blob: 66a02b2275e603ebe92051e0af75fe9b5719219b [file] [log] [blame]
/*
* Copyright © 2021 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <list>
#include <vector>
#include "brw_compiler.h"
#include "brw_fs.h"
#include "brw_nir.h"
#include "brw_private.h"
#include "compiler/nir/nir_builder.h"
#include "dev/intel_debug.h"
#include <memory>
using namespace brw;
static bool
brw_nir_lower_load_uniforms_filter(const nir_instr *instr,
UNUSED const void *data)
{
if (instr->type != nir_instr_type_intrinsic)
return false;
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
return intrin->intrinsic == nir_intrinsic_load_uniform;
}
static nir_def *
brw_nir_lower_load_uniforms_impl(nir_builder *b, nir_instr *instr,
UNUSED void *data)
{
assert(instr->type == nir_instr_type_intrinsic);
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
assert(intrin->intrinsic == nir_intrinsic_load_uniform);
/* Read the first few 32-bit scalars from InlineData. */
if (nir_src_is_const(intrin->src[0]) &&
intrin->def.bit_size == 32 &&
intrin->def.num_components == 1) {
unsigned off = nir_intrinsic_base(intrin) + nir_src_as_uint(intrin->src[0]);
unsigned off_dw = off / 4;
if (off % 4 == 0 && off_dw < BRW_TASK_MESH_PUSH_CONSTANTS_SIZE_DW) {
off_dw += BRW_TASK_MESH_PUSH_CONSTANTS_START_DW;
return nir_load_mesh_inline_data_intel(b, 32, off_dw);
}
}
return brw_nir_load_global_const(b, intrin,
nir_load_mesh_inline_data_intel(b, 64, 0), 0);
}
static bool
brw_nir_lower_load_uniforms(nir_shader *nir)
{
return nir_shader_lower_instructions(nir, brw_nir_lower_load_uniforms_filter,
brw_nir_lower_load_uniforms_impl, NULL);
}
static inline int
type_size_scalar_dwords(const struct glsl_type *type, bool bindless)
{
return glsl_count_dword_slots(type, bindless);
}
/* TODO(mesh): Make this a common function. */
static void
shared_type_info(const struct glsl_type *type, unsigned *size, unsigned *align)
{
assert(glsl_type_is_vector_or_scalar(type));
uint32_t comp_size = glsl_type_is_boolean(type)
? 4 : glsl_get_bit_size(type) / 8;
unsigned length = glsl_get_vector_elements(type);
*size = comp_size * length,
*align = comp_size * (length == 3 ? 4 : length);
}
static bool
brw_nir_lower_launch_mesh_workgroups_instr(nir_builder *b,
nir_intrinsic_instr *intrin,
void *data)
{
if (intrin->intrinsic != nir_intrinsic_launch_mesh_workgroups)
return false;
b->cursor = nir_before_instr(&intrin->instr);
nir_def *local_invocation_index = nir_load_local_invocation_index(b);
/* Make sure that the mesh workgroup size is taken from the first invocation
* (nir_intrinsic_launch_mesh_workgroups requirement)
*/
nir_def *cmp = nir_ieq_imm(b, local_invocation_index, 0);
nir_if *if_stmt = nir_push_if(b, cmp);
{
/* TUE header contains 4 words:
*
* - Word 0 for Task Count.
*
* - Words 1-3 used for "Dispatch Dimensions" feature, to allow mapping a
* 3D dispatch into the 1D dispatch supported by HW.
*/
nir_def *x = nir_channel(b, intrin->src[0].ssa, 0);
nir_def *y = nir_channel(b, intrin->src[0].ssa, 1);
nir_def *z = nir_channel(b, intrin->src[0].ssa, 2);
nir_def *task_count = nir_imul(b, x, nir_imul(b, y, z));
nir_def *tue_header = nir_vec4(b, task_count, x, y, z);
nir_store_task_payload(b, tue_header, nir_imm_int(b, 0));
}
nir_pop_if(b, if_stmt);
nir_instr_remove(&intrin->instr);
return true;
}
static bool
brw_nir_lower_launch_mesh_workgroups(nir_shader *nir)
{
return nir_shader_intrinsics_pass(nir,
brw_nir_lower_launch_mesh_workgroups_instr,
nir_metadata_none,
NULL);
}
static void
brw_nir_lower_tue_outputs(nir_shader *nir, brw_tue_map *map)
{
memset(map, 0, sizeof(*map));
NIR_PASS(_, nir, nir_lower_io, nir_var_shader_out,
type_size_scalar_dwords, nir_lower_io_lower_64bit_to_32);
/* From bspec: "It is suggested that SW reserve the 16 bytes following the
* TUE Header, and therefore start the SW-defined data structure at 32B
* alignment. This allows the TUE Header to always be written as 32 bytes
* with 32B alignment, the most optimal write performance case."
*/
map->per_task_data_start_dw = 8;
/* Lowering to explicit types will start offsets from task_payload_size, so
* set it to start after the header.
*/
nir->info.task_payload_size = map->per_task_data_start_dw * 4;
NIR_PASS(_, nir, nir_lower_vars_to_explicit_types,
nir_var_mem_task_payload, shared_type_info);
NIR_PASS(_, nir, nir_lower_explicit_io,
nir_var_mem_task_payload, nir_address_format_32bit_offset);
map->size_dw = ALIGN(DIV_ROUND_UP(nir->info.task_payload_size, 4), 8);
}
static void
brw_print_tue_map(FILE *fp, const struct brw_tue_map *map)
{
fprintf(fp, "TUE (%d dwords)\n\n", map->size_dw);
}
static bool
brw_nir_adjust_task_payload_offsets_instr(struct nir_builder *b,
nir_intrinsic_instr *intrin,
void *data)
{
switch (intrin->intrinsic) {
case nir_intrinsic_store_task_payload:
case nir_intrinsic_load_task_payload: {
nir_src *offset_src = nir_get_io_offset_src(intrin);
if (nir_src_is_const(*offset_src))
assert(nir_src_as_uint(*offset_src) % 4 == 0);
b->cursor = nir_before_instr(&intrin->instr);
/* Regular I/O uses dwords while explicit I/O used for task payload uses
* bytes. Normalize it to dwords.
*
* TODO(mesh): Figure out how to handle 8-bit, 16-bit.
*/
nir_def *offset = nir_ishr_imm(b, offset_src->ssa, 2);
nir_src_rewrite(offset_src, offset);
unsigned base = nir_intrinsic_base(intrin);
assert(base % 4 == 0);
nir_intrinsic_set_base(intrin, base / 4);
return true;
}
default:
return false;
}
}
static bool
brw_nir_adjust_task_payload_offsets(nir_shader *nir)
{
return nir_shader_intrinsics_pass(nir,
brw_nir_adjust_task_payload_offsets_instr,
nir_metadata_block_index |
nir_metadata_dominance,
NULL);
}
void
brw_nir_adjust_payload(nir_shader *shader)
{
/* Adjustment of task payload offsets must be performed *after* last pass
* which interprets them as bytes, because it changes their unit.
