blob: e8b45af081cf81b3ebb1441a4c3393325323e8a2 [file] [log] [blame]
/*
* Mesa 3-D graphics library
*
* Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors:
* Keith Whitwell <keithw@vmware.com>
*/
#include <stdio.h>
#include "main/glheader.h"
#include "main/arrayobj.h"
#include "main/bufferobj.h"
#include "main/condrender.h"
#include "main/context.h"
#include "main/mtypes.h"
#include "main/macros.h"
#include "main/enums.h"
#include "main/varray.h"
#include "util/half_float.h"
#include "t_context.h"
#include "t_rebase.h"
#include "tnl.h"
static GLubyte *get_space(struct gl_context *ctx, GLuint bytes)
{
TNLcontext *tnl = TNL_CONTEXT(ctx);
GLubyte *space = malloc(bytes);
tnl->block[tnl->nr_blocks++] = space;
return space;
}
static void free_space(struct gl_context *ctx)
{
TNLcontext *tnl = TNL_CONTEXT(ctx);
for (GLuint i = 0; i < tnl->nr_blocks; i++)
free(tnl->block[i]);
tnl->nr_blocks = 0;
}
/* Convert the incoming array to GLfloats. Understands the
* array->Normalized flag and selects the correct conversion method.
*/
#define CONVERT( TYPE, MACRO ) do { \
GLuint i, j; \
if (attrib->Format.Normalized) { \
for (i = 0; i < count; i++) { \
const TYPE *in = (TYPE *)ptr; \
for (j = 0; j < sz; j++) { \
*fptr++ = MACRO(*in); \
in++; \
} \
ptr += binding->Stride; \
} \
} else { \
for (i = 0; i < count; i++) { \
const TYPE *in = (TYPE *)ptr; \
for (j = 0; j < sz; j++) { \
*fptr++ = (GLfloat)(*in); \
in++; \
} \
ptr += binding->Stride; \
} \
} \
} while (0)
/**
* Convert array of BGRA/GLubyte[4] values to RGBA/float[4]
* \param ptr input/ubyte array
* \param fptr output/float array
*/
static void
convert_bgra_to_float(const struct gl_vertex_buffer_binding *binding,
const struct gl_array_attributes *attrib,
const GLubyte *ptr, GLfloat *fptr,
GLuint count)
{
GLuint i;
assert(attrib->Format.Normalized);
assert(attrib->Format.Size == 4);
for (i = 0; i < count; i++) {
const GLubyte *in = (GLubyte *) ptr; /* in is in BGRA order */
*fptr++ = UBYTE_TO_FLOAT(in[2]); /* red */
*fptr++ = UBYTE_TO_FLOAT(in[1]); /* green */
*fptr++ = UBYTE_TO_FLOAT(in[0]); /* blue */
*fptr++ = UBYTE_TO_FLOAT(in[3]); /* alpha */
ptr += binding->Stride;
}
}
static void
convert_half_to_float(const struct gl_vertex_buffer_binding *binding,
const GLubyte *ptr, GLfloat *fptr,
GLuint count, GLuint sz)
{
GLuint i, j;
for (i = 0; i < count; i++) {
GLhalfARB *in = (GLhalfARB *)ptr;
for (j = 0; j < sz; j++)
*fptr++ = _mesa_half_to_float(in[j]);
ptr += binding->Stride;
}
}
/**
* \brief Convert fixed-point to floating-point.
*
* In OpenGL, a fixed-point number is a "signed 2's complement 16.16 scaled
* integer" (Table 2.2 of the OpenGL ES 2.0 spec).
*
* If the buffer has the \c normalized flag set, the formula
* \code normalize(x) := (2*x + 1) / (2^16 - 1) \endcode
* is used to map the fixed-point numbers into the range [-1, 1].
