blob: 383784999ccc79ef54f9a84a351cfc0eae3dbe2e [file] [log] [blame]
/*
* Copyright © 2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
*
*/
#include "brw_eu.h"
#include "brw_fs.h"
#include "brw_cfg.h"
#include "util/register_allocate.h"
using namespace brw;
static void
assign_reg(unsigned *reg_hw_locations, fs_reg *reg)
{
if (reg->file == VGRF) {
reg->nr = reg_hw_locations[reg->nr] + reg->offset / REG_SIZE;
reg->offset %= REG_SIZE;
}
}
void
fs_visitor::assign_regs_trivial()
{
unsigned hw_reg_mapping[this->alloc.count + 1];
unsigned i;
int reg_width = dispatch_width / 8;
/* Note that compressed instructions require alignment to 2 registers. */
hw_reg_mapping[0] = ALIGN(this->first_non_payload_grf, reg_width);
for (i = 1; i <= this->alloc.count; i++) {
hw_reg_mapping[i] = (hw_reg_mapping[i - 1] +
this->alloc.sizes[i - 1]);
}
this->grf_used = hw_reg_mapping[this->alloc.count];
foreach_block_and_inst(block, fs_inst, inst, cfg) {
assign_reg(hw_reg_mapping, &inst->dst);
for (i = 0; i < inst->sources; i++) {
assign_reg(hw_reg_mapping, &inst->src[i]);
}
}
if (this->grf_used >= max_grf) {
fail("Ran out of regs on trivial allocator (%d/%d)\n",
this->grf_used, max_grf);
} else {
this->alloc.count = this->grf_used;
}
}
/**
* Size of a register from the aligned_bary_class register class.
*/
static unsigned
aligned_bary_size(unsigned dispatch_width)
{
return (dispatch_width == 8 ? 2 : 4);
}
static void
brw_alloc_reg_set(struct brw_compiler *compiler, int dispatch_width)
{
const struct gen_device_info *devinfo = compiler->devinfo;
int base_reg_count = BRW_MAX_GRF;
const int index = util_logbase2(dispatch_width / 8);
if (dispatch_width > 8 && devinfo->gen >= 7) {
/* For IVB+, we don't need the PLN hacks or the even-reg alignment in
* SIMD16. Therefore, we can use the exact same register sets for
* SIMD16 as we do for SIMD8 and we don't need to recalculate them.
*/
compiler->fs_reg_sets[index] = compiler->fs_reg_sets[0];
return;
}
/* The registers used to make up almost all values handled in the compiler
* are a scalar value occupying a single register (or 2 registers in the
* case of SIMD16, which is handled by dividing base_reg_count by 2 and
* multiplying allocated register numbers by 2). Things that were
* aggregates of scalar values at the GLSL level were split to scalar
* values by split_virtual_grfs().
*
* However, texture SEND messages return a series of contiguous registers
* to write into. We currently always ask for 4 registers, but we may
* convert that to use less some day.
*
* Additionally, on gen5 we need aligned pairs of registers for the PLN
* instruction, and on gen4 we need 8 contiguous regs for workaround simd16
* texturing.
*/
const int class_count = MAX_VGRF_SIZE;
int class_sizes[MAX_VGRF_SIZE];
for (unsigned i = 0; i < MAX_VGRF_SIZE; i++)
class_sizes[i] = i + 1;
memset(compiler->fs_reg_sets[index].class_to_ra_reg_range, 0,
sizeof(compiler->fs_reg_sets[index].class_to_ra_reg_range));
int *class_to_ra_reg_range = compiler->fs_reg_sets[index].class_to_ra_reg_range;
/* Compute the total number of registers across all classes. */
int ra_reg_count = 0;
for (int i = 0; i < class_count; i++) {
if (devinfo->gen <= 5 && dispatch_width >= 16) {
/* From the G45 PRM:
*
* In order to reduce the hardware complexity, the following
* rules and restrictions apply to the compressed instruction:
* ...
* * Operand Alignment Rule: With the exceptions listed below, a
* source/destination operand in general should be aligned to
* even 256-bit physical register with a region size equal to
* two 256-bit physical register
*/
ra_reg_count += (base_reg_count - (class_sizes[i] - 1)) / 2;
} else {
ra_reg_count += base_reg_count - (class_sizes[i] - 1);
}
/* Mark the last register. We'll fill in the beginnings later. */
class_to_ra_reg_range[class_sizes[i]] = ra_reg_count;
}
/* Fill out the rest of the range markers */
for (int i = 1; i < 17; ++i) {
if (class_to_ra_reg_range[i] == 0)
class_to_ra_reg_range[i] = class_to_ra_reg_range[i-1];
}
uint8_t *ra_reg_to_grf = ralloc_array(compiler, uint8_t, ra_reg_count);
struct ra_regs *regs = ra_alloc_reg_set(compiler, ra_reg_count, false);
if (devinfo->gen >= 6)
ra_set_allocate_round_robin(regs);
int *classes = ralloc_array(compiler, int, class_count);
int aligned_bary_class = -1;
/* Allocate space for q values. We allocate class_count + 1 because we
* want to leave room for the aligned barycentric class if we have it.
