blob: ec50578c32a56bb2401cde7f6ebda8770fc27b7f [file] [log] [blame]
/*
* Copyright 2011 Christoph Bumiller
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include "codegen/nv50_ir.h"
#include "codegen/nv50_ir_build_util.h"
#include "codegen/nv50_ir_target_nvc0.h"
#include "codegen/nv50_ir_lowering_nvc0.h"
#include <limits>
namespace nv50_ir {
#define QOP_ADD 0
#define QOP_SUBR 1
#define QOP_SUB 2
#define QOP_MOV2 3
// UL UR LL LR
#define QUADOP(q, r, s, t) \
((QOP_##q << 6) | (QOP_##r << 4) | \
(QOP_##s << 2) | (QOP_##t << 0))
void
NVC0LegalizeSSA::handleDIV(Instruction *i)
{
FlowInstruction *call;
int builtin;
Value *def[2];
bld.setPosition(i, false);
def[0] = bld.mkMovToReg(0, i->getSrc(0))->getDef(0);
def[1] = bld.mkMovToReg(1, i->getSrc(1))->getDef(0);
switch (i->dType) {
case TYPE_U32: builtin = NVC0_BUILTIN_DIV_U32; break;
case TYPE_S32: builtin = NVC0_BUILTIN_DIV_S32; break;
default:
return;
}
call = bld.mkFlow(OP_CALL, NULL, CC_ALWAYS, NULL);
bld.mkMov(i->getDef(0), def[(i->op == OP_DIV) ? 0 : 1]);
bld.mkClobber(FILE_GPR, (i->op == OP_DIV) ? 0xe : 0xd, 2);
bld.mkClobber(FILE_PREDICATE, (i->dType == TYPE_S32) ? 0xf : 0x3, 0);
call->fixed = 1;
call->absolute = call->builtin = 1;
call->target.builtin = builtin;
delete_Instruction(prog, i);
}
void
NVC0LegalizeSSA::handleRCPRSQ(Instruction *i)
{
assert(i->dType == TYPE_F64);
// There are instructions that will compute the high 32 bits of the 64-bit
// float. We will just stick 0 in the bottom 32 bits.
bld.setPosition(i, false);
// 1. Take the source and it up.
Value *src[2], *dst[2], *def = i->getDef(0);
bld.mkSplit(src, 4, i->getSrc(0));
// 2. We don't care about the low 32 bits of the destination. Stick a 0 in.
dst[0] = bld.loadImm(NULL, 0);
dst[1] = bld.getSSA();
// 3. The new version of the instruction takes the high 32 bits of the
// source and outputs the high 32 bits of the destination.
i->setSrc(0, src[1]);
i->setDef(0, dst[1]);
i->setType(TYPE_F32);
i->subOp = NV50_IR_SUBOP_RCPRSQ_64H;
// 4. Recombine the two dst pieces back into the original destination.
bld.setPosition(i, true);
bld.mkOp2(OP_MERGE, TYPE_U64, def, dst[0], dst[1]);
}
void
NVC0LegalizeSSA::handleFTZ(Instruction *i)
{
// Only want to flush float inputs
assert(i->sType == TYPE_F32);
// If we're already flushing denorms (and NaN's) to zero, no need for this.
if (i->dnz)
return;
// Only certain classes of operations can flush
OpClass cls = prog->getTarget()->getOpClass(i->op);
if (cls != OPCLASS_ARITH && cls != OPCLASS_COMPARE &&
cls != OPCLASS_CONVERT)
return;
i->ftz = true;
}
void
NVC0LegalizeSSA::handleTEXLOD(TexInstruction *i)
{
if (i->tex.levelZero)
return;
ImmediateValue lod;
// The LOD argument comes right after the coordinates (before depth bias,
// offsets, etc).
int arg = i->tex.target.getArgCount();
// SM30+ stores the indirect handle as a separate arg, which comes before
// the LOD.
if (prog->getTarget()->getChipset() >= NVISA_GK104_CHIPSET &&
i->tex.rIndirectSrc >= 0)
arg++;
// SM20 stores indirect handle combined with array coordinate
if (prog->getTarget()->getChipset() < NVISA_GK104_CHIPSET &&
!i->tex.target.isArray() &&
i->tex.rIndirectSrc >= 0)
arg++;
if (!i->src(arg).getImmediate(lod) || !lod.isInteger(0))
return;
if (i->op == OP_TXL)
i->op = OP_TEX;
i->tex.levelZero = true;
i->moveSources(arg + 1, -1);
}
bool
NVC0LegalizeSSA::visit(Function *fn)
{
bld.setProgram(fn->getProgram());
return true;
}
bool
NVC0LegalizeSSA::visit(BasicBlock *bb)
{
Instruction *next;
for (Instruction *i = bb->getEntry(); i; i = next) {
next = i->next;
if (i->sType == TYPE_F32 && prog->getType() != Program::TYPE_COMPUTE)
handleFTZ(i);
switch (i->op) {
case OP_DIV:
case OP_MOD:
if (i->sType != TYPE_F32)
handleDIV(i);
break;
case OP_RCP:
case OP_RSQ:
if (i->dType == TYPE_F64)
handleRCPRSQ(i);
break;
case OP_TXL:
case OP_TXF:
handleTEXLOD(i->asTex());
break;
default:
break;
}
}
return true;
}
NVC0LegalizePostRA::NVC0LegalizePostRA(const Program *prog)
: rZero(NULL),
carry(NULL),
pOne(NULL),
needTexBar(prog->getTarget()->getChipset() >= 0xe0 &&
prog->getTarget()->getChipset() < 0x110)
{
}
bool
NVC0LegalizePostRA::insnDominatedBy(const Instruction *later,
const Instruction *early) const
{
if (early->bb == later->bb)
return early->serial < later->serial;
return later->bb->dominatedBy(early->bb);
}
void
NVC0LegalizePostRA::addTexUse(std::list<TexUse> &uses,
Instruction *usei, const Instruction *texi)
{
bool add = true;
bool dominated = insnDominatedBy(usei, texi);
// Uses before the tex have to all be included. Just because an earlier
// instruction dominates another instruction doesn't mean that there's no
// way to get from the tex to the later instruction. For example you could
// have nested loops, with the tex in the inner loop, and uses before it in
// both loops - even though the outer loop's instruction would dominate the
// inner's, we still want a texbar before the inner loop's instruction.
//
// However we can still use the eliding logic between uses dominated by the
// tex instruction, as that is unambiguously correct.
if (dominated) {
for (std::list<TexUse>::iterator it = uses.begin(); it != uses.end();) {
if (it->after) {
if (insnDominatedBy(usei, it->insn)) {
add = false;
break;
}
if (insnDominatedBy(it->insn, usei)) {
it = uses.erase(it);
continue;
}
}
++it;
}
}
if (add)
uses.push_back(TexUse(usei, texi, dominated));
}
// While it might be tempting to use the an algorithm that just looks at tex
// uses, not all texture results are guaranteed to be used on all paths. In
// the case where along some control flow path a texture result is never used,
// we might reuse that register for something else, creating a
// write-after-write hazard. So we have to manually look through all
// instructions looking for ones that reference the registers in question.
void
NVC0LegalizePostRA::findFirstUses(
Instruction *texi, std::list<TexUse> &uses)
{
int minGPR = texi->def(0).rep()->reg.data.id;
int maxGPR = minGPR + texi->def(0).rep()->reg.size / 4 - 1;
unordered_set<const BasicBlock *> visited;
findFirstUsesBB(minGPR, maxGPR, texi->next, texi, uses, visited);
}
void
NVC0LegalizePostRA::findFirstUsesBB(
int minGPR, int maxGPR, Instruction *start,
const Instruction *texi, std::list<TexUse> &uses,
unordered_set<const BasicBlock *> &visited)
{
const BasicBlock *bb = start->bb;
// We don't process the whole bb the first time around. This is correct,
// however we might be in a loop and hit this BB again, and need to process
// the full thing. So only mark a bb as visited if we processed it from the
// beginning.
if (start == bb->getEntry()) {
if (visited.find(bb) != visited.end())
return;
visited.insert(bb);
}
for (Instruction *insn = start; insn != bb->getExit(); insn = insn->next) {
if (insn->isNop())
continue;
for (int d = 0; insn->defExists(d); ++d) {
const Value *def = insn->def(d).rep();
if (insn->def(d).getFile() != FILE_GPR ||
def->reg.data.id + def->reg.size / 4 - 1 < minGPR ||
def->reg.data.id > maxGPR)
continue;
addTexUse(uses, insn, texi);
return;
}
for (int s = 0; insn->srcExists(s); ++s) {
const Value *src = insn->src(s).rep();
if (insn->src(s).getFile() != FILE_GPR ||
src->reg.data.id + src->reg.size / 4 - 1 < minGPR ||
src->reg.data.id > maxGPR)
continue;
addTexUse(uses, insn, texi);
return;
}
}
for (Graph::EdgeIterator ei = bb->cfg.outgoing(); !ei.end(); ei.next()) {
findFirstUsesBB(minGPR, maxGPR, BasicBlock::get(ei.getNode())->getEntry(),
texi, uses, visited);
}
}
// Texture barriers:
// This pass is a bit long and ugly and can probably be optimized.
//
// 1. obtain a list of TEXes and their outputs' first use(s)
// 2. calculate the barrier level of each first use (minimal number of TEXes,
// over all paths, between the TEX and the use in question)
// 3. for each barrier, if all paths from the source TEX to that barrier
// contain a barrier of lesser level, it can be culled
bool
NVC0LegalizePostRA::insertTextureBarriers(Function *fn)
{
std::list<TexUse> *uses;
std::vector<Instruction *> texes;
std::vector<int> bbFirstTex;
std::vector<int> bbFirstUse;
std::vector<int> texCounts;
std::vector<TexUse> useVec;
ArrayList insns;
fn->orderInstructions(insns);
texCounts.resize(fn->allBBlocks.getSize(), 0);
bbFirstTex.resize(fn->allBBlocks.getSize(), insns.getSize());
bbFirstUse.resize(fn->allBBlocks.getSize(), insns.getSize());
// tag BB CFG nodes by their id for later
for (ArrayList::Iterator i = fn->allBBlocks.iterator(); !i.end(); i.next()) {
BasicBlock *bb = reinterpret_cast<BasicBlock *>(i.get());
if (bb)
bb->cfg.tag = bb->getId();
}
// gather the first uses for each TEX
for (int i = 0; i < insns.getSize(); ++i) {
Instruction *tex = reinterpret_cast<Instruction *>(insns.get(i));
if (isTextureOp(tex->op)) {
texes.push_back(tex);
if (!texCounts.at(tex->bb->getId()))
bbFirstTex[tex->bb->getId()] = texes.size() - 1;
texCounts[tex->bb->getId()]++;
}
}
insns.clear();
if (texes.empty())
return false;
uses = new std::list<TexUse>[texes.size()];
if (!uses)
return false;
for (size_t i = 0; i < texes.size(); ++i) {
findFirstUses(texes[i], uses[i]);
}
// determine the barrier level at each use
for (size_t i = 0; i < texes.size(); ++i) {
for (std::list<TexUse>::iterator u = uses[i].begin(); u != uses[i].end();
++u) {
BasicBlock *tb = texes[i]->bb;
BasicBlock *ub = u->insn->bb;
if (tb == ub) {
u->level = 0;
for (size_t j = i + 1; j < texes.size() &&
texes[j]->bb == tb && texes[j]->serial < u->insn->serial;
++j)
u->level++;
} else {
u->level = fn->cfg.findLightestPathWeight(&tb->cfg,
&ub->cfg, texCounts);
if (u->level < 0) {
WARN("Failed to find path TEX -> TEXBAR\n");
u->level = 0;
continue;
}
// this counted all TEXes in the origin block, correct that
u->level -= i - bbFirstTex.at(tb->getId()) + 1 /* this TEX */;
// and did not count the TEXes in the destination block, add those
for (size_t j = bbFirstTex.at(ub->getId()); j < texes.size() &&
texes[j]->bb == ub && texes[j]->serial < u->insn->serial;
++j)
u->level++;
}
assert(u->level >= 0);
useVec.push_back(*u);
}
}
delete[] uses;
// insert the barriers
for (size_t i = 0; i < useVec.size(); ++i) {
Instruction *prev = useVec[i].insn->prev;
if (useVec[i].level < 0)
continue;
if (prev && prev->op == OP_TEXBAR) {
if (prev->subOp > useVec[i].level)
prev->subOp = useVec[i].level;
prev->setSrc(prev->srcCount(), useVec[i].tex->getDef(0));
} else {
Instruction *bar = new_Instruction(func, OP_TEXBAR, TYPE_NONE);
bar->fixed = 1;
bar->subOp = useVec[i].level;
// make use explicit to ease latency calculation
bar->setSrc(bar->srcCount(), useVec[i].tex->getDef(0));
useVec[i].insn->bb->insertBefore(useVec[i].insn, bar);
}
}
if (fn->getProgram()->optLevel < 3)
return true;
std::vector<Limits> limitT, limitB, limitS; // entry, exit, single
limitT.resize(fn->allBBlocks.getSize(), Limits(0, 0));
limitB.resize(fn->allBBlocks.getSize(), Limits(0, 0));
limitS.resize(fn->allBBlocks.getSize());
// cull unneeded barriers (should do that earlier, but for simplicity)
IteratorRef bi = fn->cfg.iteratorCFG();
// first calculate min/max outstanding TEXes for each BB
for (bi->reset(); !bi->end(); bi->next()) {
Graph::Node *n = reinterpret_cast<Graph::Node *>(bi->get());
BasicBlock *bb = BasicBlock::get(n);
int min = 0;
int max = std::numeric_limits<int>::max();
for (Instruction *i = bb->getFirst(); i; i = i->next) {
if (isTextureOp(i->op)) {
min++;
if (max < std::numeric_limits<int>::max())
max++;
} else
if (i->op == OP_TEXBAR) {
min = MIN2(min, i->subOp);
max = MIN2(max, i->subOp);
}
}
// limits when looking at an isolated block
limitS[bb->getId()].min = min;
limitS[bb->getId()].max = max;
}
// propagate the min/max values
for (unsigned int l = 0; l <= fn->loopNestingBound; ++l) {
for (bi->reset(); !bi->end(); bi->next()) {
Graph::Node *n = reinterpret_cast<Graph::Node *>(bi->get());
BasicBlock *bb = BasicBlock::get(n);
const int bbId = bb->getId();
for (Graph::EdgeIterator ei = n->incident(); !ei.end(); ei.next()) {
BasicBlock *in = BasicBlock::get(ei.getNode());
const int inId = in->getId();
limitT[bbId].min = MAX2(limitT[bbId].min, limitB[inId].min);
limitT[bbId].max = MAX2(limitT[bbId].max, limitB[inId].max);
}
// I just hope this is correct ...
