blob: e3f06a9900d4535d5659dbff0f347c63c3b1f896 [file] [log] [blame]
/*
* Copyright © 2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include "ast.h"
void
ast_type_specifier::print(void) const
{
if (structure) {
structure->print();
} else {
printf("%s ", type_name);
}
if (array_specifier) {
array_specifier->print();
}
}
bool
ast_fully_specified_type::has_qualifiers(_mesa_glsl_parse_state *state) const
{
/* 'subroutine' isnt a real qualifier. */
ast_type_qualifier subroutine_only;
subroutine_only.flags.i = 0;
subroutine_only.flags.q.subroutine = 1;
subroutine_only.flags.q.subroutine_def = 1;
if (state->has_explicit_uniform_location()) {
subroutine_only.flags.q.explicit_index = 1;
}
return (this->qualifier.flags.i & ~subroutine_only.flags.i) != 0;
}
bool ast_type_qualifier::has_interpolation() const
{
return this->flags.q.smooth
|| this->flags.q.flat
|| this->flags.q.noperspective;
}
bool
ast_type_qualifier::has_layout() const
{
return this->flags.q.origin_upper_left
|| this->flags.q.pixel_center_integer
|| this->flags.q.depth_any
|| this->flags.q.depth_greater
|| this->flags.q.depth_less
|| this->flags.q.depth_unchanged
|| this->flags.q.std140
|| this->flags.q.std430
|| this->flags.q.shared
|| this->flags.q.column_major
|| this->flags.q.row_major
|| this->flags.q.packed
|| this->flags.q.explicit_align
|| this->flags.q.explicit_component
|| this->flags.q.explicit_location
|| this->flags.q.explicit_image_format
|| this->flags.q.explicit_index
|| this->flags.q.explicit_binding
|| this->flags.q.explicit_offset
|| this->flags.q.explicit_stream
|| this->flags.q.explicit_xfb_buffer
|| this->flags.q.explicit_xfb_offset
|| this->flags.q.explicit_xfb_stride;
}
bool
ast_type_qualifier::has_storage() const
{
return this->flags.q.constant
|| this->flags.q.attribute
|| this->flags.q.varying
|| this->flags.q.in
|| this->flags.q.out
|| this->flags.q.uniform
|| this->flags.q.buffer
|| this->flags.q.shared_storage;
}
bool
ast_type_qualifier::has_auxiliary_storage() const
{
return this->flags.q.centroid
|| this->flags.q.sample
|| this->flags.q.patch;
}
bool ast_type_qualifier::has_memory() const
{
return this->flags.q.coherent
|| this->flags.q._volatile
|| this->flags.q.restrict_flag
|| this->flags.q.read_only
|| this->flags.q.write_only;
}
static bool
validate_prim_type(YYLTYPE *loc,
_mesa_glsl_parse_state *state,
const ast_type_qualifier &qualifier,
const ast_type_qualifier &new_qualifier)
{
/* Input layout qualifiers can be specified multiple
* times in separate declarations, as long as they match.
*/
if (qualifier.flags.q.prim_type && new_qualifier.flags.q.prim_type
&& qualifier.prim_type != new_qualifier.prim_type) {
_mesa_glsl_error(loc, state,
"conflicting input primitive %s specified",
state->stage == MESA_SHADER_GEOMETRY ?
"type" : "mode");
return false;
}
return true;
}
static bool
validate_vertex_spacing(YYLTYPE *loc,
_mesa_glsl_parse_state *state,
const ast_type_qualifier &qualifier,
const ast_type_qualifier &new_qualifier)
{
if (qualifier.flags.q.vertex_spacing && new_qualifier.flags.q.vertex_spacing
&& qualifier.vertex_spacing != new_qualifier.vertex_spacing) {
_mesa_glsl_error(loc, state,
"conflicting vertex spacing specified");
return false;
}
return true;
}
static bool
validate_ordering(YYLTYPE *loc,
_mesa_glsl_parse_state *state,
const ast_type_qualifier &qualifier,
const ast_type_qualifier &new_qualifier)
{
if (qualifier.flags.q.ordering && new_qualifier.flags.q.ordering
&& qualifier.ordering != new_qualifier.ordering) {
_mesa_glsl_error(loc, state,
"conflicting ordering specified");
return false;
}
return true;
}
static bool
validate_point_mode(MAYBE_UNUSED const ast_type_qualifier &qualifier,
MAYBE_UNUSED const ast_type_qualifier &new_qualifier)
{
/* Point mode can only be true if the flag is set. */
assert (!qualifier.flags.q.point_mode || !new_qualifier.flags.q.point_mode
|| (qualifier.point_mode && new_qualifier.point_mode));
return true;
}
/**
* This function merges duplicate layout identifiers.
