blob: 85ac4a119c50eb62d5f83cb397859095117a43d9 [file] [log] [blame]
/*
* Copyright 2013 Advanced Micro Devices, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "si_build_pm4.h"
#include "util/u_memory.h"
#include "util/u_suballoc.h"
static void si_set_streamout_enable(struct si_context *sctx, bool enable);
static inline void si_so_target_reference(struct si_streamout_target **dst,
struct pipe_stream_output_target *src)
{
pipe_so_target_reference((struct pipe_stream_output_target**)dst, src);
}
static struct pipe_stream_output_target *
si_create_so_target(struct pipe_context *ctx,
struct pipe_resource *buffer,
unsigned buffer_offset,
unsigned buffer_size)
{
struct si_context *sctx = (struct si_context *)ctx;
struct si_streamout_target *t;
struct si_resource *buf = si_resource(buffer);
t = CALLOC_STRUCT(si_streamout_target);
if (!t) {
return NULL;
}
unsigned buf_filled_size_size = sctx->screen->use_ngg_streamout ? 8 : 4;
u_suballocator_alloc(sctx->allocator_zeroed_memory, buf_filled_size_size, 4,
&t->buf_filled_size_offset,
(struct pipe_resource**)&t->buf_filled_size);
if (!t->buf_filled_size) {
FREE(t);
return NULL;
}
t->b.reference.count = 1;
t->b.context = ctx;
pipe_resource_reference(&t->b.buffer, buffer);
t->b.buffer_offset = buffer_offset;
t->b.buffer_size = buffer_size;
util_range_add(&buf->b.b, &buf->valid_buffer_range, buffer_offset,
buffer_offset + buffer_size);
return &t->b;
}
static void si_so_target_destroy(struct pipe_context *ctx,
struct pipe_stream_output_target *target)
{
struct si_streamout_target *t = (struct si_streamout_target*)target;
pipe_resource_reference(&t->b.buffer, NULL);
si_resource_reference(&t->buf_filled_size, NULL);
FREE(t);
}
void si_streamout_buffers_dirty(struct si_context *sctx)
{
if (!sctx->streamout.enabled_mask)
return;
si_mark_atom_dirty(sctx, &sctx->atoms.s.streamout_begin);
si_set_streamout_enable(sctx, true);
}
static void si_set_streamout_targets(struct pipe_context *ctx,
unsigned num_targets,
struct pipe_stream_output_target **targets,
const unsigned *offsets)
{
struct si_context *sctx = (struct si_context *)ctx;
unsigned old_num_targets = sctx->streamout.num_targets;
unsigned i;
bool wait_now = false;
/* We are going to unbind the buffers. Mark which caches need to be flushed. */
if (sctx->streamout.num_targets && sctx->streamout.begin_emitted) {
/* Since streamout uses vector writes which go through TC L2
* and most other clients can use TC L2 as well, we don't need
* to flush it.
*
* The only cases which requires flushing it is VGT DMA index
* fetching (on <= GFX7) and indirect draw data, which are rare
* cases. Thus, flag the TC L2 dirtiness in the resource and
* handle it at draw call time.
*/
for (i = 0; i < sctx->streamout.num_targets; i++)
if (sctx->streamout.targets[i])
si_resource(sctx->streamout.targets[i]->b.buffer)->TC_L2_dirty = true;
/* Invalidate the scalar cache in case a streamout buffer is
* going to be used as a constant buffer.
*
* Invalidate vL1, because streamout bypasses it (done by
* setting GLC=1 in the store instruction), but vL1 in other
* CUs can contain outdated data of streamout buffers.
*
* VS_PARTIAL_FLUSH is required if the buffers are going to be
* used as an input immediately.
*/
sctx->flags |= SI_CONTEXT_INV_SCACHE |
SI_CONTEXT_INV_VCACHE;
/* The BUFFER_FILLED_SIZE is written using a PS_DONE event. */
if (sctx->screen->use_ngg_streamout) {
sctx->flags |= SI_CONTEXT_PS_PARTIAL_FLUSH;
/* Wait now. This is needed to make sure that GDS is not
* busy at the end of IBs.
*
* Also, the next streamout operation will overwrite GDS,
* so we need to make sure that it's idle.
*/
wait_now = true;
} else {
sctx->flags |= SI_CONTEXT_VS_PARTIAL_FLUSH;
}
}
/* All readers of the streamout targets need to be finished before we can
* start writing to the targets.