*/
bool adjusted = false;
NIR_PASS(adjusted, shader, brw_nir_adjust_task_payload_offsets);
if (adjusted) /* clean up the mess created by offset adjustments */
NIR_PASS(_, shader, nir_opt_constant_folding);
}
static bool
brw_nir_align_launch_mesh_workgroups_instr(nir_builder *b,
nir_intrinsic_instr *intrin,
void *data)
{
if (intrin->intrinsic != nir_intrinsic_launch_mesh_workgroups)
return false;
/* nir_lower_task_shader uses "range" as task payload size. */
unsigned range = nir_intrinsic_range(intrin);
/* This will avoid special case in nir_lower_task_shader dealing with
* not vec4-aligned payload when payload_in_shared workaround is enabled.
*/
nir_intrinsic_set_range(intrin, ALIGN(range, 16));
return true;
}
static bool
brw_nir_align_launch_mesh_workgroups(nir_shader *nir)
{
return nir_shader_intrinsics_pass(nir,
brw_nir_align_launch_mesh_workgroups_instr,
nir_metadata_block_index |
nir_metadata_dominance,
NULL);
}
const unsigned *
brw_compile_task(const struct brw_compiler *compiler,
struct brw_compile_task_params *params)
{
struct nir_shader *nir = params->base.nir;
const struct brw_task_prog_key *key = params->key;
struct brw_task_prog_data *prog_data = params->prog_data;
const bool debug_enabled = brw_should_print_shader(nir, DEBUG_TASK);
brw_nir_lower_tue_outputs(nir, &prog_data->map);
NIR_PASS(_, nir, brw_nir_align_launch_mesh_workgroups);
nir_lower_task_shader_options lower_ts_opt = {
.payload_to_shared_for_atomics = true,
.payload_to_shared_for_small_types = true,
/* The actual payload data starts after the TUE header and padding,
* so skip those when copying.
*/
.payload_offset_in_bytes = prog_data->map.per_task_data_start_dw * 4,
};
NIR_PASS(_, nir, nir_lower_task_shader, lower_ts_opt);
NIR_PASS(_, nir, brw_nir_lower_launch_mesh_workgroups);
prog_data->base.base.stage = MESA_SHADER_TASK;
prog_data->base.base.total_shared = nir->info.shared_size;
prog_data->base.base.total_scratch = 0;
prog_data->base.local_size[0] = nir->info.workgroup_size[0];
prog_data->base.local_size[1] = nir->info.workgroup_size[1];
prog_data->base.local_size[2] = nir->info.workgroup_size[2];
prog_data->uses_drawid =
BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_DRAW_ID);
brw_simd_selection_state simd_state{
.devinfo = compiler->devinfo,
.prog_data = &prog_data->base,
.required_width = brw_required_dispatch_width(&nir->info),
};
std::unique_ptr<fs_visitor> v[3];
for (unsigned simd = 0; simd < 3; simd++) {
if (!brw_simd_should_compile(simd_state, simd))
continue;
const unsigned dispatch_width = 8 << simd;
nir_shader *shader = nir_shader_clone(params->base.mem_ctx, nir);
brw_nir_apply_key(shader, compiler, &key->base, dispatch_width);
NIR_PASS(_, shader, brw_nir_lower_load_uniforms);
NIR_PASS(_, shader, brw_nir_lower_simd, dispatch_width);
brw_postprocess_nir(shader, compiler, debug_enabled,
key->base.robust_flags);
v[simd] = std::make_unique<fs_visitor>(compiler, &params->base,
&key->base,
&prog_data->base.base,
shader, dispatch_width,
params->base.stats != NULL,
debug_enabled);
if (prog_data->base.prog_mask) {
unsigned first = ffs(prog_data->base.prog_mask) - 1;
v[simd]->import_uniforms(v[first].get());
}
const bool allow_spilling = !brw_simd_any_compiled(simd_state);
if (v[simd]->run_task(allow_spilling))
brw_simd_mark_compiled(simd_state, simd, v[simd]->spilled_any_registers);
else
simd_state.error[simd] = ralloc_strdup(params->base.mem_ctx, v[simd]->fail_msg);
}
int selected_simd = brw_simd_select(simd_state);
if (selected_simd < 0) {
params->base.error_str =
ralloc_asprintf(params->base.mem_ctx,
"Can't compile shader: "
"SIMD8 '%s', SIMD16 '%s' and SIMD32 '%s'.\n",
simd_state.error[0], simd_state.error[1],
simd_state.error[2]);
return NULL;
}
fs_visitor *selected = v[selected_simd].get();
prog_data->base.prog_mask = 1 << selected_simd;
if (unlikely(debug_enabled)) {
fprintf(stderr, "Task Output ");
brw_print_tue_map(stderr, &prog_data->map);
}
fs_generator g(compiler, &params->base, &prog_data->base.base,
false, MESA_SHADER_TASK);
if (unlikely(debug_enabled)) {
g.enable_debug(ralloc_asprintf(params->base.mem_ctx,
"%s task shader %s",
nir->info.label ? nir->info.label
: "unnamed",
nir->info.name));
}
g.generate_code(selected->cfg, selected->dispatch_width, selected->shader_stats,
selected->performance_analysis.require(), params->base.stats);
g.add_const_data(nir->constant_data, nir->constant_data_size);
return g.get_assembly();
}
static void
brw_nir_lower_tue_inputs(nir_shader *nir, const brw_tue_map *map)
{
if (!map)
return;
nir->info.task_payload_size = map->per_task_data_start_dw * 4;
bool progress = false;
NIR_PASS(progress, nir, nir_lower_vars_to_explicit_types,
nir_var_mem_task_payload, shared_type_info);
if (progress) {
/* The types for Task Output and Mesh Input should match, so their sizes
* should also match.
*/
assert(map->size_dw == ALIGN(DIV_ROUND_UP(nir->info.task_payload_size, 4), 8));
} else {
/* Mesh doesn't read any input, to make it clearer set the
* task_payload_size to zero instead of keeping an incomplete size that
* just includes the header.
*/
nir->info.task_payload_size = 0;
}
NIR_PASS(_, nir, nir_lower_explicit_io, nir_var_mem_task_payload,
nir_address_format_32bit_offset);
}
/* Attribute types. Flat attributes have to be a separate class because
* flat and interpolated attributes can't share the same vec4 slot
* (see 3DSTATE_SBE.ConstantInterpolationEnable).