*/
static void
convert_fixed_to_float(const struct gl_vertex_buffer_binding *binding,
const struct gl_array_attributes *attrib,
const GLubyte *ptr, GLfloat *fptr,
GLuint count)
{
GLuint i;
GLint j;
const GLint size = attrib->Format.Size;
if (attrib->Format.Normalized) {
for (i = 0; i < count; ++i) {
const GLfixed *in = (GLfixed *) ptr;
for (j = 0; j < size; ++j) {
*fptr++ = (GLfloat) (2 * in[j] + 1) / (GLfloat) ((1 << 16) - 1);
}
ptr += binding->Stride;
}
} else {
for (i = 0; i < count; ++i) {
const GLfixed *in = (GLfixed *) ptr;
for (j = 0; j < size; ++j) {
*fptr++ = in[j] / (GLfloat) (1 << 16);
}
ptr += binding->Stride;
}
}
}
/* Adjust pointer to point at first requested element, convert to
* floating point, populate VB->AttribPtr[].
*/
static void _tnl_import_array(struct gl_context *ctx,
GLuint attr,
GLuint count,
const struct gl_vertex_buffer_binding *binding,
const struct gl_array_attributes *attrib,
const GLubyte *ptr)
{
TNLcontext *tnl = TNL_CONTEXT(ctx);
struct vertex_buffer *VB = &tnl->vb;
GLuint stride = binding->Stride;
if (attrib->Format.Type != GL_FLOAT) {
const GLuint sz = attrib->Format.Size;
GLubyte *buf = get_space(ctx, count * sz * sizeof(GLfloat));
GLfloat *fptr = (GLfloat *)buf;
switch (attrib->Format.Type) {
case GL_BYTE:
CONVERT(GLbyte, BYTE_TO_FLOAT);
break;
case GL_UNSIGNED_BYTE:
if (attrib->Format.Format == GL_BGRA) {
/* See GL_EXT_vertex_array_bgra */
convert_bgra_to_float(binding, attrib, ptr, fptr, count);
}
else {
CONVERT(GLubyte, UBYTE_TO_FLOAT);
}
break;
case GL_SHORT:
CONVERT(GLshort, SHORT_TO_FLOAT);
break;
case GL_UNSIGNED_SHORT:
CONVERT(GLushort, USHORT_TO_FLOAT);
break;
case GL_INT:
CONVERT(GLint, INT_TO_FLOAT);
break;
case GL_UNSIGNED_INT:
CONVERT(GLuint, UINT_TO_FLOAT);
break;
case GL_DOUBLE:
CONVERT(GLdouble, (GLfloat));
break;
case GL_HALF_FLOAT:
convert_half_to_float(binding, ptr, fptr, count, sz);
break;
case GL_FIXED:
convert_fixed_to_float(binding, attrib, ptr, fptr, count);
break;
default:
unreachable("Invalid type.");
}
ptr = buf;
stride = sz * sizeof(GLfloat);
}
VB->AttribPtr[attr] = &tnl->tmp_inputs[attr];
VB->AttribPtr[attr]->data = (GLfloat (*)[4])ptr;
VB->AttribPtr[attr]->start = (GLfloat *)ptr;
VB->AttribPtr[attr]->count = count;
VB->AttribPtr[attr]->stride = stride;
VB->AttribPtr[attr]->size = attrib->Format.Size;
/* This should die, but so should the whole GLvector4f concept:
*/
VB->AttribPtr[attr]->flags = (((1<<attrib->Format.Size)-1) |
VEC_NOT_WRITEABLE |
(stride == 4*sizeof(GLfloat) ? 0 : VEC_BAD_STRIDE));
VB->AttribPtr[attr]->storage = NULL;
}
#define CLIPVERTS ((6 + MAX_CLIP_PLANES) * 2)
static GLboolean *_tnl_import_edgeflag(struct gl_context *ctx,
const GLvector4f *input,
GLuint count)
{
const GLubyte *ptr = (const GLubyte *)input->data;
const GLuint stride = input->stride;
GLboolean *space = (GLboolean *)get_space(ctx, count + CLIPVERTS);
GLboolean *bptr = space;
for (GLuint i = 0; i < count; i++) {
*bptr++ = ((GLfloat *)ptr)[0] == 1.0F;
ptr += stride;
}
return space;
}
static void bind_inputs(struct gl_context *ctx,
const struct tnl_vertex_array *inputs,
GLint count,
struct gl_buffer_object **bo,
GLuint *nr_bo)
{
TNLcontext *tnl = TNL_CONTEXT(ctx);
struct vertex_buffer *VB = &tnl->vb;
/* Map all the VBOs
*/
for (unsigned i = 0; i < VERT_ATTRIB_MAX; i++) {
const struct tnl_vertex_array *array = &inputs[i];
const struct gl_vertex_buffer_binding *binding = array->BufferBinding;
const struct gl_array_attributes *attrib = array->VertexAttrib;
const void *ptr;
if (binding->BufferObj) {
if (!binding->BufferObj->Mappings[MAP_INTERNAL].Pointer) {
bo[*nr_bo] = binding->BufferObj;
(*nr_bo)++;
ctx->Driver.MapBufferRange(ctx, 0, binding->BufferObj->Size,
GL_MAP_READ_BIT,
binding->BufferObj,
MAP_INTERNAL);
assert(binding->BufferObj->Mappings[MAP_INTERNAL].Pointer);
}
ptr = ADD_POINTERS(binding->BufferObj->Mappings[MAP_INTERNAL].Pointer,
binding->Offset + attrib->RelativeOffset);
} else
ptr = attrib->Ptr;
/* Just make sure the array is floating point, otherwise convert to
* temporary storage.