if (limitS[bbId].max == std::numeric_limits<int>::max()) {
// no barrier
limitB[bbId].min = limitT[bbId].min + limitS[bbId].min;
limitB[bbId].max = limitT[bbId].max + limitS[bbId].min;
} else {
// block contained a barrier
limitB[bbId].min = MIN2(limitS[bbId].max,
limitT[bbId].min + limitS[bbId].min);
limitB[bbId].max = MIN2(limitS[bbId].max,
limitT[bbId].max + limitS[bbId].min);
}
}
}
// finally delete unnecessary barriers
for (bi->reset(); !bi->end(); bi->next()) {
Graph::Node *n = reinterpret_cast<Graph::Node *>(bi->get());
BasicBlock *bb = BasicBlock::get(n);
Instruction *prev = NULL;
Instruction *next;
int max = limitT[bb->getId()].max;
for (Instruction *i = bb->getFirst(); i; i = next) {
next = i->next;
if (i->op == OP_TEXBAR) {
if (i->subOp >= max) {
delete_Instruction(prog, i);
i = NULL;
} else {
max = i->subOp;
if (prev && prev->op == OP_TEXBAR && prev->subOp >= max) {
delete_Instruction(prog, prev);
prev = NULL;
}
}
} else
if (isTextureOp(i->op)) {
max++;
}
if (i && !i->isNop())
prev = i;
}
}
return true;
}
bool
NVC0LegalizePostRA::visit(Function *fn)
{
if (needTexBar)
insertTextureBarriers(fn);
rZero = new_LValue(fn, FILE_GPR);
pOne = new_LValue(fn, FILE_PREDICATE);
carry = new_LValue(fn, FILE_FLAGS);
rZero->reg.data.id = (prog->getTarget()->getChipset() >= NVISA_GK20A_CHIPSET) ? 255 : 63;
carry->reg.data.id = 0;
pOne->reg.data.id = 7;
return true;
}
void
NVC0LegalizePostRA::replaceZero(Instruction *i)
{
for (int s = 0; i->srcExists(s); ++s) {
if (s == 2 && i->op == OP_SUCLAMP)
continue;
ImmediateValue *imm = i->getSrc(s)->asImm();
if (imm) {
if (i->op == OP_SELP && s == 2) {
i->setSrc(s, pOne);
if (imm->reg.data.u64 == 0)
i->src(s).mod = i->src(s).mod ^ Modifier(NV50_IR_MOD_NOT);
} else if (imm->reg.data.u64 == 0) {
i->setSrc(s, rZero);
}
}
}
}
// replace CONT with BRA for single unconditional continue
bool
NVC0LegalizePostRA::tryReplaceContWithBra(BasicBlock *bb)
{
if (bb->cfg.incidentCount() != 2 || bb->getEntry()->op != OP_PRECONT)
return false;
Graph::EdgeIterator ei = bb->cfg.incident();
if (ei.getType() != Graph::Edge::BACK)
ei.next();
if (ei.getType() != Graph::Edge::BACK)
return false;
BasicBlock *contBB = BasicBlock::get(ei.getNode());
if (!contBB->getExit() || contBB->getExit()->op != OP_CONT ||
contBB->getExit()->getPredicate())
return false;
contBB->getExit()->op = OP_BRA;
bb->remove(bb->getEntry()); // delete PRECONT
ei.next();
assert(ei.end() || ei.getType() != Graph::Edge::BACK);
return true;
}
// replace branches to join blocks with join ops
void
NVC0LegalizePostRA::propagateJoin(BasicBlock *bb)
{
if (bb->getEntry()->op != OP_JOIN || bb->getEntry()->asFlow()->limit)
return;
for (Graph::EdgeIterator ei = bb->cfg.incident(); !ei.end(); ei.next()) {
BasicBlock *in = BasicBlock::get(ei.getNode());
Instruction *exit = in->getExit();
if (!exit) {
in->insertTail(new FlowInstruction(func, OP_JOIN, bb));
// there should always be a terminator instruction
WARN("inserted missing terminator in BB:%i\n", in->getId());
} else
if (exit->op == OP_BRA) {
exit->op = OP_JOIN;
exit->asFlow()->limit = 1; // must-not-propagate marker
}
}
bb->remove(bb->getEntry());
}
bool
NVC0LegalizePostRA::visit(BasicBlock *bb)
{
Instruction *i, *next;
// remove pseudo operations and non-fixed no-ops, split 64 bit operations
for (i = bb->getFirst(); i; i = next) {
next = i->next;
if (i->op == OP_EMIT || i->op == OP_RESTART) {
if (!i->getDef(0)->refCount())
i->setDef(0, NULL);
if (i->src(0).getFile() == FILE_IMMEDIATE)
i->setSrc(0, rZero); // initial value must be 0
replaceZero(i);
} else
if (i->isNop()) {
bb->remove(i);
} else
if (i->op == OP_BAR && i->subOp == NV50_IR_SUBOP_BAR_SYNC &&
prog->getType() != Program::TYPE_COMPUTE) {
// It seems like barriers are never required for tessellation since
// the warp size is 32, and there are always at most 32 tcs threads.
bb->remove(i);
} else
if (i->op == OP_LOAD && i->subOp == NV50_IR_SUBOP_LDC_IS) {
int offset = i->src(0).get()->reg.data.offset;
if (abs(offset) > 0x10000)
i->src(0).get()->reg.fileIndex += offset >> 16;
i->src(0).get()->reg.data.offset = (int)(short)offset;
} else {
// TODO: Move this to before register allocation for operations that
// need the $c register !
if (typeSizeof(i->dType) == 8) {
Instruction *hi;
hi = BuildUtil::split64BitOpPostRA(func, i, rZero, carry);
if (hi)
next = hi;
}
if (i->op != OP_MOV && i->op != OP_PFETCH)
replaceZero(i);
}
}
if (!bb->getEntry())
return true;
if (!tryReplaceContWithBra(bb))
propagateJoin(bb);
return true;
}
NVC0LoweringPass::NVC0LoweringPass(Program *prog) : targ(prog->getTarget())
{
bld.setProgram(prog);
}
bool
NVC0LoweringPass::visit(Function *fn)
{
if (prog->getType() == Program::TYPE_GEOMETRY) {
assert(!strncmp(fn->getName(), "MAIN", 4));
// TODO: when we generate actual functions pass this value along somehow
bld.setPosition(BasicBlock::get(fn->cfg.getRoot()), false);
gpEmitAddress = bld.loadImm(NULL, 0)->asLValue();
if (fn->cfgExit) {
bld.setPosition(BasicBlock::get(fn->cfgExit)->getExit(), false);
bld.mkMovToReg(0, gpEmitAddress);
}
}
return true;
}
bool
NVC0LoweringPass::visit(BasicBlock *bb)
{
return true;
}
inline Value *
NVC0LoweringPass::loadTexHandle(Value *ptr, unsigned int slot)
{
uint8_t b = prog->driver->io.auxCBSlot;
uint32_t off = prog->driver->io.texBindBase + slot * 4;
if (ptr)
ptr = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(), ptr, bld.mkImm(2));
return bld.
mkLoadv(TYPE_U32, bld.mkSymbol(FILE_MEMORY_CONST, b, TYPE_U32, off), ptr);
}
// move array source to first slot, convert to u16, add indirections
bool
NVC0LoweringPass::handleTEX(TexInstruction *i)
{
const int dim = i->tex.target.getDim() + i->tex.target.isCube();
const int arg = i->tex.target.getArgCount();
const int lyr = arg - (i->tex.target.isMS() ? 2 : 1);
const int chipset = prog->getTarget()->getChipset();
/* Only normalize in the non-explicit derivatives case. For explicit
* derivatives, this is handled in handleManualTXD.
*/
if (i->tex.target.isCube() && i->dPdx[0].get() == NULL) {
Value *src[3], *val;
int c;
for (c = 0; c < 3; ++c)
src[c] = bld.mkOp1v(OP_ABS, TYPE_F32, bld.getSSA(), i->getSrc(c));
val = bld.getScratch();
bld.mkOp2(OP_MAX, TYPE_F32, val, src[0], src[1]);
bld.mkOp2(OP_MAX, TYPE_F32, val, src[2], val);
bld.mkOp1(OP_RCP, TYPE_F32, val, val);
for (c = 0; c < 3; ++c) {
i->setSrc(c, bld.mkOp2v(OP_MUL, TYPE_F32, bld.getSSA(),
i->getSrc(c), val));
}
}
// Arguments to the TEX instruction are a little insane. Even though the
// encoding is identical between SM20 and SM30, the arguments mean
// different things between Fermi and Kepler+. A lot of arguments are
// optional based on flags passed to the instruction. This summarizes the
// order of things.
//
// Fermi:
// array/indirect
// coords
// sample
// lod bias
// depth compare
// offsets:
// - tg4: 8 bits each, either 2 (1 offset reg) or 8 (2 offset reg)
// - other: 4 bits each, single reg
//
// Kepler+:
// indirect handle
// array (+ offsets for txd in upper 16 bits)
// coords
// sample
// lod bias
// depth compare
// offsets (same as fermi, except txd which takes it with array)
//
// Maxwell (tex):
// array
// coords
// indirect handle
// sample
// lod bias
// depth compare
// offsets
//
// Maxwell (txd):
// indirect handle
// coords
// array + offsets
// derivatives
if (chipset >= NVISA_GK104_CHIPSET) {
if (i->tex.rIndirectSrc >= 0 || i->tex.sIndirectSrc >= 0) {
// XXX this ignores tsc, and assumes a 1:1 mapping
assert(i->tex.rIndirectSrc >= 0);
Value *hnd = loadTexHandle(i->getIndirectR(), i->tex.r);
i->tex.r = 0xff;
i->tex.s = 0x1f;
i->setIndirectR(hnd);
i->setIndirectS(NULL);
} else if (i->tex.r == i->tex.s || i->op == OP_TXF) {
if (i->tex.r == 0xffff)
i->tex.r = prog->driver->io.fbtexBindBase / 4;
else
i->tex.r += prog->driver->io.texBindBase / 4;
i->tex.s = 0; // only a single cX[] value possible here
} else {
Value *hnd = bld.getScratch();
Value *rHnd = loadTexHandle(NULL, i->tex.r);
Value *sHnd = loadTexHandle(NULL, i->tex.s);
bld.mkOp3(OP_INSBF, TYPE_U32, hnd, rHnd, bld.mkImm(0x1400), sHnd);
i->tex.r = 0; // not used for indirect tex
i->tex.s = 0;
i->setIndirectR(hnd);
}
if (i->tex.target.isArray()) {
LValue *layer = new_LValue(func, FILE_GPR);
Value *src = i->getSrc(lyr);
const int sat = (i->op == OP_TXF) ? 1 : 0;
DataType sTy = (i->op == OP_TXF) ? TYPE_U32 : TYPE_F32;
bld.mkCvt(OP_CVT, TYPE_U16, layer, sTy, src)->saturate = sat;
if (i->op != OP_TXD || chipset < NVISA_GM107_CHIPSET) {
for (int s = dim; s >= 1; --s)
i->setSrc(s, i->getSrc(s - 1));
i->setSrc(0, layer);
} else {
i->setSrc(dim, layer);
}
}
// Move the indirect reference to the first place
if (i->tex.rIndirectSrc >= 0 && (
i->op == OP_TXD || chipset < NVISA_GM107_CHIPSET)) {
Value *hnd = i->getIndirectR();
i->setIndirectR(NULL);
i->moveSources(0, 1);
i->setSrc(0, hnd);
i->tex.rIndirectSrc = 0;
i->tex.sIndirectSrc = -1;
}
// Move the indirect reference to right after the coords
else if (i->tex.rIndirectSrc >= 0 && chipset >= NVISA_GM107_CHIPSET) {
Value *hnd = i->getIndirectR();
i->setIndirectR(NULL);
i->moveSources(arg, 1);
i->setSrc(arg, hnd);
i->tex.rIndirectSrc = 0;
i->tex.sIndirectSrc = -1;
}
} else
// (nvc0) generate and move the tsc/tic/array source to the front
if (i->tex.target.isArray() || i->tex.rIndirectSrc >= 0 || i->tex.sIndirectSrc >= 0) {
LValue *src = new_LValue(func, FILE_GPR); // 0xttxsaaaa
Value *ticRel = i->getIndirectR();
Value *tscRel = i->getIndirectS();
if (i->tex.r == 0xffff) {
i->tex.r = 0x20;
i->tex.s = 0x10;
}
if (ticRel) {
i->setSrc(i->tex.rIndirectSrc, NULL);
if (i->tex.r)
ticRel = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getScratch(),
ticRel, bld.mkImm(i->tex.r));
}
if (tscRel) {
i->setSrc(i->tex.sIndirectSrc, NULL);
if (i->tex.s)
tscRel = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getScratch(),
tscRel, bld.mkImm(i->tex.s));
}
Value *arrayIndex = i->tex.target.isArray() ? i->getSrc(lyr) : NULL;
if (arrayIndex) {
for (int s = dim; s >= 1; --s)
i->setSrc(s, i->getSrc(s - 1));
i->setSrc(0, arrayIndex);
} else {
i->moveSources(0, 1);
}
if (arrayIndex) {
int sat = (i->op == OP_TXF) ? 1 : 0;
DataType sTy = (i->op == OP_TXF) ? TYPE_U32 : TYPE_F32;
bld.mkCvt(OP_CVT, TYPE_U16, src, sTy, arrayIndex)->saturate = sat;
} else {
bld.loadImm(src, 0);
}
if (ticRel)
bld.mkOp3(OP_INSBF, TYPE_U32, src, ticRel, bld.mkImm(0x0917), src);
if (tscRel)
bld.mkOp3(OP_INSBF, TYPE_U32, src, tscRel, bld.mkImm(0x0710), src);
i->setSrc(0, src);
}
// For nvc0, the sample id has to be in the second operand, as the offset
// does. Right now we don't know how to pass both in, and this case can't
// happen with OpenGL. On nve0, the sample id is part of the texture
// coordinate argument.