*/
enum {
PRIM, /* per primitive */
VERT, /* per vertex interpolated */
VERT_FLAT, /* per vertex flat */
};
struct attr_desc {
int location;
const struct glsl_type *type;
unsigned dwords;
unsigned slots;
};
struct attr_type_info {
/* order of attributes, negative values are holes */
std::list<struct attr_desc> *order;
/* attributes after which there's hole of size equal to array index */
std::list<int> holes[5];
};
static void
brw_mue_assign_position(const struct attr_desc *attr,
struct brw_mue_map *map,
unsigned start_dw)
{
bool is_array = glsl_type_is_array(attr->type);
int location = attr->location;
unsigned remaining = attr->dwords;
for (unsigned slot = 0; slot < attr->slots; ++slot) {
map->start_dw[location + slot] = start_dw;
unsigned sz;
if (is_array) {
assert(attr->dwords % attr->slots == 0);
sz = attr->dwords / attr->slots;
} else {
sz = MIN2(remaining, 4);
}
map->len_dw[location + slot] = sz;
start_dw += sz;
remaining -= sz;
}
}
static nir_variable *
brw_nir_find_complete_variable_with_location(nir_shader *shader,
nir_variable_mode mode,
int location)
{
nir_variable *best_var = NULL;
unsigned last_size = 0;
nir_foreach_variable_with_modes(var, shader, mode) {
if (var->data.location != location)
continue;
unsigned new_size = glsl_count_dword_slots(var->type, false);
if (new_size > last_size) {
best_var = var;
last_size = new_size;
}
}
return best_var;
}
static unsigned
brw_sum_size(const std::list<struct attr_desc> &orders)
{
unsigned sz = 0;
for (auto it = orders.cbegin(); it != orders.cend(); ++it)
sz += (*it).dwords;
return sz;
}
/* Finds order of outputs which require minimum size, without splitting
* of URB read/write messages (which operate on vec4-aligned memory).
*/
static void
brw_compute_mue_layout(const struct brw_compiler *compiler,
std::list<struct attr_desc> *orders,
uint64_t outputs_written,
struct nir_shader *nir,
bool *pack_prim_data_into_header,
bool *pack_vert_data_into_header)
{
const struct shader_info *info = &nir->info;
struct attr_type_info data[3];
if ((compiler->mesh.mue_header_packing & 1) == 0)
*pack_prim_data_into_header = false;
if ((compiler->mesh.mue_header_packing & 2) == 0)
*pack_vert_data_into_header = false;
for (unsigned i = PRIM; i <= VERT_FLAT; ++i)
data[i].order = &orders[i];
/* If packing into header is enabled, add a hole of size 4 and add
* a virtual location to keep the algorithm happy (it expects holes
* to be preceded by some location). We'll remove those virtual
* locations at the end.
*/
const gl_varying_slot virtual_header_location = VARYING_SLOT_POS;
assert((outputs_written & BITFIELD64_BIT(virtual_header_location)) == 0);
struct attr_desc d;
d.location = virtual_header_location;
d.type = NULL;
d.dwords = 0;
d.slots = 0;
struct attr_desc h;
h.location = -1;
h.type = NULL;
h.dwords = 4;
h.slots = 0;
if (*pack_prim_data_into_header) {
orders[PRIM].push_back(d);
orders[PRIM].push_back(h);
data[PRIM].holes[4].push_back(virtual_header_location);
}
if (*pack_vert_data_into_header) {
orders[VERT].push_back(d);
orders[VERT].push_back(h);
data[VERT].holes[4].push_back(virtual_header_location);
}
u_foreach_bit64(location, outputs_written) {
if ((BITFIELD64_BIT(location) & outputs_written) == 0)
continue;
/* At this point there are both complete and split variables as
* outputs. We need the complete variable to compute the required
* size.
*/
nir_variable *var =
brw_nir_find_complete_variable_with_location(nir,
nir_var_shader_out,
location);
d.location = location;
d.type = brw_nir_get_var_type(nir, var);
d.dwords = glsl_count_dword_slots(d.type, false);
d.slots = glsl_count_attribute_slots(d.type, false);
struct attr_type_info *type_data;
if (BITFIELD64_BIT(location) & info->per_primitive_outputs)
type_data = &data[PRIM];
else if (var->data.interpolation == INTERP_MODE_FLAT)
type_data = &data[VERT_FLAT];
else
type_data = &data[VERT];
std::list<struct attr_desc> *order = type_data->order;
std::list<int> *holes = type_data->holes;
outputs_written &= ~BITFIELD64_RANGE(location, d.slots);
/* special case to use hole of size 4 */
if (d.dwords == 4 && !holes[4].empty()) {
holes[4].pop_back();
assert(order->front().location == virtual_header_location);
order->pop_front();
assert(order->front().location == -1);
assert(order->front().dwords == 4);
order->front() = d;
continue;
}
int mod = d.dwords % 4;
if (mod == 0) {
order->push_back(d);
continue;
}
h.location = -1;
h.type = NULL;
h.dwords = 4 - mod;
h.slots = 0;
if (!compiler->mesh.mue_compaction) {
order->push_back(d);
order->push_back(h);
continue;
}
if (d.dwords > 4) {
order->push_back(d);
order->push_back(h);
holes[h.dwords].push_back(location);
continue;
}
assert(d.dwords < 4);
unsigned found = 0;
/* try to find the smallest hole big enough to hold this attribute */
for (unsigned sz = d.dwords; sz <= 4; sz++){
if (!holes[sz].empty()) {
found = sz;
break;
}
}
/* append at the end if not found */
if (found == 0) {
order->push_back(d);
order->push_back(h);
holes[h.dwords].push_back(location);
continue;
}
assert(found <= 4);
assert(!holes[found].empty());
int after_loc = holes[found].back();
holes[found].pop_back();
bool inserted_back = false;
for (auto it = order->begin(); it != order->end(); ++it) {
if ((*it).location != after_loc)
continue;
++it;
/* must be a hole */
assert((*it).location < 0);
/* and it must be big enough */
assert(d.dwords <= (*it).dwords);
if (d.dwords == (*it).dwords) {
/* exact size, just replace */
*it = d;
} else {
/* inexact size, shrink hole */
(*it).dwords -= d.dwords;
/* and insert new attribute before it */
order->insert(it, d);
/* Insert shrunk hole in a spot so that the order of attributes
* is preserved.
