blob: c22a40b3f7f17b119e7abf8ef0a309eeaf2b10b2 [file] [log] [blame]
/*
* Copyright © 2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
/**
* \file lower_instructions.cpp
*
* Many GPUs lack native instructions for certain expression operations, and
* must replace them with some other expression tree. This pass lowers some
* of the most common cases, allowing the lowering code to be implemented once
* rather than in each driver backend.
*
* Currently supported transformations:
* - LDEXP_TO_ARITH
* - DOPS_TO_DFRAC
*
* LDEXP_TO_ARITH:
* -------------
* Converts ir_binop_ldexp to arithmetic and bit operations for float sources.
*
* DFREXP_DLDEXP_TO_ARITH:
* ---------------
* Converts ir_binop_ldexp, ir_unop_frexp_sig, and ir_unop_frexp_exp to
* arithmetic and bit ops for double arguments.
*
* DOPS_TO_DFRAC:
* --------------
* Converts double trunc, ceil, floor, round to fract
*/
#include "program/prog_instruction.h" /* for swizzle */
#include "compiler/glsl_types.h"
#include "ir.h"
#include "ir_builder.h"
#include "ir_optimization.h"
#include "util/half_float.h"
#include <math.h>
/* Operations for lower_instructions() */
#define LDEXP_TO_ARITH 0x80
#define DOPS_TO_DFRAC 0x800
#define DFREXP_DLDEXP_TO_ARITH 0x1000
#define FIND_LSB_TO_FLOAT_CAST 0x20000
#define FIND_MSB_TO_FLOAT_CAST 0x40000
#define IMUL_HIGH_TO_MUL 0x80000
#define SQRT_TO_ABS_SQRT 0x200000
using namespace ir_builder;
namespace {
class lower_instructions_visitor : public ir_hierarchical_visitor {
public:
lower_instructions_visitor(unsigned lower)
: progress(false), lower(lower) { }
ir_visitor_status visit_leave(ir_expression *);
bool progress;
private:
unsigned lower; /** Bitfield of which operations to lower */
void ldexp_to_arith(ir_expression *);
void dldexp_to_arith(ir_expression *);
void dfrexp_sig_to_arith(ir_expression *);
void dfrexp_exp_to_arith(ir_expression *);
void double_dot_to_fma(ir_expression *);
void double_lrp(ir_expression *);
void dceil_to_dfrac(ir_expression *);
void dfloor_to_dfrac(ir_expression *);
void dround_even_to_dfrac(ir_expression *);
void dtrunc_to_dfrac(ir_expression *);
void dsign_to_csel(ir_expression *);
void find_lsb_to_float_cast(ir_expression *ir);
void find_msb_to_float_cast(ir_expression *ir);
void imul_high_to_mul(ir_expression *ir);
void sqrt_to_abs_sqrt(ir_expression *ir);
ir_expression *_carry(operand a, operand b);
static ir_constant *_imm_fp(void *mem_ctx,
const glsl_type *type,
double f,
unsigned vector_elements=1);
};
} /* anonymous namespace */
/**
* Determine if a particular type of lowering should occur
*/
#define lowering(x) (this->lower & x)
bool
lower_instructions(exec_list *instructions, bool have_ldexp, bool have_dfrexp,
bool have_dround, bool force_abs_sqrt,
bool have_gpu_shader5)
{
unsigned what_to_lower =
(have_ldexp ? 0 : LDEXP_TO_ARITH) |
(have_dfrexp ? 0 : DFREXP_DLDEXP_TO_ARITH) |
(have_dround ? 0 : DOPS_TO_DFRAC) |
(force_abs_sqrt ? SQRT_TO_ABS_SQRT : 0) |
/* Assume that if ARB_gpu_shader5 is not supported then all of the
* extended integer functions need lowering. It may be necessary to add
* some caps for individual instructions.
*/
(!have_gpu_shader5 ? FIND_LSB_TO_FLOAT_CAST |
FIND_MSB_TO_FLOAT_CAST |
IMUL_HIGH_TO_MUL : 0);
lower_instructions_visitor v(what_to_lower);
visit_list_elements(&v, instructions);
return v.progress;
}
void
lower_instructions_visitor::ldexp_to_arith(ir_expression *ir)
{
/* Translates
* ir_binop_ldexp x exp
* into
*
* extracted_biased_exp = rshift(bitcast_f2i(abs(x)), exp_shift);
* resulting_biased_exp = min(extracted_biased_exp + exp, 255);
*
* if (extracted_biased_exp >= 255)
* return x; // +/-inf, NaN
*
* sign_mantissa = bitcast_f2u(x) & sign_mantissa_mask;
*
* if (min(resulting_biased_exp, extracted_biased_exp) < 1)
* resulting_biased_exp = 0;
* if (resulting_biased_exp >= 255 ||
* min(resulting_biased_exp, extracted_biased_exp) < 1) {
* sign_mantissa &= sign_mask;
* }
*
* return bitcast_u2f(sign_mantissa |
* lshift(i2u(resulting_biased_exp), exp_shift));
*
* which we can't actually implement as such, since the GLSL IR doesn't
* have vectorized if-statements. We actually implement it without branches
* using conditional-select:
*
* extracted_biased_exp = rshift(bitcast_f2i(abs(x)), exp_shift);
* resulting_biased_exp = min(extracted_biased_exp + exp, 255);
*
* sign_mantissa = bitcast_f2u(x) & sign_mantissa_mask;
*
* flush_to_zero = lequal(min(resulting_biased_exp, extracted_biased_exp), 0);
* resulting_biased_exp = csel(flush_to_zero, 0, resulting_biased_exp)
* zero_mantissa = logic_or(flush_to_zero,
* gequal(resulting_biased_exp, 255));
* sign_mantissa = csel(zero_mantissa, sign_mantissa & sign_mask, sign_mantissa);
*
* result = sign_mantissa |
* lshift(i2u(resulting_biased_exp), exp_shift));
*
* return csel(extracted_biased_exp >= 255, x, bitcast_u2f(result));
*
* The definition of ldexp in the GLSL spec says:
*
* "If this product is too large to be represented in the
* floating-point type, the result is undefined."