*/
unsigned int **q_values = ralloc_array(compiler, unsigned int *,
class_count + 1);
for (int i = 0; i < class_count + 1; ++i)
q_values[i] = ralloc_array(q_values, unsigned int, class_count + 1);
/* Now, add the registers to their classes, and add the conflicts
* between them and the base GRF registers (and also each other).
*/
int reg = 0;
int aligned_bary_base_reg = 0;
int aligned_bary_reg_count = 0;
for (int i = 0; i < class_count; i++) {
int class_reg_count;
if (devinfo->gen <= 5 && dispatch_width >= 16) {
class_reg_count = (base_reg_count - (class_sizes[i] - 1)) / 2;
/* See comment below. The only difference here is that we are
* dealing with pairs of registers instead of single registers.
* Registers of odd sizes simply get rounded up. */
for (int j = 0; j < class_count; j++)
q_values[i][j] = (class_sizes[i] + 1) / 2 +
(class_sizes[j] + 1) / 2 - 1;
} else {
class_reg_count = base_reg_count - (class_sizes[i] - 1);
/* From register_allocate.c:
*
* q(B,C) (indexed by C, B is this register class) in
* Runeson/Nyström paper. This is "how many registers of B could
* the worst choice register from C conflict with".
*
* If we just let the register allocation algorithm compute these
* values, is extremely expensive. However, since all of our
* registers are laid out, we can very easily compute them
* ourselves. View the register from C as fixed starting at GRF n
* somwhere in the middle, and the register from B as sliding back
* and forth. Then the first register to conflict from B is the
* one starting at n - class_size[B] + 1 and the last register to
* conflict will start at n + class_size[B] - 1. Therefore, the
* number of conflicts from B is class_size[B] + class_size[C] - 1.
*
* +-+-+-+-+-+-+ +-+-+-+-+-+-+
* B | | | | | |n| --> | | | | | | |
* +-+-+-+-+-+-+ +-+-+-+-+-+-+
* +-+-+-+-+-+
* C |n| | | | |
* +-+-+-+-+-+
*/
for (int j = 0; j < class_count; j++)
q_values[i][j] = class_sizes[i] + class_sizes[j] - 1;
}
classes[i] = ra_alloc_reg_class(regs);
/* Save this off for the aligned barycentric class at the end. */
if (class_sizes[i] == int(aligned_bary_size(dispatch_width))) {
aligned_bary_base_reg = reg;
aligned_bary_reg_count = class_reg_count;
}
if (devinfo->gen <= 5 && dispatch_width >= 16) {
for (int j = 0; j < class_reg_count; j++) {
ra_class_add_reg(regs, classes[i], reg);
ra_reg_to_grf[reg] = j * 2;
for (int base_reg = j;
base_reg < j + (class_sizes[i] + 1) / 2;
base_reg++) {
ra_add_reg_conflict(regs, base_reg, reg);
}
reg++;
}
} else {
for (int j = 0; j < class_reg_count; j++) {
ra_class_add_reg(regs, classes[i], reg);
ra_reg_to_grf[reg] = j;
for (int base_reg = j;
base_reg < j + class_sizes[i];
base_reg++) {
ra_add_reg_conflict(regs, base_reg, reg);
}
reg++;
}
}
}
assert(reg == ra_reg_count);
/* Applying transitivity to all of the base registers gives us the
* appropreate register conflict relationships everywhere.
*/
for (int reg = 0; reg < base_reg_count; reg++)
ra_make_reg_conflicts_transitive(regs, reg);
/* Add a special class for aligned barycentrics, which we'll put the
* first source of LINTERP on so that we can do PLN on Gen <= 6.
*/
if (devinfo->has_pln && (devinfo->gen == 6 ||
(dispatch_width == 8 && devinfo->gen <= 5))) {
aligned_bary_class = ra_alloc_reg_class(regs);
for (int i = 0; i < aligned_bary_reg_count; i++) {
if ((ra_reg_to_grf[aligned_bary_base_reg + i] & 1) == 0) {
ra_class_add_reg(regs, aligned_bary_class,
aligned_bary_base_reg + i);
}
}
for (int i = 0; i < class_count; i++) {
/* These are a little counter-intuitive because the barycentric
* registers are required to be aligned while the register they are
* potentially interferring with are not. In the case where the size
* is even, the worst-case is that the register is odd-aligned. In
* the odd-size case, it doesn't matter.
*/
q_values[class_count][i] = class_sizes[i] / 2 +
aligned_bary_size(dispatch_width) / 2;
q_values[i][class_count] = class_sizes[i] +
aligned_bary_size(dispatch_width) - 1;
}
q_values[class_count][class_count] = aligned_bary_size(dispatch_width) - 1;
}
ra_set_finalize(regs, q_values);
ralloc_free(q_values);
compiler->fs_reg_sets[index].regs = regs;
for (unsigned i = 0; i < ARRAY_SIZE(compiler->fs_reg_sets[index].classes); i++)
compiler->fs_reg_sets[index].classes[i] = -1;
for (int i = 0; i < class_count; i++)
compiler->fs_reg_sets[index].classes[class_sizes[i] - 1] = classes[i];
compiler->fs_reg_sets[index].ra_reg_to_grf = ra_reg_to_grf;
compiler->fs_reg_sets[index].aligned_bary_class = aligned_bary_class;
}
void
brw_fs_alloc_reg_sets(struct brw_compiler *compiler)
{
brw_alloc_reg_set(compiler, 8);
brw_alloc_reg_set(compiler, 16);
brw_alloc_reg_set(compiler, 32);
}
static int
count_to_loop_end(const bblock_t *block)
{
if (block->end()->opcode == BRW_OPCODE_WHILE)
return block->end_ip;
int depth = 1;
/* Skip the first block, since we don't want to count the do the calling
* function found.
