blob: d86b460272bd484b8976914d7855f4164446c0e8 [file] [log] [blame]
/*
* Copyright 2016 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* on the rights to use, copy, modify, merge, publish, distribute, sub
* license, and/or sell copies of the Software, and to permit persons to whom
* the Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "si_shader_internal.h"
#include "si_pipe.h"
#include "radeon/radeon_elf_util.h"
#include "gallivm/lp_bld_const.h"
#include "gallivm/lp_bld_gather.h"
#include "gallivm/lp_bld_flow.h"
#include "gallivm/lp_bld_init.h"
#include "gallivm/lp_bld_intr.h"
#include "gallivm/lp_bld_misc.h"
#include "gallivm/lp_bld_swizzle.h"
#include "tgsi/tgsi_info.h"
#include "tgsi/tgsi_parse.h"
#include "util/u_math.h"
#include "util/u_memory.h"
#include "util/u_debug.h"
#include <stdio.h>
#include <llvm-c/Transforms/IPO.h>
#include <llvm-c/Transforms/Scalar.h>
/* Data for if/else/endif and bgnloop/endloop control flow structures.
*/
struct si_llvm_flow {
/* Loop exit or next part of if/else/endif. */
LLVMBasicBlockRef next_block;
LLVMBasicBlockRef loop_entry_block;
};
#define CPU_STRING_LEN 30
#define FS_STRING_LEN 30
#define TRIPLE_STRING_LEN 7
/**
* Shader types for the LLVM backend.
*/
enum si_llvm_shader_type {
RADEON_LLVM_SHADER_PS = 0,
RADEON_LLVM_SHADER_VS = 1,
RADEON_LLVM_SHADER_GS = 2,
RADEON_LLVM_SHADER_CS = 3,
};
enum si_llvm_calling_convention {
RADEON_LLVM_AMDGPU_VS = 87,
RADEON_LLVM_AMDGPU_GS = 88,
RADEON_LLVM_AMDGPU_PS = 89,
RADEON_LLVM_AMDGPU_CS = 90,
};
void si_llvm_add_attribute(LLVMValueRef F, const char *name, int value)
{
char str[16];
snprintf(str, sizeof(str), "%i", value);
LLVMAddTargetDependentFunctionAttr(F, name, str);
}
/**
* Set the shader type we want to compile
*
* @param type shader type to set
*/
void si_llvm_shader_type(LLVMValueRef F, unsigned type)
{
enum si_llvm_shader_type llvm_type;
enum si_llvm_calling_convention calling_conv;
switch (type) {
case PIPE_SHADER_VERTEX:
case PIPE_SHADER_TESS_CTRL:
case PIPE_SHADER_TESS_EVAL:
llvm_type = RADEON_LLVM_SHADER_VS;
calling_conv = RADEON_LLVM_AMDGPU_VS;
break;
case PIPE_SHADER_GEOMETRY:
llvm_type = RADEON_LLVM_SHADER_GS;
calling_conv = RADEON_LLVM_AMDGPU_GS;
break;
case PIPE_SHADER_FRAGMENT:
llvm_type = RADEON_LLVM_SHADER_PS;
calling_conv = RADEON_LLVM_AMDGPU_PS;
break;
case PIPE_SHADER_COMPUTE:
llvm_type = RADEON_LLVM_SHADER_CS;
calling_conv = RADEON_LLVM_AMDGPU_CS;
break;
default:
unreachable("Unhandle shader type");
}
if (HAVE_LLVM >= 0x309)
LLVMSetFunctionCallConv(F, calling_conv);
else
si_llvm_add_attribute(F, "ShaderType", llvm_type);
}
static void init_amdgpu_target()
{
gallivm_init_llvm_targets();
#if HAVE_LLVM < 0x0307
LLVMInitializeR600TargetInfo();
LLVMInitializeR600Target();
LLVMInitializeR600TargetMC();
LLVMInitializeR600AsmPrinter();
#else
LLVMInitializeAMDGPUTargetInfo();
LLVMInitializeAMDGPUTarget();
LLVMInitializeAMDGPUTargetMC();
LLVMInitializeAMDGPUAsmPrinter();
#endif
}
static once_flag init_amdgpu_target_once_flag = ONCE_FLAG_INIT;
LLVMTargetRef si_llvm_get_amdgpu_target(const char *triple)
{
LLVMTargetRef target = NULL;
char *err_message = NULL;
call_once(&init_amdgpu_target_once_flag, init_amdgpu_target);
if (LLVMGetTargetFromTriple(triple, &target, &err_message)) {
fprintf(stderr, "Cannot find target for triple %s ", triple);
if (err_message) {
fprintf(stderr, "%s\n", err_message);
}
LLVMDisposeMessage(err_message);
return NULL;
}
return target;
}
struct si_llvm_diagnostics {
struct pipe_debug_callback *debug;
unsigned retval;
};
static void si_diagnostic_handler(LLVMDiagnosticInfoRef di, void *context)
{
struct si_llvm_diagnostics *diag = (struct si_llvm_diagnostics *)context;
LLVMDiagnosticSeverity severity = LLVMGetDiagInfoSeverity(di);
char *description = LLVMGetDiagInfoDescription(di);
const char *severity_str = NULL;
switch (severity) {
case LLVMDSError:
severity_str = "error";
break;
case LLVMDSWarning:
severity_str = "warning";
break;
case LLVMDSRemark:
severity_str = "remark";
break;
case LLVMDSNote:
severity_str = "note";
break;
default:
severity_str = "unknown";
}
pipe_debug_message(diag->debug, SHADER_INFO,
"LLVM diagnostic (%s): %s", severity_str, description);
if (severity == LLVMDSError) {
diag->retval = 1;
fprintf(stderr,"LLVM triggered Diagnostic Handler: %s\n", description);
}
LLVMDisposeMessage(description);
}
/**
* Compile an LLVM module to machine code.