assert(chipset >= NVISA_GK104_CHIPSET ||
!i->tex.useOffsets || !i->tex.target.isMS());
// offset is between lod and dc
if (i->tex.useOffsets) {
int n, c;
int s = i->srcCount(0xff, true);
if (i->op != OP_TXD || chipset < NVISA_GK104_CHIPSET) {
if (i->tex.target.isShadow())
s--;
if (i->srcExists(s)) // move potential predicate out of the way
i->moveSources(s, 1);
if (i->tex.useOffsets == 4 && i->srcExists(s + 1))
i->moveSources(s + 1, 1);
}
if (i->op == OP_TXG) {
// Either there is 1 offset, which goes into the 2 low bytes of the
// first source, or there are 4 offsets, which go into 2 sources (8
// values, 1 byte each).
Value *offs[2] = {NULL, NULL};
for (n = 0; n < i->tex.useOffsets; n++) {
for (c = 0; c < 2; ++c) {
if ((n % 2) == 0 && c == 0)
bld.mkMov(offs[n / 2] = bld.getScratch(), i->offset[n][c].get());
else
bld.mkOp3(OP_INSBF, TYPE_U32,
offs[n / 2],
i->offset[n][c].get(),
bld.mkImm(0x800 | ((n * 16 + c * 8) % 32)),
offs[n / 2]);
}
}
i->setSrc(s, offs[0]);
if (offs[1])
i->setSrc(s + 1, offs[1]);
} else {
unsigned imm = 0;
assert(i->tex.useOffsets == 1);
for (c = 0; c < 3; ++c) {
ImmediateValue val;
if (!i->offset[0][c].getImmediate(val))
assert(!"non-immediate offset passed to non-TXG");
imm |= (val.reg.data.u32 & 0xf) << (c * 4);
}
if (i->op == OP_TXD && chipset >= NVISA_GK104_CHIPSET) {
// The offset goes into the upper 16 bits of the array index. So
// create it if it's not already there, and INSBF it if it already
// is.
s = (i->tex.rIndirectSrc >= 0) ? 1 : 0;
if (chipset >= NVISA_GM107_CHIPSET)
s += dim;
if (i->tex.target.isArray()) {
bld.mkOp3(OP_INSBF, TYPE_U32, i->getSrc(s),
bld.loadImm(NULL, imm), bld.mkImm(0xc10),
i->getSrc(s));
} else {
i->moveSources(s, 1);
i->setSrc(s, bld.loadImm(NULL, imm << 16));
}
} else {
i->setSrc(s, bld.loadImm(NULL, imm));
}
}
}
if (chipset >= NVISA_GK104_CHIPSET) {
//
// If TEX requires more than 4 sources, the 2nd register tuple must be
// aligned to 4, even if it consists of just a single 4-byte register.
//
// XXX HACK: We insert 0 sources to avoid the 5 or 6 regs case.
//
int s = i->srcCount(0xff, true);
if (s > 4 && s < 7) {
if (i->srcExists(s)) // move potential predicate out of the way
i->moveSources(s, 7 - s);
while (s < 7)
i->setSrc(s++, bld.loadImm(NULL, 0));
}
}
return true;
}
bool
NVC0LoweringPass::handleManualTXD(TexInstruction *i)
{
static const uint8_t qOps[4][2] =
{
{ QUADOP(MOV2, ADD, MOV2, ADD), QUADOP(MOV2, MOV2, ADD, ADD) }, // l0
{ QUADOP(SUBR, MOV2, SUBR, MOV2), QUADOP(MOV2, MOV2, ADD, ADD) }, // l1
{ QUADOP(MOV2, ADD, MOV2, ADD), QUADOP(SUBR, SUBR, MOV2, MOV2) }, // l2
{ QUADOP(SUBR, MOV2, SUBR, MOV2), QUADOP(SUBR, SUBR, MOV2, MOV2) }, // l3
};
Value *def[4][4];
Value *crd[3];
Instruction *tex;
Value *zero = bld.loadImm(bld.getSSA(), 0);
int l, c;
const int dim = i->tex.target.getDim() + i->tex.target.isCube();
// This function is invoked after handleTEX lowering, so we have to expect
// the arguments in the order that the hw wants them. For Fermi, array and
// indirect are both in the leading arg, while for Kepler, array and
// indirect are separate (and both precede the coordinates). Maxwell is
// handled in a separate function.
unsigned array;
if (targ->getChipset() < NVISA_GK104_CHIPSET)
array = i->tex.target.isArray() || i->tex.rIndirectSrc >= 0;
else
array = i->tex.target.isArray() + (i->tex.rIndirectSrc >= 0);
i->op = OP_TEX; // no need to clone dPdx/dPdy later
for (c = 0; c < dim; ++c)
crd[c] = bld.getScratch();
bld.mkOp(OP_QUADON, TYPE_NONE, NULL);
for (l = 0; l < 4; ++l) {
Value *src[3], *val;
// mov coordinates from lane l to all lanes
for (c = 0; c < dim; ++c)
bld.mkQuadop(0x00, crd[c], l, i->getSrc(c + array), zero);
// add dPdx from lane l to lanes dx
for (c = 0; c < dim; ++c)
bld.mkQuadop(qOps[l][0], crd[c], l, i->dPdx[c].get(), crd[c]);
// add dPdy from lane l to lanes dy
for (c = 0; c < dim; ++c)
bld.mkQuadop(qOps[l][1], crd[c], l, i->dPdy[c].get(), crd[c]);
// normalize cube coordinates
if (i->tex.target.isCube()) {
for (c = 0; c < 3; ++c)
src[c] = bld.mkOp1v(OP_ABS, TYPE_F32, bld.getSSA(), crd[c]);
val = bld.getScratch();
bld.mkOp2(OP_MAX, TYPE_F32, val, src[0], src[1]);
bld.mkOp2(OP_MAX, TYPE_F32, val, src[2], val);
bld.mkOp1(OP_RCP, TYPE_F32, val, val);
for (c = 0; c < 3; ++c)
src[c] = bld.mkOp2v(OP_MUL, TYPE_F32, bld.getSSA(), crd[c], val);
} else {
for (c = 0; c < dim; ++c)
src[c] = crd[c];
}
// texture
bld.insert(tex = cloneForward(func, i));
for (c = 0; c < dim; ++c)
tex->setSrc(c + array, src[c]);
// save results
for (c = 0; i->defExists(c); ++c) {
Instruction *mov;
def[c][l] = bld.getSSA();
mov = bld.mkMov(def[c][l], tex->getDef(c));
mov->fixed = 1;
mov->lanes = 1 << l;
}
}
bld.mkOp(OP_QUADPOP, TYPE_NONE, NULL);
for (c = 0; i->defExists(c); ++c) {
Instruction *u = bld.mkOp(OP_UNION, TYPE_U32, i->getDef(c));
for (l = 0; l < 4; ++l)
u->setSrc(l, def[c][l]);
}
i->bb->remove(i);
return true;
}
bool
NVC0LoweringPass::handleTXD(TexInstruction *txd)
{
int dim = txd->tex.target.getDim() + txd->tex.target.isCube();
unsigned arg = txd->tex.target.getArgCount();
unsigned expected_args = arg;
const int chipset = prog->getTarget()->getChipset();
if (chipset >= NVISA_GK104_CHIPSET) {
if (!txd->tex.target.isArray() && txd->tex.useOffsets)
expected_args++;
if (txd->tex.rIndirectSrc >= 0 || txd->tex.sIndirectSrc >= 0)
expected_args++;
} else {
if (txd->tex.useOffsets)
expected_args++;
if (!txd->tex.target.isArray() && (
txd->tex.rIndirectSrc >= 0 || txd->tex.sIndirectSrc >= 0))
expected_args++;
}
if (expected_args > 4 ||
dim > 2 ||
txd->tex.target.isShadow())
txd->op = OP_TEX;
handleTEX(txd);
while (txd->srcExists(arg))
++arg;
txd->tex.derivAll = true;
if (txd->op == OP_TEX)
return handleManualTXD(txd);
assert(arg == expected_args);
for (int c = 0; c < dim; ++c) {
txd->setSrc(arg + c * 2 + 0, txd->dPdx[c]);
txd->setSrc(arg + c * 2 + 1, txd->dPdy[c]);
txd->dPdx[c].set(NULL);
txd->dPdy[c].set(NULL);
}
// In this case we have fewer than 4 "real" arguments, which means that
// handleTEX didn't apply any padding. However we have to make sure that
// the second "group" of arguments still gets padded up to 4.
if (chipset >= NVISA_GK104_CHIPSET) {
int s = arg + 2 * dim;
if (s >= 4 && s < 7) {
if (txd->srcExists(s)) // move potential predicate out of the way
txd->moveSources(s, 7 - s);
while (s < 7)
txd->setSrc(s++, bld.loadImm(NULL, 0));
}
}
return true;
}
bool
NVC0LoweringPass::handleTXQ(TexInstruction *txq)
{
const int chipset = prog->getTarget()->getChipset();
if (chipset >= NVISA_GK104_CHIPSET && txq->tex.rIndirectSrc < 0)
txq->tex.r += prog->driver->io.texBindBase / 4;
if (txq->tex.rIndirectSrc < 0)
return true;
Value *ticRel = txq->getIndirectR();
txq->setIndirectS(NULL);
txq->tex.sIndirectSrc = -1;
assert(ticRel);
if (chipset < NVISA_GK104_CHIPSET) {
LValue *src = new_LValue(func, FILE_GPR); // 0xttxsaaaa
txq->setSrc(txq->tex.rIndirectSrc, NULL);
if (txq->tex.r)
ticRel = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getScratch(),
ticRel, bld.mkImm(txq->tex.r));
bld.mkOp2(OP_SHL, TYPE_U32, src, ticRel, bld.mkImm(0x17));
txq->moveSources(0, 1);
txq->setSrc(0, src);
} else {
Value *hnd = loadTexHandle(txq->getIndirectR(), txq->tex.r);
txq->tex.r = 0xff;
txq->tex.s = 0x1f;
txq->setIndirectR(NULL);
txq->moveSources(0, 1);
txq->setSrc(0, hnd);
txq->tex.rIndirectSrc = 0;
}
return true;
}
bool
NVC0LoweringPass::handleTXLQ(TexInstruction *i)
{
/* The outputs are inverted compared to what the TGSI instruction
* expects. Take that into account in the mask.