*
* However, the definition of ldexp in the GLSL ES spec does not contain
* this sentence, so we do need to handle overflow correctly.
*
* There is additional language limiting the defined range of exp, but this
* is merely to allow implementations that store 2^exp in a temporary
* variable.
*/
const unsigned vec_elem = ir->type->vector_elements;
/* Types */
const glsl_type *ivec = glsl_type::get_instance(GLSL_TYPE_INT, vec_elem, 1);
const glsl_type *uvec = glsl_type::get_instance(GLSL_TYPE_UINT, vec_elem, 1);
const glsl_type *bvec = glsl_type::get_instance(GLSL_TYPE_BOOL, vec_elem, 1);
/* Temporary variables */
ir_variable *x = new(ir) ir_variable(ir->type, "x", ir_var_temporary);
ir_variable *exp = new(ir) ir_variable(ivec, "exp", ir_var_temporary);
ir_variable *result = new(ir) ir_variable(uvec, "result", ir_var_temporary);
ir_variable *extracted_biased_exp =
new(ir) ir_variable(ivec, "extracted_biased_exp", ir_var_temporary);
ir_variable *resulting_biased_exp =
new(ir) ir_variable(ivec, "resulting_biased_exp", ir_var_temporary);
ir_variable *sign_mantissa =
new(ir) ir_variable(uvec, "sign_mantissa", ir_var_temporary);
ir_variable *flush_to_zero =
new(ir) ir_variable(bvec, "flush_to_zero", ir_var_temporary);
ir_variable *zero_mantissa =
new(ir) ir_variable(bvec, "zero_mantissa", ir_var_temporary);
ir_instruction &i = *base_ir;
/* Copy <x> and <exp> arguments. */
i.insert_before(x);
i.insert_before(assign(x, ir->operands[0]));
i.insert_before(exp);
i.insert_before(assign(exp, ir->operands[1]));
/* Extract the biased exponent from <x>. */
i.insert_before(extracted_biased_exp);
i.insert_before(assign(extracted_biased_exp,
rshift(bitcast_f2i(abs(x)),
new(ir) ir_constant(23, vec_elem))));
/* The definition of ldexp in the GLSL 4.60 spec says:
*
* "If exp is greater than +128 (single-precision) or +1024
* (double-precision), the value returned is undefined. If exp is less
* than -126 (single-precision) or -1022 (double-precision), the value
* returned may be flushed to zero."
*
* So we do not have to guard against the possibility of addition overflow,
* which could happen when exp is close to INT_MAX. Addition underflow
* cannot happen (the worst case is 0 + (-INT_MAX)).
*/
i.insert_before(resulting_biased_exp);
i.insert_before(assign(resulting_biased_exp,
min2(add(extracted_biased_exp, exp),
new(ir) ir_constant(255, vec_elem))));
i.insert_before(sign_mantissa);
i.insert_before(assign(sign_mantissa,
bit_and(bitcast_f2u(x),
new(ir) ir_constant(0x807fffffu, vec_elem))));
/* We flush to zero if the original or resulting biased exponent is 0,
* indicating a +/-0.0 or subnormal input or output.
*
* The mantissa is set to 0 if the resulting biased exponent is 255, since
* an overflow should produce a +/-inf result.
*
* Note that NaN inputs are handled separately.
*/
i.insert_before(flush_to_zero);
i.insert_before(assign(flush_to_zero,
lequal(min2(resulting_biased_exp,
extracted_biased_exp),
ir_constant::zero(ir, ivec))));
i.insert_before(assign(resulting_biased_exp,
csel(flush_to_zero,
ir_constant::zero(ir, ivec),
resulting_biased_exp)));
i.insert_before(zero_mantissa);
i.insert_before(assign(zero_mantissa,
logic_or(flush_to_zero,
equal(resulting_biased_exp,
new(ir) ir_constant(255, vec_elem)))));
i.insert_before(assign(sign_mantissa,
csel(zero_mantissa,
bit_and(sign_mantissa,
new(ir) ir_constant(0x80000000u, vec_elem)),
sign_mantissa)));
i.insert_before(result);
i.insert_before(assign(result,
bitfield_insert(sign_mantissa,
i2u(resulting_biased_exp),
new(ir) ir_constant(23u, vec_elem),
new(ir) ir_constant(8u, vec_elem))));
ir->operation = ir_triop_csel;
ir->init_num_operands();
ir->operands[0] = gequal(extracted_biased_exp,
new(ir) ir_constant(255, vec_elem));
ir->operands[1] = new(ir) ir_dereference_variable(x);
ir->operands[2] = bitcast_u2f(result);
this->progress = true;
}
void
lower_instructions_visitor::dldexp_to_arith(ir_expression *ir)
{
/* See ldexp_to_arith for structure. Uses frexp_exp to extract the exponent
* from the significand.