*
* @returns 0 for success, 1 for failure
*/
unsigned si_llvm_compile(LLVMModuleRef M, struct radeon_shader_binary *binary,
LLVMTargetMachineRef tm,
struct pipe_debug_callback *debug)
{
struct si_llvm_diagnostics diag;
char *err;
LLVMContextRef llvm_ctx;
LLVMMemoryBufferRef out_buffer;
unsigned buffer_size;
const char *buffer_data;
LLVMBool mem_err;
diag.debug = debug;
diag.retval = 0;
/* Setup Diagnostic Handler*/
llvm_ctx = LLVMGetModuleContext(M);
LLVMContextSetDiagnosticHandler(llvm_ctx, si_diagnostic_handler, &diag);
/* Compile IR*/
mem_err = LLVMTargetMachineEmitToMemoryBuffer(tm, M, LLVMObjectFile, &err,
&out_buffer);
/* Process Errors/Warnings */
if (mem_err) {
fprintf(stderr, "%s: %s", __FUNCTION__, err);
pipe_debug_message(debug, SHADER_INFO,
"LLVM emit error: %s", err);
FREE(err);
diag.retval = 1;
goto out;
}
/* Extract Shader Code*/
buffer_size = LLVMGetBufferSize(out_buffer);
buffer_data = LLVMGetBufferStart(out_buffer);
radeon_elf_read(buffer_data, buffer_size, binary);
/* Clean up */
LLVMDisposeMemoryBuffer(out_buffer);
out:
if (diag.retval != 0)
pipe_debug_message(debug, SHADER_INFO, "LLVM compile failed");
return diag.retval;
}
LLVMTypeRef tgsi2llvmtype(struct lp_build_tgsi_context *bld_base,
enum tgsi_opcode_type type)
{
LLVMContextRef ctx = bld_base->base.gallivm->context;
switch (type) {
case TGSI_TYPE_UNSIGNED:
case TGSI_TYPE_SIGNED:
return LLVMInt32TypeInContext(ctx);
case TGSI_TYPE_UNSIGNED64:
case TGSI_TYPE_SIGNED64:
return LLVMInt64TypeInContext(ctx);
case TGSI_TYPE_DOUBLE:
return LLVMDoubleTypeInContext(ctx);
case TGSI_TYPE_UNTYPED:
case TGSI_TYPE_FLOAT:
return LLVMFloatTypeInContext(ctx);
default: break;
}
return 0;
}
LLVMValueRef bitcast(struct lp_build_tgsi_context *bld_base,
enum tgsi_opcode_type type, LLVMValueRef value)
{
LLVMBuilderRef builder = bld_base->base.gallivm->builder;
LLVMTypeRef dst_type = tgsi2llvmtype(bld_base, type);
if (dst_type)
return LLVMBuildBitCast(builder, value, dst_type, "");
else
return value;
}
/**
* Return a value that is equal to the given i32 \p index if it lies in [0,num)
* or an undefined value in the same interval otherwise.
*/
LLVMValueRef si_llvm_bound_index(struct si_shader_context *ctx,
LLVMValueRef index,
unsigned num)
{
struct gallivm_state *gallivm = &ctx->gallivm;
LLVMBuilderRef builder = gallivm->builder;
LLVMValueRef c_max = lp_build_const_int32(gallivm, num - 1);
LLVMValueRef cc;
if (util_is_power_of_two(num)) {
index = LLVMBuildAnd(builder, index, c_max, "");
} else {
/* In theory, this MAX pattern should result in code that is
* as good as the bit-wise AND above.
