blob: 566c0e5988144f0ad90bb3c935d238f40d4936fe [file] [log] [blame]
/*
* Copyright (C) 2020 Collabora Ltd.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Authors (Collabora):
* Alyssa Rosenzweig <alyssa.rosenzweig@collabora.com>
*/
#include "main/mtypes.h"
#include "compiler/glsl/glsl_to_nir.h"
#include "compiler/nir_types.h"
#include "compiler/nir/nir_builder.h"
#include "util/u_debug.h"
#include "disassemble.h"
#include "bifrost_compile.h"
#include "bifrost_nir.h"
#include "compiler.h"
#include "bi_quirks.h"
#include "bi_print.h"
static const struct debug_named_value debug_options[] = {
{"msgs", BIFROST_DBG_MSGS, "Print debug messages"},
{"shaders", BIFROST_DBG_SHADERS, "Dump shaders in NIR and MIR"},
DEBUG_NAMED_VALUE_END
};
DEBUG_GET_ONCE_FLAGS_OPTION(bifrost_debug, "BIFROST_MESA_DEBUG", debug_options, 0)
int bifrost_debug = 0;
#define DBG(fmt, ...) \
do { if (bifrost_debug & BIFROST_DBG_MSGS) \
fprintf(stderr, "%s:%d: "fmt, \
__FUNCTION__, __LINE__, ##__VA_ARGS__); } while (0)
static bi_block *emit_cf_list(bi_context *ctx, struct exec_list *list);
static bi_instruction *bi_emit_branch(bi_context *ctx);
static void
emit_jump(bi_context *ctx, nir_jump_instr *instr)
{
bi_instruction *branch = bi_emit_branch(ctx);
switch (instr->type) {
case nir_jump_break:
branch->branch_target = ctx->break_block;
break;
case nir_jump_continue:
branch->branch_target = ctx->continue_block;
break;
default:
unreachable("Unhandled jump type");
}
pan_block_add_successor(&ctx->current_block->base, &branch->branch_target->base);
}
static bi_instruction
bi_load(enum bi_class T, nir_intrinsic_instr *instr)
{
bi_instruction load = {
.type = T,
.vector_channels = instr->num_components,
.src = { BIR_INDEX_CONSTANT },
.src_types = { nir_type_uint32 },
.constant = { .u64 = nir_intrinsic_base(instr) },
};
const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
if (info->has_dest)
load.dest = pan_dest_index(&instr->dest);
if (info->has_dest && info->index_map[NIR_INTRINSIC_TYPE] > 0)
load.dest_type = nir_intrinsic_type(instr);
nir_src *offset = nir_get_io_offset_src(instr);
if (nir_src_is_const(*offset))
load.constant.u64 += nir_src_as_uint(*offset);
else
load.src[0] = pan_src_index(offset);
return load;
}
static void
bi_emit_ld_vary(bi_context *ctx, nir_intrinsic_instr *instr)
{
bi_instruction ins = bi_load(BI_LOAD_VAR, instr);
ins.load_vary.interp_mode = BIFROST_INTERP_DEFAULT; /* TODO */
ins.load_vary.reuse = false; /* TODO */
ins.load_vary.flat = instr->intrinsic != nir_intrinsic_load_interpolated_input;
ins.dest_type = nir_type_float | nir_dest_bit_size(instr->dest);
if (nir_src_is_const(*nir_get_io_offset_src(instr))) {
/* Zero it out for direct */
ins.src[1] = BIR_INDEX_ZERO;
} else {
/* R61 contains sample mask stuff, TODO RA XXX */
ins.src[1] = BIR_INDEX_REGISTER | 61;
}
bi_emit(ctx, ins);
}
static void
bi_emit_frag_out(bi_context *ctx, nir_intrinsic_instr *instr)
{
if (!ctx->emitted_atest) {
bi_instruction ins = {
.type = BI_ATEST,
.src = {
BIR_INDEX_REGISTER | 60 /* TODO: RA */,
pan_src_index(&instr->src[0])
},
.src_types = {
nir_type_uint32,
nir_intrinsic_type(instr)
},
.swizzle = {
{ 0 },
{ 3, 0 } /* swizzle out the alpha */
},
.dest = BIR_INDEX_REGISTER | 60 /* TODO: RA */,
.dest_type = nir_type_uint32,
};
bi_emit(ctx, ins);
ctx->emitted_atest = true;
}
bi_instruction blend = {
.type = BI_BLEND,
.blend_location = nir_intrinsic_base(instr),
.src = {
pan_src_index(&instr->src[0]),
BIR_INDEX_REGISTER | 60 /* Can this be arbitrary? */,
},
.src_types = {
nir_intrinsic_type(instr),
nir_type_uint32
},
.swizzle = {
{ 0, 1, 2, 3 },
{ 0 }
},
.dest = BIR_INDEX_REGISTER | 48 /* Looks like magic */,
.dest_type = nir_type_uint32,
.vector_channels = 4
};
assert(blend.blend_location < BIFROST_MAX_RENDER_TARGET_COUNT);
assert(ctx->blend_types);
assert(blend.src_types[0]);
ctx->blend_types[blend.blend_location] = blend.src_types[0];
bi_emit(ctx, blend);
}
static bi_instruction
bi_load_with_r61(enum bi_class T, nir_intrinsic_instr *instr)
{