*/
const unsigned vec_elem = ir->type->vector_elements;
/* Types */
const glsl_type *ivec = glsl_type::get_instance(GLSL_TYPE_INT, vec_elem, 1);
const glsl_type *bvec = glsl_type::get_instance(GLSL_TYPE_BOOL, vec_elem, 1);
/* Constants */
ir_constant *zeroi = ir_constant::zero(ir, ivec);
ir_constant *sign_mask = new(ir) ir_constant(0x80000000u);
ir_constant *exp_shift = new(ir) ir_constant(20u);
ir_constant *exp_width = new(ir) ir_constant(11u);
ir_constant *exp_bias = new(ir) ir_constant(1022, vec_elem);
/* Temporary variables */
ir_variable *x = new(ir) ir_variable(ir->type, "x", ir_var_temporary);
ir_variable *exp = new(ir) ir_variable(ivec, "exp", ir_var_temporary);
ir_variable *zero_sign_x = new(ir) ir_variable(ir->type, "zero_sign_x",
ir_var_temporary);
ir_variable *extracted_biased_exp =
new(ir) ir_variable(ivec, "extracted_biased_exp", ir_var_temporary);
ir_variable *resulting_biased_exp =
new(ir) ir_variable(ivec, "resulting_biased_exp", ir_var_temporary);
ir_variable *is_not_zero_or_underflow =
new(ir) ir_variable(bvec, "is_not_zero_or_underflow", ir_var_temporary);
ir_instruction &i = *base_ir;
/* Copy <x> and <exp> arguments. */
i.insert_before(x);
i.insert_before(assign(x, ir->operands[0]));
i.insert_before(exp);
i.insert_before(assign(exp, ir->operands[1]));
ir_expression *frexp_exp = expr(ir_unop_frexp_exp, x);
if (lowering(DFREXP_DLDEXP_TO_ARITH))
dfrexp_exp_to_arith(frexp_exp);
/* Extract the biased exponent from <x>. */
i.insert_before(extracted_biased_exp);
i.insert_before(assign(extracted_biased_exp, add(frexp_exp, exp_bias)));
i.insert_before(resulting_biased_exp);
i.insert_before(assign(resulting_biased_exp,
add(extracted_biased_exp, exp)));
/* Test if result is ±0.0, subnormal, or underflow by checking if the
* resulting biased exponent would be less than 0x1. If so, the result is
* 0.0 with the sign of x. (Actually, invert the conditions so that
* immediate values are the second arguments, which is better for i965)
* TODO: Implement in a vector fashion.
*/
i.insert_before(zero_sign_x);
for (unsigned elem = 0; elem < vec_elem; elem++) {
ir_variable *unpacked =
new(ir) ir_variable(glsl_type::uvec2_type, "unpacked", ir_var_temporary);
i.insert_before(unpacked);
i.insert_before(
assign(unpacked,
expr(ir_unop_unpack_double_2x32, swizzle(x, elem, 1))));
i.insert_before(assign(unpacked, bit_and(swizzle_y(unpacked), sign_mask->clone(ir, NULL)),
WRITEMASK_Y));
i.insert_before(assign(unpacked, ir_constant::zero(ir, glsl_type::uint_type), WRITEMASK_X));
i.insert_before(assign(zero_sign_x,
expr(ir_unop_pack_double_2x32, unpacked),
1 << elem));
}
i.insert_before(is_not_zero_or_underflow);
i.insert_before(assign(is_not_zero_or_underflow,
gequal(resulting_biased_exp,
new(ir) ir_constant(0x1, vec_elem))));
i.insert_before(assign(x, csel(is_not_zero_or_underflow,
x, zero_sign_x)));
i.insert_before(assign(resulting_biased_exp,
csel(is_not_zero_or_underflow,
resulting_biased_exp, zeroi)));
/* We could test for overflows by checking if the resulting biased exponent
* would be greater than 0xFE. Turns out we don't need to because the GLSL
* spec says:
*
* "If this product is too large to be represented in the
* floating-point type, the result is undefined."
*/
ir_rvalue *results[4] = {NULL};
for (unsigned elem = 0; elem < vec_elem; elem++) {
ir_variable *unpacked =
new(ir) ir_variable(glsl_type::uvec2_type, "unpacked", ir_var_temporary);
i.insert_before(unpacked);
i.insert_before(
assign(unpacked,
expr(ir_unop_unpack_double_2x32, swizzle(x, elem, 1))));
ir_expression *bfi = bitfield_insert(
swizzle_y(unpacked),
i2u(swizzle(resulting_biased_exp, elem, 1)),
exp_shift->clone(ir, NULL),
exp_width->clone(ir, NULL));
i.insert_before(assign(unpacked, bfi, WRITEMASK_Y));
results[elem] = expr(ir_unop_pack_double_2x32, unpacked);
}
ir->operation = ir_quadop_vector;
ir->init_num_operands();
ir->operands[0] = results[0];
ir->operands[1] = results[1];
ir->operands[2] = results[2];
ir->operands[3] = results[3];
/* Don't generate new IR that would need to be lowered in an additional
* pass.
*/
this->progress = true;
}
void
lower_instructions_visitor::dfrexp_sig_to_arith(ir_expression *ir)
{
const unsigned vec_elem = ir->type->vector_elements;
const glsl_type *bvec = glsl_type::get_instance(GLSL_TYPE_BOOL, vec_elem, 1);
/* Double-precision floating-point values are stored as
* 1 sign bit;
* 11 exponent bits;
* 52 mantissa bits.
*
* We're just extracting the significand here, so we only need to modify
* the upper 32-bit uint. Unfortunately we must extract each double
* independently as there is no vector version of unpackDouble.
*/
ir_instruction &i = *base_ir;
ir_variable *is_not_zero =
new(ir) ir_variable(bvec, "is_not_zero", ir_var_temporary);
ir_rvalue *results[4] = {NULL};
ir_constant *dzero = new(ir) ir_constant(0.0, vec_elem);
i.insert_before(is_not_zero);
i.insert_before(
assign(is_not_zero,
nequal(abs(ir->operands[0]->clone(ir, NULL)), dzero)));
/* TODO: Remake this as more vector-friendly when int64 support is
* available.
