blob: 1fc0d03ff36800f746d785c3b666c9c3b803e33c [file] [log] [blame]
/*
* Copyright (C) 2020 Collabora Ltd.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Authors (Collabora):
* Alyssa Rosenzweig <alyssa.rosenzweig@collabora.com>
*/
#ifndef __BIFROST_COMPILER_H
#define __BIFROST_COMPILER_H
#include "bifrost.h"
#include "compiler/nir/nir.h"
#include "panfrost/util/pan_ir.h"
/* Bifrost opcodes are tricky -- the same op may exist on both FMA and
* ADD with two completely different opcodes, and opcodes can be varying
* length in some cases. Then we have different opcodes for int vs float
* and then sometimes even for different typesizes. Further, virtually
* every op has a number of flags which depend on the op. In constrast
* to Midgard where you have a strict ALU/LDST/TEX division and within
* ALU you have strict int/float and that's it... here it's a *lot* more
* involved. As such, we use something much higher level for our IR,
* encoding "classes" of operations, letting the opcode details get
* sorted out at emit time.
*
* Please keep this list alphabetized. Please use a dictionary if you
* don't know how to do that.
*/
enum bi_class {
BI_ADD,
BI_ATEST,
BI_BRANCH,
BI_CMP,
BI_BLEND,
BI_BITWISE,
BI_COMBINE,
BI_CONVERT,
BI_CSEL,
BI_DISCARD,
BI_FMA,
BI_FMOV,
BI_FREXP,
BI_IMATH,
BI_LOAD,
BI_LOAD_UNIFORM,
BI_LOAD_ATTR,
BI_LOAD_VAR,
BI_LOAD_VAR_ADDRESS,
BI_LOAD_TILE,
BI_MINMAX,
BI_MOV,
BI_REDUCE_FMA,
BI_SELECT,
BI_STORE,
BI_STORE_VAR,
BI_SPECIAL, /* _FAST on supported GPUs */
BI_TABLE,
BI_TEXS,
BI_TEXC,
BI_TEXC_DUAL,
BI_ROUND,
BI_IMUL,
BI_NUM_CLASSES
};
/* Properties of a class... */
extern unsigned bi_class_props[BI_NUM_CLASSES];
/* abs/neg/outmod valid for a float op */
#define BI_MODS (1 << 0)
/* Accepts a bi_cond */
#define BI_CONDITIONAL (1 << 1)
/* Accepts a bifrost_roundmode */
#define BI_ROUNDMODE (1 << 2)
/* Can be scheduled to FMA */
#define BI_SCHED_FMA (1 << 3)
/* Can be scheduled to ADD */
#define BI_SCHED_ADD (1 << 4)
/* Most ALU ops can do either, actually */
#define BI_SCHED_ALL (BI_SCHED_FMA | BI_SCHED_ADD)
/* Along with setting BI_SCHED_ADD, eats up the entire cycle, so FMA must be
* nopped out. Used for _FAST operations. */
#define BI_SCHED_SLOW (1 << 5)
/* Swizzling allowed for the 8/16-bit source */
#define BI_SWIZZLABLE (1 << 6)
/* For scheduling purposes this is a high latency instruction and must be at
* the end of a clause. Implies ADD */
#define BI_SCHED_HI_LATENCY (1 << 7)
/* Intrinsic is vectorized and acts with `vector_channels` components */
#define BI_VECTOR (1 << 8)
/* Use a data register for src0/dest respectively, bypassing the usual
* register accessor. */
#define BI_DATA_REG_SRC (1 << 9)
#define BI_DATA_REG_DEST (1 << 10)
/* Quirk: cannot encode multiple abs on FMA in fp16 mode */
#define BI_NO_ABS_ABS_FP16_FMA (1 << 11)
/* It can't get any worse than csel4... can it? */
#define BIR_SRC_COUNT 4
/* BI_LD_VARY */
struct bi_load_vary {
enum bifrost_interp_mode interp_mode;
bool reuse;
bool flat;
};
/* BI_BRANCH encoding the details of the branch itself as well as a pointer to
* the target. We forward declare bi_block since this is mildly circular (not
* strictly, but this order of the file makes more sense I think)
*
* We define our own enum of conditions since the conditions in the hardware
* packed in crazy ways that would make manipulation unweildly (meaning changes
* based on slot swapping, etc), so we defer dealing with that until emit time.
