blob: 811e4ac0cde24f21b54fcfe3a380216972ebd20b [file] [log] [blame]
/*
* Copyright (C) 2018 Alyssa Rosenzweig
* Copyright (C) 2020 Collabora Ltd.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "util/macros.h"
#include "util/u_prim.h"
#include "util/u_vbuf.h"
#include "util/u_helpers.h"
#include "panfrost-quirks.h"
#include "pan_pool.h"
#include "pan_bo.h"
#include "pan_cmdstream.h"
#include "pan_context.h"
#include "pan_job.h"
/* If a BO is accessed for a particular shader stage, will it be in the primary
* batch (vertex/tiler) or the secondary batch (fragment)? Anything but
* fragment will be primary, e.g. compute jobs will be considered
* "vertex/tiler" by analogy */
static inline uint32_t
panfrost_bo_access_for_stage(enum pipe_shader_type stage)
{
assert(stage == PIPE_SHADER_FRAGMENT ||
stage == PIPE_SHADER_VERTEX ||
stage == PIPE_SHADER_COMPUTE);
return stage == PIPE_SHADER_FRAGMENT ?
PAN_BO_ACCESS_FRAGMENT :
PAN_BO_ACCESS_VERTEX_TILER;
}
mali_ptr
panfrost_vt_emit_shared_memory(struct panfrost_batch *batch)
{
struct panfrost_device *dev = pan_device(batch->ctx->base.screen);
struct panfrost_transfer t =
panfrost_pool_alloc_aligned(&batch->pool,
MALI_LOCAL_STORAGE_LENGTH,
64);
pan_pack(t.cpu, LOCAL_STORAGE, ls) {
ls.wls_instances = MALI_LOCAL_STORAGE_NO_WORKGROUP_MEM;
if (batch->stack_size) {
struct panfrost_bo *stack =
panfrost_batch_get_scratchpad(batch, batch->stack_size,
dev->thread_tls_alloc,
dev->core_count);
ls.tls_size = panfrost_get_stack_shift(batch->stack_size);
ls.tls_base_pointer = stack->gpu;
}
}
return t.gpu;
}
/* Gets a GPU address for the associated index buffer. Only gauranteed to be
* good for the duration of the draw (transient), could last longer. Also get
* the bounds on the index buffer for the range accessed by the draw. We do
* these operations together because there are natural optimizations which
* require them to be together. */
mali_ptr
panfrost_get_index_buffer_bounded(struct panfrost_context *ctx,
const struct pipe_draw_info *info,
unsigned *min_index, unsigned *max_index)
{
struct panfrost_resource *rsrc = pan_resource(info->index.resource);
struct panfrost_batch *batch = panfrost_get_batch_for_fbo(ctx);
off_t offset = info->start * info->index_size;
bool needs_indices = true;
mali_ptr out = 0;
if (info->max_index != ~0u) {
*min_index = info->min_index;
*max_index = info->max_index;
needs_indices = false;
}
if (!info->has_user_indices) {
/* Only resources can be directly mapped */
panfrost_batch_add_bo(batch, rsrc->bo,
PAN_BO_ACCESS_SHARED |
PAN_BO_ACCESS_READ |
PAN_BO_ACCESS_VERTEX_TILER);
out = rsrc->bo->gpu + offset;
/* Check the cache */
needs_indices = !panfrost_minmax_cache_get(rsrc->index_cache,
info->start,
info->count,
min_index,
max_index);
} else {
/* Otherwise, we need to upload to transient memory */
const uint8_t *ibuf8 = (const uint8_t *) info->index.user;
struct panfrost_transfer T =
panfrost_pool_alloc_aligned(&batch->pool,
info->count * info->index_size,
info->index_size);
memcpy(T.cpu, ibuf8 + offset, info->count * info->index_size);
out = T.gpu;
}
if (needs_indices) {
/* Fallback */
u_vbuf_get_minmax_index(&ctx->base, info, min_index, max_index);
if (!info->has_user_indices)
panfrost_minmax_cache_add(rsrc->index_cache,
info->start, info->count,
*min_index, *max_index);
}
return out;
}
static unsigned
translate_tex_wrap(enum pipe_tex_wrap w)
{
switch (w) {
case PIPE_TEX_WRAP_REPEAT: return MALI_WRAP_MODE_REPEAT;
case PIPE_TEX_WRAP_CLAMP: return MALI_WRAP_MODE_CLAMP;
case PIPE_TEX_WRAP_CLAMP_TO_EDGE: return MALI_WRAP_MODE_CLAMP_TO_EDGE;
case PIPE_TEX_WRAP_CLAMP_TO_BORDER: return MALI_WRAP_MODE_CLAMP_TO_BORDER;
case PIPE_TEX_WRAP_MIRROR_REPEAT: return MALI_WRAP_MODE_MIRRORED_REPEAT;
case PIPE_TEX_WRAP_MIRROR_CLAMP: return MALI_WRAP_MODE_MIRRORED_CLAMP;
case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE: return MALI_WRAP_MODE_MIRRORED_CLAMP_TO_EDGE;
case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER: return MALI_WRAP_MODE_MIRRORED_CLAMP_TO_BORDER;
default: unreachable("Invalid wrap");
}
}
/* The hardware compares in the wrong order order, so we have to flip before
* encoding. Yes, really. */
static enum mali_func
panfrost_sampler_compare_func(const struct pipe_sampler_state *cso)
{
if (!cso->compare_mode)
return MALI_FUNC_NEVER;
enum mali_func f = panfrost_translate_compare_func(cso->compare_func);
return panfrost_flip_compare_func(f);
}
static enum mali_mipmap_mode
pan_pipe_to_mipmode(enum pipe_tex_mipfilter f)
{
switch (f) {
case PIPE_TEX_MIPFILTER_NEAREST: return MALI_MIPMAP_MODE_NEAREST;
case PIPE_TEX_MIPFILTER_LINEAR: return MALI_MIPMAP_MODE_TRILINEAR;
case PIPE_TEX_MIPFILTER_NONE: return MALI_MIPMAP_MODE_NONE;
default: unreachable("Invalid");
}
}
void panfrost_sampler_desc_init(const struct pipe_sampler_state *cso,
struct mali_midgard_sampler_packed *hw)
{
pan_pack(hw, MIDGARD_SAMPLER, cfg) {
cfg.magnify_nearest = cso->mag_img_filter == PIPE_TEX_FILTER_NEAREST;
cfg.minify_nearest = cso->min_img_filter == PIPE_TEX_FILTER_NEAREST;
cfg.mipmap_mode = (cso->min_mip_filter == PIPE_TEX_MIPFILTER_LINEAR) ?
MALI_MIPMAP_MODE_TRILINEAR : MALI_MIPMAP_MODE_NEAREST;
cfg.normalized_coordinates = cso->normalized_coords;
cfg.lod_bias = FIXED_16(cso->lod_bias, true);
cfg.minimum_lod = FIXED_16(cso->min_lod, false);
/* If necessary, we disable mipmapping in the sampler descriptor by
* clamping the LOD as tight as possible (from 0 to epsilon,
* essentially -- remember these are fixed point numbers, so
* epsilon=1/256) */
cfg.maximum_lod = (cso->min_mip_filter == PIPE_TEX_MIPFILTER_NONE) ?
cfg.minimum_lod + 1 :
FIXED_16(cso->max_lod, false);
cfg.wrap_mode_s = translate_tex_wrap(cso->wrap_s);
cfg.wrap_mode_t = translate_tex_wrap(cso->wrap_t);
cfg.wrap_mode_r = translate_tex_wrap(cso->wrap_r);
cfg.compare_function = panfrost_sampler_compare_func(cso);
cfg.seamless_cube_map = cso->seamless_cube_map;
cfg.border_color_r = cso->border_color.f[0];
cfg.border_color_g = cso->border_color.f[1];
cfg.border_color_b = cso->border_color.f[2];
cfg.border_color_a = cso->border_color.f[3];
}
}
void panfrost_sampler_desc_init_bifrost(const struct pipe_sampler_state *cso,
struct mali_bifrost_sampler_packed *hw)
{
pan_pack(hw, BIFROST_SAMPLER, cfg) {
cfg.magnify_linear = cso->mag_img_filter == PIPE_TEX_FILTER_LINEAR;
cfg.minify_linear = cso->min_img_filter == PIPE_TEX_FILTER_LINEAR;
cfg.mipmap_mode = pan_pipe_to_mipmode(cso->min_mip_filter);
cfg.normalized_coordinates = cso->normalized_coords;
cfg.lod_bias = FIXED_16(cso->lod_bias, true);
cfg.minimum_lod = FIXED_16(cso->min_lod, false);
cfg.maximum_lod = FIXED_16(cso->max_lod, false);
cfg.wrap_mode_s = translate_tex_wrap(cso->wrap_s);
cfg.wrap_mode_t = translate_tex_wrap(cso->wrap_t);
cfg.wrap_mode_r = translate_tex_wrap(cso->wrap_r);
cfg.compare_function = panfrost_sampler_compare_func(cso);
cfg.seamless_cube_map = cso->seamless_cube_map;
}
}
static bool
panfrost_fs_required(
struct panfrost_shader_state *fs,
struct panfrost_blend_final *blend,
unsigned rt_count)
{
/* If we generally have side effects */
if (fs->fs_sidefx)
return true;
/* If colour is written we need to execute */
for (unsigned i = 0; i < rt_count; ++i) {
if (!blend[i].no_colour)
return true;
}
/* If depth is written and not implied we need to execute.
