const glsl_type *type)
{
assert(sampler != NULL);
assert(type != NULL);
this->sampler = sampler;
this->type = type;
if (this->op == ir_txs || this->op == ir_query_levels ||
this->op == ir_texture_samples) {
assert(type->base_type == GLSL_TYPE_INT);
} else if (this->op == ir_lod) {
assert(type->vector_elements == 2);
assert(type->base_type == GLSL_TYPE_FLOAT);
} else if (this->op == ir_samples_identical) {
assert(type == glsl_type::bool_type);
assert(sampler->type->base_type == GLSL_TYPE_SAMPLER);
assert(sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_MS);
} else {
assert(sampler->type->sampled_type == (int) type->base_type);
if (sampler->type->sampler_shadow)
assert(type->vector_elements == 4 || type->vector_elements == 1);
else
assert(type->vector_elements == 4);
}
}
void
ir_swizzle::init_mask(const unsigned *comp, unsigned count)
{
assert((count >= 1) && (count <= 4));
memset(&this->mask, 0, sizeof(this->mask));
this->mask.num_components = count;
unsigned dup_mask = 0;
switch (count) {
case 4:
assert(comp[3] <= 3);
dup_mask |= (1U << comp[3])
& ((1U << comp[0]) | (1U << comp[1]) | (1U << comp[2]));
this->mask.w = comp[3];
case 3:
assert(comp[2] <= 3);
dup_mask |= (1U << comp[2])
& ((1U << comp[0]) | (1U << comp[1]));
this->mask.z = comp[2];
case 2:
assert(comp[1] <= 3);
dup_mask |= (1U << comp[1])
& ((1U << comp[0]));
this->mask.y = comp[1];
case 1:
assert(comp[0] <= 3);
this->mask.x = comp[0];
}
this->mask.has_duplicates = dup_mask != 0;
/* Based on the number of elements in the swizzle and the base type
* (i.e., float, int, unsigned, or bool) of the vector being swizzled,
* generate the type of the resulting value.
*/
type = glsl_type::get_instance(val->type->base_type, mask.num_components, 1);
}
ir_swizzle::ir_swizzle(ir_rvalue *val, unsigned x, unsigned y, unsigned z,
unsigned w, unsigned count)
: ir_rvalue(ir_type_swizzle), val(val)
{
const unsigned components[4] = { x, y, z, w };
this->init_mask(components, count);
}
ir_swizzle::ir_swizzle(ir_rvalue *val, const unsigned *comp,
unsigned count)
: ir_rvalue(ir_type_swizzle), val(val)
{
this->init_mask(comp, count);
}
ir_swizzle::ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask)
: ir_rvalue(ir_type_swizzle)
{
this->val = val;
this->mask = mask;
this->type = glsl_type::get_instance(val->type->base_type,
mask.num_components, 1);
}
#define X 1
#define R 5
#define S 9
#define I 13
ir_swizzle *
ir_swizzle::create(ir_rvalue *val, const char *str, unsigned vector_length)
{
void *ctx = ralloc_parent(val);
/* For each possible swizzle character, this table encodes the value in
* \c idx_map that represents the 0th element of the vector. For invalid
* swizzle characters (e.g., 'k'), a special value is used that will allow
* detection of errors.
*/
static const unsigned char base_idx[26] = {
/* a b c d e f g h i j k l m */
R, R, I, I, I, I, R, I, I, I, I, I, I,
/* n o p q r s t u v w x y z */
I, I, S, S, R, S, S, I, I, X, X, X, X
};
/* Each valid swizzle character has an entry in the previous table. This
* table encodes the base index encoded in the previous table plus the actual
* index of the swizzle character. When processing swizzles, the first
* character in the string is indexed in the previous table. Each character
* in the string is indexed in this table, and the value found there has the
* value form the first table subtracted. The result must be on the range
* [0,3].
*
* For example, the string "wzyx" will get X from the first table. Each of
* the charcaters will get X+3, X+2, X+1, and X+0 from this table. After
* subtraction, the swizzle values are { 3, 2, 1, 0 }.