*
* It deals with duplicates within a single layout qualifier, among multiple
* layout qualifiers on a single declaration and on several declarations for
* the same variable.
*
* The is_single_layout_merge and is_multiple_layouts_merge parameters are
* used to differentiate among them.
*/
bool
ast_type_qualifier::merge_qualifier(YYLTYPE *loc,
_mesa_glsl_parse_state *state,
const ast_type_qualifier &q,
bool is_single_layout_merge,
bool is_multiple_layouts_merge)
{
bool r = true;
ast_type_qualifier ubo_mat_mask;
ubo_mat_mask.flags.i = 0;
ubo_mat_mask.flags.q.row_major = 1;
ubo_mat_mask.flags.q.column_major = 1;
ast_type_qualifier ubo_layout_mask;
ubo_layout_mask.flags.i = 0;
ubo_layout_mask.flags.q.std140 = 1;
ubo_layout_mask.flags.q.packed = 1;
ubo_layout_mask.flags.q.shared = 1;
ubo_layout_mask.flags.q.std430 = 1;
ast_type_qualifier ubo_binding_mask;
ubo_binding_mask.flags.i = 0;
ubo_binding_mask.flags.q.explicit_binding = 1;
ubo_binding_mask.flags.q.explicit_offset = 1;
ast_type_qualifier stream_layout_mask;
stream_layout_mask.flags.i = 0;
stream_layout_mask.flags.q.stream = 1;
/* FIXME: We should probably do interface and function param validation
* separately.
*/
ast_type_qualifier input_layout_mask;
input_layout_mask.flags.i = 0;
input_layout_mask.flags.q.centroid = 1;
/* Function params can have constant */
input_layout_mask.flags.q.constant = 1;
input_layout_mask.flags.q.explicit_component = 1;
input_layout_mask.flags.q.explicit_location = 1;
input_layout_mask.flags.q.flat = 1;
input_layout_mask.flags.q.in = 1;
input_layout_mask.flags.q.invariant = 1;
input_layout_mask.flags.q.noperspective = 1;
input_layout_mask.flags.q.origin_upper_left = 1;
/* Function params 'inout' will set this */
input_layout_mask.flags.q.out = 1;
input_layout_mask.flags.q.patch = 1;
input_layout_mask.flags.q.pixel_center_integer = 1;
input_layout_mask.flags.q.precise = 1;
input_layout_mask.flags.q.sample = 1;
input_layout_mask.flags.q.smooth = 1;
/* Uniform block layout qualifiers get to overwrite each
* other (rightmost having priority), while all other
* qualifiers currently don't allow duplicates.
*/
ast_type_qualifier allowed_duplicates_mask;
allowed_duplicates_mask.flags.i =
ubo_mat_mask.flags.i |
ubo_layout_mask.flags.i |
ubo_binding_mask.flags.i;
/* Geometry shaders can have several layout qualifiers
* assigning different stream values.