* TODO: Predicate on Z/S writes being enabled */
return (fs->writes_depth || fs->writes_stencil);
}
static void
panfrost_emit_blend(struct panfrost_batch *batch, void *rts,
struct panfrost_blend_final *blend)
{
const struct panfrost_device *dev = pan_device(batch->ctx->base.screen);
struct panfrost_shader_state *fs = panfrost_get_shader_state(batch->ctx, PIPE_SHADER_FRAGMENT);
unsigned rt_count = batch->key.nr_cbufs;
struct bifrost_blend_rt *brts = rts;
/* Disable blending for depth-only */
if (rt_count == 0) {
if (dev->quirks & IS_BIFROST) {
memset(brts, 0, sizeof(*brts));
brts[0].unk2 = 0x3;
} else {
pan_pack(rts, MIDGARD_BLEND_OPAQUE, cfg) {
cfg.equation = 0xf0122122; /* Replace */
}
}
}
for (unsigned i = 0; i < rt_count; ++i) {
struct mali_blend_flags_packed flags = {0};
pan_pack(&flags, BLEND_FLAGS, cfg) {
if (blend[i].no_colour) {
cfg.enable = false;
break;
}
batch->draws |= (PIPE_CLEAR_COLOR0 << i);
cfg.srgb = util_format_is_srgb(batch->key.cbufs[i]->format);
cfg.load_destination = blend[i].load_dest;
cfg.round_to_fb_precision = !batch->ctx->blend->base.dither;
if (!(dev->quirks & IS_BIFROST))
cfg.midgard_blend_shader = blend[i].is_shader;
}
if (dev->quirks & IS_BIFROST) {
memset(brts + i, 0, sizeof(brts[i]));
brts[i].flags = flags.opaque[0];
if (blend[i].is_shader) {
/* The blend shader's address needs to be at
* the same top 32 bit as the fragment shader.
* TODO: Ensure that's always the case.
*/
assert((blend[i].shader.gpu & (0xffffffffull << 32)) ==
(fs->bo->gpu & (0xffffffffull << 32)));
brts[i].shader = blend[i].shader.gpu;
brts[i].unk2 = 0x0;
} else {
enum pipe_format format = batch->key.cbufs[i]->format;
const struct util_format_description *format_desc;
format_desc = util_format_description(format);
brts[i].equation = blend[i].equation.equation;
/* TODO: this is a bit more complicated */
brts[i].constant = blend[i].equation.constant;
brts[i].format = panfrost_format_to_bifrost_blend(format_desc);
if (dev->quirks & HAS_SWIZZLES)
brts[i].swizzle = panfrost_get_default_swizzle(4);
/* 0x19 disables blending and forces REPLACE
* mode (equivalent to rgb_mode = alpha_mode =
* x122, colour mask = 0xF). 0x1a allows
* blending. */
brts[i].unk2 = blend[i].opaque ? 0x19 : 0x1a;
brts[i].shader_type = fs->blend_types[i];
}
} else {
pan_pack(rts, MIDGARD_BLEND_OPAQUE, cfg) {
cfg.flags = flags;
if (blend[i].is_shader) {
cfg.shader = blend[i].shader.gpu | blend[i].shader.first_tag;
} else {
cfg.equation = blend[i].equation.equation.opaque[0];
cfg.constant = blend[i].equation.constant;
}
}
rts += MALI_MIDGARD_BLEND_LENGTH;
}
}
}
static void
panfrost_prepare_bifrost_fs_state(struct panfrost_context *ctx,
struct panfrost_blend_final *blend,
struct MALI_RENDERER_STATE *state)
{
struct panfrost_shader_state *fs = panfrost_get_shader_state(ctx, PIPE_SHADER_FRAGMENT);
unsigned rt_count = ctx->pipe_framebuffer.nr_cbufs;
if (!panfrost_fs_required(fs, blend, rt_count)) {
state->properties.unknown = 0x950020; /* XXX */
state->properties.bifrost_early_z_enable = true;
} else {
bool no_blend = true;
for (unsigned i = 0; i < rt_count; ++i)
no_blend &= (!blend[i].load_dest | blend[i].no_colour);
state->properties = fs->properties;
state->properties.bifrost_early_z_enable = !fs->can_discard && !fs->writes_depth && no_blend;
state->shader = fs->shader;
state->preload = fs->preload;
}
}
static void
panfrost_prepare_midgard_fs_state(struct panfrost_context *ctx,
struct panfrost_blend_final *blend,
struct MALI_RENDERER_STATE *state)
{
const struct panfrost_device *dev = pan_device(ctx->base.screen);
struct panfrost_shader_state *fs = panfrost_get_shader_state(ctx, PIPE_SHADER_FRAGMENT);
const struct panfrost_zsa_state *zsa = ctx->depth_stencil;
unsigned rt_count = ctx->pipe_framebuffer.nr_cbufs;
bool alpha_to_coverage = ctx->blend->base.alpha_to_coverage;
if (!panfrost_fs_required(fs, blend, rt_count)) {
state->shader.shader = 0x1;
state->properties.work_register_count = 1;
state->properties.depth_source = MALI_DEPTH_SOURCE_FIXED_FUNCTION;
state->properties.midgard_early_z_enable = true;
} else {
/* Reasons to disable early-Z from a shader perspective */
bool late_z = fs->can_discard || fs->writes_global ||
fs->writes_depth || fs->writes_stencil;
/* If either depth or stencil is enabled, discard matters */
bool zs_enabled =
(zsa->base.depth.enabled && zsa->base.depth.func != PIPE_FUNC_ALWAYS) ||
zsa->base.stencil[0].enabled;
bool has_blend_shader = false;
for (unsigned c = 0; c < rt_count; ++c)
has_blend_shader |= blend[c].is_shader;
/* TODO: Reduce this limit? */
state->properties = fs->properties;
if (has_blend_shader)
state->properties.work_register_count = MAX2(fs->work_reg_count, 8);
else
state->properties.work_register_count = fs->work_reg_count;
state->properties.midgard_early_z_enable = !(late_z || alpha_to_coverage);
state->properties.reads_tilebuffer = fs->outputs_read || (!zs_enabled && fs->can_discard);
state->properties.reads_depth_stencil = zs_enabled && fs->can_discard;
state->shader = fs->shader;
}
if (dev->quirks & MIDGARD_SFBD) {
state->multisample_misc.sfbd_load_destination = blend[0].load_dest;
state->multisample_misc.sfbd_blend_shader = blend[0].is_shader;
state->stencil_mask_misc.sfbd_write_enable = !blend[0].no_colour;
state->stencil_mask_misc.sfbd_srgb = util_format_is_srgb(ctx->pipe_framebuffer.cbufs[0]->format);
state->stencil_mask_misc.sfbd_dither_disable = !ctx->blend->base.dither;
if (blend[0].is_shader) {
state->sfbd_blend_shader = blend[0].shader.gpu |
blend[0].shader.first_tag;
} else {
state->sfbd_blend_equation = blend[0].equation.equation.opaque[0];
state->sfbd_blend_constant = blend[0].equation.constant;
}
} else {
/* Bug where MRT-capable hw apparently reads the last blend
* shader from here instead of the usual location? */
for (signed rt = ((signed) rt_count - 1); rt >= 0; --rt) {
if (!blend[rt].is_shader)
continue;
state->sfbd_blend_shader = blend[rt].shader.gpu |
blend[rt].shader.first_tag;
break;
}
}
}
static void
panfrost_prepare_fs_state(struct panfrost_context *ctx,
struct panfrost_blend_final *blend,
struct MALI_RENDERER_STATE *state)
{
const struct panfrost_device *dev = pan_device(ctx->base.screen);
struct panfrost_shader_state *fs = panfrost_get_shader_state(ctx, PIPE_SHADER_FRAGMENT);
struct pipe_rasterizer_state *rast = &ctx->rasterizer->base;
const struct panfrost_zsa_state *zsa = ctx->depth_stencil;
bool alpha_to_coverage = ctx->blend->base.alpha_to_coverage;
if (dev->quirks & IS_BIFROST)
panfrost_prepare_bifrost_fs_state(ctx, blend, state);
else
panfrost_prepare_midgard_fs_state(ctx, blend, state);
bool msaa = rast->multisample;
state->multisample_misc.multisample_enable = msaa;
state->multisample_misc.sample_mask = (msaa ? ctx->sample_mask : ~0) & 0xFFFF;
/* EXT_shader_framebuffer_fetch requires per-sample */
bool per_sample = ctx->min_samples > 1 || fs->outputs_read;
state->multisample_misc.evaluate_per_sample = msaa && per_sample;
state->multisample_misc.depth_function = zsa->base.depth.enabled ?