*/
for (block = block->next();
depth > 0;
block = block->next()) {
if (block->start()->opcode == BRW_OPCODE_DO)
depth++;
if (block->end()->opcode == BRW_OPCODE_WHILE) {
depth--;
if (depth == 0)
return block->end_ip;
}
}
unreachable("not reached");
}
void fs_visitor::calculate_payload_ranges(int payload_node_count,
int *payload_last_use_ip) const
{
int loop_depth = 0;
int loop_end_ip = 0;
for (int i = 0; i < payload_node_count; i++)
payload_last_use_ip[i] = -1;
int ip = 0;
foreach_block_and_inst(block, fs_inst, inst, cfg) {
switch (inst->opcode) {
case BRW_OPCODE_DO:
loop_depth++;
/* Since payload regs are deffed only at the start of the shader
* execution, any uses of the payload within a loop mean the live
* interval extends to the end of the outermost loop. Find the ip of
* the end now.
*/
if (loop_depth == 1)
loop_end_ip = count_to_loop_end(block);
break;
case BRW_OPCODE_WHILE:
loop_depth--;
break;
default:
break;
}
int use_ip;
if (loop_depth > 0)
use_ip = loop_end_ip;
else
use_ip = ip;
/* Note that UNIFORM args have been turned into FIXED_GRF by
* assign_curbe_setup(), and interpolation uses fixed hardware regs from
* the start (see interp_reg()).
*/
for (int i = 0; i < inst->sources; i++) {
if (inst->src[i].file == FIXED_GRF) {
int node_nr = inst->src[i].nr;
if (node_nr >= payload_node_count)
continue;
for (unsigned j = 0; j < regs_read(inst, i); j++) {
payload_last_use_ip[node_nr + j] = use_ip;
assert(node_nr + j < unsigned(payload_node_count));
}
}
}
/* Special case instructions which have extra implied registers used. */
switch (inst->opcode) {
case CS_OPCODE_CS_TERMINATE:
payload_last_use_ip[0] = use_ip;
break;
default:
if (inst->eot) {
/* We could omit this for the !inst->header_present case, except
* that the simulator apparently incorrectly reads from g0/g1
* instead of sideband. It also really freaks out driver
* developers to see g0 used in unusual places, so just always
* reserve it.
*/
payload_last_use_ip[0] = use_ip;
payload_last_use_ip[1] = use_ip;
}
break;
}
ip++;
}
}
class fs_reg_alloc {
public:
fs_reg_alloc(fs_visitor *fs):
fs(fs), devinfo(fs->devinfo), compiler(fs->compiler),
live(fs->live_analysis.require()), g(NULL),
have_spill_costs(false)
{
mem_ctx = ralloc_context(NULL);
/* Most of this allocation was written for a reg_width of 1
* (dispatch_width == 8). In extending to SIMD16, the code was
* left in place and it was converted to have the hardware
* registers it's allocating be contiguous physical pairs of regs
* for reg_width == 2.
*/
int reg_width = fs->dispatch_width / 8;
rsi = util_logbase2(reg_width);
payload_node_count = ALIGN(fs->first_non_payload_grf, reg_width);
/* Get payload IP information */
payload_last_use_ip = ralloc_array(mem_ctx, int, payload_node_count);
node_count = 0;
first_payload_node = 0;
first_mrf_hack_node = 0;
grf127_send_hack_node = 0;
first_vgrf_node = 0;
first_spill_node = 0;
spill_vgrf_ip = NULL;
spill_vgrf_ip_alloc = 0;
spill_node_count = 0;
}
~fs_reg_alloc()
{
ralloc_free(mem_ctx);
}
bool assign_regs(bool allow_spilling, bool spill_all);
private:
void setup_live_interference(unsigned node,
int node_start_ip, int node_end_ip);
void setup_inst_interference(const fs_inst *inst);
void build_interference_graph(bool allow_spilling);
void discard_interference_graph();
void set_spill_costs();
int choose_spill_reg();
fs_reg alloc_spill_reg(unsigned size, int ip);
void spill_reg(unsigned spill_reg);
void *mem_ctx;
fs_visitor *fs;
const gen_device_info *devinfo;
const brw_compiler *compiler;
const fs_live_variables &live;
/* Which compiler->fs_reg_sets[] to use */
int rsi;
ra_graph *g;
bool have_spill_costs;
int payload_node_count;
int *payload_last_use_ip;
int node_count;
int first_payload_node;
int first_mrf_hack_node;
int grf127_send_hack_node;
int first_vgrf_node;
int first_spill_node;
int *spill_vgrf_ip;
int spill_vgrf_ip_alloc;
int spill_node_count;
};
/**
* Sets the mrf_used array to indicate which MRFs are used by the shader IR
*
* This is used in assign_regs() to decide which of the GRFs that we use as
* MRFs on gen7 get normally register allocated, and in register spilling to
* see if we can actually use MRFs to do spills without overwriting normal MRF
* contents.