*
* In practice, LLVM generates worse code (at the time of
* writing), because its value tracking is not strong enough.
*/
cc = LLVMBuildICmp(builder, LLVMIntULE, index, c_max, "");
index = LLVMBuildSelect(builder, cc, index, c_max, "");
}
return index;
}
static struct si_llvm_flow *
get_current_flow(struct si_shader_context *ctx)
{
if (ctx->flow_depth > 0)
return &ctx->flow[ctx->flow_depth - 1];
return NULL;
}
static struct si_llvm_flow *
get_innermost_loop(struct si_shader_context *ctx)
{
for (unsigned i = ctx->flow_depth; i > 0; --i) {
if (ctx->flow[i - 1].loop_entry_block)
return &ctx->flow[i - 1];
}
return NULL;
}
static struct si_llvm_flow *
push_flow(struct si_shader_context *ctx)
{
struct si_llvm_flow *flow;
if (ctx->flow_depth >= ctx->flow_depth_max) {
unsigned new_max = MAX2(ctx->flow_depth << 1, RADEON_LLVM_INITIAL_CF_DEPTH);
ctx->flow = REALLOC(ctx->flow,
ctx->flow_depth_max * sizeof(*ctx->flow),
new_max * sizeof(*ctx->flow));
ctx->flow_depth_max = new_max;
}
flow = &ctx->flow[ctx->flow_depth];
ctx->flow_depth++;
flow->next_block = NULL;
flow->loop_entry_block = NULL;
return flow;
}
static LLVMValueRef emit_swizzle(struct lp_build_tgsi_context *bld_base,
LLVMValueRef value,
unsigned swizzle_x,
unsigned swizzle_y,
unsigned swizzle_z,
unsigned swizzle_w)
{
LLVMValueRef swizzles[4];
LLVMTypeRef i32t =
LLVMInt32TypeInContext(bld_base->base.gallivm->context);
swizzles[0] = LLVMConstInt(i32t, swizzle_x, 0);
swizzles[1] = LLVMConstInt(i32t, swizzle_y, 0);
swizzles[2] = LLVMConstInt(i32t, swizzle_z, 0);
swizzles[3] = LLVMConstInt(i32t, swizzle_w, 0);
return LLVMBuildShuffleVector(bld_base->base.gallivm->builder,
value,
LLVMGetUndef(LLVMTypeOf(value)),
LLVMConstVector(swizzles, 4), "");
}
/**
* Return the description of the array covering the given temporary register
* index.
*/
static unsigned
get_temp_array_id(struct lp_build_tgsi_context *bld_base,
unsigned reg_index,
const struct tgsi_ind_register *reg)
{
struct si_shader_context *ctx = si_shader_context(bld_base);
unsigned num_arrays = ctx->soa.bld_base.info->array_max[TGSI_FILE_TEMPORARY];
unsigned i;
if (reg && reg->ArrayID > 0 && reg->ArrayID <= num_arrays)
return reg->ArrayID;
for (i = 0; i < num_arrays; i++) {
const struct tgsi_array_info *array = &ctx->temp_arrays[i];
if (reg_index >= array->range.First && reg_index <= array->range.Last)
return i + 1;
}
return 0;
}
static struct tgsi_declaration_range
get_array_range(struct lp_build_tgsi_context *bld_base,
unsigned File, unsigned reg_index,
const struct tgsi_ind_register *reg)
{
struct si_shader_context *ctx = si_shader_context(bld_base);
struct tgsi_declaration_range range;
if (File == TGSI_FILE_TEMPORARY) {
unsigned array_id = get_temp_array_id(bld_base, reg_index, reg);
if (array_id)
return ctx->temp_arrays[array_id - 1].range;
}
range.First = 0;
range.Last = bld_base->info->file_max[File];
return range;
}
static LLVMValueRef
emit_array_index(struct lp_build_tgsi_soa_context *bld,
const struct tgsi_ind_register *reg,
unsigned offset)
{
struct gallivm_state *gallivm = bld->bld_base.base.gallivm;
if (!reg) {
return lp_build_const_int32(gallivm, offset);
}
LLVMValueRef addr = LLVMBuildLoad(gallivm->builder, bld->addr[reg->Index][reg->Swizzle], "");
return LLVMBuildAdd(gallivm->builder, addr, lp_build_const_int32(gallivm, offset), "");
}
/**
* For indirect registers, construct a pointer directly to the requested
* element using getelementptr if possible.
*
* Returns NULL if the insertelement/extractelement fallback for array access
* must be used.