panfrost_translate_compare_func(zsa->base.depth.func) :
MALI_FUNC_ALWAYS;
state->multisample_misc.depth_write_mask = zsa->base.depth.writemask;
state->multisample_misc.fixed_function_near_discard = rast->depth_clip_near;
state->multisample_misc.fixed_function_far_discard = rast->depth_clip_far;
state->multisample_misc.unknown_2 = true;
state->stencil_mask_misc.stencil_mask_front = zsa->stencil_mask_front;
state->stencil_mask_misc.stencil_mask_back = zsa->stencil_mask_back;
state->stencil_mask_misc.stencil_enable = zsa->base.stencil[0].enabled;
state->stencil_mask_misc.alpha_to_coverage = alpha_to_coverage;
state->stencil_mask_misc.unknown_1 = 0x7;
state->stencil_mask_misc.depth_range_1 = rast->offset_tri;
state->stencil_mask_misc.depth_range_2 = rast->offset_tri;
state->stencil_mask_misc.single_sampled_lines = !rast->multisample;
state->depth_units = rast->offset_units * 2.0f;
state->depth_factor = rast->offset_scale;
bool back_enab = zsa->base.stencil[1].enabled;
state->stencil_front = zsa->stencil_front;
state->stencil_back = zsa->stencil_back;
state->stencil_front.reference_value = ctx->stencil_ref.ref_value[0];
state->stencil_back.reference_value = ctx->stencil_ref.ref_value[back_enab ? 1 : 0];
}
static void
panfrost_emit_frag_shader(struct panfrost_context *ctx,
struct mali_renderer_state_packed *fragmeta,
struct panfrost_blend_final *blend)
{
pan_pack(fragmeta, RENDERER_STATE, cfg) {
panfrost_prepare_fs_state(ctx, blend, &cfg);
}
}
mali_ptr
panfrost_emit_compute_shader_meta(struct panfrost_batch *batch, enum pipe_shader_type stage)
{
struct panfrost_shader_state *ss = panfrost_get_shader_state(batch->ctx, stage);
panfrost_batch_add_bo(batch, ss->bo,
PAN_BO_ACCESS_PRIVATE |
PAN_BO_ACCESS_READ |
PAN_BO_ACCESS_VERTEX_TILER);
panfrost_batch_add_bo(batch, pan_resource(ss->upload.rsrc)->bo,
PAN_BO_ACCESS_PRIVATE |
PAN_BO_ACCESS_READ |
PAN_BO_ACCESS_VERTEX_TILER);
return pan_resource(ss->upload.rsrc)->bo->gpu + ss->upload.offset;
}
mali_ptr
panfrost_emit_frag_shader_meta(struct panfrost_batch *batch)
{
struct panfrost_context *ctx = batch->ctx;
struct panfrost_shader_state *ss = panfrost_get_shader_state(ctx, PIPE_SHADER_FRAGMENT);
/* Add the shader BO to the batch. */
panfrost_batch_add_bo(batch, ss->bo,
PAN_BO_ACCESS_PRIVATE |
PAN_BO_ACCESS_READ |
PAN_BO_ACCESS_FRAGMENT);
struct panfrost_device *dev = pan_device(ctx->base.screen);
unsigned rt_count = MAX2(ctx->pipe_framebuffer.nr_cbufs, 1);
struct panfrost_transfer xfer;
unsigned rt_size;
if (dev->quirks & MIDGARD_SFBD)
rt_size = 0;
else if (dev->quirks & IS_BIFROST)
rt_size = sizeof(struct bifrost_blend_rt);
else
rt_size = sizeof(struct midgard_blend_rt);
unsigned desc_size = MALI_RENDERER_STATE_LENGTH + rt_size * rt_count;
xfer = panfrost_pool_alloc_aligned(&batch->pool, desc_size, MALI_RENDERER_STATE_LENGTH);
struct panfrost_blend_final blend[PIPE_MAX_COLOR_BUFS];
unsigned shader_offset = 0;
struct panfrost_bo *shader_bo = NULL;
for (unsigned c = 0; c < ctx->pipe_framebuffer.nr_cbufs; ++c)
blend[c] = panfrost_get_blend_for_context(ctx, c, &shader_bo,
&shader_offset);
panfrost_emit_frag_shader(ctx, (struct mali_renderer_state_packed *) xfer.cpu, blend);
if (!(dev->quirks & MIDGARD_SFBD))
panfrost_emit_blend(batch, xfer.cpu + MALI_RENDERER_STATE_LENGTH, blend);
else
batch->draws |= PIPE_CLEAR_COLOR0;
return xfer.gpu;
}
mali_ptr
panfrost_emit_viewport(struct panfrost_batch *batch)
{
struct panfrost_context *ctx = batch->ctx;
const struct pipe_viewport_state *vp = &ctx->pipe_viewport;
const struct pipe_scissor_state *ss = &ctx->scissor;
const struct pipe_rasterizer_state *rast = &ctx->rasterizer->base;
const struct pipe_framebuffer_state *fb = &ctx->pipe_framebuffer;
/* Derive min/max from translate/scale. Note since |x| >= 0 by
* definition, we have that -|x| <= |x| hence translate - |scale| <=
* translate + |scale|, so the ordering is correct here. */
float vp_minx = vp->translate[0] - fabsf(vp->scale[0]);
float vp_maxx = vp->translate[0] + fabsf(vp->scale[0]);
float vp_miny = vp->translate[1] - fabsf(vp->scale[1]);
float vp_maxy = vp->translate[1] + fabsf(vp->scale[1]);
float minz = (vp->translate[2] - fabsf(vp->scale[2]));
float maxz = (vp->translate[2] + fabsf(vp->scale[2]));
/* Scissor to the intersection of viewport and to the scissor, clamped
* to the framebuffer */
unsigned minx = MIN2(fb->width, MAX2((int) vp_minx, 0));
unsigned maxx = MIN2(fb->width, MAX2((int) vp_maxx, 0));
unsigned miny = MIN2(fb->height, MAX2((int) vp_miny, 0));
unsigned maxy = MIN2(fb->height, MAX2((int) vp_maxy, 0));
if (ss && rast->scissor) {
minx = MAX2(ss->minx, minx);
miny = MAX2(ss->miny, miny);
maxx = MIN2(ss->maxx, maxx);
maxy = MIN2(ss->maxy, maxy);
}
/* Set the range to [1, 1) so max values don't wrap round */
if (maxx == 0 || maxy == 0)
maxx = maxy = minx = miny = 1;
struct panfrost_transfer T = panfrost_pool_alloc(&batch->pool, MALI_VIEWPORT_LENGTH);
pan_pack(T.cpu, VIEWPORT, cfg) {
/* [minx, maxx) and [miny, maxy) are exclusive ranges, but
* these are inclusive */
cfg.scissor_minimum_x = minx;
cfg.scissor_minimum_y = miny;
cfg.scissor_maximum_x = maxx - 1;
cfg.scissor_maximum_y = maxy - 1;
cfg.minimum_z = rast->depth_clip_near ? minz : -INFINITY;
cfg.maximum_z = rast->depth_clip_far ? maxz : INFINITY;
}
panfrost_batch_union_scissor(batch, minx, miny, maxx, maxy);
return T.gpu;
}
static mali_ptr
panfrost_map_constant_buffer_gpu(struct panfrost_batch *batch,
enum pipe_shader_type st,
struct panfrost_constant_buffer *buf,
unsigned index)
{
struct pipe_constant_buffer *cb = &buf->cb[index];
struct panfrost_resource *rsrc = pan_resource(cb->buffer);
if (rsrc) {
panfrost_batch_add_bo(batch, rsrc->bo,
PAN_BO_ACCESS_SHARED |
PAN_BO_ACCESS_READ |
panfrost_bo_access_for_stage(st));
/* Alignment gauranteed by