*/
static void
get_used_mrfs(const fs_visitor *v, bool *mrf_used)
{
int reg_width = v->dispatch_width / 8;
memset(mrf_used, 0, BRW_MAX_MRF(v->devinfo->gen) * sizeof(bool));
foreach_block_and_inst(block, fs_inst, inst, v->cfg) {
if (inst->dst.file == MRF) {
int reg = inst->dst.nr & ~BRW_MRF_COMPR4;
mrf_used[reg] = true;
if (reg_width == 2) {
if (inst->dst.nr & BRW_MRF_COMPR4) {
mrf_used[reg + 4] = true;
} else {
mrf_used[reg + 1] = true;
}
}
}
if (inst->mlen > 0) {
for (unsigned i = 0; i < inst->implied_mrf_writes(); i++) {
mrf_used[inst->base_mrf + i] = true;
}
}
}
}
namespace {
/**
* Maximum spill block size we expect to encounter in 32B units.
*
* This is somewhat arbitrary and doesn't necessarily limit the maximum
* variable size that can be spilled -- A higher value will allow a
* variable of a given size to be spilled more efficiently with a smaller
* number of scratch messages, but will increase the likelihood of a
* collision between the MRFs reserved for spilling and other MRFs used by
* the program (and possibly increase GRF register pressure on platforms
* without hardware MRFs), what could cause register allocation to fail.
*
* For the moment reserve just enough space so a register of 32 bit
* component type and natural region width can be spilled without splitting
* into multiple (force_writemask_all) scratch messages.
*/
unsigned
spill_max_size(const backend_shader *s)
{
/* FINISHME - On Gen7+ it should be possible to avoid this limit
* altogether by spilling directly from the temporary GRF
* allocated to hold the result of the instruction (and the
* scratch write header).
*/
/* FINISHME - The shader's dispatch width probably belongs in
* backend_shader (or some nonexistent fs_shader class?)
* rather than in the visitor class.
*/
return static_cast<const fs_visitor *>(s)->dispatch_width / 8;
}
/**
* First MRF register available for spilling.
*/
unsigned
spill_base_mrf(const backend_shader *s)
{
return BRW_MAX_MRF(s->devinfo->gen) - spill_max_size(s) - 1;
}
}
void
fs_reg_alloc::setup_live_interference(unsigned node,
int node_start_ip, int node_end_ip)
{
/* Mark any virtual grf that is live between the start of the program and
* the last use of a payload node interfering with that payload node.
*/
for (int i = 0; i < payload_node_count; i++) {
if (payload_last_use_ip[i] == -1)
continue;
/* Note that we use a <= comparison, unlike vgrfs_interfere(),
* in order to not have to worry about the uniform issue described in
* calculate_live_intervals().
*/
if (node_start_ip <= payload_last_use_ip[i])
ra_add_node_interference(g, node, first_payload_node + i);
}
/* If we have the MRF hack enabled, mark this node as interfering with all
* MRF registers.
*/
if (first_mrf_hack_node >= 0) {
for (int i = spill_base_mrf(fs); i < BRW_MAX_MRF(devinfo->gen); i++)
ra_add_node_interference(g, node, first_mrf_hack_node + i);
}
/* Add interference with every vgrf whose live range intersects this
* node's. We only need to look at nodes below this one as the reflexivity
* of interference will take care of the rest.
*/
for (unsigned n2 = first_vgrf_node;
n2 < (unsigned)first_spill_node && n2 < node; n2++) {
unsigned vgrf = n2 - first_vgrf_node;
if (!(node_end_ip <= live.vgrf_start[vgrf] ||
live.vgrf_end[vgrf] <= node_start_ip))
ra_add_node_interference(g, node, n2);
}
}
void
fs_reg_alloc::setup_inst_interference(const fs_inst *inst)
{
/* Certain instructions can't safely use the same register for their
* sources and destination. Add interference.
*/
if (inst->dst.file == VGRF && inst->has_source_and_destination_hazard()) {
for (unsigned i = 0; i < inst->sources; i++) {
if (inst->src[i].file == VGRF) {
ra_add_node_interference(g, first_vgrf_node + inst->dst.nr,
first_vgrf_node + inst->src[i].nr);
}
}
}
/* In 16-wide instructions we have an issue where a compressed
* instruction is actually two instructions executed simultaneously.
* It's actually ok to have the source and destination registers be
* the same. In this case, each instruction over-writes its own
* source and there's no problem. The real problem here is if the
* source and destination registers are off by one. Then you can end
* up in a scenario where the first instruction over-writes the
* source of the second instruction. Since the compiler doesn't know
* about this level of granularity, we simply make the source and
* destination interfere.
*/
if (inst->exec_size >= 16 && inst->dst.file == VGRF) {
for (int i = 0; i < inst->sources; ++i) {
if (inst->src[i].file == VGRF) {
ra_add_node_interference(g, first_vgrf_node + inst->dst.nr,
first_vgrf_node + inst->src[i].nr);
}
}
}
if (grf127_send_hack_node >= 0) {
/* At Intel Broadwell PRM, vol 07, section "Instruction Set Reference",
* subsection "EUISA Instructions", Send Message (page 990):
*
* "r127 must not be used for return address when there is a src and
* dest overlap in send instruction."