bi_instruction ld = bi_load(T, instr);
ld.src[1] = BIR_INDEX_REGISTER | 61; /* TODO: RA */
ld.src[2] = BIR_INDEX_REGISTER | 62;
ld.src[3] = 0;
ld.src_types[1] = nir_type_uint32;
ld.src_types[2] = nir_type_uint32;
ld.src_types[3] = nir_intrinsic_type(instr);
return ld;
}
static void
bi_emit_st_vary(bi_context *ctx, nir_intrinsic_instr *instr)
{
bi_instruction address = bi_load_with_r61(BI_LOAD_VAR_ADDRESS, instr);
address.dest = bi_make_temp(ctx);
address.dest_type = nir_type_uint32;
address.vector_channels = 3;
unsigned nr = nir_intrinsic_src_components(instr, 0);
assert(nir_intrinsic_write_mask(instr) == ((1 << nr) - 1));
bi_instruction st = {
.type = BI_STORE_VAR,
.src = {
pan_src_index(&instr->src[0]),
address.dest, address.dest, address.dest,
},
.src_types = {
nir_type_uint32,
nir_type_uint32, nir_type_uint32, nir_type_uint32,
},
.swizzle = {
{ 0 },
{ 0 }, { 1 }, { 2}
},
.vector_channels = nr,
};
for (unsigned i = 0; i < nr; ++i)
st.swizzle[0][i] = i;
bi_emit(ctx, address);
bi_emit(ctx, st);
}
static void
bi_emit_ld_uniform(bi_context *ctx, nir_intrinsic_instr *instr)
{
bi_instruction ld = bi_load(BI_LOAD_UNIFORM, instr);
ld.src[1] = BIR_INDEX_ZERO; /* TODO: UBO index */
/* TODO: Indirect access, since we need to multiply by the element
* size. I believe we can get this lowering automatically via
* nir_lower_io (as mul instructions) with the proper options, but this
* is TODO */
assert(ld.src[0] & BIR_INDEX_CONSTANT);
ld.constant.u64 += ctx->sysvals.sysval_count;
ld.constant.u64 *= 16;
bi_emit(ctx, ld);
}
static void
bi_emit_sysval(bi_context *ctx, nir_instr *instr,
unsigned nr_components, unsigned offset)
{
nir_dest nir_dest;
/* Figure out which uniform this is */
int sysval = panfrost_sysval_for_instr(instr, &nir_dest);
void *val = _mesa_hash_table_u64_search(ctx->sysvals.sysval_to_id, sysval);
/* Sysvals are prefix uniforms */
unsigned uniform = ((uintptr_t) val) - 1;
/* Emit the read itself -- this is never indirect */
bi_instruction load = {
.type = BI_LOAD_UNIFORM,
.vector_channels = nr_components,
.src = { BIR_INDEX_CONSTANT, BIR_INDEX_ZERO },
.src_types = { nir_type_uint32, nir_type_uint32 },
.constant = { (uniform * 16) + offset },
.dest = pan_dest_index(&nir_dest),
.dest_type = nir_type_uint32, /* TODO */
};
bi_emit(ctx, load);
}
/* gl_FragCoord.xy = u16_to_f32(R59.xy) + 0.5
* gl_FragCoord.z = ld_vary(fragz)
* gl_FragCoord.w = ld_vary(fragw)
*/
static void
bi_emit_ld_frag_coord(bi_context *ctx, nir_intrinsic_instr *instr)
{
/* Future proofing for mediump fragcoord at some point.. */
nir_alu_type T = nir_type_float32;
/* First, sketch a combine */
bi_instruction combine = {
.type = BI_COMBINE,
.dest_type = nir_type_uint32,
.dest = pan_dest_index(&instr->dest),
.src_types = { T, T, T, T },
};
/* Second, handle xy */
for (unsigned i = 0; i < 2; ++i) {
bi_instruction conv = {
.type = BI_CONVERT,
.dest_type = T,
.dest = bi_make_temp(ctx),
.src = {
/* TODO: RA XXX */
BIR_INDEX_REGISTER | 59
},
.src_types = { nir_type_uint16 },
.swizzle = { { i } }
};
bi_instruction add = {
.type = BI_ADD,
.dest_type = T,
.dest = bi_make_temp(ctx),
.src = { conv.dest, BIR_INDEX_CONSTANT },
.src_types = { T, T },
};
float half = 0.5;
memcpy(&add.constant.u32, &half, sizeof(float));
bi_emit(ctx, conv);
bi_emit(ctx, add);
combine.src[i] = add.dest;
}
/* Third, zw */
for (unsigned i = 0; i < 2; ++i) {
bi_instruction load = {
.type = BI_LOAD_VAR,
.load_vary = {
.interp_mode = BIFROST_INTERP_DEFAULT,
.reuse = false,
.flat = true
},
.vector_channels = 1,
.dest_type = nir_type_float32,
.dest = bi_make_temp(ctx),
.src = { BIR_INDEX_CONSTANT, BIR_INDEX_ZERO },
.src_types = { nir_type_uint32, nir_type_uint32 },
.constant = {
.u32 = (i == 0) ? BIFROST_FRAGZ : BIFROST_FRAGW
}
};
bi_emit(ctx, load);
combine.src[i + 2] = load.dest;
}
/* Finally, emit the combine */
bi_emit(ctx, combine);
}
static void
bi_emit_discard(bi_context *ctx, nir_intrinsic_instr *instr)
{
/* Goofy lowering */
bi_instruction discard = {
.type = BI_DISCARD,
.cond = BI_COND_EQ,