* PIPE_CAP_CONSTANT_BUFFER_OFFSET_ALIGNMENT */
return rsrc->bo->gpu + cb->buffer_offset;
} else if (cb->user_buffer) {
return panfrost_pool_upload_aligned(&batch->pool,
cb->user_buffer +
cb->buffer_offset,
cb->buffer_size, 16);
} else {
unreachable("No constant buffer");
}
}
struct sysval_uniform {
union {
float f[4];
int32_t i[4];
uint32_t u[4];
uint64_t du[2];
};
};
static void
panfrost_upload_viewport_scale_sysval(struct panfrost_batch *batch,
struct sysval_uniform *uniform)
{
struct panfrost_context *ctx = batch->ctx;
const struct pipe_viewport_state *vp = &ctx->pipe_viewport;
uniform->f[0] = vp->scale[0];
uniform->f[1] = vp->scale[1];
uniform->f[2] = vp->scale[2];
}
static void
panfrost_upload_viewport_offset_sysval(struct panfrost_batch *batch,
struct sysval_uniform *uniform)
{
struct panfrost_context *ctx = batch->ctx;
const struct pipe_viewport_state *vp = &ctx->pipe_viewport;
uniform->f[0] = vp->translate[0];
uniform->f[1] = vp->translate[1];
uniform->f[2] = vp->translate[2];
}
static void panfrost_upload_txs_sysval(struct panfrost_batch *batch,
enum pipe_shader_type st,
unsigned int sysvalid,
struct sysval_uniform *uniform)
{
struct panfrost_context *ctx = batch->ctx;
unsigned texidx = PAN_SYSVAL_ID_TO_TXS_TEX_IDX(sysvalid);
unsigned dim = PAN_SYSVAL_ID_TO_TXS_DIM(sysvalid);
bool is_array = PAN_SYSVAL_ID_TO_TXS_IS_ARRAY(sysvalid);
struct pipe_sampler_view *tex = &ctx->sampler_views[st][texidx]->base;
assert(dim);
uniform->i[0] = u_minify(tex->texture->width0, tex->u.tex.first_level);
if (dim > 1)
uniform->i[1] = u_minify(tex->texture->height0,
tex->u.tex.first_level);
if (dim > 2)
uniform->i[2] = u_minify(tex->texture->depth0,
tex->u.tex.first_level);
if (is_array)
uniform->i[dim] = tex->texture->array_size;
}
static void
panfrost_upload_ssbo_sysval(struct panfrost_batch *batch,
enum pipe_shader_type st,
unsigned ssbo_id,
struct sysval_uniform *uniform)
{
struct panfrost_context *ctx = batch->ctx;
assert(ctx->ssbo_mask[st] & (1 << ssbo_id));
struct pipe_shader_buffer sb = ctx->ssbo[st][ssbo_id];
/* Compute address */
struct panfrost_bo *bo = pan_resource(sb.buffer)->bo;
panfrost_batch_add_bo(batch, bo,
PAN_BO_ACCESS_SHARED | PAN_BO_ACCESS_RW |
panfrost_bo_access_for_stage(st));
/* Upload address and size as sysval */
uniform->du[0] = bo->gpu + sb.buffer_offset;
uniform->u[2] = sb.buffer_size;
}
static void
panfrost_upload_sampler_sysval(struct panfrost_batch *batch,
enum pipe_shader_type st,
unsigned samp_idx,
struct sysval_uniform *uniform)
{
struct panfrost_context *ctx = batch->ctx;
struct pipe_sampler_state *sampl = &ctx->samplers[st][samp_idx]->base;
uniform->f[0] = sampl->min_lod;
uniform->f[1] = sampl->max_lod;
uniform->f[2] = sampl->lod_bias;
/* Even without any errata, Midgard represents "no mipmapping" as
* fixing the LOD with the clamps; keep behaviour consistent. c.f.
* panfrost_create_sampler_state which also explains our choice of
* epsilon value (again to keep behaviour consistent) */
if (sampl->min_mip_filter == PIPE_TEX_MIPFILTER_NONE)
uniform->f[1] = uniform->f[0] + (1.0/256.0);
}
static void
panfrost_upload_num_work_groups_sysval(struct panfrost_batch *batch,
struct sysval_uniform *uniform)
{
struct panfrost_context *ctx = batch->ctx;
uniform->u[0] = ctx->compute_grid->grid[0];
uniform->u[1] = ctx->compute_grid->grid[1];
uniform->u[2] = ctx->compute_grid->grid[2];
}
static void
panfrost_upload_sysvals(struct panfrost_batch *batch, void *buf,
struct panfrost_shader_state *ss,
enum pipe_shader_type st)
{
struct sysval_uniform *uniforms = (void *)buf;
for (unsigned i = 0; i < ss->sysval_count; ++i) {
int sysval = ss->sysval[i];
switch (PAN_SYSVAL_TYPE(sysval)) {
case PAN_SYSVAL_VIEWPORT_SCALE:
panfrost_upload_viewport_scale_sysval(batch,
&uniforms[i]);
break;
case PAN_SYSVAL_VIEWPORT_OFFSET:
panfrost_upload_viewport_offset_sysval(batch,
&uniforms[i]);
break;
case PAN_SYSVAL_TEXTURE_SIZE:
panfrost_upload_txs_sysval(batch, st,
PAN_SYSVAL_ID(sysval),
&uniforms[i]);
break;
case PAN_SYSVAL_SSBO:
panfrost_upload_ssbo_sysval(batch, st,
PAN_SYSVAL_ID(sysval),
&uniforms[i]);
break;
case PAN_SYSVAL_NUM_WORK_GROUPS:
panfrost_upload_num_work_groups_sysval(batch,
&uniforms[i]);
break;
case PAN_SYSVAL_SAMPLER:
panfrost_upload_sampler_sysval(batch, st,
PAN_SYSVAL_ID(sysval),
&uniforms[i]);
break;
default:
assert(0);
}
}
}
static const void *
panfrost_map_constant_buffer_cpu(struct panfrost_constant_buffer *buf,
unsigned index)
{
struct pipe_constant_buffer *cb = &buf->cb[index];
struct panfrost_resource *rsrc = pan_resource(cb->buffer);
if (rsrc)
return rsrc->bo->cpu;
else if (cb->user_buffer)
return cb->user_buffer;
else
unreachable("No constant buffer");
}
mali_ptr
panfrost_emit_const_buf(struct panfrost_batch *batch,
enum pipe_shader_type stage,
mali_ptr *push_constants)
{
struct panfrost_context *ctx = batch->ctx;
struct panfrost_shader_variants *all = ctx->shader[stage];
if (!all)
return 0;
struct panfrost_constant_buffer *buf = &ctx->constant_buffer[stage];
struct panfrost_shader_state *ss = &all->variants[all->active_variant];
/* Uniforms are implicitly UBO #0 */
bool has_uniforms = buf->enabled_mask & (1 << 0);
/* Allocate room for the sysval and the uniforms */
size_t sys_size = sizeof(float) * 4 * ss->sysval_count;
size_t uniform_size = has_uniforms ? (buf->cb[0].buffer_size) : 0;
size_t size = sys_size + uniform_size;
struct panfrost_transfer transfer =
panfrost_pool_alloc_aligned(&batch->pool, size, 16);
/* Upload sysvals requested by the shader */
panfrost_upload_sysvals(batch, transfer.cpu, ss, stage);
/* Upload uniforms */
if (has_uniforms && uniform_size) {
const void *cpu = panfrost_map_constant_buffer_cpu(buf, 0);
memcpy(transfer.cpu + sys_size, cpu, uniform_size);
}
/* Next up, attach UBOs. UBO #0 is the uniforms we just