*/
std::list<int> &hole_list = holes[(*it).dwords];
std::list<int>::iterator insert_before = hole_list.end();
for (auto it2 = hole_list.begin(); it2 != hole_list.end(); ++it2) {
if ((*it2) >= (int)location) {
insert_before = it2;
break;
}
}
hole_list.insert(insert_before, location);
}
inserted_back = true;
break;
}
assert(inserted_back);
}
if (*pack_prim_data_into_header) {
if (orders[PRIM].front().location == virtual_header_location)
orders[PRIM].pop_front();
if (!data[PRIM].holes[4].empty()) {
*pack_prim_data_into_header = false;
assert(orders[PRIM].front().location == -1);
assert(orders[PRIM].front().dwords == 4);
orders[PRIM].pop_front();
}
if (*pack_prim_data_into_header) {
unsigned sz = brw_sum_size(orders[PRIM]);
if (sz % 8 == 0 || sz % 8 > 4)
*pack_prim_data_into_header = false;
}
}
if (*pack_vert_data_into_header) {
if (orders[VERT].front().location == virtual_header_location)
orders[VERT].pop_front();
if (!data[VERT].holes[4].empty()) {
*pack_vert_data_into_header = false;
assert(orders[VERT].front().location == -1);
assert(orders[VERT].front().dwords == 4);
orders[VERT].pop_front();
}
if (*pack_vert_data_into_header) {
unsigned sz = brw_sum_size(orders[VERT]) +
brw_sum_size(orders[VERT_FLAT]);
if (sz % 8 == 0 || sz % 8 > 4)
*pack_vert_data_into_header = false;
}
}
if (INTEL_DEBUG(DEBUG_MESH)) {
fprintf(stderr, "MUE attribute order:\n");
for (unsigned i = PRIM; i <= VERT_FLAT; ++i) {
if (!orders[i].empty())
fprintf(stderr, "%d: ", i);
for (auto it = orders[i].cbegin(); it != orders[i].cend(); ++it) {
fprintf(stderr, "%d(%d) ", (*it).location, (*it).dwords);
}
if (!orders[i].empty())
fprintf(stderr, "\n");
}
}
}
/* Mesh URB Entry consists of an initial section
*
* - Primitive Count
* - Primitive Indices (from 0 to Max-1)
* - Padding to 32B if needed
*
* optionally followed by a section for per-primitive data,
* in which each primitive (from 0 to Max-1) gets
*
* - Primitive Header (e.g. ViewportIndex)
* - Primitive Custom Attributes
*
* then followed by a section for per-vertex data
*
* - Vertex Header (e.g. Position)
* - Vertex Custom Attributes
*
* Each per-element section has a pitch and a starting offset. All the
* individual attributes offsets in start_dw are considering the first entry
* of the section (i.e. where the Position for first vertex, or ViewportIndex
* for first primitive). Attributes for other elements are calculated using
* the pitch.
*/
static void
brw_compute_mue_map(const struct brw_compiler *compiler,
struct nir_shader *nir, struct brw_mue_map *map,
enum brw_mesh_index_format index_format, bool compact_mue)
{
memset(map, 0, sizeof(*map));
memset(&map->start_dw[0], -1, sizeof(map->start_dw));
memset(&map->len_dw[0], 0, sizeof(map->len_dw));
unsigned vertices_per_primitive =
mesa_vertices_per_prim(nir->info.mesh.primitive_type);
map->max_primitives = nir->info.mesh.max_primitives_out;
map->max_vertices = nir->info.mesh.max_vertices_out;
uint64_t outputs_written = nir->info.outputs_written;
/* One dword for primitives count then K extra dwords for each primitive. */
switch (index_format) {
case BRW_INDEX_FORMAT_U32:
map->per_primitive_indices_dw = vertices_per_primitive;
break;
case BRW_INDEX_FORMAT_U888X:
map->per_primitive_indices_dw = 1;
break;
default:
unreachable("invalid index format");
}
map->per_primitive_start_dw = ALIGN(map->per_primitive_indices_dw *
map->max_primitives + 1, 8);
/* Assign initial section. */
if (BITFIELD64_BIT(VARYING_SLOT_PRIMITIVE_COUNT) & outputs_written) {
map->start_dw[VARYING_SLOT_PRIMITIVE_COUNT] = 0;
map->len_dw[VARYING_SLOT_PRIMITIVE_COUNT] = 1;
outputs_written &= ~BITFIELD64_BIT(VARYING_SLOT_PRIMITIVE_COUNT);
}
if (BITFIELD64_BIT(VARYING_SLOT_PRIMITIVE_INDICES) & outputs_written) {
map->start_dw[VARYING_SLOT_PRIMITIVE_INDICES] = 1;
map->len_dw[VARYING_SLOT_PRIMITIVE_INDICES] =
map->per_primitive_indices_dw * map->max_primitives;
outputs_written &= ~BITFIELD64_BIT(VARYING_SLOT_PRIMITIVE_INDICES);
}
const uint64_t per_primitive_header_bits =
BITFIELD64_BIT(VARYING_SLOT_PRIMITIVE_SHADING_RATE) |
BITFIELD64_BIT(VARYING_SLOT_LAYER) |
BITFIELD64_BIT(VARYING_SLOT_VIEWPORT) |
BITFIELD64_BIT(VARYING_SLOT_CULL_PRIMITIVE);
const uint64_t per_vertex_header_bits =
BITFIELD64_BIT(VARYING_SLOT_PSIZ) |
BITFIELD64_BIT(VARYING_SLOT_POS) |
BITFIELD64_BIT(VARYING_SLOT_CLIP_DIST0) |
BITFIELD64_BIT(VARYING_SLOT_CLIP_DIST1);
std::list<struct attr_desc> orders[3];
uint64_t regular_outputs = outputs_written &
~(per_primitive_header_bits | per_vertex_header_bits);
/* packing into prim header is possible only if prim header is present */
map->user_data_in_primitive_header = compact_mue &&
(outputs_written & per_primitive_header_bits) != 0;
/* Packing into vert header is always possible, but we allow it only
* if full vec4 is available (so point size is not used) and there's
* nothing between it and normal vertex data (so no clip distances).
*/
map->user_data_in_vertex_header = compact_mue &&
(outputs_written & per_vertex_header_bits) ==
BITFIELD64_BIT(VARYING_SLOT_POS);
if (outputs_written & per_primitive_header_bits) {
if (outputs_written & BITFIELD64_BIT(VARYING_SLOT_PRIMITIVE_SHADING_RATE)) {
map->start_dw[VARYING_SLOT_PRIMITIVE_SHADING_RATE] =
map->per_primitive_start_dw + 0;
map->len_dw[VARYING_SLOT_PRIMITIVE_SHADING_RATE] = 1;
}
if (outputs_written & BITFIELD64_BIT(VARYING_SLOT_LAYER)) {
map->start_dw[VARYING_SLOT_LAYER] =
map->per_primitive_start_dw + 1; /* RTAIndex */
map->len_dw[VARYING_SLOT_LAYER] = 1;
}
if (outputs_written & BITFIELD64_BIT(VARYING_SLOT_VIEWPORT)) {
map->start_dw[VARYING_SLOT_VIEWPORT] =
map->per_primitive_start_dw + 2;
map->len_dw[VARYING_SLOT_VIEWPORT] = 1;
}
if (outputs_written & BITFIELD64_BIT(VARYING_SLOT_CULL_PRIMITIVE)) {
map->start_dw[VARYING_SLOT_CULL_PRIMITIVE] =
map->per_primitive_start_dw + 3;
map->len_dw[VARYING_SLOT_CULL_PRIMITIVE] = 1;
}
map->per_primitive_header_size_dw = 8;
outputs_written &= ~per_primitive_header_bits;
} else {
map->per_primitive_header_size_dw = 0;
}
map->per_primitive_data_size_dw = 0;
/* For fast linked libraries, we can't pack the MUE, as the fragment shader
* will be compiled without access to the MUE map and won't be able to find
* out where everything is.