*/
static LLVMValueRef
get_pointer_into_array(struct si_shader_context *ctx,
unsigned file,
unsigned swizzle,
unsigned reg_index,
const struct tgsi_ind_register *reg_indirect)
{
unsigned array_id;
struct tgsi_array_info *array;
struct gallivm_state *gallivm = ctx->soa.bld_base.base.gallivm;
LLVMBuilderRef builder = gallivm->builder;
LLVMValueRef idxs[2];
LLVMValueRef index;
LLVMValueRef alloca;
if (file != TGSI_FILE_TEMPORARY)
return NULL;
array_id = get_temp_array_id(&ctx->soa.bld_base, reg_index, reg_indirect);
if (!array_id)
return NULL;
alloca = ctx->temp_array_allocas[array_id - 1];
if (!alloca)
return NULL;
array = &ctx->temp_arrays[array_id - 1];
if (!(array->writemask & (1 << swizzle)))
return ctx->undef_alloca;
index = emit_array_index(&ctx->soa, reg_indirect,
reg_index - ctx->temp_arrays[array_id - 1].range.First);
/* Ensure that the index is within a valid range, to guard against
* VM faults and overwriting critical data (e.g. spilled resource
* descriptors).
*
* TODO It should be possible to avoid the additional instructions
* if LLVM is changed so that it guarantuees:
* 1. the scratch space descriptor isolates the current wave (this
* could even save the scratch offset SGPR at the cost of an
* additional SALU instruction)
* 2. the memory for allocas must be allocated at the _end_ of the
* scratch space (after spilled registers)
*/
index = si_llvm_bound_index(ctx, index, array->range.Last - array->range.First + 1);
index = LLVMBuildMul(
builder, index,
lp_build_const_int32(gallivm, util_bitcount(array->writemask)),
"");
index = LLVMBuildAdd(
builder, index,
lp_build_const_int32(
gallivm,
util_bitcount(array->writemask & ((1 << swizzle) - 1))),
"");
idxs[0] = ctx->soa.bld_base.uint_bld.zero;
idxs[1] = index;
return LLVMBuildGEP(builder, alloca, idxs, 2, "");
}
LLVMValueRef
si_llvm_emit_fetch_64bit(struct lp_build_tgsi_context *bld_base,
enum tgsi_opcode_type type,
LLVMValueRef ptr,
LLVMValueRef ptr2)
{
LLVMBuilderRef builder = bld_base->base.gallivm->builder;
LLVMValueRef result;
result = LLVMGetUndef(LLVMVectorType(LLVMIntTypeInContext(bld_base->base.gallivm->context, 32), bld_base->base.type.length * 2));
result = LLVMBuildInsertElement(builder,
result,
bitcast(bld_base, TGSI_TYPE_UNSIGNED, ptr),
bld_base->int_bld.zero, "");
result = LLVMBuildInsertElement(builder,
result,
bitcast(bld_base, TGSI_TYPE_UNSIGNED, ptr2),
bld_base->int_bld.one, "");
return bitcast(bld_base, type, result);
}
static LLVMValueRef
emit_array_fetch(struct lp_build_tgsi_context *bld_base,
unsigned File, enum tgsi_opcode_type type,
struct tgsi_declaration_range range,
unsigned swizzle)
{
struct lp_build_tgsi_soa_context *bld = lp_soa_context(bld_base);
struct gallivm_state *gallivm = bld->bld_base.base.gallivm;
LLVMBuilderRef builder = bld_base->base.gallivm->builder;
unsigned i, size = range.Last - range.First + 1;
LLVMTypeRef vec = LLVMVectorType(tgsi2llvmtype(bld_base, type), size);
LLVMValueRef result = LLVMGetUndef(vec);
struct tgsi_full_src_register tmp_reg = {};
tmp_reg.Register.File = File;
for (i = 0; i < size; ++i) {
tmp_reg.Register.Index = i + range.First;
LLVMValueRef temp = si_llvm_emit_fetch(bld_base, &tmp_reg, type, swizzle);
result = LLVMBuildInsertElement(builder, result, temp,
lp_build_const_int32(gallivm, i), "array_vector");
}
return result;
}
static LLVMValueRef
load_value_from_array(struct lp_build_tgsi_context *bld_base,
unsigned file,
enum tgsi_opcode_type type,
unsigned swizzle,
unsigned reg_index,
const struct tgsi_ind_register *reg_indirect)
{
struct si_shader_context *ctx = si_shader_context(bld_base);
struct lp_build_tgsi_soa_context *bld = lp_soa_context(bld_base);
struct gallivm_state *gallivm = bld_base->base.gallivm;
LLVMBuilderRef builder = gallivm->builder;
LLVMValueRef ptr;
ptr = get_pointer_into_array(ctx, file, swizzle, reg_index, reg_indirect);
if (ptr) {
LLVMValueRef val = LLVMBuildLoad(builder, ptr, "");
if (tgsi_type_is_64bit(type)) {
LLVMValueRef ptr_hi, val_hi;