.src_types = { nir_type_uint32, nir_type_uint32 },
.src = { BIR_INDEX_ZERO, BIR_INDEX_ZERO },
};
bi_emit(ctx, discard);
}
static void
bi_fuse_cond(bi_instruction *csel, nir_alu_src cond,
unsigned *constants_left, unsigned *constant_shift,
unsigned comps, bool float_only);
static void
bi_emit_discard_if(bi_context *ctx, nir_intrinsic_instr *instr)
{
nir_src cond = instr->src[0];
nir_alu_type T = nir_type_uint | nir_src_bit_size(cond);
bi_instruction discard = {
.type = BI_DISCARD,
.cond = BI_COND_NE,
.src_types = { T, T },
.src = {
pan_src_index(&cond),
BIR_INDEX_ZERO
},
};
/* Try to fuse in the condition */
unsigned constants_left = 1, constant_shift = 0;
/* Scalar so no swizzle */
nir_alu_src wrap = {
.src = instr->src[0]
};
/* May or may not succeed but we're optimistic */
bi_fuse_cond(&discard, wrap, &constants_left, &constant_shift, 1, true);
bi_emit(ctx, discard);
}
static void
emit_intrinsic(bi_context *ctx, nir_intrinsic_instr *instr)
{
switch (instr->intrinsic) {
case nir_intrinsic_load_barycentric_pixel:
/* stub */
break;
case nir_intrinsic_load_interpolated_input:
case nir_intrinsic_load_input:
if (ctx->stage == MESA_SHADER_FRAGMENT)
bi_emit_ld_vary(ctx, instr);
else if (ctx->stage == MESA_SHADER_VERTEX)
bi_emit(ctx, bi_load_with_r61(BI_LOAD_ATTR, instr));
else {
unreachable("Unsupported shader stage");
}
break;
case nir_intrinsic_store_output:
if (ctx->stage == MESA_SHADER_FRAGMENT)
bi_emit_frag_out(ctx, instr);
else if (ctx->stage == MESA_SHADER_VERTEX)
bi_emit_st_vary(ctx, instr);
else
unreachable("Unsupported shader stage");
break;
case nir_intrinsic_load_uniform:
bi_emit_ld_uniform(ctx, instr);
break;
case nir_intrinsic_load_frag_coord:
bi_emit_ld_frag_coord(ctx, instr);
break;
case nir_intrinsic_discard:
bi_emit_discard(ctx, instr);
break;
case nir_intrinsic_discard_if:
bi_emit_discard_if(ctx, instr);
break;
case nir_intrinsic_load_ssbo_address:
bi_emit_sysval(ctx, &instr->instr, 1, 0);
break;
case nir_intrinsic_get_buffer_size:
bi_emit_sysval(ctx, &instr->instr, 1, 8);
break;
case nir_intrinsic_load_viewport_scale:
case nir_intrinsic_load_viewport_offset:
case nir_intrinsic_load_num_work_groups:
case nir_intrinsic_load_sampler_lod_parameters_pan:
bi_emit_sysval(ctx, &instr->instr, 3, 0);
break;
default:
unreachable("Unknown intrinsic");
break;
}
}
static void
emit_load_const(bi_context *ctx, nir_load_const_instr *instr)
{
/* Make sure we've been lowered */
assert(instr->def.num_components <= (32 / instr->def.bit_size));
/* Accumulate all the channels of the constant, as if we did an
* implicit SEL over them */
uint32_t acc = 0;
for (unsigned i = 0; i < instr->def.num_components; ++i) {
unsigned v = nir_const_value_as_uint(instr->value[i], instr->def.bit_size);
acc |= (v << (i * instr->def.bit_size));
}
bi_instruction move = {
.type = BI_MOV,
.dest = pan_ssa_index(&instr->def),
.dest_type = nir_type_uint32,
.src = {
BIR_INDEX_CONSTANT
},
.src_types = {
nir_type_uint32,
},
.constant = {
.u32 = acc
}
};
bi_emit(ctx, move);
}
#define BI_CASE_CMP(op) \
case op##8: \
case op##16: \
case op##32: \
static enum bi_class
bi_class_for_nir_alu(nir_op op)
{
switch (op) {
case nir_op_fadd:
case nir_op_fsub:
return BI_ADD;
case nir_op_iadd:
case nir_op_isub:
return BI_IMATH;
case nir_op_iand:
case nir_op_ior:
case nir_op_ixor:
case nir_op_inot:
case nir_op_ishl:
return BI_BITWISE;
BI_CASE_CMP(nir_op_flt)
BI_CASE_CMP(nir_op_fge)
BI_CASE_CMP(nir_op_feq)
BI_CASE_CMP(nir_op_fne)
BI_CASE_CMP(nir_op_ilt)
BI_CASE_CMP(nir_op_ige)
BI_CASE_CMP(nir_op_ieq)
BI_CASE_CMP(nir_op_ine)
BI_CASE_CMP(nir_op_uge)
return BI_CMP;
case nir_op_b8csel:
case nir_op_b16csel:
case nir_op_b32csel:
return BI_CSEL;
case nir_op_i2i8:
case nir_op_i2i16:
case nir_op_i2i32:
case nir_op_i2i64:
case nir_op_u2u8:
case nir_op_u2u16:
case nir_op_u2u32:
case nir_op_u2u64:
case nir_op_f2i16:
case nir_op_f2i32:
case nir_op_f2i64:
case nir_op_f2u16:
case nir_op_f2u32:
case nir_op_f2u64:
case nir_op_i2f16:
case nir_op_i2f32:
case nir_op_i2f64:
case nir_op_u2f16:
case nir_op_u2f32:
case nir_op_u2f64:
case nir_op_f2f16:
case nir_op_f2f32:
case nir_op_f2f64:
case nir_op_f2fmp:
return BI_CONVERT;
case nir_op_vec2:
case nir_op_vec3:
case nir_op_vec4:
return BI_COMBINE;
case nir_op_vec8:
case nir_op_vec16:
unreachable("should've been lowered");
case nir_op_ffma:
case nir_op_fmul:
return BI_FMA;
case nir_op_imin:
case nir_op_imax:
case nir_op_umin:
case nir_op_umax:
case nir_op_fmin:
case nir_op_fmax:
return BI_MINMAX;
case nir_op_fsat:
case nir_op_fneg:
case nir_op_fabs:
return BI_FMOV;
case nir_op_mov:
return BI_MOV;
case nir_op_fround_even:
case nir_op_fceil:
case nir_op_ffloor:
case nir_op_ftrunc:
return BI_ROUND;
case nir_op_frcp:
case nir_op_frsq:
return BI_SPECIAL;
default:
unreachable("Unknown ALU op");
}
}
/* Gets a bi_cond for a given NIR comparison opcode. In soft mode, it will
* return BI_COND_ALWAYS as a sentinel if it fails to do so (when used for
* optimizations). Otherwise it will bail (when used for primary code
* generation). */
static enum bi_cond
bi_cond_for_nir(nir_op op, bool soft)
{
switch (op) {
BI_CASE_CMP(nir_op_flt)
BI_CASE_CMP(nir_op_ilt)
return BI_COND_LT;
BI_CASE_CMP(nir_op_fge)
BI_CASE_CMP(nir_op_ige)
BI_CASE_CMP(nir_op_uge)
return BI_COND_GE;
BI_CASE_CMP(nir_op_feq)
BI_CASE_CMP(nir_op_ieq)
return BI_COND_EQ;
BI_CASE_CMP(nir_op_fne)
BI_CASE_CMP(nir_op_ine)
return BI_COND_NE;
default:
if (soft)
return BI_COND_ALWAYS;
else
unreachable("Invalid compare");
}
}
static void
bi_copy_src(bi_instruction *alu, nir_alu_instr *instr, unsigned i, unsigned to,
unsigned *constants_left, unsigned *constant_shift, unsigned comps)
{
unsigned bits = nir_src_bit_size(instr->src[i].src);
unsigned dest_bits = nir_dest_bit_size(instr->dest.dest);
alu->src_types[to] = nir_op_infos[instr->op].input_types[i]
| bits;
/* Try to inline a constant */
if (nir_src_is_const(instr->src[i].src) && *constants_left && (dest_bits == bits)) {
uint64_t mask = (1ull << dest_bits) - 1;
uint64_t cons = nir_src_as_uint(instr->src[i].src);
/* Try to reuse a constant */
for (unsigned i = 0; i < (*constant_shift); i += dest_bits) {
if (((alu->constant.u64 >> i) & mask) == cons) {
alu->src[to] = BIR_INDEX_CONSTANT | i;
return;
}
}
alu->constant.u64 |= cons << *constant_shift;
alu->src[to] = BIR_INDEX_CONSTANT | (*constant_shift);
--(*constants_left);
(*constant_shift) += MAX2(dest_bits, 32); /* lo/hi */
return;
}
alu->src[to] = pan_src_index(&instr->src[i].src);
/* Copy swizzle for all vectored components, replicating last component
* to fill undersized */
unsigned vec = alu->type == BI_COMBINE ? 1 :
MAX2(1, 32 / dest_bits);
for (unsigned j = 0; j < vec; ++j)
alu->swizzle[to][j] = instr->src[i].swizzle[MIN2(j, comps - 1)];
}
static void
bi_fuse_cond(bi_instruction *csel, nir_alu_src cond,
unsigned *constants_left, unsigned *constant_shift,
unsigned comps, bool float_only)
{
/* Bail for vector weirdness */
if (cond.swizzle[0] != 0)
return;
if (!cond.src.is_ssa)
return;
nir_ssa_def *def = cond.src.ssa;
nir_instr *parent = def->parent_instr;
if (parent->type != nir_instr_type_alu)
return;
nir_alu_instr *alu = nir_instr_as_alu(parent);
/* Try to match a condition */
enum bi_cond bcond = bi_cond_for_nir(alu->op, true);
if (bcond == BI_COND_ALWAYS)
return;
/* Some instructions can't compare ints */
if (float_only) {
nir_alu_type T = nir_op_infos[alu->op].input_types[0];
T = nir_alu_type_get_base_type(T);
if (T != nir_type_float)
return;
}
/* We found one, let's fuse it in */
csel->cond = bcond;
bi_copy_src(csel, alu, 0, 0, constants_left, constant_shift, comps);
bi_copy_src(csel, alu, 1, 1, constants_left, constant_shift, comps);
}
static void
emit_alu(bi_context *ctx, nir_alu_instr *instr)
{
/* Try some special functions */
switch (instr->op) {
case nir_op_fexp2:
bi_emit_fexp2(ctx, instr);
return;
case nir_op_flog2:
bi_emit_flog2(ctx, instr);
return;
default:
break;
}
/* Otherwise, assume it's something we can handle normally */
bi_instruction alu = {
.type = bi_class_for_nir_alu(instr->op),
.dest = pan_dest_index(&instr->dest.dest),