* Likewise, we expose NIR types instead of the crazy branch types, although
* the restrictions do eventually apply of course. */
struct bi_block;
/* Sync with gen-pack.py */
enum bi_cond {
BI_COND_ALWAYS = 0,
BI_COND_LT,
BI_COND_LE,
BI_COND_GE,
BI_COND_GT,
BI_COND_EQ,
BI_COND_NE,
};
/* Segments, as synced with ISA. Used as an immediate in LOAD/STORE
* instructions for address calculation, and directly in SEG_ADD/SEG_SUB
* instructions. */
enum bi_segment {
/* No segment (use global addressing, offset from GPU VA 0x0) */
BI_SEGMENT_NONE = 1,
/* Within workgroup local memory (shared memory). Relative to
* wls_base_pointer in the draw's thread storage descriptor */
BI_SEGMENT_WLS = 2,
/* Within one of the bound uniform buffers. Low 32-bits are the index
* within the uniform buffer; high 32-bits are the index of the uniform
* buffer itself. Relative to the uniform_array_pointer indexed within
* the draw's uniform remap table indexed by the high 32-bits. */
BI_SEGMENT_UBO = 4,
/* Within thread local storage (for spilling). Relative to
* tls_base_pointer in the draw's thread storage descriptor */
BI_SEGMENT_TLS = 7
};
/* Opcodes within a class */
enum bi_minmax_op {
BI_MINMAX_MIN,
BI_MINMAX_MAX
};
enum bi_bitwise_op {
BI_BITWISE_AND,
BI_BITWISE_OR,
BI_BITWISE_XOR
};
enum bi_imath_op {
BI_IMATH_ADD,
BI_IMATH_SUB,
};
enum bi_imul_op {
BI_IMUL_IMUL,
};
enum bi_table_op {
/* fp32 log2() with low precision, suitable for GL or half_log2() in
* CL. In the first argument, takes x. Letting u be such that x =
* 2^{-m} u with m integer and 0.75 <= u < 1.5, returns
* log2(u) / (u - 1). */
BI_TABLE_LOG2_U_OVER_U_1_LOW,
};
enum bi_reduce_op {
/* Takes two fp32 arguments and returns x + frexp(y). Used in
* low-precision log2 argument reduction on newer models. */
BI_REDUCE_ADD_FREXPM,
};
enum bi_frexp_op {
BI_FREXPE_LOG,
};
enum bi_special_op {
BI_SPECIAL_FRCP,
BI_SPECIAL_FRSQ,
/* fp32 exp2() with low precision, suitable for half_exp2() in CL or
* exp2() in GL. In the first argument, it takes f2i_rte(x * 2^24). In
* the second, it takes x itself. */
BI_SPECIAL_EXP2_LOW,
BI_SPECIAL_IABS,
};
struct bi_bitwise {
bool dest_invert;
bool src1_invert;
bool rshift; /* false for lshift */
};
struct bi_texture {
/* Constant indices. Indirect would need to be in src[..] like normal,
* we can reserve some sentinels there for that for future. */
unsigned texture_index, sampler_index;
/* Should the LOD be computed based on neighboring pixels? Only valid
* in fragment shaders. */
bool compute_lod;
};
typedef struct {
struct list_head link; /* Must be first */
enum bi_class type;
/* Indices, see pan_ssa_index etc. Note zero is special cased
* to "no argument" */
unsigned dest;
unsigned src[BIR_SRC_COUNT];
/* 32-bit word offset for destination, added to the register number in
* RA when lowering combines */
unsigned dest_offset;
/* If one of the sources has BIR_INDEX_CONSTANT */
union {
uint64_t u64;
uint32_t u32;
uint16_t u16[2];
uint8_t u8[4];
} constant;
/* Floating-point modifiers, type/class permitting. If not
* allowed for the type/class, these are ignored. */
enum bifrost_outmod outmod;
bool src_abs[BIR_SRC_COUNT];
bool src_neg[BIR_SRC_COUNT];
/* Round mode (requires BI_ROUNDMODE) */
enum bifrost_roundmode roundmode;
/* Destination type. Usually the type of the instruction
* itself, but if sources and destination have different
* types, the type of the destination wins (so f2i would be
* int). Zero if there is no destination. Bitsize included */
nir_alu_type dest_type;
/* Source types if required by the class */
nir_alu_type src_types[BIR_SRC_COUNT];
/* register_format if applicable */
nir_alu_type format;
/* If the source type is 8-bit or 16-bit such that SIMD is possible,