*/
for (unsigned elem = 0; elem < vec_elem; elem++) {
ir_constant *zero = new(ir) ir_constant(0u, 1);
ir_constant *sign_mantissa_mask = new(ir) ir_constant(0x800fffffu, 1);
/* Exponent of double floating-point values in the range [0.5, 1.0). */
ir_constant *exponent_value = new(ir) ir_constant(0x3fe00000u, 1);
ir_variable *bits =
new(ir) ir_variable(glsl_type::uint_type, "bits", ir_var_temporary);
ir_variable *unpacked =
new(ir) ir_variable(glsl_type::uvec2_type, "unpacked", ir_var_temporary);
ir_rvalue *x = swizzle(ir->operands[0]->clone(ir, NULL), elem, 1);
i.insert_before(bits);
i.insert_before(unpacked);
i.insert_before(assign(unpacked, expr(ir_unop_unpack_double_2x32, x)));
/* Manipulate the high uint to remove the exponent and replace it with
* either the default exponent or zero.
*/
i.insert_before(assign(bits, swizzle_y(unpacked)));
i.insert_before(assign(bits, bit_and(bits, sign_mantissa_mask)));
i.insert_before(assign(bits, bit_or(bits,
csel(swizzle(is_not_zero, elem, 1),
exponent_value,
zero))));
i.insert_before(assign(unpacked, bits, WRITEMASK_Y));
results[elem] = expr(ir_unop_pack_double_2x32, unpacked);
}
/* Put the dvec back together */
ir->operation = ir_quadop_vector;
ir->init_num_operands();
ir->operands[0] = results[0];
ir->operands[1] = results[1];
ir->operands[2] = results[2];
ir->operands[3] = results[3];
this->progress = true;
}
void
lower_instructions_visitor::dfrexp_exp_to_arith(ir_expression *ir)
{
const unsigned vec_elem = ir->type->vector_elements;
const glsl_type *bvec = glsl_type::get_instance(GLSL_TYPE_BOOL, vec_elem, 1);
const glsl_type *uvec = glsl_type::get_instance(GLSL_TYPE_UINT, vec_elem, 1);
/* Double-precision floating-point values are stored as
* 1 sign bit;
* 11 exponent bits;
* 52 mantissa bits.
*
* We're just extracting the exponent here, so we only care about the upper
* 32-bit uint.
*/
ir_instruction &i = *base_ir;
ir_variable *is_not_zero =
new(ir) ir_variable(bvec, "is_not_zero", ir_var_temporary);
ir_variable *high_words =
new(ir) ir_variable(uvec, "high_words", ir_var_temporary);
ir_constant *dzero = new(ir) ir_constant(0.0, vec_elem);
ir_constant *izero = new(ir) ir_constant(0, vec_elem);
ir_rvalue *absval = abs(ir->operands[0]);
i.insert_before(is_not_zero);
i.insert_before(high_words);
i.insert_before(assign(is_not_zero, nequal(absval->clone(ir, NULL), dzero)));
/* Extract all of the upper uints. */
for (unsigned elem = 0; elem < vec_elem; elem++) {
ir_rvalue *x = swizzle(absval->clone(ir, NULL), elem, 1);
i.insert_before(assign(high_words,
swizzle_y(expr(ir_unop_unpack_double_2x32, x)),
1 << elem));
}
ir_constant *exponent_shift = new(ir) ir_constant(20, vec_elem);
ir_constant *exponent_bias = new(ir) ir_constant(-1022, vec_elem);
/* For non-zero inputs, shift the exponent down and apply bias. */
ir->operation = ir_triop_csel;
ir->init_num_operands();
ir->operands[0] = new(ir) ir_dereference_variable(is_not_zero);
ir->operands[1] = add(exponent_bias, u2i(rshift(high_words, exponent_shift)));
ir->operands[2] = izero;
this->progress = true;
}
void
lower_instructions_visitor::double_dot_to_fma(ir_expression *ir)
{
ir_variable *temp = new(ir) ir_variable(ir->operands[0]->type->get_base_type(), "dot_res",
ir_var_temporary);
this->base_ir->insert_before(temp);
int nc = ir->operands[0]->type->components();
for (int i = nc - 1; i >= 1; i--) {
ir_assignment *assig;
if (i == (nc - 1)) {
assig = assign(temp, mul(swizzle(ir->operands[0]->clone(ir, NULL), i, 1),
swizzle(ir->operands[1]->clone(ir, NULL), i, 1)));
} else {
assig = assign(temp, fma(swizzle(ir->operands[0]->clone(ir, NULL), i, 1),
swizzle(ir->operands[1]->clone(ir, NULL), i, 1),
temp));
}
this->base_ir->insert_before(assig);
}
ir->operation = ir_triop_fma;
ir->init_num_operands();
ir->operands[0] = swizzle(ir->operands[0], 0, 1);
ir->operands[1] = swizzle(ir->operands[1], 0, 1);
ir->operands[2] = new(ir) ir_dereference_variable(temp);
this->progress = true;
}
void
lower_instructions_visitor::double_lrp(ir_expression *ir)
{
int swizval;
ir_rvalue *op0 = ir->operands[0], *op2 = ir->operands[2];
ir_constant *one = new(ir) ir_constant(1.0, op2->type->vector_elements);
switch (op2->type->vector_elements) {
case 1:
swizval = SWIZZLE_XXXX;
break;
default:
assert(op0->type->vector_elements == op2->type->vector_elements);
swizval = SWIZZLE_XYZW;
break;
}
ir->operation = ir_triop_fma;
ir->init_num_operands();
ir->operands[0] = swizzle(op2, swizval, op0->type->vector_elements);
ir->operands[2] = mul(sub(one, op2->clone(ir, NULL)), op0);
this->progress = true;
}
void
lower_instructions_visitor::dceil_to_dfrac(ir_expression *ir)
{
/*
* frtemp = frac(x);
* temp = sub(x, frtemp);
* result = temp + ((frtemp != 0.0) ? 1.0 : 0.0);
*/
ir_instruction &i = *base_ir;
ir_constant *zero = new(ir) ir_constant(0.0, ir->operands[0]->type->vector_elements);
ir_constant *one = new(ir) ir_constant(1.0, ir->operands[0]->type->vector_elements);
ir_variable *frtemp = new(ir) ir_variable(ir->operands[0]->type, "frtemp",