* uploaded, so it's always included. The count is the highest UBO
* addressable -- gaps are included. */
unsigned ubo_count = 32 - __builtin_clz(buf->enabled_mask | 1);
size_t sz = MALI_UNIFORM_BUFFER_LENGTH * ubo_count;
struct panfrost_transfer ubos =
panfrost_pool_alloc_aligned(&batch->pool, sz,
MALI_UNIFORM_BUFFER_LENGTH);
uint64_t *ubo_ptr = (uint64_t *) ubos.cpu;
/* Upload uniforms as a UBO */
if (size) {
pan_pack(ubo_ptr, UNIFORM_BUFFER, cfg) {
cfg.entries = DIV_ROUND_UP(size, 16);
cfg.pointer = transfer.gpu;
}
} else {
*ubo_ptr = 0;
}
/* The rest are honest-to-goodness UBOs */
for (unsigned ubo = 1; ubo < ubo_count; ++ubo) {
size_t usz = buf->cb[ubo].buffer_size;
bool enabled = buf->enabled_mask & (1 << ubo);
bool empty = usz == 0;
if (!enabled || empty) {
ubo_ptr[ubo] = 0;
continue;
}
/* Issue (57) for the ARB_uniform_buffer_object spec says that
* the buffer can be larger than the uniform data inside it,
* so clamp ubo size to what hardware supports. */
pan_pack(ubo_ptr + ubo, UNIFORM_BUFFER, cfg) {
cfg.entries = MIN2(DIV_ROUND_UP(usz, 16), 1 << 12);
cfg.pointer = panfrost_map_constant_buffer_gpu(batch,
stage, buf, ubo);
}
}
*push_constants = transfer.gpu;
buf->dirty_mask = 0;
return ubos.gpu;
}
mali_ptr
panfrost_emit_shared_memory(struct panfrost_batch *batch,
const struct pipe_grid_info *info)
{
struct panfrost_context *ctx = batch->ctx;
struct panfrost_device *dev = pan_device(ctx->base.screen);
struct panfrost_shader_variants *all = ctx->shader[PIPE_SHADER_COMPUTE];
struct panfrost_shader_state *ss = &all->variants[all->active_variant];
unsigned single_size = util_next_power_of_two(MAX2(ss->shared_size,
128));
unsigned log2_instances =
util_logbase2_ceil(info->grid[0]) +
util_logbase2_ceil(info->grid[1]) +
util_logbase2_ceil(info->grid[2]);
unsigned shared_size = single_size * (1 << log2_instances) * dev->core_count;
struct panfrost_bo *bo = panfrost_batch_get_shared_memory(batch,
shared_size,
1);
struct panfrost_transfer t =
panfrost_pool_alloc_aligned(&batch->pool,
MALI_LOCAL_STORAGE_LENGTH,
64);
pan_pack(t.cpu, LOCAL_STORAGE, ls) {
ls.wls_base_pointer = bo->gpu;
ls.wls_instances = log2_instances;
ls.wls_size_scale = util_logbase2(single_size) + 1;
};
return t.gpu;
}
static mali_ptr
panfrost_get_tex_desc(struct panfrost_batch *batch,
enum pipe_shader_type st,
struct panfrost_sampler_view *view)
{
if (!view)
return (mali_ptr) 0;
struct pipe_sampler_view *pview = &view->base;
struct panfrost_resource *rsrc = pan_resource(pview->texture);
/* Add the BO to the job so it's retained until the job is done. */
panfrost_batch_add_bo(batch, rsrc->bo,
PAN_BO_ACCESS_SHARED | PAN_BO_ACCESS_READ |
panfrost_bo_access_for_stage(st));
panfrost_batch_add_bo(batch, view->bo,
PAN_BO_ACCESS_SHARED | PAN_BO_ACCESS_READ |
panfrost_bo_access_for_stage(st));
return view->bo->gpu;
}
static void
panfrost_update_sampler_view(struct panfrost_sampler_view *view,
struct pipe_context *pctx)
{
struct panfrost_resource *rsrc = pan_resource(view->base.texture);
if (view->texture_bo != rsrc->bo->gpu ||
view->modifier != rsrc->modifier) {
panfrost_bo_unreference(view->bo);
panfrost_create_sampler_view_bo(view, pctx, &rsrc->base);
}
}
mali_ptr
panfrost_emit_texture_descriptors(struct panfrost_batch *batch,
enum pipe_shader_type stage)
{
struct panfrost_context *ctx = batch->ctx;
struct panfrost_device *device = pan_device(ctx->base.screen);
if (!ctx->sampler_view_count[stage])
return 0;
if (device->quirks & IS_BIFROST) {
struct panfrost_transfer T = panfrost_pool_alloc_aligned(&batch->pool,
MALI_BIFROST_TEXTURE_LENGTH *
ctx->sampler_view_count[stage],
MALI_BIFROST_TEXTURE_LENGTH);
struct mali_bifrost_texture_packed *out =
(struct mali_bifrost_texture_packed *) T.cpu;
for (int i = 0; i < ctx->sampler_view_count[stage]; ++i) {
struct panfrost_sampler_view *view = ctx->sampler_views[stage][i];
struct pipe_sampler_view *pview = &view->base;
struct panfrost_resource *rsrc = pan_resource(pview->texture);
panfrost_update_sampler_view(view, &ctx->base);
out[i] = view->bifrost_descriptor;
/* Add the BOs to the job so they are retained until the job is done. */
panfrost_batch_add_bo(batch, rsrc->bo,
PAN_BO_ACCESS_SHARED | PAN_BO_ACCESS_READ |
panfrost_bo_access_for_stage(stage));
panfrost_batch_add_bo(batch, view->bo,
PAN_BO_ACCESS_SHARED | PAN_BO_ACCESS_READ |
panfrost_bo_access_for_stage(stage));
}
return T.gpu;
} else {
uint64_t trampolines[PIPE_MAX_SHADER_SAMPLER_VIEWS];
for (int i = 0; i < ctx->sampler_view_count[stage]; ++i) {
struct panfrost_sampler_view *view = ctx->sampler_views[stage][i];
panfrost_update_sampler_view(view, &ctx->base);
trampolines[i] = panfrost_get_tex_desc(batch, stage, view);
}
return panfrost_pool_upload_aligned(&batch->pool, trampolines,
sizeof(uint64_t) *
ctx->sampler_view_count[stage],
sizeof(uint64_t));
}
}
mali_ptr
panfrost_emit_sampler_descriptors(struct panfrost_batch *batch,
enum pipe_shader_type stage)
{
struct panfrost_context *ctx = batch->ctx;
if (!ctx->sampler_count[stage])
return 0;
size_t desc_size = MALI_BIFROST_SAMPLER_LENGTH;
assert(MALI_BIFROST_SAMPLER_LENGTH == MALI_MIDGARD_SAMPLER_LENGTH);
size_t sz = desc_size * ctx->sampler_count[stage];
struct panfrost_transfer T = panfrost_pool_alloc_aligned(&batch->pool, sz, desc_size);
struct mali_midgard_sampler_packed *out = (struct mali_midgard_sampler_packed *) T.cpu;
for (unsigned i = 0; i < ctx->sampler_count[stage]; ++i)
out[i] = ctx->samplers[stage][i]->hw;
return T.gpu;
}
mali_ptr
panfrost_emit_vertex_data(struct panfrost_batch *batch,
mali_ptr *buffers)
{
struct panfrost_context *ctx = batch->ctx;
struct panfrost_vertex_state *so = ctx->vertex;
struct panfrost_shader_state *vs = panfrost_get_shader_state(ctx, PIPE_SHADER_VERTEX);
/* Worst case: everything is NPOT, which is only possible if instancing