ptr_hi = LLVMBuildGEP(builder, ptr, &bld_base->uint_bld.one, 1, "");
val_hi = LLVMBuildLoad(builder, ptr_hi, "");
val = si_llvm_emit_fetch_64bit(bld_base, type, val, val_hi);
}
return val;
} else {
struct tgsi_declaration_range range =
get_array_range(bld_base, file, reg_index, reg_indirect);
LLVMValueRef index =
emit_array_index(bld, reg_indirect, reg_index - range.First);
LLVMValueRef array =
emit_array_fetch(bld_base, file, type, range, swizzle);
return LLVMBuildExtractElement(builder, array, index, "");
}
}
static void
store_value_to_array(struct lp_build_tgsi_context *bld_base,
LLVMValueRef value,
unsigned file,
unsigned chan_index,
unsigned reg_index,
const struct tgsi_ind_register *reg_indirect)
{
struct si_shader_context *ctx = si_shader_context(bld_base);
struct lp_build_tgsi_soa_context *bld = lp_soa_context(bld_base);
struct gallivm_state *gallivm = bld_base->base.gallivm;
LLVMBuilderRef builder = gallivm->builder;
LLVMValueRef ptr;
ptr = get_pointer_into_array(ctx, file, chan_index, reg_index, reg_indirect);
if (ptr) {
LLVMBuildStore(builder, value, ptr);
} else {
unsigned i, size;
struct tgsi_declaration_range range = get_array_range(bld_base, file, reg_index, reg_indirect);
LLVMValueRef index = emit_array_index(bld, reg_indirect, reg_index - range.First);
LLVMValueRef array =
emit_array_fetch(bld_base, file, TGSI_TYPE_FLOAT, range, chan_index);
LLVMValueRef temp_ptr;
array = LLVMBuildInsertElement(builder, array, value, index, "");
size = range.Last - range.First + 1;
for (i = 0; i < size; ++i) {
switch(file) {
case TGSI_FILE_OUTPUT:
temp_ptr = bld->outputs[i + range.First][chan_index];
break;
case TGSI_FILE_TEMPORARY:
if (range.First + i >= ctx->temps_count)
continue;
temp_ptr = ctx->temps[(i + range.First) * TGSI_NUM_CHANNELS + chan_index];
break;
default:
continue;
}
value = LLVMBuildExtractElement(builder, array,
lp_build_const_int32(gallivm, i), "");
LLVMBuildStore(builder, value, temp_ptr);
}
}
}
/* If this is true, preload FS inputs at the beginning of shaders. Otherwise,
* reload them at each use. This must be true if the shader is using
* derivatives, because all inputs should be loaded in the WQM mode.
*/
static bool si_preload_fs_inputs(struct si_shader_context *ctx)
{
return ctx->shader->selector->info.uses_derivatives;
}
LLVMValueRef si_llvm_emit_fetch(struct lp_build_tgsi_context *bld_base,
const struct tgsi_full_src_register *reg,
enum tgsi_opcode_type type,
unsigned swizzle)
{
struct si_shader_context *ctx = si_shader_context(bld_base);
struct lp_build_tgsi_soa_context *bld = lp_soa_context(bld_base);
LLVMBuilderRef builder = bld_base->base.gallivm->builder;
LLVMValueRef result = NULL, ptr, ptr2;
if (swizzle == ~0) {
LLVMValueRef values[TGSI_NUM_CHANNELS];
unsigned chan;
for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
values[chan] = si_llvm_emit_fetch(bld_base, reg, type, chan);
}
return lp_build_gather_values(bld_base->base.gallivm, values,
TGSI_NUM_CHANNELS);
}
if (reg->Register.Indirect) {
LLVMValueRef load = load_value_from_array(bld_base, reg->Register.File, type,
swizzle, reg->Register.Index, &reg->Indirect);
return bitcast(bld_base, type, load);
}
switch(reg->Register.File) {
case TGSI_FILE_IMMEDIATE: {
LLVMTypeRef ctype = tgsi2llvmtype(bld_base, type);
if (tgsi_type_is_64bit(type)) {
result = LLVMGetUndef(LLVMVectorType(LLVMIntTypeInContext(bld_base->base.gallivm->context, 32), bld_base->base.type.length * 2));
result = LLVMConstInsertElement(result,
ctx->imms[reg->Register.Index * TGSI_NUM_CHANNELS + swizzle],
bld_base->int_bld.zero);
result = LLVMConstInsertElement(result,
ctx->imms[reg->Register.Index * TGSI_NUM_CHANNELS + swizzle + 1],
bld_base->int_bld.one);
return LLVMConstBitCast(result, ctype);
} else {
return LLVMConstBitCast(ctx->imms[reg->Register.Index * TGSI_NUM_CHANNELS + swizzle], ctype);
}
}
case TGSI_FILE_INPUT: {
unsigned index = reg->Register.Index;
LLVMValueRef input[4];
/* I don't think doing this for vertex shaders is beneficial.