*
* We are avoiding using grf127 as part of the destination of send
* messages adding a node interference to the grf127_send_hack_node.
* This node has a fixed asignment to grf127.
*
* We don't apply it to SIMD16 instructions because previous code avoids
* any register overlap between sources and destination.
*/
if (inst->exec_size < 16 && inst->is_send_from_grf() &&
inst->dst.file == VGRF)
ra_add_node_interference(g, first_vgrf_node + inst->dst.nr,
grf127_send_hack_node);
/* Spilling instruction are genereated as SEND messages from MRF but as
* Gen7+ supports sending from GRF the driver will maps assingn these
* MRF registers to a GRF. Implementations reuses the dest of the send
* message as source. So as we will have an overlap for sure, we create
* an interference between destination and grf127.
*/
if ((inst->opcode == SHADER_OPCODE_GEN7_SCRATCH_READ ||
inst->opcode == SHADER_OPCODE_GEN4_SCRATCH_READ) &&
inst->dst.file == VGRF)
ra_add_node_interference(g, first_vgrf_node + inst->dst.nr,
grf127_send_hack_node);
}
/* From the Skylake PRM Vol. 2a docs for sends:
*
* "It is required that the second block of GRFs does not overlap with
* the first block."
*
* Normally, this is taken care of by fixup_sends_duplicate_payload() but
* in the case where one of the registers is an undefined value, the
* register allocator may decide that they don't interfere even though
* they're used as sources in the same instruction. We also need to add
* interference here.
*/
if (devinfo->gen >= 9) {
if (inst->opcode == SHADER_OPCODE_SEND && inst->ex_mlen > 0 &&
inst->src[2].file == VGRF && inst->src[3].file == VGRF &&
inst->src[2].nr != inst->src[3].nr)
ra_add_node_interference(g, first_vgrf_node + inst->src[2].nr,
first_vgrf_node + inst->src[3].nr);
}
/* When we do send-from-GRF for FB writes, we need to ensure that the last
* write instruction sends from a high register. This is because the
* vertex fetcher wants to start filling the low payload registers while
* the pixel data port is still working on writing out the memory. If we
* don't do this, we get rendering artifacts.
*
* We could just do "something high". Instead, we just pick the highest
* register that works.
*/
if (inst->eot) {
const int vgrf = inst->opcode == SHADER_OPCODE_SEND ?
inst->src[2].nr : inst->src[0].nr;
int size = fs->alloc.sizes[vgrf];
int reg = compiler->fs_reg_sets[rsi].class_to_ra_reg_range[size] - 1;
if (first_mrf_hack_node >= 0) {
/* If something happened to spill, we want to push the EOT send
* register early enough in the register file that we don't
* conflict with any used MRF hack registers.
*/
reg -= BRW_MAX_MRF(devinfo->gen) - spill_base_mrf(fs);
} else if (grf127_send_hack_node >= 0) {
/* Avoid r127 which might be unusable if the node was previously
* written by a SIMD8 SEND message with source/destination overlap.
*/
reg--;
}
ra_set_node_reg(g, first_vgrf_node + vgrf, reg);
}
}
void
fs_reg_alloc::build_interference_graph(bool allow_spilling)
{
/* Compute the RA node layout */
node_count = 0;
first_payload_node = node_count;
node_count += payload_node_count;
if (devinfo->gen >= 7 && allow_spilling) {
first_mrf_hack_node = node_count;
node_count += BRW_MAX_GRF - GEN7_MRF_HACK_START;
} else {
first_mrf_hack_node = -1;
}
if (devinfo->gen >= 8) {
grf127_send_hack_node = node_count;
node_count ++;
} else {
grf127_send_hack_node = -1;
}
first_vgrf_node = node_count;
node_count += fs->alloc.count;
first_spill_node = node_count;
fs->calculate_payload_ranges(payload_node_count,
payload_last_use_ip);
assert(g == NULL);
g = ra_alloc_interference_graph(compiler->fs_reg_sets[rsi].regs, node_count);
ralloc_steal(mem_ctx, g);
/* Set up the payload nodes */
for (int i = 0; i < payload_node_count; i++) {
/* Mark each payload node as being allocated to its physical register.
*
* The alternative would be to have per-physical-register classes, which
* would just be silly.
*/
if (devinfo->gen <= 5 && fs->dispatch_width >= 16) {
/* We have to divide by 2 here because we only have even numbered
* registers. Some of the payload registers will be odd, but
* that's ok because their physical register numbers have already
* been assigned. The only thing this is used for is interference.
*/
ra_set_node_reg(g, first_payload_node + i, i / 2);
} else {
ra_set_node_reg(g, first_payload_node + i, i);
}
}
if (first_mrf_hack_node >= 0) {
/* Mark each MRF reg node as being allocated to its physical
* register.
*
* The alternative would be to have per-physical-register classes,
* which would just be silly.