* and the class has BI_SWIZZLABLE, this is a swizzle in the usual
* sense. On non-SIMD instructions, it can be used for component
* selection, so we don't have to special case extraction. */
uint8_t swizzle[BIR_SRC_COUNT][NIR_MAX_VEC_COMPONENTS];
/* For VECTOR ops, how many channels are written? */
unsigned vector_channels;
/* For texture ops, the skip bit. Set if helper invocations can skip
* the operation. That is, set if the result of this texture operation
* is never used for cross-lane operation (including texture
* coordinates and derivatives) as determined by data flow analysis
* (like Midgard) */
bool skip;
/* The comparison op. BI_COND_ALWAYS may not be valid. */
enum bi_cond cond;
/* For memory ops, base address */
enum bi_segment segment;
/* Can we spill the value written here? Used to prevent
* useless double fills */
bool no_spill;
/* A class-specific op from which the actual opcode can be derived
* (along with the above information) */
union {
enum bi_minmax_op minmax;
enum bi_bitwise_op bitwise;
enum bi_special_op special;
enum bi_reduce_op reduce;
enum bi_table_op table;
enum bi_frexp_op frexp;
enum bi_imath_op imath;
enum bi_imul_op imul;
/* For FMA/ADD, should we add a biased exponent? */
bool mscale;
} op;
/* Union for class-specific information */
union {
enum bifrost_minmax_mode minmax;
struct bi_load_vary load_vary;
struct bi_block *branch_target;
/* For BLEND -- the location 0-7 */
unsigned blend_location;
struct bi_bitwise bitwise;
struct bi_texture texture;
};
} bi_instruction;
/* Represents the assignment of slots for a given bi_bundle */
typedef struct {
/* Register to assign to each slot */
unsigned slot[4];
/* Read slots can be disabled */
bool enabled[2];
/* Configuration for slots 2/3 */
struct bifrost_reg_ctrl_23 slot23;
/* Fast-Access-Uniform RAM index */
uint8_t fau_idx;
/* Whether writes are actually for the last instruction */
bool first_instruction;
} bi_registers;
/* A bi_bundle contains two paired instruction pointers. If a slot is unfilled,
* leave it NULL; the emitter will fill in a nop. Instructions reference
* registers via slots which are assigned per bundle.
*/
typedef struct {
uint8_t fau_idx;
bi_registers regs;
bi_instruction *fma;
bi_instruction *add;
} bi_bundle;
struct bi_block;
typedef struct {
struct list_head link;
/* Link back up for branch calculations */
struct bi_block *block;
/* A clause can have 8 instructions in bundled FMA/ADD sense, so there
* can be 8 bundles. */
unsigned bundle_count;
bi_bundle bundles[8];
/* For scoreboarding -- the clause ID (this is not globally unique!)
* and its dependencies in terms of other clauses, computed during
* scheduling and used when emitting code. Dependencies expressed as a
* bitfield matching the hardware, except shifted by a clause (the
* shift back to the ISA's off-by-one encoding is worked out when
* emitting clauses) */
unsigned scoreboard_id;
uint8_t dependencies;
/* See ISA header for description */
enum bifrost_flow flow_control;
/* Can we prefetch the next clause? Usually it makes sense, except for
* clauses ending in unconditional branches */
bool next_clause_prefetch;
/* Assigned data register */
unsigned staging_register;
/* Corresponds to the usual bit but shifted by a clause */
bool staging_barrier;
/* Constants read by this clause. ISA limit. Must satisfy:
*
* constant_count + bundle_count <= 13
*
* Also implicitly constant_count <= bundle_count since a bundle only
* reads a single constant.
*/
uint64_t constants[8];
unsigned constant_count;
/* Branches encode a constant offset relative to the program counter
* with some magic flags. By convention, if there is a branch, its
* constant will be last. Set this flag to indicate this is required.