* For those, we want to make sure the VMEM loads are executed
* only once. Fragment shaders don't care much, because
* v_interp instructions are much cheaper than VMEM loads.
*/
if (!si_preload_fs_inputs(ctx) &&
ctx->soa.bld_base.info->processor == PIPE_SHADER_FRAGMENT)
ctx->load_input(ctx, index, &ctx->input_decls[index], input);
else
memcpy(input, &ctx->inputs[index * 4], sizeof(input));
result = input[swizzle];
if (tgsi_type_is_64bit(type)) {
ptr = result;
ptr2 = input[swizzle + 1];
return si_llvm_emit_fetch_64bit(bld_base, type, ptr, ptr2);
}
break;
}
case TGSI_FILE_TEMPORARY:
if (reg->Register.Index >= ctx->temps_count)
return LLVMGetUndef(tgsi2llvmtype(bld_base, type));
ptr = ctx->temps[reg->Register.Index * TGSI_NUM_CHANNELS + swizzle];
if (tgsi_type_is_64bit(type)) {
ptr2 = ctx->temps[reg->Register.Index * TGSI_NUM_CHANNELS + swizzle + 1];
return si_llvm_emit_fetch_64bit(bld_base, type,
LLVMBuildLoad(builder, ptr, ""),
LLVMBuildLoad(builder, ptr2, ""));
}
result = LLVMBuildLoad(builder, ptr, "");
break;
case TGSI_FILE_OUTPUT:
ptr = lp_get_output_ptr(bld, reg->Register.Index, swizzle);
if (tgsi_type_is_64bit(type)) {
ptr2 = lp_get_output_ptr(bld, reg->Register.Index, swizzle + 1);
return si_llvm_emit_fetch_64bit(bld_base, type,
LLVMBuildLoad(builder, ptr, ""),
LLVMBuildLoad(builder, ptr2, ""));
}
result = LLVMBuildLoad(builder, ptr, "");
break;
default:
return LLVMGetUndef(tgsi2llvmtype(bld_base, type));
}
return bitcast(bld_base, type, result);
}
static LLVMValueRef fetch_system_value(struct lp_build_tgsi_context *bld_base,
const struct tgsi_full_src_register *reg,
enum tgsi_opcode_type type,
unsigned swizzle)
{
struct si_shader_context *ctx = si_shader_context(bld_base);
struct gallivm_state *gallivm = bld_base->base.gallivm;
LLVMValueRef cval = ctx->system_values[reg->Register.Index];
if (LLVMGetTypeKind(LLVMTypeOf(cval)) == LLVMVectorTypeKind) {
cval = LLVMBuildExtractElement(gallivm->builder, cval,
lp_build_const_int32(gallivm, swizzle), "");
}
return bitcast(bld_base, type, cval);
}
static void emit_declaration(struct lp_build_tgsi_context *bld_base,
const struct tgsi_full_declaration *decl)
{
struct si_shader_context *ctx = si_shader_context(bld_base);
LLVMBuilderRef builder = bld_base->base.gallivm->builder;
unsigned first, last, i;
switch(decl->Declaration.File) {
case TGSI_FILE_ADDRESS:
{
unsigned idx;
for (idx = decl->Range.First; idx <= decl->Range.Last; idx++) {
unsigned chan;
for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
ctx->soa.addr[idx][chan] = lp_build_alloca_undef(
&ctx->gallivm,
ctx->soa.bld_base.uint_bld.elem_type, "");
}
}
break;
}
case TGSI_FILE_TEMPORARY:
{
char name[16] = "";
LLVMValueRef array_alloca = NULL;
unsigned decl_size;
unsigned writemask = decl->Declaration.UsageMask;
first = decl->Range.First;
last = decl->Range.Last;
decl_size = 4 * ((last - first) + 1);
if (decl->Declaration.Array) {
unsigned id = decl->Array.ArrayID - 1;
unsigned array_size;
writemask &= ctx->temp_arrays[id].writemask;
ctx->temp_arrays[id].writemask = writemask;
array_size = ((last - first) + 1) * util_bitcount(writemask);
/* If the array has more than 16 elements, store it
* in memory using an alloca that spans the entire
* array.
*
* Otherwise, store each array element individually.