*/
assert((i->tex.mask & ~3) == 0);
if (i->tex.mask == 1)
i->tex.mask = 2;
else if (i->tex.mask == 2)
i->tex.mask = 1;
handleTEX(i);
bld.setPosition(i, true);
/* The returned values are not quite what we want:
* (a) convert from s16/u16 to f32
* (b) multiply by 1/256
*/
for (int def = 0; def < 2; ++def) {
if (!i->defExists(def))
continue;
enum DataType type = TYPE_S16;
if (i->tex.mask == 2 || def > 0)
type = TYPE_U16;
bld.mkCvt(OP_CVT, TYPE_F32, i->getDef(def), type, i->getDef(def));
bld.mkOp2(OP_MUL, TYPE_F32, i->getDef(def),
i->getDef(def), bld.loadImm(NULL, 1.0f / 256));
}
if (i->tex.mask == 3) {
LValue *t = new_LValue(func, FILE_GPR);
bld.mkMov(t, i->getDef(0));
bld.mkMov(i->getDef(0), i->getDef(1));
bld.mkMov(i->getDef(1), t);
}
return true;
}
bool
NVC0LoweringPass::handleBUFQ(Instruction *bufq)
{
bufq->op = OP_MOV;
bufq->setSrc(0, loadBufLength32(bufq->getIndirect(0, 1),
bufq->getSrc(0)->reg.fileIndex * 16));
bufq->setIndirect(0, 0, NULL);
bufq->setIndirect(0, 1, NULL);
return true;
}
void
NVC0LoweringPass::handleSharedATOMNVE4(Instruction *atom)
{
assert(atom->src(0).getFile() == FILE_MEMORY_SHARED);
BasicBlock *currBB = atom->bb;
BasicBlock *tryLockBB = atom->bb->splitBefore(atom, false);
BasicBlock *joinBB = atom->bb->splitAfter(atom);
BasicBlock *setAndUnlockBB = new BasicBlock(func);
BasicBlock *failLockBB = new BasicBlock(func);
bld.setPosition(currBB, true);
assert(!currBB->joinAt);
currBB->joinAt = bld.mkFlow(OP_JOINAT, joinBB, CC_ALWAYS, NULL);
CmpInstruction *pred =
bld.mkCmp(OP_SET, CC_EQ, TYPE_U32, bld.getSSA(1, FILE_PREDICATE),
TYPE_U32, bld.mkImm(0), bld.mkImm(1));
bld.mkFlow(OP_BRA, tryLockBB, CC_ALWAYS, NULL);
currBB->cfg.attach(&tryLockBB->cfg, Graph::Edge::TREE);
bld.setPosition(tryLockBB, true);
Instruction *ld =
bld.mkLoad(TYPE_U32, atom->getDef(0), atom->getSrc(0)->asSym(),
atom->getIndirect(0, 0));
ld->setDef(1, bld.getSSA(1, FILE_PREDICATE));
ld->subOp = NV50_IR_SUBOP_LOAD_LOCKED;
bld.mkFlow(OP_BRA, setAndUnlockBB, CC_P, ld->getDef(1));
bld.mkFlow(OP_BRA, failLockBB, CC_ALWAYS, NULL);
tryLockBB->cfg.attach(&failLockBB->cfg, Graph::Edge::CROSS);
tryLockBB->cfg.attach(&setAndUnlockBB->cfg, Graph::Edge::TREE);
tryLockBB->cfg.detach(&joinBB->cfg);
bld.remove(atom);
bld.setPosition(setAndUnlockBB, true);
Value *stVal;
if (atom->subOp == NV50_IR_SUBOP_ATOM_EXCH) {
// Read the old value, and write the new one.
stVal = atom->getSrc(1);
} else if (atom->subOp == NV50_IR_SUBOP_ATOM_CAS) {
CmpInstruction *set =
bld.mkCmp(OP_SET, CC_EQ, TYPE_U32, bld.getSSA(),
TYPE_U32, ld->getDef(0), atom->getSrc(1));
bld.mkCmp(OP_SLCT, CC_NE, TYPE_U32, (stVal = bld.getSSA()),
TYPE_U32, atom->getSrc(2), ld->getDef(0), set->getDef(0));
} else {
operation op;
switch (atom->subOp) {
case NV50_IR_SUBOP_ATOM_ADD:
op = OP_ADD;
break;
case NV50_IR_SUBOP_ATOM_AND:
op = OP_AND;
break;
case NV50_IR_SUBOP_ATOM_OR:
op = OP_OR;
break;
case NV50_IR_SUBOP_ATOM_XOR:
op = OP_XOR;
break;
case NV50_IR_SUBOP_ATOM_MIN:
op = OP_MIN;
break;
case NV50_IR_SUBOP_ATOM_MAX:
op = OP_MAX;
break;
default:
assert(0);
return;
}
stVal = bld.mkOp2v(op, atom->dType, bld.getSSA(), ld->getDef(0),
atom->getSrc(1));
}
Instruction *st =
bld.mkStore(OP_STORE, TYPE_U32, atom->getSrc(0)->asSym(),
atom->getIndirect(0, 0), stVal);
st->setDef(0, pred->getDef(0));
st->subOp = NV50_IR_SUBOP_STORE_UNLOCKED;
bld.mkFlow(OP_BRA, failLockBB, CC_ALWAYS, NULL);
setAndUnlockBB->cfg.attach(&failLockBB->cfg, Graph::Edge::TREE);
// Lock until the store has not been performed.
bld.setPosition(failLockBB, true);
bld.mkFlow(OP_BRA, tryLockBB, CC_NOT_P, pred->getDef(0));
bld.mkFlow(OP_BRA, joinBB, CC_ALWAYS, NULL);
failLockBB->cfg.attach(&tryLockBB->cfg, Graph::Edge::BACK);
failLockBB->cfg.attach(&joinBB->cfg, Graph::Edge::TREE);
bld.setPosition(joinBB, false);
bld.mkFlow(OP_JOIN, NULL, CC_ALWAYS, NULL)->fixed = 1;
}
void
NVC0LoweringPass::handleSharedATOM(Instruction *atom)
{
assert(atom->src(0).getFile() == FILE_MEMORY_SHARED);
BasicBlock *currBB = atom->bb;
BasicBlock *tryLockAndSetBB = atom->bb->splitBefore(atom, false);
BasicBlock *joinBB = atom->bb->splitAfter(atom);
bld.setPosition(currBB, true);
assert(!currBB->joinAt);
currBB->joinAt = bld.mkFlow(OP_JOINAT, joinBB, CC_ALWAYS, NULL);
bld.mkFlow(OP_BRA, tryLockAndSetBB, CC_ALWAYS, NULL);
currBB->cfg.attach(&tryLockAndSetBB->cfg, Graph::Edge::TREE);
bld.setPosition(tryLockAndSetBB, true);
Instruction *ld =
bld.mkLoad(TYPE_U32, atom->getDef(0), atom->getSrc(0)->asSym(),
atom->getIndirect(0, 0));
ld->setDef(1, bld.getSSA(1, FILE_PREDICATE));
ld->subOp = NV50_IR_SUBOP_LOAD_LOCKED;
Value *stVal;
if (atom->subOp == NV50_IR_SUBOP_ATOM_EXCH) {
// Read the old value, and write the new one.
stVal = atom->getSrc(1);
} else if (atom->subOp == NV50_IR_SUBOP_ATOM_CAS) {
CmpInstruction *set =
bld.mkCmp(OP_SET, CC_EQ, TYPE_U32, bld.getSSA(1, FILE_PREDICATE),
TYPE_U32, ld->getDef(0), atom->getSrc(1));
set->setPredicate(CC_P, ld->getDef(1));
Instruction *selp =
bld.mkOp3(OP_SELP, TYPE_U32, bld.getSSA(), ld->getDef(0),
atom->getSrc(2), set->getDef(0));
selp->src(2).mod = Modifier(NV50_IR_MOD_NOT);
selp->setPredicate(CC_P, ld->getDef(1));
stVal = selp->getDef(0);
} else {
operation op;
switch (atom->subOp) {
case NV50_IR_SUBOP_ATOM_ADD:
op = OP_ADD;
break;
case NV50_IR_SUBOP_ATOM_AND:
op = OP_AND;
break;
case NV50_IR_SUBOP_ATOM_OR:
op = OP_OR;
break;
case NV50_IR_SUBOP_ATOM_XOR:
op = OP_XOR;
break;
case NV50_IR_SUBOP_ATOM_MIN:
op = OP_MIN;
break;
case NV50_IR_SUBOP_ATOM_MAX:
op = OP_MAX;
break;
default:
assert(0);
return;
}
Instruction *i =
bld.mkOp2(op, atom->dType, bld.getSSA(), ld->getDef(0),
atom->getSrc(1));
i->setPredicate(CC_P, ld->getDef(1));
stVal = i->getDef(0);
}
Instruction *st =
bld.mkStore(OP_STORE, TYPE_U32, atom->getSrc(0)->asSym(),
atom->getIndirect(0, 0), stVal);
st->setPredicate(CC_P, ld->getDef(1));
st->subOp = NV50_IR_SUBOP_STORE_UNLOCKED;
// Loop until the lock is acquired.
bld.mkFlow(OP_BRA, tryLockAndSetBB, CC_NOT_P, ld->getDef(1));
tryLockAndSetBB->cfg.attach(&tryLockAndSetBB->cfg, Graph::Edge::BACK);
tryLockAndSetBB->cfg.attach(&joinBB->cfg, Graph::Edge::CROSS);
bld.mkFlow(OP_BRA, joinBB, CC_ALWAYS, NULL);
bld.remove(atom);
bld.setPosition(joinBB, false);
bld.mkFlow(OP_JOIN, NULL, CC_ALWAYS, NULL)->fixed = 1;
}
bool
NVC0LoweringPass::handleATOM(Instruction *atom)
{
SVSemantic sv;
Value *ptr = atom->getIndirect(0, 0), *ind = atom->getIndirect(0, 1), *base;
switch (atom->src(0).getFile()) {
case FILE_MEMORY_LOCAL:
sv = SV_LBASE;
break;
case FILE_MEMORY_SHARED:
// For Fermi/Kepler, we have to use ld lock/st unlock to perform atomic
// operations on shared memory. For Maxwell, ATOMS is enough.
if (targ->getChipset() < NVISA_GK104_CHIPSET)
handleSharedATOM(atom);
else if (targ->getChipset() < NVISA_GM107_CHIPSET)
handleSharedATOMNVE4(atom);
return true;
default:
assert(atom->src(0).getFile() == FILE_MEMORY_BUFFER);
base = loadBufInfo64(ind, atom->getSrc(0)->reg.fileIndex * 16);
assert(base->reg.size == 8);
if (ptr)
base = bld.mkOp2v(OP_ADD, TYPE_U64, base, base, ptr);
assert(base->reg.size == 8);
atom->setIndirect(0, 0, base);
atom->getSrc(0)->reg.file = FILE_MEMORY_GLOBAL;
// Harden against out-of-bounds accesses
Value *offset = bld.loadImm(NULL, atom->getSrc(0)->reg.data.offset + typeSizeof(atom->sType));
Value *length = loadBufLength32(ind, atom->getSrc(0)->reg.fileIndex * 16);
Value *pred = new_LValue(func, FILE_PREDICATE);
if (ptr)
bld.mkOp2(OP_ADD, TYPE_U32, offset, offset, ptr);
bld.mkCmp(OP_SET, CC_GT, TYPE_U32, pred, TYPE_U32, offset, length);
atom->setPredicate(CC_NOT_P, pred);
if (atom->defExists(0)) {
Value *zero, *dst = atom->getDef(0);
atom->setDef(0, bld.getSSA());
bld.setPosition(atom, true);
bld.mkMov((zero = bld.getSSA()), bld.mkImm(0))
->setPredicate(CC_P, pred);
bld.mkOp2(OP_UNION, TYPE_U32, dst, atom->getDef(0), zero);
}
return true;
}
base =
bld.mkOp1v(OP_RDSV, TYPE_U32, bld.getScratch(), bld.mkSysVal(sv, 0));
atom->setSrc(0, cloneShallow(func, atom->getSrc(0)));
atom->getSrc(0)->reg.file = FILE_MEMORY_GLOBAL;
if (ptr)
base = bld.mkOp2v(OP_ADD, TYPE_U32, base, base, ptr);
atom->setIndirect(0, 1, NULL);
atom->setIndirect(0, 0, base);
return true;
}
bool
NVC0LoweringPass::handleCasExch(Instruction *cas, bool needCctl)
{
if (targ->getChipset() < NVISA_GM107_CHIPSET) {
if (cas->src(0).getFile() == FILE_MEMORY_SHARED) {
// ATOM_CAS and ATOM_EXCH are handled in handleSharedATOM().
return false;
}
}
if (cas->subOp != NV50_IR_SUBOP_ATOM_CAS &&
cas->subOp != NV50_IR_SUBOP_ATOM_EXCH)
return false;
bld.setPosition(cas, true);
if (needCctl) {
Instruction *cctl = bld.mkOp1(OP_CCTL, TYPE_NONE, NULL, cas->getSrc(0));
cctl->setIndirect(0, 0, cas->getIndirect(0, 0));
cctl->fixed = 1;
cctl->subOp = NV50_IR_SUBOP_CCTL_IV;
if (cas->isPredicated())
cctl->setPredicate(cas->cc, cas->getPredicate());
}
if (cas->subOp == NV50_IR_SUBOP_ATOM_CAS) {
// CAS is crazy. It's 2nd source is a double reg, and the 3rd source
// should be set to the high part of the double reg or bad things will
// happen elsewhere in the universe.