*/
if (state->stage == MESA_SHADER_GEOMETRY) {
allowed_duplicates_mask.flags.i |=
stream_layout_mask.flags.i;
}
if (is_single_layout_merge && !state->has_enhanced_layouts() &&
(this->flags.i & q.flags.i & ~allowed_duplicates_mask.flags.i) != 0) {
_mesa_glsl_error(loc, state, "duplicate layout qualifiers used");
return false;
}
if (is_multiple_layouts_merge && !state->has_420pack_or_es31()) {
_mesa_glsl_error(loc, state,
"duplicate layout(...) qualifiers");
return false;
}
if (q.flags.q.prim_type) {
r &= validate_prim_type(loc, state, *this, q);
this->flags.q.prim_type = 1;
this->prim_type = q.prim_type;
}
if (q.flags.q.max_vertices) {
if (this->flags.q.max_vertices
&& !is_single_layout_merge && !is_multiple_layouts_merge) {
this->max_vertices->merge_qualifier(q.max_vertices);
} else {
this->flags.q.max_vertices = 1;
this->max_vertices = q.max_vertices;
}
}
if (q.flags.q.subroutine_def) {
if (this->flags.q.subroutine_def) {
_mesa_glsl_error(loc, state,
"conflicting subroutine qualifiers used");
} else {
this->subroutine_list = q.subroutine_list;
}
}
if (q.flags.q.invocations) {
if (this->flags.q.invocations
&& !is_single_layout_merge && !is_multiple_layouts_merge) {
this->invocations->merge_qualifier(q.invocations);
} else {
this->flags.q.invocations = 1;
this->invocations = q.invocations;
}
}
if (state->stage == MESA_SHADER_GEOMETRY &&
state->has_explicit_attrib_stream()) {
if (!this->flags.q.explicit_stream) {
if (q.flags.q.stream) {
this->flags.q.stream = 1;
this->stream = q.stream;
} else if (!this->flags.q.stream && this->flags.q.out &&
!this->flags.q.in) {
/* Assign default global stream value */
this->flags.q.stream = 1;
this->stream = state->out_qualifier->stream;
}
}
}
if (state->has_enhanced_layouts()) {
if (!this->flags.q.explicit_xfb_buffer) {
if (q.flags.q.xfb_buffer) {
this->flags.q.xfb_buffer = 1;
this->xfb_buffer = q.xfb_buffer;
} else if (!this->flags.q.xfb_buffer && this->flags.q.out &&
!this->flags.q.in) {
/* Assign global xfb_buffer value */
this->flags.q.xfb_buffer = 1;
this->xfb_buffer = state->out_qualifier->xfb_buffer;
}
}
if (q.flags.q.explicit_xfb_stride) {
this->flags.q.xfb_stride = 1;
this->flags.q.explicit_xfb_stride = 1;
this->xfb_stride = q.xfb_stride;
}
}
if (q.flags.q.vertices) {
if (this->flags.q.vertices
&& !is_single_layout_merge && !is_multiple_layouts_merge) {
this->vertices->merge_qualifier(q.vertices);
} else {
this->flags.q.vertices = 1;
this->vertices = q.vertices;
}
}
if (q.flags.q.vertex_spacing) {
r &= validate_vertex_spacing(loc, state, *this, q);
this->flags.q.vertex_spacing = 1;
this->vertex_spacing = q.vertex_spacing;
}
if (q.flags.q.ordering) {
r &= validate_ordering(loc, state, *this, q);
this->flags.q.ordering = 1;
this->ordering = q.ordering;
}
if (q.flags.q.point_mode) {
r &= validate_point_mode(*this, q);
this->flags.q.point_mode = 1;
this->point_mode = q.point_mode;
}
if (q.flags.q.early_fragment_tests)
this->flags.q.early_fragment_tests = true;
if ((q.flags.i & ubo_mat_mask.flags.i) != 0)
this->flags.i &= ~ubo_mat_mask.flags.i;
if ((q.flags.i & ubo_layout_mask.flags.i) != 0)
this->flags.i &= ~ubo_layout_mask.flags.i;
for (int i = 0; i < 3; i++) {
if (q.flags.q.local_size & (1 << i)) {
if (this->local_size[i]
&& !is_single_layout_merge && !is_multiple_layouts_merge) {
this->local_size[i]->merge_qualifier(q.local_size[i]);
} else {
this->local_size[i] = q.local_size[i];
}
}
}
if (q.flags.q.local_size_variable)