* We will then generate vectors (per-channel, up to
* <16 x float> if the usagemask is a single bit) for
* indirect addressing.
*
* Note that 16 is the number of vector elements that
* LLVM will store in a register, so theoretically an
* array with up to 4 * 16 = 64 elements could be
* handled this way, but whether that's a good idea
* depends on VGPR register pressure elsewhere.
*
* FIXME: We shouldn't need to have the non-alloca
* code path for arrays. LLVM should be smart enough to
* promote allocas into registers when profitable.
*
* LLVM 3.8 crashes with this.
*/
if (HAVE_LLVM >= 0x0309 && array_size > 16) {
array_alloca = LLVMBuildAlloca(builder,
LLVMArrayType(bld_base->base.vec_type,
array_size), "array");
ctx->temp_array_allocas[id] = array_alloca;
}
}
if (!ctx->temps_count) {
ctx->temps_count = bld_base->info->file_max[TGSI_FILE_TEMPORARY] + 1;
ctx->temps = MALLOC(TGSI_NUM_CHANNELS * ctx->temps_count * sizeof(LLVMValueRef));
}
if (!array_alloca) {
for (i = 0; i < decl_size; ++i) {
#ifdef DEBUG
snprintf(name, sizeof(name), "TEMP%d.%c",
first + i / 4, "xyzw"[i % 4]);
#endif
ctx->temps[first * TGSI_NUM_CHANNELS + i] =
lp_build_alloca_undef(bld_base->base.gallivm,
bld_base->base.vec_type,
name);
}
} else {
LLVMValueRef idxs[2] = {
bld_base->uint_bld.zero,
NULL
};
unsigned j = 0;
if (writemask != TGSI_WRITEMASK_XYZW &&
!ctx->undef_alloca) {
/* Create a dummy alloca. We use it so that we
* have a pointer that is safe to load from if
* a shader ever reads from a channel that
* it never writes to.
*/
ctx->undef_alloca = lp_build_alloca_undef(
bld_base->base.gallivm,
bld_base->base.vec_type, "undef");
}
for (i = 0; i < decl_size; ++i) {
LLVMValueRef ptr;
if (writemask & (1 << (i % 4))) {
#ifdef DEBUG
snprintf(name, sizeof(name), "TEMP%d.%c",
first + i / 4, "xyzw"[i % 4]);
#endif
idxs[1] = lp_build_const_int32(bld_base->base.gallivm, j);
ptr = LLVMBuildGEP(builder, array_alloca, idxs, 2, name);
j++;
} else {
ptr = ctx->undef_alloca;
}
ctx->temps[first * TGSI_NUM_CHANNELS + i] = ptr;
}
}
break;
}
case TGSI_FILE_INPUT:
{
unsigned idx;
for (idx = decl->Range.First; idx <= decl->Range.Last; idx++) {
if (ctx->load_input &&
ctx->input_decls[idx].Declaration.File != TGSI_FILE_INPUT) {
ctx->input_decls[idx] = *decl;
ctx->input_decls[idx].Range.First = idx;
ctx->input_decls[idx].Range.Last = idx;
ctx->input_decls[idx].Semantic.Index += idx - decl->Range.First;
if (si_preload_fs_inputs(ctx) ||
bld_base->info->processor != PIPE_SHADER_FRAGMENT)
ctx->load_input(ctx, idx, &ctx->input_decls[idx],
&ctx->inputs[idx * 4]);
}
}
}
break;
case TGSI_FILE_SYSTEM_VALUE:
{
unsigned idx;
for (idx = decl->Range.First; idx <= decl->Range.Last; idx++) {
ctx->load_system_value(ctx, idx, decl);
}
}
break;
case TGSI_FILE_OUTPUT:
{
char name[16] = "";
unsigned idx;
for (idx = decl->Range.First; idx <= decl->Range.Last; idx++) {
unsigned chan;
assert(idx < RADEON_LLVM_MAX_OUTPUTS);
if (ctx->soa.outputs[idx][0])
continue;
for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
#ifdef DEBUG
snprintf(name, sizeof(name), "OUT%d.%c",
idx, "xyzw"[chan % 4]);
#endif
ctx->soa.outputs[idx][chan] = lp_build_alloca_undef(
&ctx->gallivm,
ctx->soa.bld_base.base.elem_type, name);
}
}
break;
}
case TGSI_FILE_MEMORY:
ctx->declare_memory_region(ctx, decl);
break;
default:
break;
}
}
LLVMValueRef si_llvm_saturate(struct lp_build_tgsi_context *bld_base,
LLVMValueRef value)
{
struct lp_build_emit_data clamp_emit_data;
memset(&clamp_emit_data, 0, sizeof(clamp_emit_data));