* Instead, keep doing things as we did before the packing, just laying out
* everything in varying order, which is how the FS will expect them.
*/
if (compact_mue) {
brw_compute_mue_layout(compiler, orders, regular_outputs, nir,
&map->user_data_in_primitive_header,
&map->user_data_in_vertex_header);
unsigned start_dw = map->per_primitive_start_dw;
if (map->user_data_in_primitive_header)
start_dw += 4; /* first 4 dwords are used */
else
start_dw += map->per_primitive_header_size_dw;
unsigned header_used_dw = 0;
for (auto it = orders[PRIM].cbegin(); it != orders[PRIM].cend(); ++it) {
int location = (*it).location;
if (location < 0) {
start_dw += (*it).dwords;
if (map->user_data_in_primitive_header && header_used_dw < 4)
header_used_dw += (*it).dwords;
else
map->per_primitive_data_size_dw += (*it).dwords;
assert(header_used_dw <= 4);
continue;
}
assert(map->start_dw[location] == -1);
assert(location == VARYING_SLOT_PRIMITIVE_ID ||
location >= VARYING_SLOT_VAR0);
brw_mue_assign_position(&*it, map, start_dw);
start_dw += (*it).dwords;
if (map->user_data_in_primitive_header && header_used_dw < 4)
header_used_dw += (*it).dwords;
else
map->per_primitive_data_size_dw += (*it).dwords;
assert(header_used_dw <= 4);
outputs_written &= ~BITFIELD64_RANGE(location, (*it).slots);
}
} else {
unsigned start_dw = map->per_primitive_start_dw +
map->per_primitive_header_size_dw;
uint64_t per_prim_outputs = outputs_written & nir->info.per_primitive_outputs;
while (per_prim_outputs) {
uint64_t location = ffsll(per_prim_outputs) - 1;
assert(map->start_dw[location] == -1);
assert(location == VARYING_SLOT_PRIMITIVE_ID ||
location >= VARYING_SLOT_VAR0);
nir_variable *var =
brw_nir_find_complete_variable_with_location(nir,
nir_var_shader_out,
location);
struct attr_desc d;
d.location = location;
d.type = brw_nir_get_var_type(nir, var);
d.dwords = glsl_count_dword_slots(d.type, false);
d.slots = glsl_count_attribute_slots(d.type, false);
brw_mue_assign_position(&d, map, start_dw);
map->per_primitive_data_size_dw += ALIGN(d.dwords, 4);
start_dw += ALIGN(d.dwords, 4);
per_prim_outputs &= ~BITFIELD64_RANGE(location, d.slots);
}
}
map->per_primitive_pitch_dw = ALIGN(map->per_primitive_header_size_dw +
map->per_primitive_data_size_dw, 8);
map->per_vertex_start_dw = ALIGN(map->per_primitive_start_dw +
map->per_primitive_pitch_dw *
map->max_primitives, 8);
/* TODO(mesh): Multiview. */
unsigned fixed_header_size = 8;
map->per_vertex_header_size_dw = ALIGN(fixed_header_size +
nir->info.clip_distance_array_size +
nir->info.cull_distance_array_size, 8);
if (outputs_written & per_vertex_header_bits) {
if (outputs_written & BITFIELD64_BIT(VARYING_SLOT_PSIZ)) {
map->start_dw[VARYING_SLOT_PSIZ] = map->per_vertex_start_dw + 3;
map->len_dw[VARYING_SLOT_PSIZ] = 1;
}
if (outputs_written & BITFIELD64_BIT(VARYING_SLOT_POS)) {
map->start_dw[VARYING_SLOT_POS] = map->per_vertex_start_dw + 4;
map->len_dw[VARYING_SLOT_POS] = 4;
}
if (outputs_written & BITFIELD64_BIT(VARYING_SLOT_CLIP_DIST0)) {
map->start_dw[VARYING_SLOT_CLIP_DIST0] =
map->per_vertex_start_dw + fixed_header_size + 0;
map->len_dw[VARYING_SLOT_CLIP_DIST0] = 4;
}
if (outputs_written & BITFIELD64_BIT(VARYING_SLOT_CLIP_DIST1)) {
map->start_dw[VARYING_SLOT_CLIP_DIST1] =
map->per_vertex_start_dw + fixed_header_size + 4;
map->len_dw[VARYING_SLOT_CLIP_DIST1] = 4;
}
outputs_written &= ~per_vertex_header_bits;
}
/* cull distances should be lowered earlier */
assert(!(outputs_written & BITFIELD64_BIT(VARYING_SLOT_CULL_DIST0)));
assert(!(outputs_written & BITFIELD64_BIT(VARYING_SLOT_CULL_DIST1)));
map->per_vertex_data_size_dw = 0;
/* For fast linked libraries, we can't pack the MUE, as the fragment shader
* will be compiled without access to the MUE map and won't be able to find
* out where everything is.
* Instead, keep doing things as we did before the packing, just laying out
* everything in varying order, which is how the FS will expect them.