*/
bool branch_constant;
/* What type of high latency instruction is here, basically */
unsigned message_type;
} bi_clause;
typedef struct bi_block {
pan_block base; /* must be first */
/* If true, uses clauses; if false, uses instructions */
bool scheduled;
struct list_head clauses; /* list of bi_clause */
} bi_block;
typedef struct {
nir_shader *nir;
gl_shader_stage stage;
struct list_head blocks; /* list of bi_block */
struct panfrost_sysvals sysvals;
uint32_t quirks;
/* Is internally a blend shader? Depends on stage == FRAGMENT */
bool is_blend;
/* Blend constants */
float blend_constants[4];
/* Blend return offsets */
uint32_t blend_ret_offsets[8];
/* Blend tile buffer conversion desc */
uint64_t blend_desc;
/* During NIR->BIR */
nir_function_impl *impl;
bi_block *current_block;
bi_block *after_block;
bi_block *break_block;
bi_block *continue_block;
bool emitted_atest;
nir_alu_type *blend_types;
/* For creating temporaries */
unsigned temp_alloc;
/* Analysis results */
bool has_liveness;
/* Stats for shader-db */
unsigned instruction_count;
unsigned loop_count;
unsigned spills;
unsigned fills;
} bi_context;
static inline bi_instruction *
bi_emit(bi_context *ctx, bi_instruction ins)
{
bi_instruction *u = rzalloc(ctx, bi_instruction);
memcpy(u, &ins, sizeof(ins));
list_addtail(&u->link, &ctx->current_block->base.instructions);
return u;
}
static inline bi_instruction *
bi_emit_before(bi_context *ctx, bi_instruction *tag, bi_instruction ins)
{
bi_instruction *u = rzalloc(ctx, bi_instruction);
memcpy(u, &ins, sizeof(ins));
list_addtail(&u->link, &tag->link);
return u;
}
static inline void
bi_remove_instruction(bi_instruction *ins)
{
list_del(&ins->link);
}
/* If high bits are set, instead of SSA/registers, we have specials indexed by
* the low bits if necessary.
*
* Fixed register: do not allocate register, do not collect $200.
* Uniform: access a uniform register given by low bits.
* Constant: access the specified constant (specifies a bit offset / shift)
* Zero: special cased to avoid wasting a constant
* Passthrough: a bifrost_packed_src to passthrough T/T0/T1
*/
#define BIR_INDEX_REGISTER (1 << 31)
#define BIR_INDEX_UNIFORM (1 << 30)
#define BIR_INDEX_CONSTANT (1 << 29)
#define BIR_INDEX_ZERO (1 << 28)
#define BIR_INDEX_PASS (1 << 27)
#define BIR_INDEX_BLEND (1 << 26)
/* Keep me synced please so we can check src & BIR_SPECIAL */
#define BIR_SPECIAL (BIR_INDEX_REGISTER | BIR_INDEX_UNIFORM | \
BIR_INDEX_CONSTANT | BIR_INDEX_ZERO | \
BIR_INDEX_PASS | BIR_INDEX_BLEND)
static inline unsigned
bi_max_temp(bi_context *ctx)
{
unsigned alloc = MAX2(ctx->impl->reg_alloc, ctx->impl->ssa_alloc);
return ((alloc + 2 + ctx->temp_alloc) << 1);
}
static inline unsigned
bi_make_temp(bi_context *ctx)
{
return (ctx->impl->ssa_alloc + 1 + ctx->temp_alloc++) << 1;
}
static inline unsigned
bi_make_temp_reg(bi_context *ctx)
{
return ((ctx->impl->reg_alloc + ctx->temp_alloc++) << 1) | PAN_IS_REG;
}
/* Iterators for Bifrost IR */
#define bi_foreach_block(ctx, v) \
list_for_each_entry(pan_block, v, &ctx->blocks, link)
#define bi_foreach_block_from(ctx, from, v) \
list_for_each_entry_from(pan_block, v, from, &ctx->blocks, link)
#define bi_foreach_block_from_rev(ctx, from, v) \
list_for_each_entry_from_rev(pan_block, v, from, &ctx->blocks, link)
#define bi_foreach_instr_in_block(block, v) \
list_for_each_entry(bi_instruction, v, &(block)->base.instructions, link)
#define bi_foreach_instr_in_block_rev(block, v) \
list_for_each_entry_rev(bi_instruction, v, &(block)->base.instructions, link)
#define bi_foreach_instr_in_block_safe(block, v) \
list_for_each_entry_safe(bi_instruction, v, &(block)->base.instructions, link)
#define bi_foreach_instr_in_block_safe_rev(block, v) \