*
* The string "wzrg" will get X from the first table. Each of the characters
* will get X+3, X+2, R+0, and R+1 from this table. After subtraction, the
* swizzle values are { 3, 2, 4, 5 }. Since 4 and 5 are outside the range
* [0,3], the error is detected.
*/
static const unsigned char idx_map[26] = {
/* a b c d e f g h i j k l m */
R+3, R+2, 0, 0, 0, 0, R+1, 0, 0, 0, 0, 0, 0,
/* n o p q r s t u v w x y z */
0, 0, S+2, S+3, R+0, S+0, S+1, 0, 0, X+3, X+0, X+1, X+2
};
int swiz_idx[4] = { 0, 0, 0, 0 };
unsigned i;
/* Validate the first character in the swizzle string and look up the base
* index value as described above.
*/
if ((str[0] < 'a') || (str[0] > 'z'))
return NULL;
const unsigned base = base_idx[str[0] - 'a'];
for (i = 0; (i < 4) && (str[i] != '\0'); i++) {
/* Validate the next character, and, as described above, convert it to a
* swizzle index.
*/
if ((str[i] < 'a') || (str[i] > 'z'))
return NULL;
swiz_idx[i] = idx_map[str[i] - 'a'] - base;
if ((swiz_idx[i] < 0) || (swiz_idx[i] >= (int) vector_length))
return NULL;
}
if (str[i] != '\0')
return NULL;
return new(ctx) ir_swizzle(val, swiz_idx[0], swiz_idx[1], swiz_idx[2],
swiz_idx[3], i);
}
#undef X
#undef R
#undef S
#undef I
ir_variable *
ir_swizzle::variable_referenced() const
{
return this->val->variable_referenced();
}
bool ir_variable::temporaries_allocate_names = false;
const char ir_variable::tmp_name[] = "compiler_temp";
ir_variable::ir_variable(const struct glsl_type *type, const char *name,
ir_variable_mode mode)
: ir_instruction(ir_type_variable)
{
this->type = type;
if (mode == ir_var_temporary && !ir_variable::temporaries_allocate_names)
name = NULL;
/* The ir_variable clone method may call this constructor with name set to
* tmp_name.
*/
assert(name != NULL
|| mode == ir_var_temporary
|| mode == ir_var_function_in
|| mode == ir_var_function_out
|| mode == ir_var_function_inout);
assert(name != ir_variable::tmp_name
|| mode == ir_var_temporary);
if (mode == ir_var_temporary
&& (name == NULL || name == ir_variable::tmp_name)) {
this->name = ir_variable::tmp_name;
} else if (name == NULL ||
strlen(name) < ARRAY_SIZE(this->name_storage)) {
strcpy(this->name_storage, name ? name : "");
this->name = this->name_storage;
} else {
this->name = ralloc_strdup(this, name);
}
this->u.max_ifc_array_access = NULL;
this->data.explicit_location = false;
this->data.has_initializer = false;
this->data.location = -1;
this->data.location_frac = 0;
this->data.binding = 0;
this->data.warn_extension_index = 0;
this->constant_value = NULL;
this->constant_initializer = NULL;
this->data.origin_upper_left = false;
this->data.pixel_center_integer = false;
this->data.depth_layout = ir_depth_layout_none;
this->data.used = false;
this->data.always_active_io = false;
this->data.read_only = false;
this->data.centroid = false;
this->data.sample = false;
this->data.patch = false;
this->data.invariant = false;
this->data.how_declared = ir_var_declared_normally;
this->data.mode = mode;
this->data.interpolation = INTERP_MODE_NONE;
this->data.max_array_access = -1;
this->data.offset = 0;
this->data.precision = GLSL_PRECISION_NONE;
this->data.image_read_only = false;
this->data.image_write_only = false;
this->data.image_coherent = false;
this->data.image_volatile = false;
this->data.image_restrict = false;
this->data.from_ssbo_unsized_array = false;
this->data.fb_fetch_output = false;
if (type != NULL) {