*/
if (num_targets) {
if (sctx->screen->use_ngg_streamout)
si_allocate_gds(sctx);
sctx->flags |= SI_CONTEXT_PS_PARTIAL_FLUSH |
SI_CONTEXT_CS_PARTIAL_FLUSH;
}
/* Streamout buffers must be bound in 2 places:
* 1) in VGT by setting the VGT_STRMOUT registers
* 2) as shader resources
*/
/* Stop streamout. */
if (sctx->streamout.num_targets && sctx->streamout.begin_emitted)
si_emit_streamout_end(sctx);
/* Set the new targets. */
unsigned enabled_mask = 0, append_bitmask = 0;
for (i = 0; i < num_targets; i++) {
si_so_target_reference(&sctx->streamout.targets[i], targets[i]);
if (!targets[i])
continue;
si_context_add_resource_size(sctx, targets[i]->buffer);
enabled_mask |= 1 << i;
if (offsets[i] == ((unsigned)-1))
append_bitmask |= 1 << i;
}
for (; i < sctx->streamout.num_targets; i++)
si_so_target_reference(&sctx->streamout.targets[i], NULL);
sctx->streamout.enabled_mask = enabled_mask;
sctx->streamout.num_targets = num_targets;
sctx->streamout.append_bitmask = append_bitmask;
/* Update dirty state bits. */
if (num_targets) {
si_streamout_buffers_dirty(sctx);
} else {
si_set_atom_dirty(sctx, &sctx->atoms.s.streamout_begin, false);
si_set_streamout_enable(sctx, false);
}
/* Set the shader resources.*/
for (i = 0; i < num_targets; i++) {
if (targets[i]) {
struct pipe_shader_buffer sbuf;
sbuf.buffer = targets[i]->buffer;
if (sctx->screen->use_ngg_streamout) {
sbuf.buffer_offset = targets[i]->buffer_offset;
sbuf.buffer_size = targets[i]->buffer_size;
} else {
sbuf.buffer_offset = 0;
sbuf.buffer_size = targets[i]->buffer_offset +
targets[i]->buffer_size;
}
si_set_rw_shader_buffer(sctx, SI_VS_STREAMOUT_BUF0 + i, &sbuf);
si_resource(targets[i]->buffer)->bind_history |= PIPE_BIND_STREAM_OUTPUT;
} else {
si_set_rw_shader_buffer(sctx, SI_VS_STREAMOUT_BUF0 + i, NULL);
}
}
for (; i < old_num_targets; i++)
si_set_rw_shader_buffer(sctx, SI_VS_STREAMOUT_BUF0 + i, NULL);
if (wait_now)
sctx->emit_cache_flush(sctx);
}
static void gfx10_emit_streamout_begin(struct si_context *sctx)
{
struct si_streamout_target **t = sctx->streamout.targets;
struct radeon_cmdbuf *cs = sctx->gfx_cs;
unsigned last_target = 0;
for (unsigned i = 0; i < sctx->streamout.num_targets; i++) {
if (t[i])
last_target = i;
}
for (unsigned i = 0; i < sctx->streamout.num_targets; i++) {
if (!t[i])
continue;
t[i]->stride_in_dw = sctx->streamout.stride_in_dw[i];
bool append = sctx->streamout.append_bitmask & (1 << i);
uint64_t va = 0;
if (append) {
radeon_add_to_buffer_list(sctx, sctx->gfx_cs,
t[i]->buf_filled_size,
RADEON_USAGE_READ,
RADEON_PRIO_SO_FILLED_SIZE);
va = t[i]->buf_filled_size->gpu_address +
t[i]->buf_filled_size_offset;
}
radeon_emit(cs, PKT3(PKT3_DMA_DATA, 5, 0));
radeon_emit(cs, S_411_SRC_SEL(append ? V_411_SRC_ADDR_TC_L2 : V_411_DATA) |
S_411_DST_SEL(V_411_GDS) |
S_411_CP_SYNC(i == last_target));
radeon_emit(cs, va);
radeon_emit(cs, va >> 32);
radeon_emit(cs, 4 * i); /* destination in GDS */
radeon_emit(cs, 0);
radeon_emit(cs, S_414_BYTE_COUNT_GFX9(4) |
S_414_DISABLE_WR_CONFIRM_GFX9(i != last_target));
}
sctx->streamout.begin_emitted = true;
}
static void gfx10_emit_streamout_end(struct si_context *sctx)
{
struct si_streamout_target **t = sctx->streamout.targets;
for (unsigned i = 0; i < sctx->streamout.num_targets; i++) {
if (!t[i])
continue;
uint64_t va = t[i]->buf_filled_size->gpu_address + t[i]->buf_filled_size_offset;