ir_var_temporary);
i.insert_before(frtemp);
i.insert_before(assign(frtemp, fract(ir->operands[0])));
ir->operation = ir_binop_add;
ir->init_num_operands();
ir->operands[0] = sub(ir->operands[0]->clone(ir, NULL), frtemp);
ir->operands[1] = csel(nequal(frtemp, zero), one, zero->clone(ir, NULL));
this->progress = true;
}
void
lower_instructions_visitor::dfloor_to_dfrac(ir_expression *ir)
{
/*
* frtemp = frac(x);
* result = sub(x, frtemp);
*/
ir->operation = ir_binop_sub;
ir->init_num_operands();
ir->operands[1] = fract(ir->operands[0]->clone(ir, NULL));
this->progress = true;
}
void
lower_instructions_visitor::dround_even_to_dfrac(ir_expression *ir)
{
/*
* insane but works
* temp = x + 0.5;
* frtemp = frac(temp);
* t2 = sub(temp, frtemp);
* if (frac(x) == 0.5)
* result = frac(t2 * 0.5) == 0 ? t2 : t2 - 1;
* else
* result = t2;
*/
ir_instruction &i = *base_ir;
ir_variable *frtemp = new(ir) ir_variable(ir->operands[0]->type, "frtemp",
ir_var_temporary);
ir_variable *temp = new(ir) ir_variable(ir->operands[0]->type, "temp",
ir_var_temporary);
ir_variable *t2 = new(ir) ir_variable(ir->operands[0]->type, "t2",
ir_var_temporary);
ir_constant *p5 = new(ir) ir_constant(0.5, ir->operands[0]->type->vector_elements);
ir_constant *one = new(ir) ir_constant(1.0, ir->operands[0]->type->vector_elements);
ir_constant *zero = new(ir) ir_constant(0.0, ir->operands[0]->type->vector_elements);
i.insert_before(temp);
i.insert_before(assign(temp, add(ir->operands[0], p5)));
i.insert_before(frtemp);
i.insert_before(assign(frtemp, fract(temp)));
i.insert_before(t2);
i.insert_before(assign(t2, sub(temp, frtemp)));
ir->operation = ir_triop_csel;
ir->init_num_operands();
ir->operands[0] = equal(fract(ir->operands[0]->clone(ir, NULL)),
p5->clone(ir, NULL));
ir->operands[1] = csel(equal(fract(mul(t2, p5->clone(ir, NULL))),
zero),
t2,
sub(t2, one));
ir->operands[2] = new(ir) ir_dereference_variable(t2);
this->progress = true;
}
void
lower_instructions_visitor::dtrunc_to_dfrac(ir_expression *ir)
{
/*
* frtemp = frac(x);
* temp = sub(x, frtemp);
* result = x >= 0 ? temp : temp + (frtemp == 0.0) ? 0 : 1;
*/
ir_rvalue *arg = ir->operands[0];
ir_instruction &i = *base_ir;
ir_constant *zero = new(ir) ir_constant(0.0, arg->type->vector_elements);
ir_constant *one = new(ir) ir_constant(1.0, arg->type->vector_elements);
ir_variable *frtemp = new(ir) ir_variable(arg->type, "frtemp",
ir_var_temporary);
ir_variable *temp = new(ir) ir_variable(ir->operands[0]->type, "temp",
ir_var_temporary);
i.insert_before(frtemp);
i.insert_before(assign(frtemp, fract(arg)));
i.insert_before(temp);
i.insert_before(assign(temp, sub(arg->clone(ir, NULL), frtemp)));
ir->operation = ir_triop_csel;
ir->init_num_operands();
ir->operands[0] = gequal(arg->clone(ir, NULL), zero);
ir->operands[1] = new (ir) ir_dereference_variable(temp);
ir->operands[2] = add(temp,
csel(equal(frtemp, zero->clone(ir, NULL)),
zero->clone(ir, NULL),
one));
this->progress = true;
}
void
lower_instructions_visitor::dsign_to_csel(ir_expression *ir)
{
/*
* temp = x > 0.0 ? 1.0 : 0.0;
* result = x < 0.0 ? -1.0 : temp;
*/
ir_rvalue *arg = ir->operands[0];
ir_constant *zero = new(ir) ir_constant(0.0, arg->type->vector_elements);
ir_constant *one = new(ir) ir_constant(1.0, arg->type->vector_elements);
ir_constant *neg_one = new(ir) ir_constant(-1.0, arg->type->vector_elements);
ir->operation = ir_triop_csel;
ir->init_num_operands();
ir->operands[0] = less(arg->clone(ir, NULL),
zero->clone(ir, NULL));
ir->operands[1] = neg_one;
ir->operands[2] = csel(greater(arg, zero),
one,
zero->clone(ir, NULL));
this->progress = true;
}
void
lower_instructions_visitor::find_lsb_to_float_cast(ir_expression *ir)
{
/* For more details, see:
*
* http://graphics.stanford.edu/~seander/bithacks.html#ZerosOnRightFloatCast
*/
const unsigned elements = ir->operands[0]->type->vector_elements;
ir_constant *c0 = new(ir) ir_constant(unsigned(0), elements);
ir_constant *cminus1 = new(ir) ir_constant(int(-1), elements);
ir_constant *c23 = new(ir) ir_constant(int(23), elements);
ir_constant *c7F = new(ir) ir_constant(int(0x7F), elements);
ir_variable *temp =
new(ir) ir_variable(glsl_type::ivec(elements), "temp", ir_var_temporary);
ir_variable *lsb_only =
new(ir) ir_variable(glsl_type::uvec(elements), "lsb_only", ir_var_temporary);
ir_variable *as_float =
new(ir) ir_variable(glsl_type::vec(elements), "as_float", ir_var_temporary);
ir_variable *lsb =
new(ir) ir_variable(glsl_type::ivec(elements), "lsb", ir_var_temporary);
ir_instruction &i = *base_ir;
i.insert_before(temp);
if (ir->operands[0]->type->base_type == GLSL_TYPE_INT) {
i.insert_before(assign(temp, ir->operands[0]));
} else {
assert(ir->operands[0]->type->base_type == GLSL_TYPE_UINT);
i.insert_before(assign(temp, u2i(ir->operands[0])));
}
/* The int-to-float conversion is lossless because (value & -value) is
* either a power of two or zero. We don't use the result in the zero
* case. The uint() cast is necessary so that 0x80000000 does not
* generate a negative value.