.dest_type = nir_op_infos[instr->op].output_type
| nir_dest_bit_size(instr->dest.dest),
};
/* TODO: Implement lowering of special functions for older Bifrost */
assert((alu.type != BI_SPECIAL) || !(ctx->quirks & BIFROST_NO_FAST_OP));
unsigned comps = nir_dest_num_components(instr->dest.dest);
if (alu.type != BI_COMBINE)
assert(comps <= MAX2(1, 32 / comps));
if (!instr->dest.dest.is_ssa) {
for (unsigned i = 0; i < comps; ++i)
assert(instr->dest.write_mask);
}
/* We inline constants as we go. This tracks how many constants have
* been inlined, since we're limited to 64-bits of constants per
* instruction */
unsigned dest_bits = nir_dest_bit_size(instr->dest.dest);
unsigned constants_left = (64 / dest_bits);
unsigned constant_shift = 0;
if (alu.type == BI_COMBINE)
constants_left = 0;
/* Copy sources */
unsigned num_inputs = nir_op_infos[instr->op].num_inputs;
assert(num_inputs <= ARRAY_SIZE(alu.src));
for (unsigned i = 0; i < num_inputs; ++i) {
unsigned f = 0;
if (i && alu.type == BI_CSEL)
f++;
bi_copy_src(&alu, instr, i, i + f, &constants_left, &constant_shift, comps);
}
/* Op-specific fixup */
switch (instr->op) {
case nir_op_fmul:
alu.src[2] = BIR_INDEX_ZERO; /* FMA */
alu.src_types[2] = alu.src_types[1];
break;
case nir_op_fsat:
alu.outmod = BIFROST_SAT; /* FMOV */
break;
case nir_op_fneg:
alu.src_neg[0] = true; /* FMOV */
break;
case nir_op_fabs:
alu.src_abs[0] = true; /* FMOV */
break;
case nir_op_fsub:
alu.src_neg[1] = true; /* FADD */
break;
case nir_op_iadd:
alu.op.imath = BI_IMATH_ADD;
break;
case nir_op_isub:
alu.op.imath = BI_IMATH_SUB;
break;
case nir_op_inot:
/* no dedicated bitwise not, but we can invert sources. convert to ~a | 0 */
alu.op.bitwise = BI_BITWISE_OR;
alu.bitwise.src_invert[0] = true;
alu.src[1] = BIR_INDEX_ZERO;
/* zero shift */
alu.src[2] = BIR_INDEX_ZERO;
alu.src_types[2] = alu.src_types[1];
break;
case nir_op_ishl:
alu.op.bitwise = BI_BITWISE_OR;
/* move src1 to src2 and replace with zero. underlying op is (src0 << src2) | src1 */
alu.src[2] = alu.src[1];
alu.src_types[2] = alu.src_types[1];
alu.src[1] = BIR_INDEX_ZERO;
break;
case nir_op_fmax:
case nir_op_imax:
case nir_op_umax:
alu.op.minmax = BI_MINMAX_MAX; /* MINMAX */
break;
case nir_op_frcp:
alu.op.special = BI_SPECIAL_FRCP;
break;
case nir_op_frsq:
alu.op.special = BI_SPECIAL_FRSQ;
break;
BI_CASE_CMP(nir_op_flt)
BI_CASE_CMP(nir_op_ilt)
BI_CASE_CMP(nir_op_fge)
BI_CASE_CMP(nir_op_ige)
BI_CASE_CMP(nir_op_feq)
BI_CASE_CMP(nir_op_ieq)
BI_CASE_CMP(nir_op_fne)
BI_CASE_CMP(nir_op_ine)
BI_CASE_CMP(nir_op_uge)
alu.cond = bi_cond_for_nir(instr->op, false);
break;
case nir_op_fround_even:
alu.roundmode = BIFROST_RTE;
break;
case nir_op_fceil:
alu.roundmode = BIFROST_RTP;
break;
case nir_op_ffloor:
alu.roundmode = BIFROST_RTN;
break;
case nir_op_ftrunc:
alu.roundmode = BIFROST_RTZ;
break;
case nir_op_iand:
alu.op.bitwise = BI_BITWISE_AND;
/* zero shift */
alu.src[2] = BIR_INDEX_ZERO;
alu.src_types[2] = alu.src_types[1];
break;
case nir_op_ior:
alu.op.bitwise = BI_BITWISE_OR;
/* zero shift */
alu.src[2] = BIR_INDEX_ZERO;
alu.src_types[2] = alu.src_types[1];
break;
case nir_op_ixor:
alu.op.bitwise = BI_BITWISE_XOR;
/* zero shift */
alu.src[2] = BIR_INDEX_ZERO;
alu.src_types[2] = alu.src_types[1];
break;
case nir_op_f2i32:
alu.roundmode = BIFROST_RTZ;
break;
case nir_op_f2f16:
case nir_op_i2i16:
case nir_op_u2u16: {
if (nir_src_bit_size(instr->src[0].src) != 32)
break;
/* Should have been const folded */
assert(!nir_src_is_const(instr->src[0].src));
alu.src_types[1] = alu.src_types[0];
alu.src[1] = alu.src[0];
unsigned last = nir_dest_num_components(instr->dest.dest) - 1;
assert(last <= 1);
alu.swizzle[1][0] = instr->src[0].swizzle[last];
break;
}
default:
break;
}
if (alu.type == BI_CSEL) {
/* Default to csel3 */
alu.cond = BI_COND_NE;
alu.src[1] = BIR_INDEX_ZERO;
alu.src_types[1] = alu.src_types[0];
/* TODO: Reenable cond fusing when we can split up registers
* when scheduling */
#if 0
bi_fuse_cond(&alu, instr->src[0],