* is enabled. Otherwise single record is gauranteed */
struct panfrost_transfer S = panfrost_pool_alloc_aligned(&batch->pool,
MALI_ATTRIBUTE_BUFFER_LENGTH * vs->attribute_count *
(ctx->instance_count > 1 ? 2 : 1),
MALI_ATTRIBUTE_BUFFER_LENGTH * 2);
struct panfrost_transfer T = panfrost_pool_alloc_aligned(&batch->pool,
MALI_ATTRIBUTE_LENGTH * vs->attribute_count,
MALI_ATTRIBUTE_LENGTH);
struct mali_attribute_buffer_packed *bufs =
(struct mali_attribute_buffer_packed *) S.cpu;
struct mali_attribute_packed *out =
(struct mali_attribute_packed *) T.cpu;
unsigned attrib_to_buffer[PIPE_MAX_ATTRIBS] = { 0 };
unsigned k = 0;
for (unsigned i = 0; i < so->num_elements; ++i) {
/* We map buffers 1:1 with the attributes, which
* means duplicating some vertex buffers (who cares? aside from
* maybe some caching implications but I somehow doubt that
* matters) */
struct pipe_vertex_element *elem = &so->pipe[i];
unsigned vbi = elem->vertex_buffer_index;
attrib_to_buffer[i] = k;
if (!(ctx->vb_mask & (1 << vbi)))
continue;
struct pipe_vertex_buffer *buf = &ctx->vertex_buffers[vbi];
struct panfrost_resource *rsrc;
rsrc = pan_resource(buf->buffer.resource);
if (!rsrc)
continue;
/* Add a dependency of the batch on the vertex buffer */
panfrost_batch_add_bo(batch, rsrc->bo,
PAN_BO_ACCESS_SHARED |
PAN_BO_ACCESS_READ |
PAN_BO_ACCESS_VERTEX_TILER);
/* Mask off lower bits, see offset fixup below */
mali_ptr raw_addr = rsrc->bo->gpu + buf->buffer_offset;
mali_ptr addr = raw_addr & ~63;
/* Since we advanced the base pointer, we shrink the buffer
* size, but add the offset we subtracted */
unsigned size = rsrc->base.width0 + (raw_addr - addr)
- buf->buffer_offset;
/* When there is a divisor, the hardware-level divisor is
* the product of the instance divisor and the padded count */
unsigned divisor = elem->instance_divisor;
unsigned hw_divisor = ctx->padded_count * divisor;
unsigned stride = buf->stride;
/* If there's a divisor(=1) but no instancing, we want every
* attribute to be the same */
if (divisor && ctx->instance_count == 1)
stride = 0;
if (!divisor || ctx->instance_count <= 1) {
pan_pack(bufs + k, ATTRIBUTE_BUFFER, cfg) {
if (ctx->instance_count > 1) {
cfg.type = MALI_ATTRIBUTE_TYPE_1D_MODULUS;
cfg.divisor = ctx->padded_count;
}
cfg.pointer = addr;
cfg.stride = stride;
cfg.size = size;
}
} else if (util_is_power_of_two_or_zero(hw_divisor)) {
pan_pack(bufs + k, ATTRIBUTE_BUFFER, cfg) {
cfg.type = MALI_ATTRIBUTE_TYPE_1D_POT_DIVISOR;
cfg.pointer = addr;
cfg.stride = stride;
cfg.size = size;
cfg.divisor_r = __builtin_ctz(hw_divisor);
}
} else {
unsigned shift = 0, extra_flags = 0;
unsigned magic_divisor =
panfrost_compute_magic_divisor(hw_divisor, &shift, &extra_flags);
pan_pack(bufs + k, ATTRIBUTE_BUFFER, cfg) {
cfg.type = MALI_ATTRIBUTE_TYPE_1D_NPOT_DIVISOR;
cfg.pointer = addr;
cfg.stride = stride;
cfg.size = size;
cfg.divisor_r = shift;
cfg.divisor_e = extra_flags;
}
pan_pack(bufs + k + 1, ATTRIBUTE_BUFFER_CONTINUATION_NPOT, cfg) {
cfg.divisor_numerator = magic_divisor;
cfg.divisor = divisor;
}
++k;
}
++k;
}
/* Add special gl_VertexID/gl_InstanceID buffers */
if (unlikely(vs->attribute_count >= PAN_VERTEX_ID)) {
panfrost_vertex_id(ctx->padded_count, &bufs[k], ctx->instance_count > 1);
pan_pack(out + PAN_VERTEX_ID, ATTRIBUTE, cfg) {
cfg.buffer_index = k++;
cfg.format = so->formats[PAN_VERTEX_ID];
}
panfrost_instance_id(ctx->padded_count, &bufs[k], ctx->instance_count > 1);
pan_pack(out + PAN_INSTANCE_ID, ATTRIBUTE, cfg) {
cfg.buffer_index = k++;
cfg.format = so->formats[PAN_INSTANCE_ID];
}
}
/* Attribute addresses require 64-byte alignment, so let:
*
* base' = base & ~63 = base - (base & 63)
* offset' = offset + (base & 63)
*
* Since base' + offset' = base + offset, these are equivalent
* addressing modes and now base is 64 aligned.
*/
for (unsigned i = 0; i < so->num_elements; ++i) {
unsigned vbi = so->pipe[i].vertex_buffer_index;
struct pipe_vertex_buffer *buf = &ctx->vertex_buffers[vbi];
/* Adjust by the masked off bits of the offset. Make sure we
* read src_offset from so->hw (which is not GPU visible)
* rather than target (which is) due to caching effects */
unsigned src_offset = so->pipe[i].src_offset;
/* BOs aligned to 4k so guaranteed aligned to 64 */
src_offset += (buf->buffer_offset & 63);
/* Also, somewhat obscurely per-instance data needs to be
* offset in response to a delayed start in an indexed draw */
if (so->pipe[i].instance_divisor && ctx->instance_count > 1)
src_offset -= buf->stride * ctx->offset_start;
pan_pack(out + i, ATTRIBUTE, cfg) {
cfg.buffer_index = attrib_to_buffer[i];
cfg.format = so->formats[i];
cfg.offset = src_offset;
}
}
*buffers = S.gpu;
return T.gpu;
}
static mali_ptr
panfrost_emit_varyings(struct panfrost_batch *batch,
struct mali_attribute_buffer_packed *slot,
unsigned stride, unsigned count)
{
unsigned size = stride * count;
mali_ptr ptr = panfrost_pool_alloc_aligned(&batch->invisible_pool, size, 64).gpu;
pan_pack(slot, ATTRIBUTE_BUFFER, cfg) {
cfg.stride = stride;
cfg.size = size;
cfg.pointer = ptr;
}
return ptr;
}
static unsigned
panfrost_streamout_offset(unsigned stride,
struct pipe_stream_output_target *target)
{
return (target->buffer_offset + (pan_so_target(target)->offset * stride * 4)) & 63;
}
static void
panfrost_emit_streamout(struct panfrost_batch *batch,
struct mali_attribute_buffer_packed *slot,
unsigned stride_words, unsigned count,
struct pipe_stream_output_target *target)
{
unsigned stride = stride_words * 4;
unsigned max_size = target->buffer_size;
unsigned expected_size = stride * count;
/* Grab the BO and bind it to the batch */
struct panfrost_bo *bo = pan_resource(target->buffer)->bo;
/* Varyings are WRITE from the perspective of the VERTEX but READ from
* the perspective of the TILER and FRAGMENT.