this->flags.q.local_size_variable = true;
this->flags.i |= q.flags.i;
if (this->flags.q.in &&
(this->flags.i & ~input_layout_mask.flags.i) != 0) {
_mesa_glsl_error(loc, state, "invalid input layout qualifier used");
return false;
}
if (q.flags.q.explicit_align)
this->align = q.align;
if (q.flags.q.explicit_location)
this->location = q.location;
if (q.flags.q.explicit_index)
this->index = q.index;
if (q.flags.q.explicit_component)
this->component = q.component;
if (q.flags.q.explicit_binding)
this->binding = q.binding;
if (q.flags.q.explicit_offset || q.flags.q.explicit_xfb_offset)
this->offset = q.offset;
if (q.precision != ast_precision_none)
this->precision = q.precision;
if (q.flags.q.explicit_image_format) {
this->image_format = q.image_format;
this->image_base_type = q.image_base_type;
}
return r;
}
bool
ast_type_qualifier::validate_out_qualifier(YYLTYPE *loc,
_mesa_glsl_parse_state *state)
{
bool r = true;
ast_type_qualifier valid_out_mask;
valid_out_mask.flags.i = 0;
switch (state->stage) {
case MESA_SHADER_GEOMETRY:
if (this->flags.q.prim_type) {
/* Make sure this is a valid output primitive type. */
switch (this->prim_type) {
case GL_POINTS:
case GL_LINE_STRIP:
case GL_TRIANGLE_STRIP:
break;
default:
r = false;
_mesa_glsl_error(loc, state, "invalid geometry shader output "
"primitive type");
break;
}
}
valid_out_mask.flags.q.stream = 1;
valid_out_mask.flags.q.explicit_stream = 1;
valid_out_mask.flags.q.explicit_xfb_buffer = 1;
valid_out_mask.flags.q.xfb_buffer = 1;
valid_out_mask.flags.q.explicit_xfb_stride = 1;
valid_out_mask.flags.q.xfb_stride = 1;
valid_out_mask.flags.q.max_vertices = 1;
valid_out_mask.flags.q.prim_type = 1;
break;
case MESA_SHADER_TESS_CTRL:
valid_out_mask.flags.q.vertices = 1;
valid_out_mask.flags.q.explicit_xfb_buffer = 1;
valid_out_mask.flags.q.xfb_buffer = 1;
valid_out_mask.flags.q.explicit_xfb_stride = 1;
valid_out_mask.flags.q.xfb_stride = 1;
break;
case MESA_SHADER_TESS_EVAL:
case MESA_SHADER_VERTEX:
valid_out_mask.flags.q.explicit_xfb_buffer = 1;
valid_out_mask.flags.q.xfb_buffer = 1;
valid_out_mask.flags.q.explicit_xfb_stride = 1;
valid_out_mask.flags.q.xfb_stride = 1;
break;
case MESA_SHADER_FRAGMENT:
valid_out_mask.flags.q.blend_support = 1;
break;
default:
r = false;
_mesa_glsl_error(loc, state,
"out layout qualifiers only valid in "
"geometry, tessellation, vertex and fragment shaders");
}
/* Generate an error when invalid output layout qualifiers are used. */
if ((this->flags.i & ~valid_out_mask.flags.i) != 0) {
r = false;
_mesa_glsl_error(loc, state, "invalid output layout qualifiers used");
}
return r;
}
bool
ast_type_qualifier::merge_into_out_qualifier(YYLTYPE *loc,
_mesa_glsl_parse_state *state,
ast_node* &node)
{
const bool r = state->out_qualifier->merge_qualifier(loc, state,
*this, false);
switch (state->stage) {
case MESA_SHADER_GEOMETRY:
/* Allow future assignments of global out's stream id value */
state->out_qualifier->flags.q.explicit_stream = 0;
break;
case MESA_SHADER_TESS_CTRL:
node = new(state->linalloc) ast_tcs_output_layout(*loc);
break;
default:
break;
}
/* Allow future assignments of global out's */
state->out_qualifier->flags.q.explicit_xfb_buffer = 0;
state->out_qualifier->flags.q.explicit_xfb_stride = 0;
return r;
}
bool
ast_type_qualifier::validate_in_qualifier(YYLTYPE *loc,
_mesa_glsl_parse_state *state)
{
bool r = true;
ast_type_qualifier valid_in_mask;
valid_in_mask.flags.i = 0;