*/
if (compact_mue) {
unsigned start_dw = map->per_vertex_start_dw;
if (!map->user_data_in_vertex_header)
start_dw += map->per_vertex_header_size_dw;
unsigned header_used_dw = 0;
for (unsigned type = VERT; type <= VERT_FLAT; ++type) {
for (auto it = orders[type].cbegin(); it != orders[type].cend(); ++it) {
int location = (*it).location;
if (location < 0) {
start_dw += (*it).dwords;
if (map->user_data_in_vertex_header && header_used_dw < 4) {
header_used_dw += (*it).dwords;
assert(header_used_dw <= 4);
if (header_used_dw == 4)
start_dw += 4; /* jump over gl_position */
} else {
map->per_vertex_data_size_dw += (*it).dwords;
}
continue;
}
assert(map->start_dw[location] == -1);
assert(location >= VARYING_SLOT_VAR0);
brw_mue_assign_position(&*it, map, start_dw);
start_dw += (*it).dwords;
if (map->user_data_in_vertex_header && header_used_dw < 4) {
header_used_dw += (*it).dwords;
assert(header_used_dw <= 4);
if (header_used_dw == 4)
start_dw += 4; /* jump over gl_position */
} else {
map->per_vertex_data_size_dw += (*it).dwords;
}
outputs_written &= ~BITFIELD64_RANGE(location, (*it).slots);
}
}
} else {
unsigned start_dw = map->per_vertex_start_dw +
map->per_vertex_header_size_dw;
uint64_t per_vertex_outputs = outputs_written & ~nir->info.per_primitive_outputs;
while (per_vertex_outputs) {
uint64_t location = ffsll(per_vertex_outputs) - 1;
assert(map->start_dw[location] == -1);
assert(location >= VARYING_SLOT_VAR0);
nir_variable *var =
brw_nir_find_complete_variable_with_location(nir,
nir_var_shader_out,
location);
struct attr_desc d;
d.location = location;
d.type = brw_nir_get_var_type(nir, var);
d.dwords = glsl_count_dword_slots(d.type, false);
d.slots = glsl_count_attribute_slots(d.type, false);
brw_mue_assign_position(&d, map, start_dw);
map->per_vertex_data_size_dw += ALIGN(d.dwords, 4);
start_dw += ALIGN(d.dwords, 4);
per_vertex_outputs &= ~BITFIELD64_RANGE(location, d.slots);
}
}
map->per_vertex_pitch_dw = ALIGN(map->per_vertex_header_size_dw +
map->per_vertex_data_size_dw, 8);
map->size_dw =
map->per_vertex_start_dw + map->per_vertex_pitch_dw * map->max_vertices;
assert(map->size_dw % 8 == 0);
}
static void
brw_print_mue_map(FILE *fp, const struct brw_mue_map *map, struct nir_shader *nir)
{
fprintf(fp, "MUE map (%d dwords, %d primitives, %d vertices)\n",
map->size_dw, map->max_primitives, map->max_vertices);
fprintf(fp, " <%4d, %4d>: VARYING_SLOT_PRIMITIVE_COUNT\n",
map->start_dw[VARYING_SLOT_PRIMITIVE_COUNT],
map->start_dw[VARYING_SLOT_PRIMITIVE_COUNT] +
map->len_dw[VARYING_SLOT_PRIMITIVE_COUNT] - 1);
fprintf(fp, " <%4d, %4d>: VARYING_SLOT_PRIMITIVE_INDICES\n",
map->start_dw[VARYING_SLOT_PRIMITIVE_INDICES],
map->start_dw[VARYING_SLOT_PRIMITIVE_INDICES] +
map->len_dw[VARYING_SLOT_PRIMITIVE_INDICES] - 1);
fprintf(fp, " ----- per primitive (start %d, header_size %d, data_size %d, pitch %d)\n",
map->per_primitive_start_dw,
map->per_primitive_header_size_dw,
map->per_primitive_data_size_dw,
map->per_primitive_pitch_dw);
for (unsigned i = 0; i < VARYING_SLOT_MAX; i++) {
if (map->start_dw[i] < 0)
continue;
const unsigned offset = map->start_dw[i];
const unsigned len = map->len_dw[i];
if (offset < map->per_primitive_start_dw ||
offset >= map->per_primitive_start_dw + map->per_primitive_pitch_dw)
continue;
const char *name =
gl_varying_slot_name_for_stage((gl_varying_slot)i,
MESA_SHADER_MESH);
fprintf(fp, " <%4d, %4d>: %s (%d)\n", offset, offset + len - 1,
name, i);
}
fprintf(fp, " ----- per vertex (start %d, header_size %d, data_size %d, pitch %d)\n",
map->per_vertex_start_dw,
map->per_vertex_header_size_dw,
map->per_vertex_data_size_dw,
map->per_vertex_pitch_dw);
for (unsigned i = 0; i < VARYING_SLOT_MAX; i++) {
if (map->start_dw[i] < 0)
continue;
const unsigned offset = map->start_dw[i];
const unsigned len = map->len_dw[i];
if (offset < map->per_vertex_start_dw ||
offset >= map->per_vertex_start_dw + map->per_vertex_pitch_dw)
continue;
nir_variable *var =
nir_find_variable_with_location(nir, nir_var_shader_out, i);
bool flat = var->data.interpolation == INTERP_MODE_FLAT;
const char *name =
gl_varying_slot_name_for_stage((gl_varying_slot)i,
MESA_SHADER_MESH);
fprintf(fp, " <%4d, %4d>: %s (%d)%s\n", offset, offset + len - 1,
name, i, flat ? " (flat)" : "");
}
fprintf(fp, "\n");
}
static void
brw_nir_lower_mue_outputs(nir_shader *nir, const struct brw_mue_map *map)
{
nir_foreach_shader_out_variable(var, nir) {
int location = var->data.location;
assert(location >= 0);
assert(map->start_dw[location] != -1);
var->data.driver_location = map->start_dw[location];
}
NIR_PASS(_, nir, nir_lower_io, nir_var_shader_out,
type_size_scalar_dwords, nir_lower_io_lower_64bit_to_32);
}
static void
brw_nir_initialize_mue(nir_shader *nir,
const struct brw_mue_map *map,
unsigned dispatch_width)
{
assert(map->per_primitive_header_size_dw > 0);
nir_builder b;
nir_function_impl *entrypoint = nir_shader_get_entrypoint(nir);
b = nir_builder_at(nir_before_impl(entrypoint));
nir_def *dw_off = nir_imm_int(&b, 0);
nir_def *zerovec = nir_imm_vec4(&b, 0, 0, 0, 0);
/* TODO(mesh): can we write in bigger batches, generating fewer SENDs? */
assert(!nir->info.workgroup_size_variable);
const unsigned workgroup_size = nir->info.workgroup_size[0] *
nir->info.workgroup_size[1] *
nir->info.workgroup_size[2];
/* Invocations from a single workgroup will cooperate in zeroing MUE. */
/* How many prims each invocation needs to cover without checking its index? */
unsigned prims_per_inv = map->max_primitives / workgroup_size;
/* Zero first 4 dwords of MUE Primitive Header:
* Reserved, RTAIndex, ViewportIndex, CullPrimitiveMask.
*/
nir_def *local_invocation_index = nir_load_local_invocation_index(&b);
/* Zero primitive headers distanced by workgroup_size, starting from
* invocation index.
*/
for (unsigned prim_in_inv = 0; prim_in_inv < prims_per_inv; ++prim_in_inv) {
nir_def *prim = nir_iadd_imm(&b, local_invocation_index,
prim_in_inv * workgroup_size);
nir_store_per_primitive_output(&b, zerovec, prim, dw_off,
.base = (int)map->per_primitive_start_dw,
.write_mask = WRITEMASK_XYZW,
.component = 0,
.src_type = nir_type_uint32);
}
/* How many prims are left? */
unsigned remaining = map->max_primitives % workgroup_size;
if (remaining) {
/* Zero "remaining" primitive headers starting from the last one covered
* by the loop above + workgroup_size.