*
* XXX: remove the GLvector4f type at some stage and just use
* client arrays.
*/
_tnl_import_array(ctx, i, count, binding, attrib, ptr);
}
/* We process only the vertices between min & max index:
*/
VB->Count = count;
/* These should perhaps be part of _TNL_ATTRIB_* */
VB->BackfaceColorPtr = NULL;
VB->BackfaceIndexPtr = NULL;
VB->BackfaceSecondaryColorPtr = NULL;
/* Clipping and drawing code still requires this to be a packed
* array of ubytes which can be written into. TODO: Fix and
* remove.
*/
if (ctx->Polygon.FrontMode != GL_FILL ||
ctx->Polygon.BackMode != GL_FILL) {
VB->EdgeFlag = _tnl_import_edgeflag(ctx,
VB->AttribPtr[_TNL_ATTRIB_EDGEFLAG],
VB->Count);
} else {
/* the data previously pointed to by EdgeFlag may have been freed */
VB->EdgeFlag = NULL;
}
}
/* Translate indices to GLuints and store in VB->Elts.
*/
static void bind_indices(struct gl_context *ctx,
const struct _mesa_index_buffer *ib,
struct gl_buffer_object **bo,
GLuint *nr_bo)
{
TNLcontext *tnl = TNL_CONTEXT(ctx);
struct vertex_buffer *VB = &tnl->vb;
GLuint i;
const void *ptr;
if (!ib) {
VB->Elts = NULL;
return;
}
if (ib->obj) {
if (!_mesa_bufferobj_mapped(ib->obj, MAP_INTERNAL)) {
/* if the buffer object isn't mapped yet, map it now */
bo[*nr_bo] = ib->obj;
(*nr_bo)++;
ptr = ctx->Driver.MapBufferRange(ctx, (GLsizeiptr) ib->ptr,
ib->count << ib->index_size_shift,
GL_MAP_READ_BIT, ib->obj,
MAP_INTERNAL);
assert(ib->obj->Mappings[MAP_INTERNAL].Pointer);
} else {
/* user-space elements, or buffer already mapped */
ptr = ADD_POINTERS(ib->obj->Mappings[MAP_INTERNAL].Pointer, ib->ptr);
}
} else
ptr = ib->ptr;
if (ib->index_size_shift == 2 && VB->Primitive[0].basevertex == 0) {
VB->Elts = (GLuint *) ptr;
}
else {
GLuint *elts = (GLuint *)get_space(ctx, ib->count * sizeof(GLuint));
VB->Elts = elts;
if (ib->index_size_shift == 2) {
const GLuint *in = (GLuint *)ptr;
for (i = 0; i < ib->count; i++)
*elts++ = (GLuint)(*in++) + VB->Primitive[0].basevertex;
}
else if (ib->index_size_shift == 1) {
const GLushort *in = (GLushort *)ptr;
for (i = 0; i < ib->count; i++)
*elts++ = (GLuint)(*in++) + VB->Primitive[0].basevertex;
}
else {
const GLubyte *in = (GLubyte *)ptr;
for (i = 0; i < ib->count; i++)
*elts++ = (GLuint)(*in++) + VB->Primitive[0].basevertex;
}
}
}
static void bind_prims(struct gl_context *ctx,
const struct _mesa_prim *prim,
GLuint nr_prims)
{
TNLcontext *tnl = TNL_CONTEXT(ctx);
struct vertex_buffer *VB = &tnl->vb;
VB->Primitive = prim;
VB->PrimitiveCount = nr_prims;
}
static void unmap_vbos(struct gl_context *ctx,
struct gl_buffer_object **bo,
GLuint nr_bo)
{
for (GLuint i = 0; i < nr_bo; i++) {
ctx->Driver.UnmapBuffer(ctx, bo[i], MAP_INTERNAL);
}
}
/* This is the main workhorse doing all the rendering work.