switch (state->stage) {
case MESA_SHADER_TESS_EVAL:
if (this->flags.q.prim_type) {
/* Make sure this is a valid input primitive type. */
switch (this->prim_type) {
case GL_TRIANGLES:
case GL_QUADS:
case GL_ISOLINES:
break;
default:
r = false;
_mesa_glsl_error(loc, state,
"invalid tessellation evaluation "
"shader input primitive type");
break;
}
}
valid_in_mask.flags.q.prim_type = 1;
valid_in_mask.flags.q.vertex_spacing = 1;
valid_in_mask.flags.q.ordering = 1;
valid_in_mask.flags.q.point_mode = 1;
break;
case MESA_SHADER_GEOMETRY:
if (this->flags.q.prim_type) {
/* Make sure this is a valid input primitive type. */
switch (this->prim_type) {
case GL_POINTS:
case GL_LINES:
case GL_LINES_ADJACENCY:
case GL_TRIANGLES:
case GL_TRIANGLES_ADJACENCY:
break;
default:
r = false;
_mesa_glsl_error(loc, state,
"invalid geometry shader input primitive type");
break;
}
}
valid_in_mask.flags.q.prim_type = 1;
valid_in_mask.flags.q.invocations = 1;
break;
case MESA_SHADER_FRAGMENT:
valid_in_mask.flags.q.early_fragment_tests = 1;
valid_in_mask.flags.q.inner_coverage = 1;
valid_in_mask.flags.q.post_depth_coverage = 1;
break;
case MESA_SHADER_COMPUTE:
valid_in_mask.flags.q.local_size = 7;
valid_in_mask.flags.q.local_size_variable = 1;
break;
default:
r = false;
_mesa_glsl_error(loc, state,
"input layout qualifiers only valid in "
"geometry, tessellation, fragment and compute shaders");
break;
}
/* Generate an error when invalid input layout qualifiers are used. */
if ((this->flags.i & ~valid_in_mask.flags.i) != 0) {
r = false;
_mesa_glsl_error(loc, state, "invalid input layout qualifiers used");
}
/* The checks below are also performed when merging but we want to spit an
* error against the default global input qualifier as soon as we can, with
* the closest error location in the shader.
*/
r &= validate_prim_type(loc, state, *state->in_qualifier, *this);
r &= validate_vertex_spacing(loc, state, *state->in_qualifier, *this);
r &= validate_ordering(loc, state, *state->in_qualifier, *this);
r &= validate_point_mode(*state->in_qualifier, *this);
return r;
}
bool
ast_type_qualifier::merge_into_in_qualifier(YYLTYPE *loc,
_mesa_glsl_parse_state *state,
ast_node* &node)
{
bool r = true;
void *lin_ctx = state->linalloc;
/* We create the gs_input_layout node before merging so, in the future, no
* more repeated nodes will be created as we will have the flag set.
*/
if (state->stage == MESA_SHADER_GEOMETRY
&& this->flags.q.prim_type && !state->in_qualifier->flags.q.prim_type) {
node = new(lin_ctx) ast_gs_input_layout(*loc, this->prim_type);
}
r = state->in_qualifier->merge_qualifier(loc, state, *this, false);
if (state->in_qualifier->flags.q.early_fragment_tests) {
state->fs_early_fragment_tests = true;
state->in_qualifier->flags.q.early_fragment_tests = false;
}
if (state->in_qualifier->flags.q.inner_coverage) {
state->fs_inner_coverage = true;
state->in_qualifier->flags.q.inner_coverage = false;
}
if (state->in_qualifier->flags.q.post_depth_coverage) {
state->fs_post_depth_coverage = true;
state->in_qualifier->flags.q.post_depth_coverage = false;
}
if (state->fs_inner_coverage && state->fs_post_depth_coverage) {
_mesa_glsl_error(loc, state,
"inner_coverage & post_depth_coverage layout qualifiers "
"are mutally exclusives");
r = false;
}
/* We allow the creation of multiple cs_input_layout nodes. Coherence among
* all existing nodes is checked later, when the AST node is transformed
* into HIR.