*/
nir_def *cmp = nir_ilt_imm(&b, local_invocation_index, remaining);
nir_if *if_stmt = nir_push_if(&b, cmp);
{
nir_def *prim = nir_iadd_imm(&b, local_invocation_index,
prims_per_inv * workgroup_size);
nir_store_per_primitive_output(&b, zerovec, prim, dw_off,
.base = (int)map->per_primitive_start_dw,
.write_mask = WRITEMASK_XYZW,
.component = 0,
.src_type = nir_type_uint32);
}
nir_pop_if(&b, if_stmt);
}
/* If there's more than one subgroup, then we need to wait for all of them
* to finish initialization before we can proceed. Otherwise some subgroups
* may start filling MUE before other finished initializing.
*/
if (workgroup_size > dispatch_width) {
nir_barrier(&b, SCOPE_WORKGROUP, SCOPE_WORKGROUP,
NIR_MEMORY_ACQ_REL, nir_var_shader_out);
}
if (remaining) {
nir_metadata_preserve(entrypoint, nir_metadata_none);
} else {
nir_metadata_preserve(entrypoint, nir_metadata_block_index |
nir_metadata_dominance);
}
}
static void
brw_nir_adjust_offset(nir_builder *b, nir_intrinsic_instr *intrin, uint32_t pitch)
{
nir_src *index_src = nir_get_io_arrayed_index_src(intrin);
nir_src *offset_src = nir_get_io_offset_src(intrin);
b->cursor = nir_before_instr(&intrin->instr);
nir_def *offset =
nir_iadd(b,
offset_src->ssa,
nir_imul_imm(b, index_src->ssa, pitch));
nir_src_rewrite(offset_src, offset);
}
static bool
brw_nir_adjust_offset_for_arrayed_indices_instr(nir_builder *b,
nir_intrinsic_instr *intrin,
void *data)
{
const struct brw_mue_map *map = (const struct brw_mue_map *) data;
/* Remap per_vertex and per_primitive offsets using the extra source and
* the pitch.
*/
switch (intrin->intrinsic) {
case nir_intrinsic_load_per_vertex_output:
case nir_intrinsic_store_per_vertex_output:
brw_nir_adjust_offset(b, intrin, map->per_vertex_pitch_dw);
return true;
case nir_intrinsic_load_per_primitive_output:
case nir_intrinsic_store_per_primitive_output: {
struct nir_io_semantics sem = nir_intrinsic_io_semantics(intrin);
uint32_t pitch;
if (sem.location == VARYING_SLOT_PRIMITIVE_INDICES)
pitch = map->per_primitive_indices_dw;
else
pitch = map->per_primitive_pitch_dw;
brw_nir_adjust_offset(b, intrin, pitch);
return true;
}
default:
return false;
}
}
static bool
brw_nir_adjust_offset_for_arrayed_indices(nir_shader *nir, const struct brw_mue_map *map)
{
return nir_shader_intrinsics_pass(nir,
brw_nir_adjust_offset_for_arrayed_indices_instr,
nir_metadata_block_index |
nir_metadata_dominance,
(void *)map);
}
struct index_packing_state {
unsigned vertices_per_primitive;
nir_variable *original_prim_indices;
nir_variable *packed_prim_indices;
};
static bool
brw_can_pack_primitive_indices(nir_shader *nir, struct index_packing_state *state)
{
/* can single index fit into one byte of U888X format? */
if (nir->info.mesh.max_vertices_out > 255)
return false;
state->vertices_per_primitive =
mesa_vertices_per_prim(nir->info.mesh.primitive_type);
/* packing point indices doesn't help */
if (state->vertices_per_primitive == 1)
return false;
state->original_prim_indices =
nir_find_variable_with_location(nir,
nir_var_shader_out,
VARYING_SLOT_PRIMITIVE_INDICES);
/* no indices = no changes to the shader, but it's still worth it,
* because less URB space will be used
*/
if (!state->original_prim_indices)
return true;
ASSERTED const struct glsl_type *type = state->original_prim_indices->type;
assert(glsl_type_is_array(type));
assert(glsl_type_is_vector(glsl_without_array(type)));
assert(glsl_without_array(type)->vector_elements == state->vertices_per_primitive);
nir_foreach_function_impl(impl, nir) {
nir_foreach_block(block, impl) {
nir_foreach_instr(instr, block) {
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
if (intrin->intrinsic != nir_intrinsic_store_deref) {
/* any unknown deref operation on primitive indices -> don't pack */
unsigned num_srcs = nir_intrinsic_infos[intrin->intrinsic].num_srcs;
for (unsigned i = 0; i < num_srcs; i++) {
nir_deref_instr *deref = nir_src_as_deref(intrin->src[i]);
if (!deref)
continue;
nir_variable *var = nir_deref_instr_get_variable(deref);
if (var == state->original_prim_indices)
return false;
}
continue;
}
nir_deref_instr *deref = nir_src_as_deref(intrin->src[0]);
if (!deref)
continue;
nir_variable *var = nir_deref_instr_get_variable(deref);
if (var != state->original_prim_indices)
continue;
if (deref->deref_type != nir_deref_type_array)
return false; /* unknown chain of derefs */
nir_deref_instr *var_deref = nir_src_as_deref(deref->parent);
if (!var_deref || var_deref->deref_type != nir_deref_type_var)
return false; /* unknown chain of derefs */
assert (var_deref->var == state->original_prim_indices);
unsigned write_mask = nir_intrinsic_write_mask(intrin);
/* If only some components are written, then we can't easily pack.
* In theory we could, by loading current dword value, bitmasking
* one byte and storing back the whole dword, but it would be slow
* and could actually decrease performance. TODO: reevaluate this
* once there will be something hitting this.