// Also, it sometimes returns the new value instead of the old one
// under mysterious circumstances.
Value *dreg = bld.getSSA(8);
bld.setPosition(cas, false);
bld.mkOp2(OP_MERGE, TYPE_U64, dreg, cas->getSrc(1), cas->getSrc(2));
cas->setSrc(1, dreg);
cas->setSrc(2, dreg);
}
return true;
}
inline Value *
NVC0LoweringPass::loadResInfo32(Value *ptr, uint32_t off, uint16_t base)
{
uint8_t b = prog->driver->io.auxCBSlot;
off += base;
return bld.
mkLoadv(TYPE_U32, bld.mkSymbol(FILE_MEMORY_CONST, b, TYPE_U32, off), ptr);
}
inline Value *
NVC0LoweringPass::loadResInfo64(Value *ptr, uint32_t off, uint16_t base)
{
uint8_t b = prog->driver->io.auxCBSlot;
off += base;
if (ptr)
ptr = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getScratch(), ptr, bld.mkImm(4));
return bld.
mkLoadv(TYPE_U64, bld.mkSymbol(FILE_MEMORY_CONST, b, TYPE_U64, off), ptr);
}
inline Value *
NVC0LoweringPass::loadResLength32(Value *ptr, uint32_t off, uint16_t base)
{
uint8_t b = prog->driver->io.auxCBSlot;
off += base;
if (ptr)
ptr = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getScratch(), ptr, bld.mkImm(4));
return bld.
mkLoadv(TYPE_U32, bld.mkSymbol(FILE_MEMORY_CONST, b, TYPE_U64, off + 8), ptr);
}
inline Value *
NVC0LoweringPass::loadBufInfo64(Value *ptr, uint32_t off)
{
return loadResInfo64(ptr, off, prog->driver->io.bufInfoBase);
}
inline Value *
NVC0LoweringPass::loadBufLength32(Value *ptr, uint32_t off)
{
return loadResLength32(ptr, off, prog->driver->io.bufInfoBase);
}
inline Value *
NVC0LoweringPass::loadUboInfo64(Value *ptr, uint32_t off)
{
return loadResInfo64(ptr, off, prog->driver->io.uboInfoBase);
}
inline Value *
NVC0LoweringPass::loadUboLength32(Value *ptr, uint32_t off)
{
return loadResLength32(ptr, off, prog->driver->io.uboInfoBase);
}
inline Value *
NVC0LoweringPass::loadMsInfo32(Value *ptr, uint32_t off)
{
uint8_t b = prog->driver->io.msInfoCBSlot;
off += prog->driver->io.msInfoBase;
return bld.
mkLoadv(TYPE_U32, bld.mkSymbol(FILE_MEMORY_CONST, b, TYPE_U32, off), ptr);
}
/* On nvc0, surface info is obtained via the surface binding points passed
* to the SULD/SUST instructions.
* On nve4, surface info is stored in c[] and is used by various special
* instructions, e.g. for clamping coordinates or generating an address.
* They couldn't just have added an equivalent to TIC now, couldn't they ?
*/
#define NVC0_SU_INFO_ADDR 0x00
#define NVC0_SU_INFO_FMT 0x04
#define NVC0_SU_INFO_DIM_X 0x08
#define NVC0_SU_INFO_PITCH 0x0c
#define NVC0_SU_INFO_DIM_Y 0x10
#define NVC0_SU_INFO_ARRAY 0x14
#define NVC0_SU_INFO_DIM_Z 0x18
#define NVC0_SU_INFO_UNK1C 0x1c
#define NVC0_SU_INFO_WIDTH 0x20
#define NVC0_SU_INFO_HEIGHT 0x24
#define NVC0_SU_INFO_DEPTH 0x28
#define NVC0_SU_INFO_TARGET 0x2c
#define NVC0_SU_INFO_BSIZE 0x30
#define NVC0_SU_INFO_RAW_X 0x34
#define NVC0_SU_INFO_MS_X 0x38
#define NVC0_SU_INFO_MS_Y 0x3c
#define NVC0_SU_INFO__STRIDE 0x40
#define NVC0_SU_INFO_DIM(i) (0x08 + (i) * 8)
#define NVC0_SU_INFO_SIZE(i) (0x20 + (i) * 4)
#define NVC0_SU_INFO_MS(i) (0x38 + (i) * 4)
inline Value *
NVC0LoweringPass::loadSuInfo32(Value *ptr, int slot, uint32_t off)
{
uint32_t base = slot * NVC0_SU_INFO__STRIDE;
if (ptr) {
ptr = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getSSA(), ptr, bld.mkImm(slot));
ptr = bld.mkOp2v(OP_AND, TYPE_U32, bld.getSSA(), ptr, bld.mkImm(7));
ptr = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(), ptr, bld.mkImm(6));
base = 0;
}
off += base;
return loadResInfo32(ptr, off, prog->driver->io.suInfoBase);
}
static inline uint16_t getSuClampSubOp(const TexInstruction *su, int c)
{
switch (su->tex.target.getEnum()) {
case TEX_TARGET_BUFFER: return NV50_IR_SUBOP_SUCLAMP_PL(0, 1);
case TEX_TARGET_RECT: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
case TEX_TARGET_1D: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
case TEX_TARGET_1D_ARRAY: return (c == 1) ?
NV50_IR_SUBOP_SUCLAMP_PL(0, 2) :
NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
case TEX_TARGET_2D: return NV50_IR_SUBOP_SUCLAMP_BL(0, 2);
case TEX_TARGET_2D_MS: return NV50_IR_SUBOP_SUCLAMP_BL(0, 2);
case TEX_TARGET_2D_ARRAY: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
case TEX_TARGET_2D_MS_ARRAY: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
case TEX_TARGET_3D: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
case TEX_TARGET_CUBE: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
case TEX_TARGET_CUBE_ARRAY: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
default:
assert(0);
return 0;
}
}
bool
NVC0LoweringPass::handleSUQ(TexInstruction *suq)
{
int mask = suq->tex.mask;
int dim = suq->tex.target.getDim();
int arg = dim + (suq->tex.target.isArray() || suq->tex.target.isCube());
Value *ind = suq->getIndirectR();
int slot = suq->tex.r;
int c, d;
for (c = 0, d = 0; c < 3; ++c, mask >>= 1) {
if (c >= arg || !(mask & 1))
continue;
int offset;
if (c == 1 && suq->tex.target == TEX_TARGET_1D_ARRAY) {
offset = NVC0_SU_INFO_SIZE(2);
} else {
offset = NVC0_SU_INFO_SIZE(c);
}
bld.mkMov(suq->getDef(d++), loadSuInfo32(ind, slot, offset));
if (c == 2 && suq->tex.target.isCube())
bld.mkOp2(OP_DIV, TYPE_U32, suq->getDef(d - 1), suq->getDef(d - 1),
bld.loadImm(NULL, 6));
}
if (mask & 1) {
if (suq->tex.target.isMS()) {
Value *ms_x = loadSuInfo32(ind, slot, NVC0_SU_INFO_MS(0));
Value *ms_y = loadSuInfo32(ind, slot, NVC0_SU_INFO_MS(1));
Value *ms = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getScratch(), ms_x, ms_y);
bld.mkOp2(OP_SHL, TYPE_U32, suq->getDef(d++), bld.loadImm(NULL, 1), ms);
} else {
bld.mkMov(suq->getDef(d++), bld.loadImm(NULL, 1));
}
}
bld.remove(suq);
return true;
}
void
NVC0LoweringPass::adjustCoordinatesMS(TexInstruction *tex)
{
const int arg = tex->tex.target.getArgCount();
int slot = tex->tex.r;
if (tex->tex.target == TEX_TARGET_2D_MS)
tex->tex.target = TEX_TARGET_2D;
else
if (tex->tex.target == TEX_TARGET_2D_MS_ARRAY)
tex->tex.target = TEX_TARGET_2D_ARRAY;
else
return;
Value *x = tex->getSrc(0);
Value *y = tex->getSrc(1);
Value *s = tex->getSrc(arg - 1);
Value *tx = bld.getSSA(), *ty = bld.getSSA(), *ts = bld.getSSA();
Value *ind = tex->getIndirectR();
Value *ms_x = loadSuInfo32(ind, slot, NVC0_SU_INFO_MS(0));
Value *ms_y = loadSuInfo32(ind, slot, NVC0_SU_INFO_MS(1));
bld.mkOp2(OP_SHL, TYPE_U32, tx, x, ms_x);
bld.mkOp2(OP_SHL, TYPE_U32, ty, y, ms_y);
s = bld.mkOp2v(OP_AND, TYPE_U32, ts, s, bld.loadImm(NULL, 0x7));
s = bld.mkOp2v(OP_SHL, TYPE_U32, ts, ts, bld.mkImm(3));
Value *dx = loadMsInfo32(ts, 0x0);
Value *dy = loadMsInfo32(ts, 0x4);
bld.mkOp2(OP_ADD, TYPE_U32, tx, tx, dx);
bld.mkOp2(OP_ADD, TYPE_U32, ty, ty, dy);
tex->setSrc(0, tx);
tex->setSrc(1, ty);
tex->moveSources(arg, -1);
}
// Sets 64-bit "generic address", predicate and format sources for SULD/SUST.
// They're computed from the coordinates using the surface info in c[] space.
void
NVC0LoweringPass::processSurfaceCoordsNVE4(TexInstruction *su)
{
Instruction *insn;
const bool atom = su->op == OP_SUREDB || su->op == OP_SUREDP;
const bool raw =
su->op == OP_SULDB || su->op == OP_SUSTB || su->op == OP_SUREDB;
const int slot = su->tex.r;
const int dim = su->tex.target.getDim();
const int arg = dim + (su->tex.target.isArray() || su->tex.target.isCube());
int c;
Value *zero = bld.mkImm(0);
Value *p1 = NULL;
Value *v;
Value *src[3];
Value *bf, *eau, *off;
Value *addr, *pred;
Value *ind = su->getIndirectR();
off = bld.getScratch(4);
bf = bld.getScratch(4);
addr = bld.getSSA(8);
pred = bld.getScratch(1, FILE_PREDICATE);
bld.setPosition(su, false);
adjustCoordinatesMS(su);
// calculate clamped coordinates
for (c = 0; c < arg; ++c) {
int dimc = c;
if (c == 1 && su->tex.target == TEX_TARGET_1D_ARRAY) {
// The array index is stored in the Z component for 1D arrays.
dimc = 2;
}
src[c] = bld.getScratch();
if (c == 0 && raw)
v = loadSuInfo32(ind, slot, NVC0_SU_INFO_RAW_X);
else
v = loadSuInfo32(ind, slot, NVC0_SU_INFO_DIM(dimc));
bld.mkOp3(OP_SUCLAMP, TYPE_S32, src[c], su->getSrc(c), v, zero)
->subOp = getSuClampSubOp(su, dimc);
}
for (; c < 3; ++c)
src[c] = zero;
// set predicate output
if (su->tex.target == TEX_TARGET_BUFFER) {
src[0]->getInsn()->setFlagsDef(1, pred);
} else
if (su->tex.target.isArray() || su->tex.target.isCube()) {
p1 = bld.getSSA(1, FILE_PREDICATE);
src[dim]->getInsn()->setFlagsDef(1, p1);
}
// calculate pixel offset
if (dim == 1) {
if (su->tex.target != TEX_TARGET_BUFFER)
bld.mkOp2(OP_AND, TYPE_U32, off, src[0], bld.loadImm(NULL, 0xffff));
} else
if (dim == 3) {
v = loadSuInfo32(ind, slot, NVC0_SU_INFO_UNK1C);
bld.mkOp3(OP_MADSP, TYPE_U32, off, src[2], v, src[1])
->subOp = NV50_IR_SUBOP_MADSP(4,2,8); // u16l u16l u16l
v = loadSuInfo32(ind, slot, NVC0_SU_INFO_PITCH);
bld.mkOp3(OP_MADSP, TYPE_U32, off, off, v, src[0])
->subOp = NV50_IR_SUBOP_MADSP(0,2,8); // u32 u16l u16l
} else {
assert(dim == 2);
v = loadSuInfo32(ind, slot, NVC0_SU_INFO_PITCH);
bld.mkOp3(OP_MADSP, TYPE_U32, off, src[1], v, src[0])
->subOp = (su->tex.target.isArray() || su->tex.target.isCube()) ?