*/
if (state->in_qualifier->flags.q.local_size) {
node = new(lin_ctx) ast_cs_input_layout(*loc,
state->in_qualifier->local_size);
state->in_qualifier->flags.q.local_size = 0;
for (int i = 0; i < 3; i++)
state->in_qualifier->local_size[i] = NULL;
}
if (state->in_qualifier->flags.q.local_size_variable) {
state->cs_input_local_size_variable_specified = true;
state->in_qualifier->flags.q.local_size_variable = false;
}
return r;
}
bool
ast_type_qualifier::push_to_global(YYLTYPE *loc,
_mesa_glsl_parse_state *state)
{
if (this->flags.q.xfb_stride) {
this->flags.q.xfb_stride = 0;
unsigned buff_idx;
if (process_qualifier_constant(state, loc, "xfb_buffer",
this->xfb_buffer, &buff_idx)) {
if (state->out_qualifier->out_xfb_stride[buff_idx]) {
state->out_qualifier->out_xfb_stride[buff_idx]->merge_qualifier(
new(state->linalloc) ast_layout_expression(*loc,
this->xfb_stride));
} else {
state->out_qualifier->out_xfb_stride[buff_idx] =
new(state->linalloc) ast_layout_expression(*loc,
this->xfb_stride);
}
}
}
return true;
}
/**
* Check if the current type qualifier has any illegal flags.
*
* If so, print an error message, followed by a list of illegal flags.
*
* \param message The error message to print.
* \param allowed_flags A list of valid flags.
*/
bool
ast_type_qualifier::validate_flags(YYLTYPE *loc,
_mesa_glsl_parse_state *state,
const ast_type_qualifier &allowed_flags,
const char *message, const char *name)
{
ast_type_qualifier bad;
bad.flags.i = this->flags.i & ~allowed_flags.flags.i;
if (bad.flags.i == 0)
return true;
_mesa_glsl_error(loc, state,
"%s '%s':"
"%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s"
"%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s"
"%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
message, name,
bad.flags.q.invariant ? " invariant" : "",
bad.flags.q.precise ? " precise" : "",
bad.flags.q.constant ? " constant" : "",
bad.flags.q.attribute ? " attribute" : "",
bad.flags.q.varying ? " varying" : "",
bad.flags.q.in ? " in" : "",
bad.flags.q.out ? " out" : "",
bad.flags.q.centroid ? " centroid" : "",
bad.flags.q.sample ? " sample" : "",
bad.flags.q.patch ? " patch" : "",
bad.flags.q.uniform ? " uniform" : "",
bad.flags.q.buffer ? " buffer" : "",
bad.flags.q.shared_storage ? " shared_storage" : "",
bad.flags.q.smooth ? " smooth" : "",
bad.flags.q.flat ? " flat" : "",
bad.flags.q.noperspective ? " noperspective" : "",
bad.flags.q.origin_upper_left ? " origin_upper_left" : "",
bad.flags.q.pixel_center_integer ? " pixel_center_integer" : "",
bad.flags.q.explicit_align ? " align" : "",
bad.flags.q.explicit_component ? " component" : "",
bad.flags.q.explicit_location ? " location" : "",
bad.flags.q.explicit_index ? " index" : "",
bad.flags.q.explicit_binding ? " binding" : "",
bad.flags.q.explicit_offset ? " offset" : "",
bad.flags.q.depth_any ? " depth_any" : "",
bad.flags.q.depth_greater ? " depth_greater" : "",
bad.flags.q.depth_less ? " depth_less" : "",
bad.flags.q.depth_unchanged ? " depth_unchanged" : "",
bad.flags.q.std140 ? " std140" : "",
bad.flags.q.std430 ? " std430" : "",
bad.flags.q.shared ? " shared" : "",
bad.flags.q.packed ? " packed" : "",
bad.flags.q.column_major ? " column_major" : "",
bad.flags.q.row_major ? " row_major" : "",
bad.flags.q.prim_type ? " prim_type" : "",
bad.flags.q.max_vertices ? " max_vertices" : "",
bad.flags.q.local_size ? " local_size" : "",
bad.flags.q.local_size_variable ? " local_size_variable" : "",
bad.flags.q.early_fragment_tests ? " early_fragment_tests" : "",
bad.flags.q.explicit_image_format ? " image_format" : "",
bad.flags.q.coherent ? " coherent" : "",
bad.flags.q._volatile ? " _volatile" : "",
bad.flags.q.restrict_flag ? " restrict_flag" : "",