&constants_left, &constant_shift, comps, false);
#endif
}
bi_emit(ctx, alu);
}
/* TEX_COMPACT instructions assume normal 2D f32 operation but are more
* space-efficient and with simpler RA/scheduling requirements*/
static void
emit_tex_compact(bi_context *ctx, nir_tex_instr *instr)
{
bi_instruction tex = {
.type = BI_TEX,
.op = { .texture = BI_TEX_COMPACT },
.texture = {
.texture_index = instr->texture_index,
.sampler_index = instr->sampler_index,
},
.dest = pan_dest_index(&instr->dest),
.dest_type = instr->dest_type,
.src_types = { nir_type_float32, nir_type_float32 },
.vector_channels = 4
};
for (unsigned i = 0; i < instr->num_srcs; ++i) {
int index = pan_src_index(&instr->src[i].src);
/* We were checked ahead-of-time */
if (instr->src[i].src_type == nir_tex_src_lod)
continue;
assert (instr->src[i].src_type == nir_tex_src_coord);
tex.src[0] = index;
tex.src[1] = index;
tex.swizzle[0][0] = 0;
tex.swizzle[1][0] = 1;
}
bi_emit(ctx, tex);
}
static void
emit_tex_full(bi_context *ctx, nir_tex_instr *instr)
{
unreachable("stub");
}
/* Normal textures ops are tex for frag shaders and txl for vertex shaders with
* lod a constant 0. Anything else needs a full texture op. */
static bool
bi_is_normal_tex(gl_shader_stage stage, nir_tex_instr *instr)
{
if (stage == MESA_SHADER_FRAGMENT)
return instr->op == nir_texop_tex;
if (instr->op != nir_texop_txl)
return false;
for (unsigned i = 0; i < instr->num_srcs; ++i) {
if (instr->src[i].src_type != nir_tex_src_lod)
continue;
nir_src src = instr->src[i].src;
if (!nir_src_is_const(src))
continue;
if (nir_src_as_uint(src) != 0)
continue;
}
return true;
}
static void
emit_tex(bi_context *ctx, nir_tex_instr *instr)
{
nir_alu_type base = nir_alu_type_get_base_type(instr->dest_type);
unsigned sz = nir_dest_bit_size(instr->dest);
instr->dest_type = base | sz;
bool is_normal = bi_is_normal_tex(ctx->stage, instr);
bool is_2d = instr->sampler_dim == GLSL_SAMPLER_DIM_2D ||
instr->sampler_dim == GLSL_SAMPLER_DIM_EXTERNAL;
bool is_f = base == nir_type_float && (sz == 16 || sz == 32);
bool is_compact = is_normal && is_2d && is_f && !instr->is_shadow;
if (is_compact)
emit_tex_compact(ctx, instr);
else
emit_tex_full(ctx, instr);
}
static void
emit_instr(bi_context *ctx, struct nir_instr *instr)
{
switch (instr->type) {
case nir_instr_type_load_const:
emit_load_const(ctx, nir_instr_as_load_const(instr));
break;
case nir_instr_type_intrinsic:
emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
break;
case nir_instr_type_alu:
emit_alu(ctx, nir_instr_as_alu(instr));
break;
case nir_instr_type_tex:
emit_tex(ctx, nir_instr_as_tex(instr));
break;
case nir_instr_type_jump:
emit_jump(ctx, nir_instr_as_jump(instr));
break;
case nir_instr_type_ssa_undef:
/* Spurious */
break;
default:
unreachable("Unhandled instruction type");
break;
}
}
static bi_block *
create_empty_block(bi_context *ctx)
{
bi_block *blk = rzalloc(ctx, bi_block);
blk->base.predecessors = _mesa_set_create(blk,
_mesa_hash_pointer,
_mesa_key_pointer_equal);
return blk;
}
static bi_block *
emit_block(bi_context *ctx, nir_block *block)
{
if (ctx->after_block) {
ctx->current_block = ctx->after_block;
ctx->after_block = NULL;
} else {
ctx->current_block = create_empty_block(ctx);
}
list_addtail(&ctx->current_block->base.link, &ctx->blocks);
list_inithead(&ctx->current_block->base.instructions);
nir_foreach_instr(instr, block) {
emit_instr(ctx, instr);
++ctx->instruction_count;
}
return ctx->current_block;
}
/* Emits an unconditional branch to the end of the current block, returning a
* pointer so the user can fill in details */
static bi_instruction *
bi_emit_branch(bi_context *ctx)
{
bi_instruction branch = {
.type = BI_BRANCH,
.cond = BI_COND_ALWAYS
};
return bi_emit(ctx, branch);
}
/* Sets a condition for a branch by examing the NIR condition. If we're
* familiar with the condition, we unwrap it to fold it into the branch
* instruction. Otherwise, we consume the condition directly. We
* generally use 1-bit booleans which allows us to use small types for
* the conditions.