NV50_IR_SUBOP_MADSP_SD : NV50_IR_SUBOP_MADSP(4,2,8); // u16l u16l u16l
}
// calculate effective address part 1
if (su->tex.target == TEX_TARGET_BUFFER) {
if (raw) {
bf = src[0];
} else {
v = loadSuInfo32(ind, slot, NVC0_SU_INFO_FMT);
bld.mkOp3(OP_VSHL, TYPE_U32, bf, src[0], v, zero)
->subOp = NV50_IR_SUBOP_V1(7,6,8|2);
}
} else {
Value *y = src[1];
Value *z = src[2];
uint16_t subOp = 0;
switch (dim) {
case 1:
y = zero;
z = zero;
break;
case 2:
z = off;
if (!su->tex.target.isArray() && !su->tex.target.isCube()) {
z = loadSuInfo32(ind, slot, NVC0_SU_INFO_UNK1C);
subOp = NV50_IR_SUBOP_SUBFM_3D;
}
break;
default:
subOp = NV50_IR_SUBOP_SUBFM_3D;
assert(dim == 3);
break;
}
insn = bld.mkOp3(OP_SUBFM, TYPE_U32, bf, src[0], y, z);
insn->subOp = subOp;
insn->setFlagsDef(1, pred);
}
// part 2
v = loadSuInfo32(ind, slot, NVC0_SU_INFO_ADDR);
if (su->tex.target == TEX_TARGET_BUFFER) {
eau = v;
} else {
eau = bld.mkOp3v(OP_SUEAU, TYPE_U32, bld.getScratch(4), off, bf, v);
}
// add array layer offset
if (su->tex.target.isArray() || su->tex.target.isCube()) {
v = loadSuInfo32(ind, slot, NVC0_SU_INFO_ARRAY);
if (dim == 1)
bld.mkOp3(OP_MADSP, TYPE_U32, eau, src[1], v, eau)
->subOp = NV50_IR_SUBOP_MADSP(4,0,0); // u16 u24 u32
else
bld.mkOp3(OP_MADSP, TYPE_U32, eau, v, src[2], eau)
->subOp = NV50_IR_SUBOP_MADSP(0,0,0); // u32 u24 u32
// combine predicates
assert(p1);
bld.mkOp2(OP_OR, TYPE_U8, pred, pred, p1);
}
if (atom) {
Value *lo = bf;
if (su->tex.target == TEX_TARGET_BUFFER) {
lo = zero;
bld.mkMov(off, bf);
}
// bf == g[] address & 0xff
// eau == g[] address >> 8
bld.mkOp3(OP_PERMT, TYPE_U32, bf, lo, bld.loadImm(NULL, 0x6540), eau);
bld.mkOp3(OP_PERMT, TYPE_U32, eau, zero, bld.loadImm(NULL, 0x0007), eau);
} else
if (su->op == OP_SULDP && su->tex.target == TEX_TARGET_BUFFER) {
// Convert from u32 to u8 address format, which is what the library code
// doing SULDP currently uses.
// XXX: can SUEAU do this ?
// XXX: does it matter that we don't mask high bytes in bf ?
// Grrr.
bld.mkOp2(OP_SHR, TYPE_U32, off, bf, bld.mkImm(8));
bld.mkOp2(OP_ADD, TYPE_U32, eau, eau, off);
}
bld.mkOp2(OP_MERGE, TYPE_U64, addr, bf, eau);
if (atom && su->tex.target == TEX_TARGET_BUFFER)
bld.mkOp2(OP_ADD, TYPE_U64, addr, addr, off);
// let's just set it 0 for raw access and hope it works
v = raw ?
bld.mkImm(0) : loadSuInfo32(ind, slot, NVC0_SU_INFO_FMT);
// get rid of old coordinate sources, make space for fmt info and predicate
su->moveSources(arg, 3 - arg);
// set 64 bit address and 32-bit format sources
su->setSrc(0, addr);
su->setSrc(1, v);
su->setSrc(2, pred);
// prevent read fault when the image is not actually bound
CmpInstruction *pred1 =
bld.mkCmp(OP_SET, CC_EQ, TYPE_U32, bld.getSSA(1, FILE_PREDICATE),
TYPE_U32, bld.mkImm(0),
loadSuInfo32(ind, slot, NVC0_SU_INFO_ADDR));
if (su->op != OP_SUSTP && su->tex.format) {
const TexInstruction::ImgFormatDesc *format = su->tex.format;
int blockwidth = format->bits[0] + format->bits[1] +
format->bits[2] + format->bits[3];
// make sure that the format doesn't mismatch
assert(format->components != 0);
bld.mkCmp(OP_SET_OR, CC_NE, TYPE_U32, pred1->getDef(0),
TYPE_U32, bld.loadImm(NULL, blockwidth / 8),
loadSuInfo32(ind, slot, NVC0_SU_INFO_BSIZE),
pred1->getDef(0));
}
su->setPredicate(CC_NOT_P, pred1->getDef(0));
// TODO: initialize def values to 0 when the surface operation is not
// performed (not needed for stores). Also, fix the "address bounds test"
// subtests from arb_shader_image_load_store-invalid for buffers, because it
// seems like that the predicate is not correctly set by suclamp.
}
static DataType
getSrcType(const TexInstruction::ImgFormatDesc *t, int c)
{
switch (t->type) {
case FLOAT: return t->bits[c] == 16 ? TYPE_F16 : TYPE_F32;
case UNORM: return t->bits[c] == 8 ? TYPE_U8 : TYPE_U16;
case SNORM: return t->bits[c] == 8 ? TYPE_S8 : TYPE_S16;
case UINT:
return (t->bits[c] == 8 ? TYPE_U8 :
(t->bits[c] == 16 ? TYPE_U16 : TYPE_U32));
case SINT:
return (t->bits[c] == 8 ? TYPE_S8 :
(t->bits[c] == 16 ? TYPE_S16 : TYPE_S32));
}
return TYPE_NONE;
}
static DataType
getDestType(const ImgType type) {
switch (type) {
case FLOAT:
case UNORM:
case SNORM:
return TYPE_F32;
case UINT:
return TYPE_U32;
case SINT:
return TYPE_S32;
default:
assert(!"Impossible type");
return TYPE_NONE;
}
}
void
NVC0LoweringPass::convertSurfaceFormat(TexInstruction *su)
{
const TexInstruction::ImgFormatDesc *format = su->tex.format;
int width = format->bits[0] + format->bits[1] +
format->bits[2] + format->bits[3];
Value *untypedDst[4] = {};
Value *typedDst[4] = {};
// We must convert this to a generic load.
su->op = OP_SULDB;
su->dType = typeOfSize(width / 8);
su->sType = TYPE_U8;
for (int i = 0; i < width / 32; i++)
untypedDst[i] = bld.getSSA();
if (width < 32)
untypedDst[0] = bld.getSSA();
for (int i = 0; i < 4; i++) {
typedDst[i] = su->getDef(i);
}
// Set the untyped dsts as the su's destinations
for (int i = 0; i < 4; i++)
su->setDef(i, untypedDst[i]);
bld.setPosition(su, true);
// Unpack each component into the typed dsts
int bits = 0;
for (int i = 0; i < 4; bits += format->bits[i], i++) {
if (!typedDst[i])
continue;
if (i >= format->components) {
if (format->type == FLOAT ||
format->type == UNORM ||
format->type == SNORM)
bld.loadImm(typedDst[i], i == 3 ? 1.0f : 0.0f);
else
bld.loadImm(typedDst[i], i == 3 ? 1 : 0);
continue;
}
// Get just that component's data into the relevant place
if (format->bits[i] == 32)
bld.mkMov(typedDst[i], untypedDst[i]);
else if (format->bits[i] == 16)
bld.mkCvt(OP_CVT, getDestType(format->type), typedDst[i],
getSrcType(format, i), untypedDst[i / 2])
->subOp = (i & 1) << (format->type == FLOAT ? 0 : 1);
else if (format->bits[i] == 8)
bld.mkCvt(OP_CVT, getDestType(format->type), typedDst[i],
getSrcType(format, i), untypedDst[0])->subOp = i;
else {
bld.mkOp2(OP_EXTBF, TYPE_U32, typedDst[i], untypedDst[bits / 32],
bld.mkImm((bits % 32) | (format->bits[i] << 8)));
if (format->type == UNORM || format->type == SNORM)
bld.mkCvt(OP_CVT, TYPE_F32, typedDst[i], getSrcType(format, i), typedDst[i]);
}
// Normalize / convert as necessary
if (format->type == UNORM)
bld.mkOp2(OP_MUL, TYPE_F32, typedDst[i], typedDst[i], bld.loadImm(NULL, 1.0f / ((1 << format->bits[i]) - 1)));
else if (format->type == SNORM)
bld.mkOp2(OP_MUL, TYPE_F32, typedDst[i], typedDst[i], bld.loadImm(NULL, 1.0f / ((1 << (format->bits[i] - 1)) - 1)));
else if (format->type == FLOAT && format->bits[i] < 16) {
bld.mkOp2(OP_SHL, TYPE_U32, typedDst[i], typedDst[i], bld.loadImm(NULL, 15 - format->bits[i]));
bld.mkCvt(OP_CVT, TYPE_F32, typedDst[i], TYPE_F16, typedDst[i]);
}
}
if (format->bgra) {
std::swap(typedDst[0], typedDst[2]);
}
}
void
NVC0LoweringPass::handleSurfaceOpNVE4(TexInstruction *su)
{
processSurfaceCoordsNVE4(su);
if (su->op == OP_SULDP)
convertSurfaceFormat(su);
if (su->op == OP_SUREDB || su->op == OP_SUREDP) {
assert(su->getPredicate());
Value *pred =
bld.mkOp2v(OP_OR, TYPE_U8, bld.getScratch(1, FILE_PREDICATE),
su->getPredicate(), su->getSrc(2));
Instruction *red = bld.mkOp(OP_ATOM, su->dType, bld.getSSA());
red->subOp = su->subOp;
red->setSrc(0, bld.mkSymbol(FILE_MEMORY_GLOBAL, 0, TYPE_U32, 0));
red->setSrc(1, su->getSrc(3));
if (su->subOp == NV50_IR_SUBOP_ATOM_CAS)
red->setSrc(2, su->getSrc(4));
red->setIndirect(0, 0, su->getSrc(0));
// make sure to initialize dst value when the atomic operation is not
// performed
Instruction *mov = bld.mkMov(bld.getSSA(), bld.loadImm(NULL, 0));
assert(su->cc == CC_NOT_P);
red->setPredicate(su->cc, pred);
mov->setPredicate(CC_P, pred);
bld.mkOp2(OP_UNION, TYPE_U32, su->getDef(0),
red->getDef(0), mov->getDef(0));
delete_Instruction(bld.getProgram(), su);
handleCasExch(red, true);
}
if (su->op == OP_SUSTB || su->op == OP_SUSTP)
su->sType = (su->tex.target == TEX_TARGET_BUFFER) ? TYPE_U32 : TYPE_U8;
}
void
NVC0LoweringPass::processSurfaceCoordsNVC0(TexInstruction *su)
{
const int slot = su->tex.r;
const int dim = su->tex.target.getDim();
const int arg = dim + (su->tex.target.isArray() || su->tex.target.isCube());
int c;
Value *zero = bld.mkImm(0);
Value *src[3];
Value *v;
Value *ind = su->getIndirectR();
bld.setPosition(su, false);
adjustCoordinatesMS(su);
if (ind) {
Value *ptr;
ptr = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getSSA(), ind, bld.mkImm(su->tex.r));
ptr = bld.mkOp2v(OP_AND, TYPE_U32, bld.getSSA(), ptr, bld.mkImm(7));
su->setIndirectR(ptr);
}
// get surface coordinates
for (c = 0; c < arg; ++c)
src[c] = su->getSrc(c);
for (; c < 3; ++c)
src[c] = zero;
// calculate pixel offset
if (su->op == OP_SULDP || su->op == OP_SUREDP) {
v = loadSuInfo32(ind, slot, NVC0_SU_INFO_BSIZE);
su->setSrc(0, bld.mkOp2v(OP_MUL, TYPE_U32, bld.getSSA(), src[0], v));
}
// add array layer offset
if (su->tex.target.isArray() || su->tex.target.isCube()) {
v = loadSuInfo32(ind, slot, NVC0_SU_INFO_ARRAY);
assert(dim > 1);
su->setSrc(2, bld.mkOp2v(OP_MUL, TYPE_U32, bld.getSSA(), src[2], v));
}
// prevent read fault when the image is not actually bound
CmpInstruction *pred =
bld.mkCmp(OP_SET, CC_EQ, TYPE_U32, bld.getSSA(1, FILE_PREDICATE),
TYPE_U32, bld.mkImm(0),
loadSuInfo32(ind, slot, NVC0_SU_INFO_ADDR));
if (su->op != OP_SUSTP && su->tex.format) {
const TexInstruction::ImgFormatDesc *format = su->tex.format;
int blockwidth = format->bits[0] + format->bits[1] +
format->bits[2] + format->bits[3];
assert(format->components != 0);
// make sure that the format doesn't mismatch when it's not FMT_NONE
bld.mkCmp(OP_SET_OR, CC_NE, TYPE_U32, pred->getDef(0),
TYPE_U32, bld.loadImm(NULL, blockwidth / 8),
loadSuInfo32(ind, slot, NVC0_SU_INFO_BSIZE),
pred->getDef(0));
}
su->setPredicate(CC_NOT_P, pred->getDef(0));
}
void
NVC0LoweringPass::handleSurfaceOpNVC0(TexInstruction *su)
{
if (su->tex.target == TEX_TARGET_1D_ARRAY) {
/* As 1d arrays also need 3 coordinates, switching to TEX_TARGET_2D_ARRAY
* will simplify the lowering pass and the texture constraints. */
su->moveSources(1, 1);
su->setSrc(1, bld.loadImm(NULL, 0));
su->tex.target = TEX_TARGET_2D_ARRAY;
}
processSurfaceCoordsNVC0(su);
if (su->op == OP_SULDP)
convertSurfaceFormat(su);