*/
panfrost_batch_add_bo(batch, bo,
PAN_BO_ACCESS_SHARED |
PAN_BO_ACCESS_RW |
PAN_BO_ACCESS_VERTEX_TILER |
PAN_BO_ACCESS_FRAGMENT);
/* We will have an offset applied to get alignment */
mali_ptr addr = bo->gpu + target->buffer_offset + (pan_so_target(target)->offset * stride);
pan_pack(slot, ATTRIBUTE_BUFFER, cfg) {
cfg.pointer = (addr & ~63);
cfg.stride = stride;
cfg.size = MIN2(max_size, expected_size) + (addr & 63);
}
}
/* Helpers for manipulating stream out information so we can pack varyings
* accordingly. Compute the src_offset for a given captured varying */
static struct pipe_stream_output *
pan_get_so(struct pipe_stream_output_info *info, gl_varying_slot loc)
{
for (unsigned i = 0; i < info->num_outputs; ++i) {
if (info->output[i].register_index == loc)
return &info->output[i];
}
unreachable("Varying not captured");
}
static unsigned
pan_varying_size(enum mali_format fmt)
{
unsigned type = MALI_EXTRACT_TYPE(fmt);
unsigned chan = MALI_EXTRACT_CHANNELS(fmt);
unsigned bits = MALI_EXTRACT_BITS(fmt);
unsigned bpc = 0;
if (bits == MALI_CHANNEL_FLOAT) {
/* No doubles */
bool fp16 = (type == MALI_FORMAT_SINT);
assert(fp16 || (type == MALI_FORMAT_UNORM));
bpc = fp16 ? 2 : 4;
} else {
assert(type >= MALI_FORMAT_SNORM && type <= MALI_FORMAT_SINT);
/* See the enums */
bits = 1 << bits;
assert(bits >= 8);
bpc = bits / 8;
}
return bpc * chan;
}
/* Indices for named (non-XFB) varyings that are present. These are packed
* tightly so they correspond to a bitfield present (P) indexed by (1 <<
* PAN_VARY_*). This has the nice property that you can lookup the buffer index
* of a given special field given a shift S by:
*
* idx = popcount(P & ((1 << S) - 1))
*
* That is... look at all of the varyings that come earlier and count them, the
* count is the new index since plus one. Likewise, the total number of special
* buffers required is simply popcount(P)
*/
enum pan_special_varying {
PAN_VARY_GENERAL = 0,
PAN_VARY_POSITION = 1,
PAN_VARY_PSIZ = 2,
PAN_VARY_PNTCOORD = 3,
PAN_VARY_FACE = 4,
PAN_VARY_FRAGCOORD = 5,
/* Keep last */
PAN_VARY_MAX,
};
/* Given a varying, figure out which index it correpsonds to */
static inline unsigned
pan_varying_index(unsigned present, enum pan_special_varying v)
{
unsigned mask = (1 << v) - 1;
return util_bitcount(present & mask);
}
/* Get the base offset for XFB buffers, which by convention come after
* everything else. Wrapper function for semantic reasons; by construction this
* is just popcount. */
static inline unsigned
pan_xfb_base(unsigned present)
{
return util_bitcount(present);
}
/* Computes the present mask for varyings so we can start emitting varying records */
static inline unsigned
pan_varying_present(
struct panfrost_shader_state *vs,
struct panfrost_shader_state *fs,
unsigned quirks,
uint16_t point_coord_mask)
{
/* At the moment we always emit general and position buffers. Not
* strictly necessary but usually harmless */
unsigned present = (1 << PAN_VARY_GENERAL) | (1 << PAN_VARY_POSITION);
/* Enable special buffers by the shader info */
if (vs->writes_point_size)
present |= (1 << PAN_VARY_PSIZ);
if (fs->reads_point_coord)
present |= (1 << PAN_VARY_PNTCOORD);
if (fs->reads_face)
present |= (1 << PAN_VARY_FACE);
if (fs->reads_frag_coord && !(quirks & IS_BIFROST))
present |= (1 << PAN_VARY_FRAGCOORD);
/* Also, if we have a point sprite, we need a point coord buffer */
for (unsigned i = 0; i < fs->varying_count; i++) {
gl_varying_slot loc = fs->varyings_loc[i];
if (util_varying_is_point_coord(loc, point_coord_mask))
present |= (1 << PAN_VARY_PNTCOORD);
}
return present;
}
/* Emitters for varying records */
static void
pan_emit_vary(struct mali_attribute_packed *out,
unsigned present, enum pan_special_varying buf,
unsigned quirks, enum mali_format format,
unsigned offset)
{
unsigned nr_channels = MALI_EXTRACT_CHANNELS(format);
unsigned swizzle = quirks & HAS_SWIZZLES ?
panfrost_get_default_swizzle(nr_channels) :
panfrost_bifrost_swizzle(nr_channels);
pan_pack(out, ATTRIBUTE, cfg) {
cfg.buffer_index = pan_varying_index(present, buf);
cfg.unknown = quirks & IS_BIFROST ? 0x0 : 0x1;
cfg.format = (format << 12) | swizzle;
cfg.offset = offset;
}
}
/* General varying that is unused */
static void
pan_emit_vary_only(struct mali_attribute_packed *out,
unsigned present, unsigned quirks)
{
pan_emit_vary(out, present, 0, quirks, MALI_VARYING_DISCARD, 0);
}
/* Special records */
static const enum mali_format pan_varying_formats[PAN_VARY_MAX] = {
[PAN_VARY_POSITION] = MALI_VARYING_POS,
[PAN_VARY_PSIZ] = MALI_R16F,
[PAN_VARY_PNTCOORD] = MALI_R16F,
[PAN_VARY_FACE] = MALI_R32I,
[PAN_VARY_FRAGCOORD] = MALI_RGBA32F
};
static void
pan_emit_vary_special(struct mali_attribute_packed *out,
unsigned present, enum pan_special_varying buf,
unsigned quirks)
{
assert(buf < PAN_VARY_MAX);
pan_emit_vary(out, present, buf, quirks, pan_varying_formats[buf], 0);
}
static enum mali_format
pan_xfb_format(enum mali_format format, unsigned nr)
{
if (MALI_EXTRACT_BITS(format) == MALI_CHANNEL_FLOAT)
return MALI_R32F | MALI_NR_CHANNELS(nr);
else
return MALI_EXTRACT_TYPE(format) | MALI_NR_CHANNELS(nr) | MALI_CHANNEL_32;
}
/* Transform feedback records. Note struct pipe_stream_output is (if packed as
* a bitfield) 32-bit, smaller than a 64-bit pointer, so may as well pass by
* value. */
static void
pan_emit_vary_xfb(struct mali_attribute_packed *out,
unsigned present,
unsigned max_xfb,
unsigned *streamout_offsets,
unsigned quirks,
enum mali_format format,
struct pipe_stream_output o)
{
unsigned swizzle = quirks & HAS_SWIZZLES ?
panfrost_get_default_swizzle(o.num_components) :
panfrost_bifrost_swizzle(o.num_components);
pan_pack(out, ATTRIBUTE, cfg) {
/* XFB buffers come after everything else */
cfg.buffer_index = pan_xfb_base(present) + o.output_buffer;
cfg.unknown = quirks & IS_BIFROST ? 0x0 : 0x1;
/* Override number of channels and precision to highp */
cfg.format = (pan_xfb_format(format, o.num_components) << 12) | swizzle;
/* Apply given offsets together */
cfg.offset = (o.dst_offset * 4) /* dwords */
+ streamout_offsets[o.output_buffer];
}
}
/* Determine if we should capture a varying for XFB. This requires actually
* having a buffer for it. If we don't capture it, we'll fallback to a general
* varying path (linked or unlinked, possibly discarding the write) */
static bool
panfrost_xfb_captured(struct panfrost_shader_state *xfb,
unsigned loc, unsigned max_xfb)
{
if (!(xfb->so_mask & (1ll << loc)))
return false;
struct pipe_stream_output *o = pan_get_so(&xfb->stream_output, loc);
return o->output_buffer < max_xfb;
}
static void
pan_emit_general_varying(struct mali_attribute_packed *out,
struct panfrost_shader_state *other,
struct panfrost_shader_state *xfb,
gl_varying_slot loc,
enum mali_format format,
unsigned present,
unsigned quirks,
unsigned *gen_offsets,
enum mali_format *gen_formats,
unsigned *gen_stride,
unsigned idx,
bool should_alloc)
{
/* Check if we're linked */
signed other_idx = -1;
for (unsigned j = 0; j < other->varying_count; ++j) {
if (other->varyings_loc[j] == loc) {
other_idx = j;
break;
}
}
if (other_idx < 0) {
pan_emit_vary_only(out, present, quirks);
return;
}
unsigned offset = gen_offsets[other_idx];
if (should_alloc) {
/* We're linked, so allocate a space via a watermark allocation */
enum mali_format alt = other->varyings[other_idx];
/* Do interpolation at minimum precision */
unsigned size_main = pan_varying_size(format);
unsigned size_alt = pan_varying_size(alt);
unsigned size = MIN2(size_main, size_alt);
/* If a varying is marked for XFB but not actually captured, we
* should match the format to the format that would otherwise
* be used for XFB, since dEQP checks for invariance here. It's