*/
void _tnl_draw_prims(struct gl_context *ctx,
const struct tnl_vertex_array *arrays,
const struct _mesa_prim *prim,
GLuint nr_prims,
const struct _mesa_index_buffer *ib,
GLboolean index_bounds_valid,
GLuint min_index,
GLuint max_index,
GLuint num_instances,
GLuint base_instance)
{
TNLcontext *tnl = TNL_CONTEXT(ctx);
const GLuint TEST_SPLIT = 0;
const GLint max = TEST_SPLIT ? 8 : tnl->vb.Size - MAX_CLIPPED_VERTICES;
GLint max_basevertex = prim->basevertex;
GLuint i;
if (!index_bounds_valid)
vbo_get_minmax_indices(ctx, prim, ib, &min_index, &max_index, nr_prims);
/* Mesa core state should have been validated already */
assert(ctx->NewState == 0x0);
if (!_mesa_check_conditional_render(ctx))
return; /* don't draw */
for (i = 1; i < nr_prims; i++)
max_basevertex = MAX2(max_basevertex, prim[i].basevertex);
if (0) {
printf("%s %d..%d\n", __func__, min_index, max_index);
for (i = 0; i < nr_prims; i++)
printf("prim %d: %s start %d count %d\n", i,
_mesa_enum_to_string(prim[i].mode),
prim[i].start,
prim[i].count);
}
if (min_index) {
/* We always translate away calls with min_index != 0.
*/
t_rebase_prims(ctx, arrays, prim, nr_prims, ib,
min_index, max_index, num_instances, base_instance,
_tnl_draw_prims);
return;
}
else if ((GLint)max_index + max_basevertex > max) {
/* The software TNL pipeline has a fixed amount of storage for
* vertices and it is necessary to split incoming drawing commands
* if they exceed that limit.
*/
struct split_limits limits;
limits.max_verts = max;
limits.max_vb_size = ~0;
limits.max_indices = ~0;
/* This will split the buffers one way or another and
* recursively call back into this function.
*/
_tnl_split_prims(ctx, arrays, prim, nr_prims, ib,
0, max_index + prim->basevertex,
num_instances, base_instance,
_tnl_draw_prims,
&limits);
}
else {
/* May need to map a vertex buffer object for every attribute plus
* one for the index buffer.
*/
struct gl_buffer_object *bo[VERT_ATTRIB_MAX + 1];
GLuint nr_bo = 0;
GLuint inst;
assert(num_instances > 0);
for (i = 0; i < nr_prims;) {
GLuint this_nr_prims;
/* Our SW TNL pipeline doesn't handle basevertex yet, so bind_indices
* will rebase the elements to the basevertex, and we'll only
* emit strings of prims with the same basevertex in one draw call.
*/
for (this_nr_prims = 1; i + this_nr_prims < nr_prims;
this_nr_prims++) {
if (prim[i].basevertex != prim[i + this_nr_prims].basevertex)
break;
}
/* Binding inputs may imply mapping some vertex buffer objects.
* They will need to be unmapped below.