*
* uint lsb_only = uint(value & -value);
* float as_float = float(lsb_only);
*/
i.insert_before(lsb_only);
i.insert_before(assign(lsb_only, i2u(bit_and(temp, neg(temp)))));
i.insert_before(as_float);
i.insert_before(assign(as_float, u2f(lsb_only)));
/* This is basically an open-coded frexp. Implementations that have a
* native frexp instruction would be better served by that. This is
* optimized versus a full-featured open-coded implementation in two ways:
*
* - We don't care about a correct result from subnormal numbers (including
* 0.0), so the raw exponent can always be safely unbiased.
*
* - The value cannot be negative, so it does not need to be masked off to
* extract the exponent.
*
* int lsb = (floatBitsToInt(as_float) >> 23) - 0x7f;
*/
i.insert_before(lsb);
i.insert_before(assign(lsb, sub(rshift(bitcast_f2i(as_float), c23), c7F)));
/* Use lsb_only in the comparison instead of temp so that the & (far above)
* can possibly generate the result without an explicit comparison.
*
* (lsb_only == 0) ? -1 : lsb;
*
* Since our input values are all integers, the unbiased exponent must not
* be negative. It will only be negative (-0x7f, in fact) if lsb_only is
* 0. Instead of using (lsb_only == 0), we could use (lsb >= 0). Which is
* better is likely GPU dependent. Either way, the difference should be
* small.
*/
ir->operation = ir_triop_csel;
ir->init_num_operands();
ir->operands[0] = equal(lsb_only, c0);
ir->operands[1] = cminus1;
ir->operands[2] = new(ir) ir_dereference_variable(lsb);
this->progress = true;
}
void
lower_instructions_visitor::find_msb_to_float_cast(ir_expression *ir)
{
/* For more details, see:
*
* http://graphics.stanford.edu/~seander/bithacks.html#ZerosOnRightFloatCast
*/
const unsigned elements = ir->operands[0]->type->vector_elements;
ir_constant *c0 = new(ir) ir_constant(int(0), elements);
ir_constant *cminus1 = new(ir) ir_constant(int(-1), elements);
ir_constant *c23 = new(ir) ir_constant(int(23), elements);
ir_constant *c7F = new(ir) ir_constant(int(0x7F), elements);
ir_constant *c000000FF = new(ir) ir_constant(0x000000FFu, elements);
ir_constant *cFFFFFF00 = new(ir) ir_constant(0xFFFFFF00u, elements);
ir_variable *temp =
new(ir) ir_variable(glsl_type::uvec(elements), "temp", ir_var_temporary);
ir_variable *as_float =
new(ir) ir_variable(glsl_type::vec(elements), "as_float", ir_var_temporary);
ir_variable *msb =
new(ir) ir_variable(glsl_type::ivec(elements), "msb", ir_var_temporary);
ir_instruction &i = *base_ir;
i.insert_before(temp);
if (ir->operands[0]->type->base_type == GLSL_TYPE_UINT) {
i.insert_before(assign(temp, ir->operands[0]));
} else {
assert(ir->operands[0]->type->base_type == GLSL_TYPE_INT);
/* findMSB(uint(abs(some_int))) almost always does the right thing.
* There are two problem values:
*
* * 0x80000000. Since abs(0x80000000) == 0x80000000, findMSB returns
* 31. However, findMSB(int(0x80000000)) == 30.
*
* * 0xffffffff. Since abs(0xffffffff) == 1, findMSB returns
* 31. Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
*
* For a value of zero or negative one, -1 will be returned.
*
* For all negative number cases, including 0x80000000 and 0xffffffff,
* the correct value is obtained from findMSB if instead of negating the
* (already negative) value the logical-not is used. A conditonal
* logical-not can be achieved in two instructions.