*/
for (int i = 0; i < BRW_MAX_MRF(devinfo->gen); i++) {
ra_set_node_reg(g, first_mrf_hack_node + i,
GEN7_MRF_HACK_START + i);
}
}
if (grf127_send_hack_node >= 0)
ra_set_node_reg(g, grf127_send_hack_node, 127);
/* Specify the classes of each virtual register. */
for (unsigned i = 0; i < fs->alloc.count; i++) {
unsigned size = fs->alloc.sizes[i];
assert(size <= ARRAY_SIZE(compiler->fs_reg_sets[rsi].classes) &&
"Register allocation relies on split_virtual_grfs()");
ra_set_node_class(g, first_vgrf_node + i,
compiler->fs_reg_sets[rsi].classes[size - 1]);
}
/* Special case: on pre-Gen7 hardware that supports PLN, the second operand
* of a PLN instruction needs to be an even-numbered register, so we have a
* special register class aligned_bary_class to handle this case.
*/
if (compiler->fs_reg_sets[rsi].aligned_bary_class >= 0) {
foreach_block_and_inst(block, fs_inst, inst, fs->cfg) {
if (inst->opcode == FS_OPCODE_LINTERP && inst->src[0].file == VGRF &&
fs->alloc.sizes[inst->src[0].nr] ==
aligned_bary_size(fs->dispatch_width)) {
ra_set_node_class(g, first_vgrf_node + inst->src[0].nr,
compiler->fs_reg_sets[rsi].aligned_bary_class);
}
}
}
/* Add interference based on the live range of the register */
for (unsigned i = 0; i < fs->alloc.count; i++) {
setup_live_interference(first_vgrf_node + i,
live.vgrf_start[i],
live.vgrf_end[i]);
}
/* Add interference based on the instructions in which a register is used.
*/
foreach_block_and_inst(block, fs_inst, inst, fs->cfg)
setup_inst_interference(inst);
}
void
fs_reg_alloc::discard_interference_graph()
{
ralloc_free(g);
g = NULL;
have_spill_costs = false;
}
static void
emit_unspill(const fs_builder &bld, fs_reg dst,
uint32_t spill_offset, unsigned count)
{
const gen_device_info *devinfo = bld.shader->devinfo;
const unsigned reg_size = dst.component_size(bld.dispatch_width()) /
REG_SIZE;
assert(count % reg_size == 0);
for (unsigned i = 0; i < count / reg_size; i++) {
/* The Gen7 descriptor-based offset is 12 bits of HWORD units. Because
* the Gen7-style scratch block read is hardwired to BTI 255, on Gen9+
* it would cause the DC to do an IA-coherent read, what largely
* outweighs the slight advantage from not having to provide the address
* as part of the message header, so we're better off using plain old
* oword block reads.
*/
bool gen7_read = (devinfo->gen >= 7 && devinfo->gen < 9 &&
spill_offset < (1 << 12) * REG_SIZE);
fs_inst *unspill_inst = bld.emit(gen7_read ?
SHADER_OPCODE_GEN7_SCRATCH_READ :
SHADER_OPCODE_GEN4_SCRATCH_READ,
dst);
unspill_inst->offset = spill_offset;
if (!gen7_read) {
unspill_inst->base_mrf = spill_base_mrf(bld.shader);
unspill_inst->mlen = 1; /* header contains offset */
}
dst.offset += reg_size * REG_SIZE;
spill_offset += reg_size * REG_SIZE;
}
}
static void
emit_spill(const fs_builder &bld, fs_reg src,
uint32_t spill_offset, unsigned count)
{
const unsigned reg_size = src.component_size(bld.dispatch_width()) /
REG_SIZE;
assert(count % reg_size == 0);
for (unsigned i = 0; i < count / reg_size; i++) {
fs_inst *spill_inst =
bld.emit(SHADER_OPCODE_GEN4_SCRATCH_WRITE, bld.null_reg_f(), src);
spill_inst->offset = spill_offset;
spill_inst->mlen = 1 + reg_size; /* header, value */
spill_inst->base_mrf = spill_base_mrf(bld.shader);
src.offset += reg_size * REG_SIZE;
spill_offset += reg_size * REG_SIZE;
}
}
void
fs_reg_alloc::set_spill_costs()
{
float block_scale = 1.0;
float spill_costs[fs->alloc.count];
bool no_spill[fs->alloc.count];
for (unsigned i = 0; i < fs->alloc.count; i++) {
spill_costs[i] = 0.0;
no_spill[i] = false;
}
/* Calculate costs for spilling nodes. Call it a cost of 1 per
* spill/unspill we'll have to do, and guess that the insides of
* loops run 10 times.
*/
foreach_block_and_inst(block, fs_inst, inst, fs->cfg) {
for (unsigned int i = 0; i < inst->sources; i++) {
if (inst->src[i].file == VGRF)
spill_costs[inst->src[i].nr] += regs_read(inst, i) * block_scale;
}
if (inst->dst.file == VGRF)
spill_costs[inst->dst.nr] += regs_written(inst) * block_scale;
switch (inst->opcode) {
case BRW_OPCODE_DO:
block_scale *= 10;
break;
case BRW_OPCODE_WHILE:
block_scale /= 10;
break;
case BRW_OPCODE_IF:
case BRW_OPCODE_IFF:
block_scale *= 0.5;
break;
case BRW_OPCODE_ENDIF:
block_scale /= 0.5;
break;
case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
if (inst->src[0].file == VGRF)
no_spill[inst->src[0].nr] = true;
break;
case SHADER_OPCODE_GEN4_SCRATCH_READ:
case SHADER_OPCODE_GEN7_SCRATCH_READ:
if (inst->dst.file == VGRF)
no_spill[inst->dst.nr] = true;
break;
default:
break;
}
}
for (unsigned i = 0; i < fs->alloc.count; i++) {
/* Do the no_spill check first. Registers that are used as spill
* temporaries may have been allocated after we calculated liveness so
* we shouldn't look their liveness up. Fortunately, they're always
* used in SCRATCH_READ/WRITE instructions so they'll always be flagged
* no_spill.