if (type->base_type == GLSL_TYPE_SAMPLER)
this->data.read_only = true;
if (type->is_interface())
this->init_interface_type(type);
else if (type->without_array()->is_interface())
this->init_interface_type(type->without_array());
}
}
const char *
interpolation_string(unsigned interpolation)
{
switch (interpolation) {
case INTERP_MODE_NONE: return "no";
case INTERP_MODE_SMOOTH: return "smooth";
case INTERP_MODE_FLAT: return "flat";
case INTERP_MODE_NOPERSPECTIVE: return "noperspective";
}
assert(!"Should not get here.");
return "";
}
const char *const ir_variable::warn_extension_table[] = {
"",
"GL_ARB_shader_stencil_export",
"GL_AMD_shader_stencil_export",
};
void
ir_variable::enable_extension_warning(const char *extension)
{
for (unsigned i = 0; i < ARRAY_SIZE(warn_extension_table); i++) {
if (strcmp(warn_extension_table[i], extension) == 0) {
this->data.warn_extension_index = i;
return;
}
}
assert(!"Should not get here.");
this->data.warn_extension_index = 0;
}
const char *
ir_variable::get_extension_warning() const
{
return this->data.warn_extension_index == 0
? NULL : warn_extension_table[this->data.warn_extension_index];
}
ir_function_signature::ir_function_signature(const glsl_type *return_type,
builtin_available_predicate b)
: ir_instruction(ir_type_function_signature),
return_type(return_type), is_defined(false),
intrinsic_id(ir_intrinsic_invalid), builtin_avail(b), _function(NULL)
{
this->origin = NULL;
}
bool
ir_function_signature::is_builtin() const
{
return builtin_avail != NULL;
}
bool
ir_function_signature::is_builtin_available(const _mesa_glsl_parse_state *state) const
{
/* We can't call the predicate without a state pointer, so just say that
* the signature is available. At compile time, we need the filtering,
* but also receive a valid state pointer. At link time, we're resolving
* imported built-in prototypes to their definitions, which will always
* be an exact match. So we can skip the filtering.
*/
if (state == NULL)
return true;
assert(builtin_avail != NULL);
return builtin_avail(state);
}
static bool
modes_match(unsigned a, unsigned b)
{
if (a == b)
return true;
/* Accept "in" vs. "const in" */
if ((a == ir_var_const_in && b == ir_var_function_in) ||
(b == ir_var_const_in && a == ir_var_function_in))
return true;
return false;
}
const char *
ir_function_signature::qualifiers_match(exec_list *params)
{
/* check that the qualifiers match. */
foreach_two_lists(a_node, &this->parameters, b_node, params) {
ir_variable *a = (ir_variable *) a_node;
ir_variable *b = (ir_variable *) b_node;
if (a->data.read_only != b->data.read_only ||
!modes_match(a->data.mode, b->data.mode) ||
a->data.interpolation != b->data.interpolation ||
a->data.centroid != b->data.centroid ||
a->data.sample != b->data.sample ||
a->data.patch != b->data.patch ||
a->data.image_read_only != b->data.image_read_only ||
a->data.image_write_only != b->data.image_write_only ||
a->data.image_coherent != b->data.image_coherent ||
a->data.image_volatile != b->data.image_volatile ||
a->data.image_restrict != b->data.image_restrict) {
/* parameter a's qualifiers don't match */
return a->name;
}
}
return NULL;
}
void
ir_function_signature::replace_parameters(exec_list *new_params)
{
/* Destroy all of the previous parameter information. If the previous
* parameter information comes from the function prototype, it may either
* specify incorrect parameter names or not have names at all.