* unclear if this is required by the spec. */
if (xfb->so_mask & (1ull << loc)) {
struct pipe_stream_output *o = pan_get_so(&xfb->stream_output, loc);
format = pan_xfb_format(format, o->num_components);
size = pan_varying_size(format);
} else if (size == size_alt) {
format = alt;
}
gen_offsets[idx] = *gen_stride;
gen_formats[other_idx] = format;
offset = *gen_stride;
*gen_stride += size;
}
pan_emit_vary(out, present, PAN_VARY_GENERAL, quirks, format, offset);
}
/* Higher-level wrapper around all of the above, classifying a varying into one
* of the above types */
static void
panfrost_emit_varying(
struct mali_attribute_packed *out,
struct panfrost_shader_state *stage,
struct panfrost_shader_state *other,
struct panfrost_shader_state *xfb,
unsigned present,
uint16_t point_sprite_mask,
unsigned max_xfb,
unsigned *streamout_offsets,
unsigned quirks,
unsigned *gen_offsets,
enum mali_format *gen_formats,
unsigned *gen_stride,
unsigned idx,
bool should_alloc,
bool is_fragment)
{
gl_varying_slot loc = stage->varyings_loc[idx];
enum mali_format format = stage->varyings[idx];
/* Override format to match linkage */
if (!should_alloc && gen_formats[idx])
format = gen_formats[idx];
if (util_varying_is_point_coord(loc, point_sprite_mask)) {
pan_emit_vary_special(out, present, PAN_VARY_PNTCOORD, quirks);
} else if (panfrost_xfb_captured(xfb, loc, max_xfb)) {
struct pipe_stream_output *o = pan_get_so(&xfb->stream_output, loc);
pan_emit_vary_xfb(out, present, max_xfb, streamout_offsets, quirks, format, *o);
} else if (loc == VARYING_SLOT_POS) {
if (is_fragment)
pan_emit_vary_special(out, present, PAN_VARY_FRAGCOORD, quirks);
else
pan_emit_vary_special(out, present, PAN_VARY_POSITION, quirks);
} else if (loc == VARYING_SLOT_PSIZ) {
pan_emit_vary_special(out, present, PAN_VARY_PSIZ, quirks);
} else if (loc == VARYING_SLOT_PNTC) {
pan_emit_vary_special(out, present, PAN_VARY_PNTCOORD, quirks);
} else if (loc == VARYING_SLOT_FACE) {
pan_emit_vary_special(out, present, PAN_VARY_FACE, quirks);
} else {
pan_emit_general_varying(out, other, xfb, loc, format, present,
quirks, gen_offsets, gen_formats, gen_stride,
idx, should_alloc);
}
}
static void
pan_emit_special_input(struct mali_attribute_buffer_packed *out,
unsigned present,
enum pan_special_varying v,
unsigned special)
{
if (present & (1 << v)) {
unsigned idx = pan_varying_index(present, v);
pan_pack(out + idx, ATTRIBUTE_BUFFER, cfg) {
cfg.special = special;
cfg.type = 0;
}
}
}
void
panfrost_emit_varying_descriptor(struct panfrost_batch *batch,
unsigned vertex_count,
mali_ptr *vs_attribs,
mali_ptr *fs_attribs,
mali_ptr *buffers,
mali_ptr *position,
mali_ptr *psiz)
{
/* Load the shaders */
struct panfrost_context *ctx = batch->ctx;
struct panfrost_device *dev = pan_device(ctx->base.screen);
struct panfrost_shader_state *vs, *fs;
size_t vs_size, fs_size;
/* Allocate the varying descriptor */
vs = panfrost_get_shader_state(ctx, PIPE_SHADER_VERTEX);
fs = panfrost_get_shader_state(ctx, PIPE_SHADER_FRAGMENT);
vs_size = MALI_ATTRIBUTE_LENGTH * vs->varying_count;
fs_size = MALI_ATTRIBUTE_LENGTH * fs->varying_count;
struct panfrost_transfer trans = panfrost_pool_alloc_aligned(
&batch->pool, vs_size + fs_size, MALI_ATTRIBUTE_LENGTH);
struct pipe_stream_output_info *so = &vs->stream_output;
uint16_t point_coord_mask = ctx->rasterizer->base.sprite_coord_enable;
unsigned present = pan_varying_present(vs, fs, dev->quirks, point_coord_mask);
/* Check if this varying is linked by us. This is the case for
* general-purpose, non-captured varyings. If it is, link it. If it's
* not, use the provided stream out information to determine the
* offset, since it was already linked for us. */
unsigned gen_offsets[32];
enum mali_format gen_formats[32];
memset(gen_offsets, 0, sizeof(gen_offsets));
memset(gen_formats, 0, sizeof(gen_formats));
unsigned gen_stride = 0;
assert(vs->varying_count < ARRAY_SIZE(gen_offsets));
assert(fs->varying_count < ARRAY_SIZE(gen_offsets));
unsigned streamout_offsets[32];
for (unsigned i = 0; i < ctx->streamout.num_targets; ++i) {
streamout_offsets[i] = panfrost_streamout_offset(
so->stride[i],
ctx->streamout.targets[i]);
}
struct mali_attribute_packed *ovs = (struct mali_attribute_packed *)trans.cpu;
struct mali_attribute_packed *ofs = ovs + vs->varying_count;
for (unsigned i = 0; i < vs->varying_count; i++) {
panfrost_emit_varying(ovs + i, vs, fs, vs, present, 0,
ctx->streamout.num_targets, streamout_offsets,
dev->quirks,
gen_offsets, gen_formats, &gen_stride, i, true, false);
}
for (unsigned i = 0; i < fs->varying_count; i++) {
panfrost_emit_varying(ofs + i, fs, vs, vs, present, point_coord_mask,
ctx->streamout.num_targets, streamout_offsets,
dev->quirks,
gen_offsets, gen_formats, &gen_stride, i, false, true);
}
unsigned xfb_base = pan_xfb_base(present);
struct panfrost_transfer T = panfrost_pool_alloc_aligned(&batch->pool,
MALI_ATTRIBUTE_BUFFER_LENGTH * (xfb_base + ctx->streamout.num_targets),
MALI_ATTRIBUTE_BUFFER_LENGTH * 2);
struct mali_attribute_buffer_packed *varyings =
(struct mali_attribute_buffer_packed *) T.cpu;
/* Emit the stream out buffers */
unsigned out_count = u_stream_outputs_for_vertices(ctx->active_prim,
ctx->vertex_count);
for (unsigned i = 0; i < ctx->streamout.num_targets; ++i) {
panfrost_emit_streamout(batch, &varyings[xfb_base + i],
so->stride[i],
out_count,
ctx->streamout.targets[i]);
}
panfrost_emit_varyings(batch,
&varyings[pan_varying_index(present, PAN_VARY_GENERAL)],
gen_stride, vertex_count);
/* fp32 vec4 gl_Position */
*position = panfrost_emit_varyings(batch,
&varyings[pan_varying_index(present, PAN_VARY_POSITION)],
sizeof(float) * 4, vertex_count);
if (present & (1 << PAN_VARY_PSIZ)) {
*psiz = panfrost_emit_varyings(batch,
&varyings[pan_varying_index(present, PAN_VARY_PSIZ)],
2, vertex_count);
}
pan_emit_special_input(varyings, present, PAN_VARY_PNTCOORD, MALI_ATTRIBUTE_SPECIAL_POINT_COORD);
pan_emit_special_input(varyings, present, PAN_VARY_FACE, MALI_ATTRIBUTE_SPECIAL_FRONT_FACING);
pan_emit_special_input(varyings, present, PAN_VARY_FRAGCOORD, MALI_ATTRIBUTE_SPECIAL_FRAG_COORD);
*buffers = T.gpu;
*vs_attribs = trans.gpu;
*fs_attribs = trans.gpu + vs_size;
}
void
panfrost_emit_vertex_tiler_jobs(struct panfrost_batch *batch,
const struct panfrost_transfer *vertex_job,
const struct panfrost_transfer *tiler_job)
{
struct panfrost_context *ctx = batch->ctx;
bool wallpapering = ctx->wallpaper_batch && batch->scoreboard.tiler_dep;
if (wallpapering) {
/* Inject in reverse order, with "predicted" job indices.
* THIS IS A HACK XXX */
panfrost_add_job(&batch->pool, &batch->scoreboard, MALI_JOB_TYPE_TILER, false,
batch->scoreboard.job_index + 2, tiler_job, true);
panfrost_add_job(&batch->pool, &batch->scoreboard, MALI_JOB_TYPE_VERTEX, false, 0,
vertex_job, true);
return;
}
/* If rasterizer discard is enable, only submit the vertex */
unsigned vertex = panfrost_add_job(&batch->pool, &batch->scoreboard, MALI_JOB_TYPE_VERTEX, false, 0,
vertex_job, false);
if (ctx->rasterizer->base.rasterizer_discard)
return;
panfrost_add_job(&batch->pool, &batch->scoreboard, MALI_JOB_TYPE_TILER, false, vertex, tiler_job, false);
}
/* TODO: stop hardcoding this */
mali_ptr
panfrost_emit_sample_locations(struct panfrost_batch *batch)
{
uint16_t locations[] = {
128, 128,
0, 256,
0, 256,
0, 256,
0, 256,
0, 256,
0, 256,
0, 256,
0, 256,
0, 256,
0, 256,
0, 256,
0, 256,
0, 256,
0, 256,
0, 256,
0, 256,
0, 256,
0, 256,
0, 256,
0, 256,
0, 256,
0, 256,
0, 256,
0, 256,
0, 256,
0, 256,
0, 256,
0, 256,
0, 256,
0, 256,
0, 256,
128, 128,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
};
return panfrost_pool_upload_aligned(&batch->pool, locations, 96 * sizeof(uint16_t), 64);
}