if (su->op == OP_SUREDB || su->op == OP_SUREDP) {
const int dim = su->tex.target.getDim();
const int arg = dim + (su->tex.target.isArray() || su->tex.target.isCube());
LValue *addr = bld.getSSA(8);
Value *def = su->getDef(0);
su->op = OP_SULEA;
// Set the destination to the address
su->dType = TYPE_U64;
su->setDef(0, addr);
su->setDef(1, su->getPredicate());
bld.setPosition(su, true);
// Perform the atomic op
Instruction *red = bld.mkOp(OP_ATOM, su->sType, bld.getSSA());
red->subOp = su->subOp;
red->setSrc(0, bld.mkSymbol(FILE_MEMORY_GLOBAL, 0, su->sType, 0));
red->setSrc(1, su->getSrc(arg));
if (red->subOp == NV50_IR_SUBOP_ATOM_CAS)
red->setSrc(2, su->getSrc(arg + 1));
red->setIndirect(0, 0, addr);
// make sure to initialize dst value when the atomic operation is not
// performed
Instruction *mov = bld.mkMov(bld.getSSA(), bld.loadImm(NULL, 0));
assert(su->cc == CC_NOT_P);
red->setPredicate(su->cc, su->getPredicate());
mov->setPredicate(CC_P, su->getPredicate());
bld.mkOp2(OP_UNION, TYPE_U32, def, red->getDef(0), mov->getDef(0));
handleCasExch(red, false);
}
}
void
NVC0LoweringPass::processSurfaceCoordsGM107(TexInstruction *su)
{
const int slot = su->tex.r;
const int dim = su->tex.target.getDim();
const int arg = dim + (su->tex.target.isArray() || su->tex.target.isCube());
Value *ind = su->getIndirectR();
int pos = 0;
bld.setPosition(su, false);
// add texture handle
switch (su->op) {
case OP_SUSTP:
pos = 4;
break;
case OP_SUREDP:
pos = (su->subOp == NV50_IR_SUBOP_ATOM_CAS) ? 2 : 1;
break;
default:
assert(pos == 0);
break;
}
su->setSrc(arg + pos, loadTexHandle(ind, slot + 32));
// prevent read fault when the image is not actually bound
CmpInstruction *pred =
bld.mkCmp(OP_SET, CC_EQ, TYPE_U32, bld.getSSA(1, FILE_PREDICATE),
TYPE_U32, bld.mkImm(0),
loadSuInfo32(ind, slot, NVC0_SU_INFO_ADDR));
if (su->op != OP_SUSTP && su->tex.format) {
const TexInstruction::ImgFormatDesc *format = su->tex.format;
int blockwidth = format->bits[0] + format->bits[1] +
format->bits[2] + format->bits[3];
assert(format->components != 0);
// make sure that the format doesn't mismatch when it's not FMT_NONE
bld.mkCmp(OP_SET_OR, CC_NE, TYPE_U32, pred->getDef(0),
TYPE_U32, bld.loadImm(NULL, blockwidth / 8),
loadSuInfo32(ind, slot, NVC0_SU_INFO_BSIZE),
pred->getDef(0));
}
su->setPredicate(CC_NOT_P, pred->getDef(0));
}
void
NVC0LoweringPass::handleSurfaceOpGM107(TexInstruction *su)
{
processSurfaceCoordsGM107(su);
if (su->op == OP_SULDP)
convertSurfaceFormat(su);
if (su->op == OP_SUREDP) {
Value *def = su->getDef(0);
su->op = OP_SUREDB;
su->setDef(0, bld.getSSA());
bld.setPosition(su, true);
// make sure to initialize dst value when the atomic operation is not
// performed
Instruction *mov = bld.mkMov(bld.getSSA(), bld.loadImm(NULL, 0));
assert(su->cc == CC_NOT_P);
mov->setPredicate(CC_P, su->getPredicate());
bld.mkOp2(OP_UNION, TYPE_U32, def, su->getDef(0), mov->getDef(0));
}
}
bool
NVC0LoweringPass::handleWRSV(Instruction *i)
{
Instruction *st;
Symbol *sym;
uint32_t addr;
// must replace, $sreg are not writeable
addr = targ->getSVAddress(FILE_SHADER_OUTPUT, i->getSrc(0)->asSym());
if (addr >= 0x400)
return false;
sym = bld.mkSymbol(FILE_SHADER_OUTPUT, 0, i->sType, addr);
st = bld.mkStore(OP_EXPORT, i->dType, sym, i->getIndirect(0, 0),
i->getSrc(1));
st->perPatch = i->perPatch;
bld.getBB()->remove(i);
return true;
}
void
NVC0LoweringPass::handleLDST(Instruction *i)
{
if (i->src(0).getFile() == FILE_SHADER_INPUT) {
if (prog->getType() == Program::TYPE_COMPUTE) {
i->getSrc(0)->reg.file = FILE_MEMORY_CONST;
i->getSrc(0)->reg.fileIndex = 0;
} else
if (prog->getType() == Program::TYPE_GEOMETRY &&
i->src(0).isIndirect(0)) {
// XXX: this assumes vec4 units
Value *ptr = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(),
i->getIndirect(0, 0), bld.mkImm(4));
i->setIndirect(0, 0, ptr);
i->op = OP_VFETCH;
} else {
i->op = OP_VFETCH;
assert(prog->getType() != Program::TYPE_FRAGMENT); // INTERP
}
} else if (i->src(0).getFile() == FILE_MEMORY_CONST) {
if (targ->getChipset() >= NVISA_GK104_CHIPSET &&
prog->getType() == Program::TYPE_COMPUTE) {
// The launch descriptor only allows to set up 8 CBs, but OpenGL
// requires at least 12 UBOs. To bypass this limitation, we store the
// addrs into the driver constbuf and we directly load from the global
// memory.
int8_t fileIndex = i->getSrc(0)->reg.fileIndex - 1;
Value *ind = i->getIndirect(0, 1);
if (ind) {
// Clamp the UBO index when an indirect access is used to avoid
// loading information from the wrong place in the driver cb.
ind = bld.mkOp2v(OP_MIN, TYPE_U32, ind,
bld.mkOp2v(OP_ADD, TYPE_U32, bld.getSSA(),
ind, bld.loadImm(NULL, fileIndex)),
bld.loadImm(NULL, 12));
}
if (i->src(0).isIndirect(1)) {
Value *offset = bld.loadImm(NULL, i->getSrc(0)->reg.data.offset + typeSizeof(i->sType));
Value *ptr = loadUboInfo64(ind, fileIndex * 16);
Value *length = loadUboLength32(ind, fileIndex * 16);
Value *pred = new_LValue(func, FILE_PREDICATE);
if (i->src(0).isIndirect(0)) {
bld.mkOp2(OP_ADD, TYPE_U64, ptr, ptr, i->getIndirect(0, 0));
bld.mkOp2(OP_ADD, TYPE_U32, offset, offset, i->getIndirect(0, 0));
}
i->getSrc(0)->reg.file = FILE_MEMORY_GLOBAL;
i->setIndirect(0, 1, NULL);
i->setIndirect(0, 0, ptr);
bld.mkCmp(OP_SET, CC_GT, TYPE_U32, pred, TYPE_U32, offset, length);
i->setPredicate(CC_NOT_P, pred);
if (i->defExists(0)) {
bld.mkMov(i->getDef(0), bld.mkImm(0));
}
} else if (fileIndex >= 0) {
Value *ptr = loadUboInfo64(ind, fileIndex * 16);
if (i->src(0).isIndirect(0)) {
bld.mkOp2(OP_ADD, TYPE_U64, ptr, ptr, i->getIndirect(0, 0));
}
i->getSrc(0)->reg.file = FILE_MEMORY_GLOBAL;
i->setIndirect(0, 1, NULL);
i->setIndirect(0, 0, ptr);
}
} else if (i->src(0).isIndirect(1)) {
Value *ptr;
if (i->src(0).isIndirect(0))
ptr = bld.mkOp3v(OP_INSBF, TYPE_U32, bld.getSSA(),
i->getIndirect(0, 1), bld.mkImm(0x1010),
i->getIndirect(0, 0));
else
ptr = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(),
i->getIndirect(0, 1), bld.mkImm(16));
i->setIndirect(0, 1, NULL);
i->setIndirect(0, 0, ptr);
i->subOp = NV50_IR_SUBOP_LDC_IS;
}
} else if (i->src(0).getFile() == FILE_SHADER_OUTPUT) {
assert(prog->getType() == Program::TYPE_TESSELLATION_CONTROL);
i->op = OP_VFETCH;
} else if (i->src(0).getFile() == FILE_MEMORY_BUFFER) {
Value *ind = i->getIndirect(0, 1);
Value *ptr = loadBufInfo64(ind, i->getSrc(0)->reg.fileIndex * 16);
// XXX come up with a way not to do this for EVERY little access but
// rather to batch these up somehow. Unfortunately we've lost the
// information about the field width by the time we get here.
Value *offset = bld.loadImm(NULL, i->getSrc(0)->reg.data.offset + typeSizeof(i->sType));
Value *length = loadBufLength32(ind, i->getSrc(0)->reg.fileIndex * 16);
Value *pred = new_LValue(func, FILE_PREDICATE);
if (i->src(0).isIndirect(0)) {
bld.mkOp2(OP_ADD, TYPE_U64, ptr, ptr, i->getIndirect(0, 0));
bld.mkOp2(OP_ADD, TYPE_U32, offset, offset, i->getIndirect(0, 0));
}
i->setIndirect(0, 1, NULL);
i->setIndirect(0, 0, ptr);
i->getSrc(0)->reg.file = FILE_MEMORY_GLOBAL;
bld.mkCmp(OP_SET, CC_GT, TYPE_U32, pred, TYPE_U32, offset, length);
i->setPredicate(CC_NOT_P, pred);
if (i->defExists(0)) {
Value *zero, *dst = i->getDef(0);
i->setDef(0, bld.getSSA());
bld.setPosition(i, true);
bld.mkMov((zero = bld.getSSA()), bld.mkImm(0))
->setPredicate(CC_P, pred);
bld.mkOp2(OP_UNION, TYPE_U32, dst, i->getDef(0), zero);
}
}
}
void
NVC0LoweringPass::readTessCoord(LValue *dst, int c)
{
Value *laneid = bld.getSSA();
Value *x, *y;
bld.mkOp1(OP_RDSV, TYPE_U32, laneid, bld.mkSysVal(SV_LANEID, 0));
if (c == 0) {
x = dst;
y = NULL;
} else
if (c == 1) {
x = NULL;
y = dst;
} else {
assert(c == 2);
if (prog->driver->prop.tp.domain != PIPE_PRIM_TRIANGLES) {
bld.mkMov(dst, bld.loadImm(NULL, 0));
return;
}
x = bld.getSSA();
y = bld.getSSA();
}
if (x)
bld.mkFetch(x, TYPE_F32, FILE_SHADER_OUTPUT, 0x2f0, NULL, laneid);
if (y)
bld.mkFetch(y, TYPE_F32, FILE_SHADER_OUTPUT, 0x2f4, NULL, laneid);
if (c == 2) {
bld.mkOp2(OP_ADD, TYPE_F32, dst, x, y);
bld.mkOp2(OP_SUB, TYPE_F32, dst, bld.loadImm(NULL, 1.0f), dst);
}
}
bool
NVC0LoweringPass::handleRDSV(Instruction *i)
{
Symbol *sym = i->getSrc(0)->asSym();
const SVSemantic sv = sym->reg.data.sv.sv;
Value *vtx = NULL;
Instruction *ld;
uint32_t addr = targ->getSVAddress(FILE_SHADER_INPUT, sym);
if (addr >= 0x400) {
// mov $sreg
if (sym->reg.data.sv.index == 3) {
// TGSI backend may use 4th component of TID,NTID,CTAID,NCTAID
i->op = OP_MOV;
i->setSrc(0, bld.mkImm((sv == SV_NTID || sv == SV_NCTAID) ? 1 : 0));
}
if (sv == SV_VERTEX_COUNT) {
bld.setPosition(i, true);
bld.mkOp2(OP_EXTBF, TYPE_U32, i->getDef(0), i->getDef(0), bld.mkImm(0x808));
}
return true;
}
switch (sv) {
case SV_POSITION:
assert(prog->getType() == Program::TYPE_FRAGMENT);
if (i->srcExists(1)) {
// Pass offset through to the interpolation logic
ld = bld.mkInterp(NV50_IR_INTERP_LINEAR | NV50_IR_INTERP_OFFSET,
i->getDef(0), addr, NULL);
ld->setSrc(1, i->getSrc(1));
} else {
bld.mkInterp(NV50_IR_INTERP_LINEAR, i->getDef(0), addr, NULL);
}
break;
case SV_FACE:
{
Value *face = i->getDef(0);
bld.mkInterp(NV50_IR_INTERP_FLAT, face, addr, NULL);
if (i->dType == TYPE_F32) {
bld.mkOp2(OP_OR, TYPE_U32, face, face, bld.mkImm(0x00000001));
bld.mkOp1(OP_NEG, TYPE_S32, face, face);
bld.mkCvt(OP_CVT, TYPE_F32, face, TYPE_S32, face);
}
}
break;
case SV_TESS_COORD:
assert(prog->getType() == Program::TYPE_TESSELLATION_EVAL);
readTessCoord(i->getDef(0)->asLValue(), i->getSrc(0)->reg.data.sv.index);
break;
case SV_NTID:
case SV_NCTAID:
case SV_GRIDID:
assert(targ->getChipset() >= NVISA_GK104_CHIPSET); // mov $sreg otherwise
if (sym->reg.data.sv.index == 3) {
i->op = OP_MOV;
i->setSrc(0, bld.mkImm(sv == SV_GRIDID ? 0 : 1));
return true;
}
// Fallthrough
case SV_WORK_DIM:
addr += prog->driver->prop.cp.gridInfoBase;
bld.mkLoad(TYPE_U32, i->getDef(0),
bld.mkSymbol(FILE_MEMORY_CONST, prog->driver->io.auxCBSlot,
TYPE_U32, addr), NULL);
break;
case SV_SAMPLE_INDEX:
// TODO: Properly pass source as an address in the PIX address space
// (which can be of the form [r0+offset]). But this is currently
// unnecessary.