*/
new_params->move_nodes_to(&parameters);
}
ir_function::ir_function(const char *name)
: ir_instruction(ir_type_function)
{
this->subroutine_index = -1;
this->name = ralloc_strdup(this, name);
}
bool
ir_function::has_user_signature()
{
foreach_in_list(ir_function_signature, sig, &this->signatures) {
if (!sig->is_builtin())
return true;
}
return false;
}
ir_rvalue *
ir_rvalue::error_value(void *mem_ctx)
{
ir_rvalue *v = new(mem_ctx) ir_rvalue(ir_type_unset);
v->type = glsl_type::error_type;
return v;
}
void
visit_exec_list(exec_list *list, ir_visitor *visitor)
{
foreach_in_list_safe(ir_instruction, node, list) {
node->accept(visitor);
}
}
static void
steal_memory(ir_instruction *ir, void *new_ctx)
{
ir_variable *var = ir->as_variable();
ir_function *fn = ir->as_function();
ir_constant *constant = ir->as_constant();
if (var != NULL && var->constant_value != NULL)
steal_memory(var->constant_value, ir);
if (var != NULL && var->constant_initializer != NULL)
steal_memory(var->constant_initializer, ir);
if (fn != NULL && fn->subroutine_types)
ralloc_steal(new_ctx, fn->subroutine_types);
/* The components of aggregate constants are not visited by the normal
* visitor, so steal their values by hand.
*/
if (constant != NULL) {
if (constant->type->is_record()) {
foreach_in_list(ir_constant, field, &constant->components) {
steal_memory(field, ir);
}
} else if (constant->type->is_array()) {
for (unsigned int i = 0; i < constant->type->length; i++) {
steal_memory(constant->array_elements[i], ir);
}
}
}
ralloc_steal(new_ctx, ir);
}
void
reparent_ir(exec_list *list, void *mem_ctx)
{
foreach_in_list(ir_instruction, node, list) {
visit_tree(node, steal_memory, mem_ctx);
}
}
static ir_rvalue *
try_min_one(ir_rvalue *ir)
{
ir_expression *expr = ir->as_expression();
if (!expr || expr->operation != ir_binop_min)
return NULL;
if (expr->operands[0]->is_one())
return expr->operands[1];
if (expr->operands[1]->is_one())
return expr->operands[0];
return NULL;
}
static ir_rvalue *
try_max_zero(ir_rvalue *ir)
{
ir_expression *expr = ir->as_expression();
if (!expr || expr->operation != ir_binop_max)
return NULL;
if (expr->operands[0]->is_zero())
return expr->operands[1];
if (expr->operands[1]->is_zero())
return expr->operands[0];
return NULL;
}
ir_rvalue *
ir_rvalue::as_rvalue_to_saturate()
{
ir_expression *expr = this->as_expression();
if (!expr)
return NULL;
ir_rvalue *max_zero = try_max_zero(expr);
if (max_zero) {
return try_min_one(max_zero);
} else {
ir_rvalue *min_one = try_min_one(expr);
if (min_one) {
return try_max_zero(min_one);
}
}
return NULL;
}
unsigned
vertices_per_prim(GLenum prim)
{
switch (prim) {
case GL_POINTS:
return 1;
case GL_LINES:
return 2;
case GL_TRIANGLES:
return 3;
case GL_LINES_ADJACENCY:
return 4;
case GL_TRIANGLES_ADJACENCY:
return 6;
default:
assert(!"Bad primitive");
return 3;
}
}
/**
* Generate a string describing the mode of a variable
*/
const char *
mode_string(const ir_variable *var)
{
switch (var->data.mode) {
case ir_var_auto:
return (var->data.read_only) ? "global constant" : "global variable";
case ir_var_uniform:
return "uniform";
case ir_var_shader_storage:
return "buffer";
case ir_var_shader_in:
return "shader input";
case ir_var_shader_out:
return "shader output";
case ir_var_function_in:
case ir_var_const_in:
return "function input";
case ir_var_function_out:
return "function output";
case ir_var_function_inout:
return "function inout";
case ir_var_system_value:
return "shader input";
case ir_var_temporary:
return "compiler temporary";
case ir_var_mode_count:
break;
}
assert(!"Should not get here.");
return "invalid variable";
}