*/
for (inst = 0; inst < num_instances; inst++) {
bind_prims(ctx, &prim[i], this_nr_prims);
bind_inputs(ctx, arrays, max_index + prim[i].basevertex + 1,
bo, &nr_bo);
bind_indices(ctx, ib, bo, &nr_bo);
tnl->CurInstance = inst;
TNL_CONTEXT(ctx)->Driver.RunPipeline(ctx);
unmap_vbos(ctx, bo, nr_bo);
free_space(ctx);
}
i += this_nr_prims;
}
}
}
void
_tnl_init_inputs(struct tnl_inputs *inputs)
{
inputs->current = 0;
inputs->vertex_processing_mode = VP_MODE_FF;
}
/**
* Update the tnl_inputs's arrays to point to the vao->_VertexArray arrays
* according to the 'enable' bitmask.
* \param enable bitfield of VERT_BIT_x flags.
*/
static inline void
update_vao_inputs(struct gl_context *ctx,
struct tnl_inputs *inputs, GLbitfield enable)
{
const struct gl_vertex_array_object *vao = ctx->Array._DrawVAO;
/* Make sure we process only arrays enabled in the VAO */
assert((enable & ~_mesa_get_vao_vp_inputs(vao)) == 0);
/* Fill in the client arrays from the VAO */
const struct gl_vertex_buffer_binding *bindings = &vao->BufferBinding[0];
while (enable) {
const int attr = u_bit_scan(&enable);
struct tnl_vertex_array *input = &inputs->inputs[attr];
const struct gl_array_attributes *attrib;
attrib = _mesa_draw_array_attrib(vao, attr);
input->VertexAttrib = attrib;
input->BufferBinding = &bindings[attrib->BufferBindingIndex];
}
}
/**
* Update the tnl_inputs's arrays to point to the vbo->currval arrays
* according to the 'current' bitmask.
* \param current bitfield of VERT_BIT_x flags.
*/
static inline void
update_current_inputs(struct gl_context *ctx,
struct tnl_inputs *inputs, GLbitfield current)
{
gl_vertex_processing_mode mode = ctx->VertexProgram._VPMode;
/* All previously non current array pointers need update. */
GLbitfield mask = current & ~inputs->current;
/* On mode change, the slots aliasing with materials need update too */
if (mode != inputs->vertex_processing_mode)
mask |= current & VERT_BIT_MAT_ALL;
while (mask) {
const int attr = u_bit_scan(&mask);
struct tnl_vertex_array *input = &inputs->inputs[attr];
input->VertexAttrib = _vbo_current_attrib(ctx, attr);
input->BufferBinding = _vbo_current_binding(ctx);
}
inputs->current = current;
inputs->vertex_processing_mode = mode;
}
/**
* Update the tnl_inputs's arrays to point to the vao->_VertexArray and
* vbo->currval arrays according to Array._DrawVAO and
* Array._DrawVAOEnableAttribs.
*/
void
_tnl_update_inputs(struct gl_context *ctx, struct tnl_inputs *inputs)
{
const GLbitfield enable = ctx->Array._DrawVAOEnabledAttribs;
/* Update array input pointers */
update_vao_inputs(ctx, inputs, enable);
/* The rest must be current inputs. */
update_current_inputs(ctx, inputs, ~enable & VERT_BIT_ALL);
}
const struct tnl_vertex_array *
_tnl_bind_inputs(struct gl_context *ctx)
{
TNLcontext *tnl = TNL_CONTEXT(ctx);
_tnl_update_inputs(ctx, &tnl->draw_arrays);
return tnl->draw_arrays.inputs;
}
/* This is the main entrypoint into the slimmed-down software tnl
* module. In a regular swtnl driver, this can be plugged straight
* into the ctx->Driver.Draw() callback.
*/
void
_tnl_draw(struct gl_context *ctx,
const struct _mesa_prim *prim, GLuint nr_prims,
const struct _mesa_index_buffer *ib,
GLboolean index_bounds_valid, GLuint min_index, GLuint max_index,
GLuint num_instances, GLuint base_instance,
UNUSED struct gl_transform_feedback_object *tfb_vertcount,
UNUSED unsigned stream)
{
/* Update TNLcontext::draw_arrays and return that pointer.
*/
const struct tnl_vertex_array* arrays = _tnl_bind_inputs(ctx);
_tnl_draw_prims(ctx, arrays, prim, nr_prims, ib,
index_bounds_valid, min_index, max_index,
num_instances, base_instance);
}
void
_tnl_init_driver_draw_function(struct dd_function_table *functions)
{
functions->Draw = _tnl_draw;
}