*/
static void
bi_set_branch_cond(bi_instruction *branch, nir_src *cond, bool invert)
{
/* TODO: Try to unwrap instead of always bailing */
branch->src[0] = pan_src_index(cond);
branch->src[1] = BIR_INDEX_ZERO;
branch->src_types[0] = branch->src_types[1] = nir_type_uint |
nir_src_bit_size(*cond);
branch->cond = invert ? BI_COND_EQ : BI_COND_NE;
}
static void
emit_if(bi_context *ctx, nir_if *nif)
{
bi_block *before_block = ctx->current_block;
/* Speculatively emit the branch, but we can't fill it in until later */
bi_instruction *then_branch = bi_emit_branch(ctx);
bi_set_branch_cond(then_branch, &nif->condition, true);
/* Emit the two subblocks. */
bi_block *then_block = emit_cf_list(ctx, &nif->then_list);
bi_block *end_then_block = ctx->current_block;
/* Emit a jump from the end of the then block to the end of the else */
bi_instruction *then_exit = bi_emit_branch(ctx);
/* Emit second block, and check if it's empty */
int count_in = ctx->instruction_count;
bi_block *else_block = emit_cf_list(ctx, &nif->else_list);
bi_block *end_else_block = ctx->current_block;
ctx->after_block = create_empty_block(ctx);
/* Now that we have the subblocks emitted, fix up the branches */
assert(then_block);
assert(else_block);
if (ctx->instruction_count == count_in) {
/* The else block is empty, so don't emit an exit jump */
bi_remove_instruction(then_exit);
then_branch->branch_target = ctx->after_block;
pan_block_add_successor(&end_then_block->base, &ctx->after_block->base); /* fallthrough */
} else {
then_branch->branch_target = else_block;
then_exit->branch_target = ctx->after_block;
pan_block_add_successor(&end_then_block->base, &then_exit->branch_target->base);
pan_block_add_successor(&end_else_block->base, &ctx->after_block->base); /* fallthrough */
}
pan_block_add_successor(&before_block->base, &then_branch->branch_target->base); /* then_branch */
pan_block_add_successor(&before_block->base, &then_block->base); /* fallthrough */
}
static void
emit_loop(bi_context *ctx, nir_loop *nloop)
{
/* Remember where we are */
bi_block *start_block = ctx->current_block;
bi_block *saved_break = ctx->break_block;
bi_block *saved_continue = ctx->continue_block;
ctx->continue_block = create_empty_block(ctx);
ctx->break_block = create_empty_block(ctx);
ctx->after_block = ctx->continue_block;
/* Emit the body itself */
emit_cf_list(ctx, &nloop->body);
/* Branch back to loop back */
bi_instruction *br_back = bi_emit_branch(ctx);
br_back->branch_target = ctx->continue_block;
pan_block_add_successor(&start_block->base, &ctx->continue_block->base);
pan_block_add_successor(&ctx->current_block->base, &ctx->continue_block->base);
ctx->after_block = ctx->break_block;
/* Pop off */
ctx->break_block = saved_break;
ctx->continue_block = saved_continue;
++ctx->loop_count;
}
static bi_block *
emit_cf_list(bi_context *ctx, struct exec_list *list)
{
bi_block *start_block = NULL;
foreach_list_typed(nir_cf_node, node, node, list) {
switch (node->type) {
case nir_cf_node_block: {
bi_block *block = emit_block(ctx, nir_cf_node_as_block(node));
if (!start_block)
start_block = block;
break;
}
case nir_cf_node_if:
emit_if(ctx, nir_cf_node_as_if(node));
break;
case nir_cf_node_loop:
emit_loop(ctx, nir_cf_node_as_loop(node));
break;
default:
unreachable("Unknown control flow");
}
}
return start_block;
}
static int
glsl_type_size(const struct glsl_type *type, bool bindless)
{
return glsl_count_attribute_slots(type, false);
}
static void
bi_optimize_nir(nir_shader *nir)
{
bool progress;
unsigned lower_flrp = 16 | 32 | 64;
NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
NIR_PASS(progress, nir, nir_lower_idiv, nir_lower_idiv_fast);
nir_lower_tex_options lower_tex_options = {
.lower_txs_lod = true,
.lower_txp = ~0,
.lower_tex_without_implicit_lod = true,
.lower_txd = true,
};
NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_options);
NIR_PASS(progress, nir, nir_lower_alu_to_scalar, NULL, NULL);
NIR_PASS(progress, nir, nir_lower_load_const_to_scalar);
do {
progress = false;
NIR_PASS(progress, nir, nir_lower_var_copies);
NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
NIR_PASS(progress, nir, nir_copy_prop);
NIR_PASS(progress, nir, nir_opt_remove_phis);
NIR_PASS(progress, nir, nir_opt_dce);
NIR_PASS(progress, nir, nir_opt_dead_cf);
NIR_PASS(progress, nir, nir_opt_cse);
NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
NIR_PASS(progress, nir, nir_opt_algebraic);
NIR_PASS(progress, nir, nir_opt_constant_folding);
if (lower_flrp != 0) {
bool lower_flrp_progress = false;
NIR_PASS(lower_flrp_progress,
nir,
nir_lower_flrp,
lower_flrp,
false /* always_precise */,
nir->options->lower_ffma);
if (lower_flrp_progress) {
NIR_PASS(progress, nir,
nir_opt_constant_folding);
progress = true;
}
/* Nothing should rematerialize any flrps, so we only
* need to do this lowering once.