*/
if (write_mask != BITFIELD_MASK(state->vertices_per_primitive))
return false;
}
}
}
return true;
}
static bool
brw_pack_primitive_indices_instr(nir_builder *b, nir_intrinsic_instr *intrin,
void *data)
{
if (intrin->intrinsic != nir_intrinsic_store_deref)
return false;
nir_deref_instr *array_deref = nir_src_as_deref(intrin->src[0]);
if (!array_deref || array_deref->deref_type != nir_deref_type_array)
return false;
nir_deref_instr *var_deref = nir_src_as_deref(array_deref->parent);
if (!var_deref || var_deref->deref_type != nir_deref_type_var)
return false;
struct index_packing_state *state =
(struct index_packing_state *)data;
nir_variable *var = var_deref->var;
if (var != state->original_prim_indices)
return false;
unsigned vertices_per_primitive = state->vertices_per_primitive;
b->cursor = nir_before_instr(&intrin->instr);
nir_deref_instr *new_var_deref =
nir_build_deref_var(b, state->packed_prim_indices);
nir_deref_instr *new_array_deref =
nir_build_deref_array(b, new_var_deref, array_deref->arr.index.ssa);
nir_src *data_src = &intrin->src[1];
nir_def *data_def =
data_src->ssa;
nir_def *new_data =
nir_ior(b, nir_ishl_imm(b, nir_channel(b, data_def, 0), 0),
nir_ishl_imm(b, nir_channel(b, data_def, 1), 8));
if (vertices_per_primitive >= 3) {
new_data =
nir_ior(b, new_data,
nir_ishl_imm(b, nir_channel(b, data_def, 2), 16));
}
nir_build_store_deref(b, &new_array_deref->def, new_data);
nir_instr_remove(&intrin->instr);
return true;
}
static bool
brw_pack_primitive_indices(nir_shader *nir, void *data)
{
struct index_packing_state *state = (struct index_packing_state *)data;
const struct glsl_type *new_type =
glsl_array_type(glsl_uint_type(),
nir->info.mesh.max_primitives_out,
0);
state->packed_prim_indices =
nir_variable_create(nir, nir_var_shader_out,
new_type, "gl_PrimitiveIndicesPacked");
state->packed_prim_indices->data.location = VARYING_SLOT_PRIMITIVE_INDICES;
state->packed_prim_indices->data.interpolation = INTERP_MODE_NONE;
state->packed_prim_indices->data.per_primitive = 1;
return nir_shader_intrinsics_pass(nir, brw_pack_primitive_indices_instr,
nir_metadata_block_index |
nir_metadata_dominance,
data);
}
const unsigned *
brw_compile_mesh(const struct brw_compiler *compiler,
struct brw_compile_mesh_params *params)
{
struct nir_shader *nir = params->base.nir;
const struct brw_mesh_prog_key *key = params->key;
struct brw_mesh_prog_data *prog_data = params->prog_data;
const bool debug_enabled = brw_should_print_shader(nir, DEBUG_MESH);
prog_data->base.base.stage = MESA_SHADER_MESH;
prog_data->base.base.total_shared = nir->info.shared_size;
prog_data->base.base.total_scratch = 0;
prog_data->base.local_size[0] = nir->info.workgroup_size[0];
prog_data->base.local_size[1] = nir->info.workgroup_size[1];
prog_data->base.local_size[2] = nir->info.workgroup_size[2];
prog_data->clip_distance_mask = (1 << nir->info.clip_distance_array_size) - 1;
prog_data->cull_distance_mask =
((1 << nir->info.cull_distance_array_size) - 1) <<
nir->info.clip_distance_array_size;
prog_data->primitive_type = nir->info.mesh.primitive_type;
struct index_packing_state index_packing_state = {};
if (brw_can_pack_primitive_indices(nir, &index_packing_state)) {
if (index_packing_state.original_prim_indices)
NIR_PASS(_, nir, brw_pack_primitive_indices, &index_packing_state);
prog_data->index_format = BRW_INDEX_FORMAT_U888X;
} else {
prog_data->index_format = BRW_INDEX_FORMAT_U32;
}
prog_data->uses_drawid =
BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_DRAW_ID);
brw_nir_lower_tue_inputs(nir, params->tue_map);
brw_compute_mue_map(compiler, nir, &prog_data->map,
prog_data->index_format, key->compact_mue);
brw_nir_lower_mue_outputs(nir, &prog_data->map);
brw_simd_selection_state simd_state{
.devinfo = compiler->devinfo,
.prog_data = &prog_data->base,
.required_width = brw_required_dispatch_width(&nir->info),
};
std::unique_ptr<fs_visitor> v[3];
for (int simd = 0; simd < 3; simd++) {
if (!brw_simd_should_compile(simd_state, simd))
continue;
const unsigned dispatch_width = 8 << simd;
nir_shader *shader = nir_shader_clone(params->base.mem_ctx, nir);
/*
* When Primitive Header is enabled, we may not generates writes to all
* fields, so let's initialize everything.
*/
if (prog_data->map.per_primitive_header_size_dw > 0)
NIR_PASS_V(shader, brw_nir_initialize_mue, &prog_data->map, dispatch_width);
brw_nir_apply_key(shader, compiler, &key->base, dispatch_width);
NIR_PASS(_, shader, brw_nir_adjust_offset_for_arrayed_indices, &prog_data->map);
/* Load uniforms can do a better job for constants, so fold before it. */
NIR_PASS(_, shader, nir_opt_constant_folding);
NIR_PASS(_, shader, brw_nir_lower_load_uniforms);
NIR_PASS(_, shader, brw_nir_lower_simd, dispatch_width);
brw_postprocess_nir(shader, compiler, debug_enabled,
key->base.robust_flags);
v[simd] = std::make_unique<fs_visitor>(compiler, &params->base,
&key->base,
&prog_data->base.base,
shader, dispatch_width,
params->base.stats != NULL,
debug_enabled);
if (prog_data->base.prog_mask) {
unsigned first = ffs(prog_data->base.prog_mask) - 1;
v[simd]->import_uniforms(v[first].get());
}
const bool allow_spilling = !brw_simd_any_compiled(simd_state);
if (v[simd]->run_mesh(allow_spilling))
brw_simd_mark_compiled(simd_state, simd, v[simd]->spilled_any_registers);
else
simd_state.error[simd] = ralloc_strdup(params->base.mem_ctx, v[simd]->fail_msg);
}
int selected_simd = brw_simd_select(simd_state);
if (selected_simd < 0) {
params->base.error_str =
ralloc_asprintf(params->base.mem_ctx,
"Can't compile shader: "
"SIMD8 '%s', SIMD16 '%s' and SIMD32 '%s'.\n",
simd_state.error[0], simd_state.error[1],
simd_state.error[2]);
return NULL;
}
fs_visitor *selected = v[selected_simd].get();
prog_data->base.prog_mask = 1 << selected_simd;
if (unlikely(debug_enabled)) {
if (params->tue_map) {
fprintf(stderr, "Mesh Input ");
brw_print_tue_map(stderr, params->tue_map);
}
fprintf(stderr, "Mesh Output ");
brw_print_mue_map(stderr, &prog_data->map, nir);
}
fs_generator g(compiler, &params->base, &prog_data->base.base,
false, MESA_SHADER_MESH);
if (unlikely(debug_enabled)) {
g.enable_debug(ralloc_asprintf(params->base.mem_ctx,
"%s mesh shader %s",
nir->info.label ? nir->info.label
: "unnamed",
nir->info.name));
}
g.generate_code(selected->cfg, selected->dispatch_width, selected->shader_stats,
selected->performance_analysis.require(), params->base.stats);
g.add_const_data(nir->constant_data, nir->constant_data_size);
return g.get_assembly();
}