*/
if (no_spill[i])
continue;
int live_length = live.vgrf_end[i] - live.vgrf_start[i];
if (live_length <= 0)
continue;
/* Divide the cost (in number of spills/fills) by the log of the length
* of the live range of the register. This will encourage spill logic
* to spill long-living things before spilling short-lived things where
* spilling is less likely to actually do us any good. We use the log
* of the length because it will fall off very quickly and not cause us
* to spill medium length registers with more uses.
*/
float adjusted_cost = spill_costs[i] / logf(live_length);
ra_set_node_spill_cost(g, first_vgrf_node + i, adjusted_cost);
}
have_spill_costs = true;
}
int
fs_reg_alloc::choose_spill_reg()
{
if (!have_spill_costs)
set_spill_costs();
int node = ra_get_best_spill_node(g);
if (node < 0)
return -1;
assert(node >= first_vgrf_node);
return node - first_vgrf_node;
}
fs_reg
fs_reg_alloc::alloc_spill_reg(unsigned size, int ip)
{
int vgrf = fs->alloc.allocate(size);
int n = ra_add_node(g, compiler->fs_reg_sets[rsi].classes[size - 1]);
assert(n == first_vgrf_node + vgrf);
assert(n == first_spill_node + spill_node_count);
setup_live_interference(n, ip - 1, ip + 1);
/* Add interference between this spill node and any other spill nodes for
* the same instruction.
*/
for (int s = 0; s < spill_node_count; s++) {
if (spill_vgrf_ip[s] == ip)
ra_add_node_interference(g, n, first_spill_node + s);
}
/* Add this spill node to the list for next time */
if (spill_node_count >= spill_vgrf_ip_alloc) {
if (spill_vgrf_ip_alloc == 0)
spill_vgrf_ip_alloc = 16;
else
spill_vgrf_ip_alloc *= 2;
spill_vgrf_ip = reralloc(mem_ctx, spill_vgrf_ip, int,
spill_vgrf_ip_alloc);
}
spill_vgrf_ip[spill_node_count++] = ip;
return fs_reg(VGRF, vgrf);
}
void
fs_reg_alloc::spill_reg(unsigned spill_reg)
{
int size = fs->alloc.sizes[spill_reg];
unsigned int spill_offset = fs->last_scratch;
assert(ALIGN(spill_offset, 16) == spill_offset); /* oword read/write req. */
/* Spills may use MRFs 13-15 in the SIMD16 case. Our texturing is done
* using up to 11 MRFs starting from either m1 or m2, and fb writes can use
* up to m13 (gen6+ simd16: 2 header + 8 color + 2 src0alpha + 2 omask) or
* m15 (gen4-5 simd16: 2 header + 8 color + 1 aads + 2 src depth + 2 dst
* depth), starting from m1. In summary: We may not be able to spill in
* SIMD16 mode, because we'd stomp the FB writes.
*/
if (!fs->spilled_any_registers) {
bool mrf_used[BRW_MAX_MRF(devinfo->gen)];
get_used_mrfs(fs, mrf_used);
for (int i = spill_base_mrf(fs); i < BRW_MAX_MRF(devinfo->gen); i++) {
if (mrf_used[i]) {
fs->fail("Register spilling not supported with m%d used", i);
return;
}
}
fs->spilled_any_registers = true;
}
fs->last_scratch += size * REG_SIZE;
/* We're about to replace all uses of this register. It no longer
* conflicts with anything so we can get rid of its interference.
*/
ra_set_node_spill_cost(g, first_vgrf_node + spill_reg, 0);
ra_reset_node_interference(g, first_vgrf_node + spill_reg);
/* Generate spill/unspill instructions for the objects being
* spilled. Right now, we spill or unspill the whole thing to a
* virtual grf of the same size. For most instructions, though, we
* could just spill/unspill the GRF being accessed.
*/
int ip = 0;
foreach_block_and_inst (block, fs_inst, inst, fs->cfg) {
const fs_builder ibld = fs_builder(fs, block, inst);
exec_node *before = inst->prev;
exec_node *after = inst->next;
for (unsigned int i = 0; i < inst->sources; i++) {
if (inst->src[i].file == VGRF &&
inst->src[i].nr == spill_reg) {
int count = regs_read(inst, i);
int subset_spill_offset = spill_offset +
ROUND_DOWN_TO(inst->src[i].offset, REG_SIZE);
fs_reg unspill_dst = alloc_spill_reg(count, ip);
inst->src[i].nr = unspill_dst.nr;
inst->src[i].offset %= REG_SIZE;
/* We read the largest power-of-two divisor of the register count
* (because only POT scratch read blocks are allowed by the
* hardware) up to the maximum supported block size.