list_for_each_entry_safe_rev(bi_instruction, v, &(block)->base.instructions, link)
#define bi_foreach_instr_in_block_from(block, v, from) \
list_for_each_entry_from(bi_instruction, v, from, &(block)->base.instructions, link)
#define bi_foreach_instr_in_block_from_rev(block, v, from) \
list_for_each_entry_from_rev(bi_instruction, v, from, &(block)->base.instructions, link)
#define bi_foreach_clause_in_block(block, v) \
list_for_each_entry(bi_clause, v, &(block)->clauses, link)
#define bi_foreach_clause_in_block_safe(block, v) \
list_for_each_entry_safe(bi_clause, v, &(block)->clauses, link)
#define bi_foreach_clause_in_block_from(block, v, from) \
list_for_each_entry_from(bi_clause, v, from, &(block)->clauses, link)
#define bi_foreach_clause_in_block_from_rev(block, v, from) \
list_for_each_entry_from_rev(bi_clause, v, from, &(block)->clauses, link)
#define bi_foreach_instr_global(ctx, v) \
bi_foreach_block(ctx, v_block) \
bi_foreach_instr_in_block((bi_block *) v_block, v)
#define bi_foreach_instr_global_safe(ctx, v) \
bi_foreach_block(ctx, v_block) \
bi_foreach_instr_in_block_safe((bi_block *) v_block, v)
/* Based on set_foreach, expanded with automatic type casts */
#define bi_foreach_predecessor(blk, v) \
struct set_entry *_entry_##v; \
bi_block *v; \
for (_entry_##v = _mesa_set_next_entry(blk->base.predecessors, NULL), \
v = (bi_block *) (_entry_##v ? _entry_##v->key : NULL); \
_entry_##v != NULL; \
_entry_##v = _mesa_set_next_entry(blk->base.predecessors, _entry_##v), \
v = (bi_block *) (_entry_##v ? _entry_##v->key : NULL))
#define bi_foreach_src(ins, v) \
for (unsigned v = 0; v < ARRAY_SIZE(ins->src); ++v)
static inline bi_instruction *
bi_prev_op(bi_instruction *ins)
{
return list_last_entry(&(ins->link), bi_instruction, link);
}
static inline bi_instruction *
bi_next_op(bi_instruction *ins)
{
return list_first_entry(&(ins->link), bi_instruction, link);
}
static inline pan_block *
pan_next_block(pan_block *block)
{
return list_first_entry(&(block->link), pan_block, link);
}
/* Special functions */
void bi_emit_fexp2(bi_context *ctx, nir_alu_instr *instr);
void bi_emit_flog2(bi_context *ctx, nir_alu_instr *instr);
/* BIR manipulation */
bool bi_has_outmod(bi_instruction *ins);
bool bi_has_source_mods(bi_instruction *ins);
bool bi_is_src_swizzled(bi_instruction *ins, unsigned s);
bool bi_has_arg(bi_instruction *ins, unsigned arg);
uint16_t bi_from_bytemask(uint16_t bytemask, unsigned bytes);
unsigned bi_get_component_count(bi_instruction *ins, signed s);
uint16_t bi_bytemask_of_read_components(bi_instruction *ins, unsigned node);
uint64_t bi_get_immediate(bi_instruction *ins, unsigned index);
bool bi_writes_component(bi_instruction *ins, unsigned comp);
unsigned bi_writemask(bi_instruction *ins);
void bi_rewrite_uses(bi_context *ctx, unsigned old, unsigned oldc, unsigned new, unsigned newc);
/* BIR passes */
void bi_lower_combine(bi_context *ctx, bi_block *block);
bool bi_opt_dead_code_eliminate(bi_context *ctx, bi_block *block);
void bi_schedule(bi_context *ctx);
void bi_register_allocate(bi_context *ctx);
bi_clause *bi_make_singleton(void *memctx, bi_instruction *ins,
bi_block *block,
unsigned scoreboard_id,
unsigned dependencies,
bool osrb);
/* Liveness */
void bi_compute_liveness(bi_context *ctx);
void bi_liveness_ins_update(uint16_t *live, bi_instruction *ins, unsigned max);
void bi_invalidate_liveness(bi_context *ctx);
bool bi_is_live_after(bi_context *ctx, bi_block *block, bi_instruction *start, int src);
/* Layout */
bool bi_can_insert_bundle(bi_clause *clause, bool constant);
unsigned bi_clause_quadwords(bi_clause *clause);
signed bi_block_offset(bi_context *ctx, bi_clause *start, bi_block *target);
/* Code emit */
void bi_pack(bi_context *ctx, struct util_dynarray *emission);
#endif