bad.flags.q.read_only ? " read_only" : "",
bad.flags.q.write_only ? " write_only" : "",
bad.flags.q.invocations ? " invocations" : "",
bad.flags.q.stream ? " stream" : "",
bad.flags.q.explicit_stream ? " stream" : "",
bad.flags.q.explicit_xfb_offset ? " xfb_offset" : "",
bad.flags.q.xfb_buffer ? " xfb_buffer" : "",
bad.flags.q.explicit_xfb_buffer ? " xfb_buffer" : "",
bad.flags.q.xfb_stride ? " xfb_stride" : "",
bad.flags.q.explicit_xfb_stride ? " xfb_stride" : "",
bad.flags.q.vertex_spacing ? " vertex_spacing" : "",
bad.flags.q.ordering ? " ordering" : "",
bad.flags.q.point_mode ? " point_mode" : "",
bad.flags.q.vertices ? " vertices" : "",
bad.flags.q.subroutine ? " subroutine" : "",
bad.flags.q.subroutine_def ? " subroutine_def" : "",
bad.flags.q.inner_coverage ? " inner_coverage" : "",
bad.flags.q.post_depth_coverage ? " post_depth_coverage" : "");
return false;
}
bool
ast_layout_expression::process_qualifier_constant(struct _mesa_glsl_parse_state *state,
const char *qual_indentifier,
unsigned *value,
bool can_be_zero)
{
int min_value = 0;
bool first_pass = true;
*value = 0;
if (!can_be_zero)
min_value = 1;
for (exec_node *node = layout_const_expressions.get_head_raw();
!node->is_tail_sentinel(); node = node->next) {
exec_list dummy_instructions;
ast_node *const_expression = exec_node_data(ast_node, node, link);
ir_rvalue *const ir = const_expression->hir(&dummy_instructions, state);
ir_constant *const const_int = ir->constant_expression_value();
if (const_int == NULL || !const_int->type->is_integer()) {
YYLTYPE loc = const_expression->get_location();
_mesa_glsl_error(&loc, state, "%s must be an integral constant "
"expression", qual_indentifier);
return false;
}
if (const_int->value.i[0] < min_value) {
YYLTYPE loc = const_expression->get_location();
_mesa_glsl_error(&loc, state, "%s layout qualifier is invalid "
"(%d < %d)", qual_indentifier,
const_int->value.i[0], min_value);
return false;
}
if (!first_pass && *value != const_int->value.u[0]) {
YYLTYPE loc = const_expression->get_location();
_mesa_glsl_error(&loc, state, "%s layout qualifier does not "
"match previous declaration (%d vs %d)",
qual_indentifier, *value, const_int->value.i[0]);
return false;
} else {
first_pass = false;
*value = const_int->value.u[0];
}
/* If the location is const (and we've verified that
* it is) then no instructions should have been emitted
* when we converted it to HIR. If they were emitted,
* then either the location isn't const after all, or
* we are emitting unnecessary instructions.
*/
assert(dummy_instructions.is_empty());
}
return true;
}
bool
process_qualifier_constant(struct _mesa_glsl_parse_state *state,
YYLTYPE *loc,
const char *qual_indentifier,
ast_expression *const_expression,
unsigned *value)
{
exec_list dummy_instructions;
if (const_expression == NULL) {
*value = 0;
return true;
}
ir_rvalue *const ir = const_expression->hir(&dummy_instructions, state);
ir_constant *const const_int = ir->constant_expression_value();
if (const_int == NULL || !const_int->type->is_integer()) {
_mesa_glsl_error(loc, state, "%s must be an integral constant "
"expression", qual_indentifier);
return false;
}
if (const_int->value.i[0] < 0) {
_mesa_glsl_error(loc, state, "%s layout qualifier is invalid (%d < 0)",
qual_indentifier, const_int->value.u[0]);
return false;
}
/* If the location is const (and we've verified that
* it is) then no instructions should have been emitted
* when we converted it to HIR. If they were emitted,
* then either the location isn't const after all, or
* we are emitting unnecessary instructions.
*/
assert(dummy_instructions.is_empty());
*value = const_int->value.u[0];
return true;
}