*/
ir_variable *as_int =
new(ir) ir_variable(glsl_type::ivec(elements), "as_int", ir_var_temporary);
ir_constant *c31 = new(ir) ir_constant(int(31), elements);
i.insert_before(as_int);
i.insert_before(assign(as_int, ir->operands[0]));
i.insert_before(assign(temp, i2u(expr(ir_binop_bit_xor,
as_int,
rshift(as_int, c31)))));
}
/* The int-to-float conversion is lossless because bits are conditionally
* masked off the bottom of temp to ensure the value has at most 24 bits of
* data or is zero. We don't use the result in the zero case. The uint()
* cast is necessary so that 0x80000000 does not generate a negative value.
*
* float as_float = float(temp > 255 ? temp & ~255 : temp);
*/
i.insert_before(as_float);
i.insert_before(assign(as_float, u2f(csel(greater(temp, c000000FF),
bit_and(temp, cFFFFFF00),
temp))));
/* This is basically an open-coded frexp. Implementations that have a
* native frexp instruction would be better served by that. This is
* optimized versus a full-featured open-coded implementation in two ways:
*
* - We don't care about a correct result from subnormal numbers (including
* 0.0), so the raw exponent can always be safely unbiased.
*
* - The value cannot be negative, so it does not need to be masked off to
* extract the exponent.
*
* int msb = (floatBitsToInt(as_float) >> 23) - 0x7f;
*/
i.insert_before(msb);
i.insert_before(assign(msb, sub(rshift(bitcast_f2i(as_float), c23), c7F)));
/* Use msb in the comparison instead of temp so that the subtract can
* possibly generate the result without an explicit comparison.
*
* (msb < 0) ? -1 : msb;
*
* Since our input values are all integers, the unbiased exponent must not
* be negative. It will only be negative (-0x7f, in fact) if temp is 0.
*/
ir->operation = ir_triop_csel;
ir->init_num_operands();
ir->operands[0] = less(msb, c0);
ir->operands[1] = cminus1;
ir->operands[2] = new(ir) ir_dereference_variable(msb);
this->progress = true;
}
ir_expression *
lower_instructions_visitor::_carry(operand a, operand b)
{
return i2u(b2i(less(add(a, b),
a.val->clone(ralloc_parent(a.val), NULL))));
}
void
lower_instructions_visitor::imul_high_to_mul(ir_expression *ir)
{
/* ABCD
* * EFGH
* ======
* (GH * CD) + (GH * AB) << 16 + (EF * CD) << 16 + (EF * AB) << 32
*
* In GLSL, (a * b) becomes
*
* uint m1 = (a & 0x0000ffffu) * (b & 0x0000ffffu);
* uint m2 = (a & 0x0000ffffu) * (b >> 16);
* uint m3 = (a >> 16) * (b & 0x0000ffffu);
* uint m4 = (a >> 16) * (b >> 16);
*
* uint c1;
* uint c2;
* uint lo_result;
* uint hi_result;
*
* lo_result = uaddCarry(m1, m2 << 16, c1);
* hi_result = m4 + c1;
* lo_result = uaddCarry(lo_result, m3 << 16, c2);
* hi_result = hi_result + c2;
* hi_result = hi_result + (m2 >> 16) + (m3 >> 16);
*/
const unsigned elements = ir->operands[0]->type->vector_elements;
ir_variable *src1 =
new(ir) ir_variable(glsl_type::uvec(elements), "src1", ir_var_temporary);
ir_variable *src1h =
new(ir) ir_variable(glsl_type::uvec(elements), "src1h", ir_var_temporary);
ir_variable *src1l =
new(ir) ir_variable(glsl_type::uvec(elements), "src1l", ir_var_temporary);
ir_variable *src2 =
new(ir) ir_variable(glsl_type::uvec(elements), "src2", ir_var_temporary);
ir_variable *src2h =
new(ir) ir_variable(glsl_type::uvec(elements), "src2h", ir_var_temporary);
ir_variable *src2l =
new(ir) ir_variable(glsl_type::uvec(elements), "src2l", ir_var_temporary);
ir_variable *t1 =
new(ir) ir_variable(glsl_type::uvec(elements), "t1", ir_var_temporary);
ir_variable *t2 =
new(ir) ir_variable(glsl_type::uvec(elements), "t2", ir_var_temporary);
ir_variable *lo =
new(ir) ir_variable(glsl_type::uvec(elements), "lo", ir_var_temporary);
ir_variable *hi =
new(ir) ir_variable(glsl_type::uvec(elements), "hi", ir_var_temporary);
ir_variable *different_signs = NULL;
ir_constant *c0000FFFF = new(ir) ir_constant(0x0000FFFFu, elements);
ir_constant *c16 = new(ir) ir_constant(16u, elements);
ir_instruction &i = *base_ir;
i.insert_before(src1);
i.insert_before(src2);
i.insert_before(src1h);
i.insert_before(src2h);
i.insert_before(src1l);
i.insert_before(src2l);
if (ir->operands[0]->type->base_type == GLSL_TYPE_UINT) {
i.insert_before(assign(src1, ir->operands[0]));
i.insert_before(assign(src2, ir->operands[1]));
} else {
assert(ir->operands[0]->type->base_type == GLSL_TYPE_INT);
ir_variable *itmp1 =
new(ir) ir_variable(glsl_type::ivec(elements), "itmp1", ir_var_temporary);
ir_variable *itmp2 =
new(ir) ir_variable(glsl_type::ivec(elements), "itmp2", ir_var_temporary);