si_cp_release_mem(sctx, sctx->gfx_cs, V_028A90_PS_DONE, 0,
EOP_DST_SEL_TC_L2,
EOP_INT_SEL_SEND_DATA_AFTER_WR_CONFIRM,
EOP_DATA_SEL_GDS,
t[i]->buf_filled_size, va,
EOP_DATA_GDS(i, 1), 0);
t[i]->buf_filled_size_valid = true;
}
sctx->streamout.begin_emitted = false;
}
static void si_flush_vgt_streamout(struct si_context *sctx)
{
struct radeon_cmdbuf *cs = sctx->gfx_cs;
unsigned reg_strmout_cntl;
/* The register is at different places on different ASICs. */
if (sctx->chip_class >= GFX7) {
reg_strmout_cntl = R_0300FC_CP_STRMOUT_CNTL;
radeon_set_uconfig_reg(cs, reg_strmout_cntl, 0);
} else {
reg_strmout_cntl = R_0084FC_CP_STRMOUT_CNTL;
radeon_set_config_reg(cs, reg_strmout_cntl, 0);
}
radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
radeon_emit(cs, EVENT_TYPE(EVENT_TYPE_SO_VGTSTREAMOUT_FLUSH) | EVENT_INDEX(0));
radeon_emit(cs, PKT3(PKT3_WAIT_REG_MEM, 5, 0));
radeon_emit(cs, WAIT_REG_MEM_EQUAL); /* wait until the register is equal to the reference value */
radeon_emit(cs, reg_strmout_cntl >> 2); /* register */
radeon_emit(cs, 0);
radeon_emit(cs, S_0084FC_OFFSET_UPDATE_DONE(1)); /* reference value */
radeon_emit(cs, S_0084FC_OFFSET_UPDATE_DONE(1)); /* mask */
radeon_emit(cs, 4); /* poll interval */
}
static void si_emit_streamout_begin(struct si_context *sctx)
{
struct radeon_cmdbuf *cs = sctx->gfx_cs;
struct si_streamout_target **t = sctx->streamout.targets;
uint16_t *stride_in_dw = sctx->streamout.stride_in_dw;
unsigned i;
si_flush_vgt_streamout(sctx);
for (i = 0; i < sctx->streamout.num_targets; i++) {
if (!t[i])
continue;
t[i]->stride_in_dw = stride_in_dw[i];
/* AMD GCN binds streamout buffers as shader resources.
* VGT only counts primitives and tells the shader
* through SGPRs what to do. */
radeon_set_context_reg_seq(cs, R_028AD0_VGT_STRMOUT_BUFFER_SIZE_0 + 16*i, 2);
radeon_emit(cs, (t[i]->b.buffer_offset +
t[i]->b.buffer_size) >> 2); /* BUFFER_SIZE (in DW) */
radeon_emit(cs, stride_in_dw[i]); /* VTX_STRIDE (in DW) */
if (sctx->streamout.append_bitmask & (1 << i) && t[i]->buf_filled_size_valid) {
uint64_t va = t[i]->buf_filled_size->gpu_address +
t[i]->buf_filled_size_offset;
/* Append. */
radeon_emit(cs, PKT3(PKT3_STRMOUT_BUFFER_UPDATE, 4, 0));
radeon_emit(cs, STRMOUT_SELECT_BUFFER(i) |
STRMOUT_OFFSET_SOURCE(STRMOUT_OFFSET_FROM_MEM)); /* control */
radeon_emit(cs, 0); /* unused */
radeon_emit(cs, 0); /* unused */
radeon_emit(cs, va); /* src address lo */
radeon_emit(cs, va >> 32); /* src address hi */
radeon_add_to_buffer_list(sctx, sctx->gfx_cs,
t[i]->buf_filled_size,
RADEON_USAGE_READ,
RADEON_PRIO_SO_FILLED_SIZE);
} else {
/* Start from the beginning. */
radeon_emit(cs, PKT3(PKT3_STRMOUT_BUFFER_UPDATE, 4, 0));
radeon_emit(cs, STRMOUT_SELECT_BUFFER(i) |
STRMOUT_OFFSET_SOURCE(STRMOUT_OFFSET_FROM_PACKET)); /* control */
radeon_emit(cs, 0); /* unused */
radeon_emit(cs, 0); /* unused */
radeon_emit(cs, t[i]->b.buffer_offset >> 2); /* buffer offset in DW */
radeon_emit(cs, 0); /* unused */
}
}
sctx->streamout.begin_emitted = true;
}
void si_emit_streamout_end(struct si_context *sctx)
{
if (sctx->screen->use_ngg_streamout) {
gfx10_emit_streamout_end(sctx);
return;
}
struct radeon_cmdbuf *cs = sctx->gfx_cs;
struct si_streamout_target **t = sctx->streamout.targets;
unsigned i;
uint64_t va;
si_flush_vgt_streamout(sctx);
for (i = 0; i < sctx->streamout.num_targets; i++) {
if (!t[i])
continue;