ld = bld.mkOp1(OP_PIXLD, TYPE_U32, i->getDef(0), bld.mkImm(0));
ld->subOp = NV50_IR_SUBOP_PIXLD_SAMPLEID;
break;
case SV_SAMPLE_POS: {
Value *off = new_LValue(func, FILE_GPR);
ld = bld.mkOp1(OP_PIXLD, TYPE_U32, i->getDef(0), bld.mkImm(0));
ld->subOp = NV50_IR_SUBOP_PIXLD_SAMPLEID;
bld.mkOp2(OP_SHL, TYPE_U32, off, i->getDef(0), bld.mkImm(3));
bld.mkLoad(TYPE_F32,
i->getDef(0),
bld.mkSymbol(
FILE_MEMORY_CONST, prog->driver->io.auxCBSlot,
TYPE_U32, prog->driver->io.sampleInfoBase +
4 * sym->reg.data.sv.index),
off);
break;
}
case SV_SAMPLE_MASK: {
ld = bld.mkOp1(OP_PIXLD, TYPE_U32, i->getDef(0), bld.mkImm(0));
ld->subOp = NV50_IR_SUBOP_PIXLD_COVMASK;
Instruction *sampleid =
bld.mkOp1(OP_PIXLD, TYPE_U32, bld.getSSA(), bld.mkImm(0));
sampleid->subOp = NV50_IR_SUBOP_PIXLD_SAMPLEID;
Value *masked =
bld.mkOp2v(OP_AND, TYPE_U32, bld.getSSA(), ld->getDef(0),
bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(),
bld.loadImm(NULL, 1), sampleid->getDef(0)));
if (prog->driver->prop.fp.persampleInvocation) {
bld.mkMov(i->getDef(0), masked);
} else {
bld.mkOp3(OP_SELP, TYPE_U32, i->getDef(0), ld->getDef(0), masked,
bld.mkImm(0))
->subOp = 1;
}
break;
}
case SV_BASEVERTEX:
case SV_BASEINSTANCE:
case SV_DRAWID:
ld = bld.mkLoad(TYPE_U32, i->getDef(0),
bld.mkSymbol(FILE_MEMORY_CONST,
prog->driver->io.auxCBSlot,
TYPE_U32,
prog->driver->io.drawInfoBase +
4 * (sv - SV_BASEVERTEX)),
NULL);
break;
default:
if (prog->getType() == Program::TYPE_TESSELLATION_EVAL && !i->perPatch)
vtx = bld.mkOp1v(OP_PFETCH, TYPE_U32, bld.getSSA(), bld.mkImm(0));
if (prog->getType() == Program::TYPE_FRAGMENT) {
bld.mkInterp(NV50_IR_INTERP_FLAT, i->getDef(0), addr, NULL);
} else {
ld = bld.mkFetch(i->getDef(0), i->dType,
FILE_SHADER_INPUT, addr, i->getIndirect(0, 0), vtx);
ld->perPatch = i->perPatch;
}
break;
}
bld.getBB()->remove(i);
return true;
}
bool
NVC0LoweringPass::handleDIV(Instruction *i)
{
if (!isFloatType(i->dType))
return true;
bld.setPosition(i, false);
Instruction *rcp = bld.mkOp1(OP_RCP, i->dType, bld.getSSA(typeSizeof(i->dType)), i->getSrc(1));
i->op = OP_MUL;
i->setSrc(1, rcp->getDef(0));
return true;
}
bool
NVC0LoweringPass::handleMOD(Instruction *i)
{
if (!isFloatType(i->dType))
return true;
LValue *value = bld.getScratch(typeSizeof(i->dType));
bld.mkOp1(OP_RCP, i->dType, value, i->getSrc(1));
bld.mkOp2(OP_MUL, i->dType, value, i->getSrc(0), value);
bld.mkOp1(OP_TRUNC, i->dType, value, value);
bld.mkOp2(OP_MUL, i->dType, value, i->getSrc(1), value);
i->op = OP_SUB;
i->setSrc(1, value);
return true;
}
bool
NVC0LoweringPass::handleSQRT(Instruction *i)
{
if (i->dType == TYPE_F64) {
Value *pred = bld.getSSA(1, FILE_PREDICATE);
Value *zero = bld.loadImm(NULL, 0.0);
Value *dst = bld.getSSA(8);
bld.mkOp1(OP_RSQ, i->dType, dst, i->getSrc(0));
bld.mkCmp(OP_SET, CC_LE, i->dType, pred, i->dType, i->getSrc(0), zero);
bld.mkOp3(OP_SELP, TYPE_U64, dst, zero, dst, pred);
i->op = OP_MUL;
i->setSrc(1, dst);
// TODO: Handle this properly with a library function
} else {
bld.setPosition(i, true);
i->op = OP_RSQ;
bld.mkOp1(OP_RCP, i->dType, i->getDef(0), i->getDef(0));
}
return true;
}
bool
NVC0LoweringPass::handlePOW(Instruction *i)
{
LValue *val = bld.getScratch();
bld.mkOp1(OP_LG2, TYPE_F32, val, i->getSrc(0));
bld.mkOp2(OP_MUL, TYPE_F32, val, i->getSrc(1), val)->dnz = 1;
bld.mkOp1(OP_PREEX2, TYPE_F32, val, val);
i->op = OP_EX2;
i->setSrc(0, val);
i->setSrc(1, NULL);
return true;
}
bool
NVC0LoweringPass::handleEXPORT(Instruction *i)
{
if (prog->getType() == Program::TYPE_FRAGMENT) {
int id = i->getSrc(0)->reg.data.offset / 4;
if (i->src(0).isIndirect(0)) // TODO, ugly
return false;
i->op = OP_MOV;
i->subOp = NV50_IR_SUBOP_MOV_FINAL;
i->src(0).set(i->src(1));
i->setSrc(1, NULL);
i->setDef(0, new_LValue(func, FILE_GPR));
i->getDef(0)->reg.data.id = id;
prog->maxGPR = MAX2(prog->maxGPR, id);
} else
if (prog->getType() == Program::TYPE_GEOMETRY) {
i->setIndirect(0, 1, gpEmitAddress);
}
return true;
}
bool
NVC0LoweringPass::handleOUT(Instruction *i)
{
Instruction *prev = i->prev;
ImmediateValue stream, prevStream;
// Only merge if the stream ids match. Also, note that the previous
// instruction would have already been lowered, so we take arg1 from it.
if (i->op == OP_RESTART && prev && prev->op == OP_EMIT &&
i->src(0).getImmediate(stream) &&
prev->src(1).getImmediate(prevStream) &&
stream.reg.data.u32 == prevStream.reg.data.u32) {
i->prev->subOp = NV50_IR_SUBOP_EMIT_RESTART;
delete_Instruction(prog, i);
} else {
assert(gpEmitAddress);
i->setDef(0, gpEmitAddress);
i->setSrc(1, i->getSrc(0));
i->setSrc(0, gpEmitAddress);
}
return true;
}
// Generate a binary predicate if an instruction is predicated by
// e.g. an f32 value.
void
NVC0LoweringPass::checkPredicate(Instruction *insn)
{
Value *pred = insn->getPredicate();
Value *pdst;
if (!pred || pred->reg.file == FILE_PREDICATE)
return;
pdst = new_LValue(func, FILE_PREDICATE);
// CAUTION: don't use pdst->getInsn, the definition might not be unique,
// delay turning PSET(FSET(x,y),0) into PSET(x,y) to a later pass
bld.mkCmp(OP_SET, CC_NEU, insn->dType, pdst, insn->dType, bld.mkImm(0), pred);
insn->setPredicate(insn->cc, pdst);
}
//
// - add quadop dance for texturing
// - put FP outputs in GPRs
// - convert instruction sequences
//
bool
NVC0LoweringPass::visit(Instruction *i)
{
bool ret = true;
bld.setPosition(i, false);
if (i->cc != CC_ALWAYS)
checkPredicate(i);
switch (i->op) {
case OP_TEX:
case OP_TXB:
case OP_TXL:
case OP_TXF:
case OP_TXG:
return handleTEX(i->asTex());
case OP_TXD:
return handleTXD(i->asTex());
case OP_TXLQ:
return handleTXLQ(i->asTex());
case OP_TXQ:
return handleTXQ(i->asTex());
case OP_EX2:
bld.mkOp1(OP_PREEX2, TYPE_F32, i->getDef(0), i->getSrc(0));
i->setSrc(0, i->getDef(0));
break;
case OP_POW:
return handlePOW(i);
case OP_DIV:
return handleDIV(i);
case OP_MOD:
return handleMOD(i);
case OP_SQRT:
return handleSQRT(i);
case OP_EXPORT:
ret = handleEXPORT(i);
break;
case OP_EMIT:
case OP_RESTART:
return handleOUT(i);
case OP_RDSV:
return handleRDSV(i);
case OP_WRSV:
return handleWRSV(i);
case OP_STORE:
case OP_LOAD:
handleLDST(i);
break;
case OP_ATOM:
{
const bool cctl = i->src(0).getFile() == FILE_MEMORY_BUFFER;
handleATOM(i);
handleCasExch(i, cctl);
}
break;
case OP_SULDB:
case OP_SULDP:
case OP_SUSTB:
case OP_SUSTP:
case OP_SUREDB:
case OP_SUREDP:
if (targ->getChipset() >= NVISA_GM107_CHIPSET)
handleSurfaceOpGM107(i->asTex());
else if (targ->getChipset() >= NVISA_GK104_CHIPSET)
handleSurfaceOpNVE4(i->asTex());
else
handleSurfaceOpNVC0(i->asTex());
break;
case OP_SUQ:
handleSUQ(i->asTex());
break;
case OP_BUFQ:
handleBUFQ(i);
break;
default:
break;
}
/* Kepler+ has a special opcode to compute a new base address to be used
* for indirect loads.
*
* Maxwell+ has an additional similar requirement for indirect
* interpolation ops in frag shaders.
*/
bool doAfetch = false;
if (targ->getChipset() >= NVISA_GK104_CHIPSET &&
!i->perPatch &&
(i->op == OP_VFETCH || i->op == OP_EXPORT) &&
i->src(0).isIndirect(0)) {
doAfetch = true;
}
if (targ->getChipset() >= NVISA_GM107_CHIPSET &&
(i->op == OP_LINTERP || i->op == OP_PINTERP) &&
i->src(0).isIndirect(0)) {
doAfetch = true;
}
if (doAfetch) {
Value *addr = cloneShallow(func, i->getSrc(0));
Instruction *afetch = bld.mkOp1(OP_AFETCH, TYPE_U32, bld.getSSA(),
i->getSrc(0));
afetch->setIndirect(0, 0, i->getIndirect(0, 0));
addr->reg.data.offset = 0;
i->setSrc(0, addr);
i->setIndirect(0, 0, afetch->getDef(0));
}
return ret;
}
bool
TargetNVC0::runLegalizePass(Program *prog, CGStage stage) const
{
if (stage == CG_STAGE_PRE_SSA) {
NVC0LoweringPass pass(prog);
return pass.run(prog, false, true);
} else
if (stage == CG_STAGE_POST_RA) {
NVC0LegalizePostRA pass(prog);
return pass.run(prog, false, true);
} else
if (stage == CG_STAGE_SSA) {
NVC0LegalizeSSA pass;
return pass.run(prog, false, true);
}
return false;
}
} // namespace nv50_ir