ir_constant *c0 = new(ir) ir_constant(int(0), elements);
i.insert_before(itmp1);
i.insert_before(itmp2);
i.insert_before(assign(itmp1, ir->operands[0]));
i.insert_before(assign(itmp2, ir->operands[1]));
different_signs =
new(ir) ir_variable(glsl_type::bvec(elements), "different_signs",
ir_var_temporary);
i.insert_before(different_signs);
i.insert_before(assign(different_signs, expr(ir_binop_logic_xor,
less(itmp1, c0),
less(itmp2, c0->clone(ir, NULL)))));
i.insert_before(assign(src1, i2u(abs(itmp1))));
i.insert_before(assign(src2, i2u(abs(itmp2))));
}
i.insert_before(assign(src1l, bit_and(src1, c0000FFFF)));
i.insert_before(assign(src2l, bit_and(src2, c0000FFFF->clone(ir, NULL))));
i.insert_before(assign(src1h, rshift(src1, c16)));
i.insert_before(assign(src2h, rshift(src2, c16->clone(ir, NULL))));
i.insert_before(lo);
i.insert_before(hi);
i.insert_before(t1);
i.insert_before(t2);
i.insert_before(assign(lo, mul(src1l, src2l)));
i.insert_before(assign(t1, mul(src1l, src2h)));
i.insert_before(assign(t2, mul(src1h, src2l)));
i.insert_before(assign(hi, mul(src1h, src2h)));
i.insert_before(assign(hi, add(hi, _carry(lo, lshift(t1, c16->clone(ir, NULL))))));
i.insert_before(assign(lo, add(lo, lshift(t1, c16->clone(ir, NULL)))));
i.insert_before(assign(hi, add(hi, _carry(lo, lshift(t2, c16->clone(ir, NULL))))));
i.insert_before(assign(lo, add(lo, lshift(t2, c16->clone(ir, NULL)))));
if (different_signs == NULL) {
assert(ir->operands[0]->type->base_type == GLSL_TYPE_UINT);
ir->operation = ir_binop_add;
ir->init_num_operands();
ir->operands[0] = add(hi, rshift(t1, c16->clone(ir, NULL)));
ir->operands[1] = rshift(t2, c16->clone(ir, NULL));
} else {
assert(ir->operands[0]->type->base_type == GLSL_TYPE_INT);
i.insert_before(assign(hi, add(add(hi, rshift(t1, c16->clone(ir, NULL))),
rshift(t2, c16->clone(ir, NULL)))));
/* For channels where different_signs is set we have to perform a 64-bit
* negation. This is *not* the same as just negating the high 32-bits.
* Consider -3 * 2. The high 32-bits is 0, but the desired result is
* -1, not -0! Recall -x == ~x + 1.
*/
ir_variable *neg_hi =
new(ir) ir_variable(glsl_type::ivec(elements), "neg_hi", ir_var_temporary);
ir_constant *c1 = new(ir) ir_constant(1u, elements);
i.insert_before(neg_hi);
i.insert_before(assign(neg_hi, add(bit_not(u2i(hi)),
u2i(_carry(bit_not(lo), c1)))));
ir->operation = ir_triop_csel;
ir->init_num_operands();
ir->operands[0] = new(ir) ir_dereference_variable(different_signs);
ir->operands[1] = new(ir) ir_dereference_variable(neg_hi);
ir->operands[2] = u2i(hi);
}
}
void
lower_instructions_visitor::sqrt_to_abs_sqrt(ir_expression *ir)
{
ir->operands[0] = new(ir) ir_expression(ir_unop_abs, ir->operands[0]);
this->progress = true;
}
ir_visitor_status
lower_instructions_visitor::visit_leave(ir_expression *ir)
{
switch (ir->operation) {
case ir_binop_dot:
if (ir->operands[0]->type->is_double())
double_dot_to_fma(ir);
break;
case ir_triop_lrp:
if (ir->operands[0]->type->is_double())
double_lrp(ir);
break;
case ir_binop_ldexp:
if (lowering(LDEXP_TO_ARITH) && ir->type->is_float())
ldexp_to_arith(ir);
if (lowering(DFREXP_DLDEXP_TO_ARITH) && ir->type->is_double())
dldexp_to_arith(ir);
break;
case ir_unop_frexp_exp:
if (lowering(DFREXP_DLDEXP_TO_ARITH) && ir->operands[0]->type->is_double())
dfrexp_exp_to_arith(ir);
break;
case ir_unop_frexp_sig:
if (lowering(DFREXP_DLDEXP_TO_ARITH) && ir->operands[0]->type->is_double())
dfrexp_sig_to_arith(ir);
break;
case ir_unop_trunc:
if (lowering(DOPS_TO_DFRAC) && ir->type->is_double())
dtrunc_to_dfrac(ir);
break;
case ir_unop_ceil:
if (lowering(DOPS_TO_DFRAC) && ir->type->is_double())
dceil_to_dfrac(ir);
break;
case ir_unop_floor:
if (lowering(DOPS_TO_DFRAC) && ir->type->is_double())
dfloor_to_dfrac(ir);
break;
case ir_unop_round_even:
if (lowering(DOPS_TO_DFRAC) && ir->type->is_double())
dround_even_to_dfrac(ir);
break;
case ir_unop_sign:
if (lowering(DOPS_TO_DFRAC) && ir->type->is_double())
dsign_to_csel(ir);
break;
case ir_unop_find_lsb:
if (lowering(FIND_LSB_TO_FLOAT_CAST))
find_lsb_to_float_cast(ir);
break;
case ir_unop_find_msb:
if (lowering(FIND_MSB_TO_FLOAT_CAST))
find_msb_to_float_cast(ir);
break;
case ir_binop_imul_high:
if (lowering(IMUL_HIGH_TO_MUL))
imul_high_to_mul(ir);
break;
case ir_unop_rsq:
case ir_unop_sqrt:
if (lowering(SQRT_TO_ABS_SQRT))
sqrt_to_abs_sqrt(ir);
break;
default:
return visit_continue;
}
return visit_continue;
}