va = t[i]->buf_filled_size->gpu_address + t[i]->buf_filled_size_offset;
radeon_emit(cs, PKT3(PKT3_STRMOUT_BUFFER_UPDATE, 4, 0));
radeon_emit(cs, STRMOUT_SELECT_BUFFER(i) |
STRMOUT_OFFSET_SOURCE(STRMOUT_OFFSET_NONE) |
STRMOUT_STORE_BUFFER_FILLED_SIZE); /* control */
radeon_emit(cs, va); /* dst address lo */
radeon_emit(cs, va >> 32); /* dst address hi */
radeon_emit(cs, 0); /* unused */
radeon_emit(cs, 0); /* unused */
radeon_add_to_buffer_list(sctx, sctx->gfx_cs,
t[i]->buf_filled_size,
RADEON_USAGE_WRITE,
RADEON_PRIO_SO_FILLED_SIZE);
/* Zero the buffer size. The counters (primitives generated,
* primitives emitted) may be enabled even if there is not
* buffer bound. This ensures that the primitives-emitted query
* won't increment. */
radeon_set_context_reg(cs, R_028AD0_VGT_STRMOUT_BUFFER_SIZE_0 + 16*i, 0);
sctx->context_roll = true;
t[i]->buf_filled_size_valid = true;
}
sctx->streamout.begin_emitted = false;
}
/* STREAMOUT CONFIG DERIVED STATE
*
* Streamout must be enabled for the PRIMITIVES_GENERATED query to work.
* The buffer mask is an independent state, so no writes occur if there
* are no buffers bound.
*/
static void si_emit_streamout_enable(struct si_context *sctx)
{
assert(!sctx->screen->use_ngg_streamout);
radeon_set_context_reg_seq(sctx->gfx_cs, R_028B94_VGT_STRMOUT_CONFIG, 2);
radeon_emit(sctx->gfx_cs,
S_028B94_STREAMOUT_0_EN(si_get_strmout_en(sctx)) |
S_028B94_RAST_STREAM(0) |
S_028B94_STREAMOUT_1_EN(si_get_strmout_en(sctx)) |
S_028B94_STREAMOUT_2_EN(si_get_strmout_en(sctx)) |
S_028B94_STREAMOUT_3_EN(si_get_strmout_en(sctx)));
radeon_emit(sctx->gfx_cs,
sctx->streamout.hw_enabled_mask &
sctx->streamout.enabled_stream_buffers_mask);
}
static void si_set_streamout_enable(struct si_context *sctx, bool enable)
{
bool old_strmout_en = si_get_strmout_en(sctx);
unsigned old_hw_enabled_mask = sctx->streamout.hw_enabled_mask;
sctx->streamout.streamout_enabled = enable;
sctx->streamout.hw_enabled_mask = sctx->streamout.enabled_mask |
(sctx->streamout.enabled_mask << 4) |
(sctx->streamout.enabled_mask << 8) |
(sctx->streamout.enabled_mask << 12);
if (!sctx->screen->use_ngg_streamout &&
((old_strmout_en != si_get_strmout_en(sctx)) ||
(old_hw_enabled_mask != sctx->streamout.hw_enabled_mask)))
si_mark_atom_dirty(sctx, &sctx->atoms.s.streamout_enable);
}
void si_update_prims_generated_query_state(struct si_context *sctx,
unsigned type, int diff)
{
if (!sctx->screen->use_ngg_streamout &&
type == PIPE_QUERY_PRIMITIVES_GENERATED) {
bool old_strmout_en = si_get_strmout_en(sctx);
sctx->streamout.num_prims_gen_queries += diff;
assert(sctx->streamout.num_prims_gen_queries >= 0);
sctx->streamout.prims_gen_query_enabled =
sctx->streamout.num_prims_gen_queries != 0;
if (old_strmout_en != si_get_strmout_en(sctx))
si_mark_atom_dirty(sctx, &sctx->atoms.s.streamout_enable);
if (si_update_ngg(sctx)) {
si_shader_change_notify(sctx);
sctx->do_update_shaders = true;
}
}
}
void si_init_streamout_functions(struct si_context *sctx)
{
sctx->b.create_stream_output_target = si_create_so_target;
sctx->b.stream_output_target_destroy = si_so_target_destroy;
sctx->b.set_stream_output_targets = si_set_streamout_targets;
if (sctx->screen->use_ngg_streamout) {
sctx->atoms.s.streamout_begin.emit = gfx10_emit_streamout_begin;
} else {
sctx->atoms.s.streamout_begin.emit = si_emit_streamout_begin;
sctx->atoms.s.streamout_enable.emit = si_emit_streamout_enable;
}
}