*/
lower_flrp = 0;
}
NIR_PASS(progress, nir, nir_opt_undef);
NIR_PASS(progress, nir, nir_opt_loop_unroll,
nir_var_shader_in |
nir_var_shader_out |
nir_var_function_temp);
} while (progress);
NIR_PASS(progress, nir, nir_opt_algebraic_late);
NIR_PASS(progress, nir, nir_lower_bool_to_int32);
NIR_PASS(progress, nir, bifrost_nir_lower_algebraic_late);
NIR_PASS(progress, nir, nir_lower_alu_to_scalar, NULL, NULL);
NIR_PASS(progress, nir, nir_lower_load_const_to_scalar);
/* Take us out of SSA */
NIR_PASS(progress, nir, nir_lower_locals_to_regs);
NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
NIR_PASS(progress, nir, nir_convert_from_ssa, true);
}
void
bifrost_compile_shader_nir(nir_shader *nir, panfrost_program *program, unsigned product_id)
{
bifrost_debug = debug_get_option_bifrost_debug();
bi_context *ctx = rzalloc(NULL, bi_context);
ctx->nir = nir;
ctx->stage = nir->info.stage;
ctx->quirks = bifrost_get_quirks(product_id);
list_inithead(&ctx->blocks);
/* Lower gl_Position pre-optimisation, but after lowering vars to ssa
* (so we don't accidentally duplicate the epilogue since mesa/st has
* messed with our I/O quite a bit already) */
NIR_PASS_V(nir, nir_lower_vars_to_ssa);
if (ctx->stage == MESA_SHADER_VERTEX) {
NIR_PASS_V(nir, nir_lower_viewport_transform);
NIR_PASS_V(nir, nir_lower_point_size, 1.0, 1024.0);
}
NIR_PASS_V(nir, nir_split_var_copies);
NIR_PASS_V(nir, nir_lower_global_vars_to_local);
NIR_PASS_V(nir, nir_lower_var_copies);
NIR_PASS_V(nir, nir_lower_vars_to_ssa);
NIR_PASS_V(nir, nir_lower_io, nir_var_shader_in | nir_var_shader_out,
glsl_type_size, 0);
NIR_PASS_V(nir, nir_lower_ssbo);
NIR_PASS_V(nir, nir_lower_mediump_outputs);
bi_optimize_nir(nir);
if (bifrost_debug & BIFROST_DBG_SHADERS) {
nir_print_shader(nir, stdout);
}
panfrost_nir_assign_sysvals(&ctx->sysvals, nir);
program->sysval_count = ctx->sysvals.sysval_count;
memcpy(program->sysvals, ctx->sysvals.sysvals, sizeof(ctx->sysvals.sysvals[0]) * ctx->sysvals.sysval_count);
ctx->blend_types = program->blend_types;
nir_foreach_function(func, nir) {
if (!func->impl)
continue;
ctx->impl = func->impl;
emit_cf_list(ctx, &func->impl->body);
break; /* TODO: Multi-function shaders */
}
unsigned block_source_count = 0;
bi_foreach_block(ctx, _block) {
bi_block *block = (bi_block *) _block;
/* Name blocks now that we're done emitting so the order is
* consistent */
block->base.name = block_source_count++;
bi_lower_combine(ctx, block);
}
bool progress = false;
do {
progress = false;
bi_foreach_block(ctx, _block) {
bi_block *block = (bi_block *) _block;
progress |= bi_opt_dead_code_eliminate(ctx, block);
}
} while(progress);
if (bifrost_debug & BIFROST_DBG_SHADERS)
bi_print_shader(ctx, stdout);
bi_schedule(ctx);
bi_register_allocate(ctx);
if (bifrost_debug & BIFROST_DBG_SHADERS)
bi_print_shader(ctx, stdout);
bi_pack(ctx, &program->compiled);
if (bifrost_debug & BIFROST_DBG_SHADERS)
disassemble_bifrost(stdout, program->compiled.data, program->compiled.size, true);
ralloc_free(ctx);
}