*/
const unsigned width =
MIN2(32, 1u << (ffs(MAX2(1, count) * 8) - 1));
/* Set exec_all() on unspill messages under the (rather
* pessimistic) assumption that there is no one-to-one
* correspondence between channels of the spilled variable in
* scratch space and the scratch read message, which operates on
* 32 bit channels. It shouldn't hurt in any case because the
* unspill destination is a block-local temporary.
*/
emit_unspill(ibld.exec_all().group(width, 0),
unspill_dst, subset_spill_offset, count);
}
}
if (inst->dst.file == VGRF &&
inst->dst.nr == spill_reg) {
int subset_spill_offset = spill_offset +
ROUND_DOWN_TO(inst->dst.offset, REG_SIZE);
fs_reg spill_src = alloc_spill_reg(regs_written(inst), ip);
inst->dst.nr = spill_src.nr;
inst->dst.offset %= REG_SIZE;
/* If we're immediately spilling the register, we should not use
* destination dependency hints. Doing so will cause the GPU do
* try to read and write the register at the same time and may
* hang the GPU.
*/
inst->no_dd_clear = false;
inst->no_dd_check = false;
/* Calculate the execution width of the scratch messages (which work
* in terms of 32 bit components so we have a fixed number of eight
* channels per spilled register). We attempt to write one
* exec_size-wide component of the variable at a time without
* exceeding the maximum number of (fake) MRF registers reserved for
* spills.
*/
const unsigned width = 8 * MIN2(
DIV_ROUND_UP(inst->dst.component_size(inst->exec_size), REG_SIZE),
spill_max_size(fs));
/* Spills should only write data initialized by the instruction for
* whichever channels are enabled in the excution mask. If that's
* not possible we'll have to emit a matching unspill before the
* instruction and set force_writemask_all on the spill.
*/
const bool per_channel =
inst->dst.is_contiguous() && type_sz(inst->dst.type) == 4 &&
inst->exec_size == width;
/* Builder used to emit the scratch messages. */
const fs_builder ubld = ibld.exec_all(!per_channel).group(width, 0);
/* If our write is going to affect just part of the
* regs_written(inst), then we need to unspill the destination since
* we write back out all of the regs_written(). If the original
* instruction had force_writemask_all set and is not a partial
* write, there should be no need for the unspill since the
* instruction will be overwriting the whole destination in any case.
*/
if (inst->is_partial_write() ||
(!inst->force_writemask_all && !per_channel))
emit_unspill(ubld, spill_src, subset_spill_offset,
regs_written(inst));
emit_spill(ubld.at(block, inst->next), spill_src,
subset_spill_offset, regs_written(inst));
}
for (fs_inst *inst = (fs_inst *)before->next;
inst != after; inst = (fs_inst *)inst->next)
setup_inst_interference(inst);
/* We don't advance the ip for scratch read/write instructions
* because we consider them to have the same ip as instruction we're
* spilling around for the purposes of interference.
*/
if (inst->opcode != SHADER_OPCODE_GEN4_SCRATCH_WRITE &&
inst->opcode != SHADER_OPCODE_GEN4_SCRATCH_READ &&
inst->opcode != SHADER_OPCODE_GEN7_SCRATCH_READ)
ip++;
}
}
bool
fs_reg_alloc::assign_regs(bool allow_spilling, bool spill_all)
{
build_interference_graph(fs->spilled_any_registers || spill_all);
bool spilled = false;
while (1) {
/* Debug of register spilling: Go spill everything. */
if (unlikely(spill_all)) {
int reg = choose_spill_reg();
if (reg != -1) {
spill_reg(reg);
continue;
}
}
if (ra_allocate(g))
break;
if (!allow_spilling)
return false;
/* Failed to allocate registers. Spill a reg, and the caller will
* loop back into here to try again.
*/
int reg = choose_spill_reg();
if (reg == -1)
return false;
/* If we're going to spill but we've never spilled before, we need to
* re-build the interference graph with MRFs enabled to allow spilling.
*/
if (!fs->spilled_any_registers) {
discard_interference_graph();
build_interference_graph(true);
}
spilled = true;
spill_reg(reg);
}
if (spilled)
fs->invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
/* Get the chosen virtual registers for each node, and map virtual
* regs in the register classes back down to real hardware reg
* numbers.
*/
unsigned hw_reg_mapping[fs->alloc.count];
fs->grf_used = fs->first_non_payload_grf;
for (unsigned i = 0; i < fs->alloc.count; i++) {
int reg = ra_get_node_reg(g, first_vgrf_node + i);
hw_reg_mapping[i] = compiler->fs_reg_sets[rsi].ra_reg_to_grf[reg];
fs->grf_used = MAX2(fs->grf_used,
hw_reg_mapping[i] + fs->alloc.sizes[i]);
}
foreach_block_and_inst(block, fs_inst, inst, fs->cfg) {
assign_reg(hw_reg_mapping, &inst->dst);
for (int i = 0; i < inst->sources; i++) {
assign_reg(hw_reg_mapping, &inst->src[i]);
}
}
fs->alloc.count = fs->grf_used;
return true;
}
bool
fs_visitor::assign_regs(bool allow_spilling, bool spill_all)
{
fs_reg_alloc alloc(this);
bool success = alloc.assign_regs(allow_spilling, spill_all);
if (!success && allow_spilling) {
fail("no register to spill:\n");
dump_instructions(NULL);
}
return success;
}