clamp_emit_data.arg_count = 3;
clamp_emit_data.args[0] = value;
clamp_emit_data.args[2] = bld_base->base.one;
clamp_emit_data.args[1] = bld_base->base.zero;
return lp_build_emit_llvm(bld_base, TGSI_OPCODE_CLAMP,
&clamp_emit_data);
}
void si_llvm_emit_store(struct lp_build_tgsi_context *bld_base,
const struct tgsi_full_instruction *inst,
const struct tgsi_opcode_info *info,
LLVMValueRef dst[4])
{
struct si_shader_context *ctx = si_shader_context(bld_base);
struct lp_build_tgsi_soa_context *bld = lp_soa_context(bld_base);
struct gallivm_state *gallivm = bld->bld_base.base.gallivm;
const struct tgsi_full_dst_register *reg = &inst->Dst[0];
LLVMBuilderRef builder = bld->bld_base.base.gallivm->builder;
LLVMValueRef temp_ptr, temp_ptr2 = NULL;
unsigned chan, chan_index;
bool is_vec_store = false;
enum tgsi_opcode_type dtype = tgsi_opcode_infer_dst_type(inst->Instruction.Opcode);
if (dst[0]) {
LLVMTypeKind k = LLVMGetTypeKind(LLVMTypeOf(dst[0]));
is_vec_store = (k == LLVMVectorTypeKind);
}
if (is_vec_store) {
LLVMValueRef values[4] = {};
TGSI_FOR_EACH_DST0_ENABLED_CHANNEL(inst, chan) {
LLVMValueRef index = lp_build_const_int32(gallivm, chan);
values[chan] = LLVMBuildExtractElement(gallivm->builder,
dst[0], index, "");
}
bld_base->emit_store(bld_base, inst, info, values);
return;
}
TGSI_FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
LLVMValueRef value = dst[chan_index];
if (tgsi_type_is_64bit(dtype) && (chan_index == 1 || chan_index == 3))
continue;
if (inst->Instruction.Saturate)
value = si_llvm_saturate(bld_base, value);
if (reg->Register.File == TGSI_FILE_ADDRESS) {
temp_ptr = bld->addr[reg->Register.Index][chan_index];
LLVMBuildStore(builder, value, temp_ptr);
continue;
}
if (!tgsi_type_is_64bit(dtype))
value = bitcast(bld_base, TGSI_TYPE_FLOAT, value);
if (reg->Register.Indirect) {
unsigned file = reg->Register.File;
unsigned reg_index = reg->Register.Index;
store_value_to_array(bld_base, value, file, chan_index,
reg_index, &reg->Indirect);
} else {
switch(reg->Register.File) {
case TGSI_FILE_OUTPUT:
temp_ptr = bld->outputs[reg->Register.Index][chan_index];
if (tgsi_type_is_64bit(dtype))
temp_ptr2 = bld->outputs[reg->Register.Index][chan_index + 1];
break;
case TGSI_FILE_TEMPORARY:
{
if (reg->Register.Index >= ctx->temps_count)
continue;
temp_ptr = ctx->temps[ TGSI_NUM_CHANNELS * reg->Register.Index + chan_index];
if (tgsi_type_is_64bit(dtype))
temp_ptr2 = ctx->temps[ TGSI_NUM_CHANNELS * reg->Register.Index + chan_index + 1];
break;
}
default:
return;
}
if (!tgsi_type_is_64bit(dtype))
LLVMBuildStore(builder, value, temp_ptr);
else {
LLVMValueRef ptr = LLVMBuildBitCast(builder, value,
LLVMVectorType(LLVMIntTypeInContext(bld_base->base.gallivm->context, 32), 2), "");
LLVMValueRef val2;
value = LLVMBuildExtractElement(builder, ptr,
bld_base->uint_bld.zero, "");
val2 = LLVMBuildExtractElement(builder, ptr,
bld_base->uint_bld.one, "");
LLVMBuildStore(builder, bitcast(bld_base, TGSI_TYPE_FLOAT, value), temp_ptr);
LLVMBuildStore(builder, bitcast(bld_base, TGSI_TYPE_FLOAT, val2), temp_ptr2);
}
}
}
}
static void set_basicblock_name(LLVMBasicBlockRef bb, const char *base, int pc)
{
char buf[32];
/* Subtract 1 so that the number shown is that of the corresponding
* opcode in the TGSI dump, e.g. an if block has the same suffix as
* the instruction number of the corresponding TGSI IF.
*/
snprintf(buf, sizeof(buf), "%s%d", base, pc - 1);
LLVMSetValueName(LLVMBasicBlockAsValue(bb), buf);
}
/* Append a basic block at the level of the parent flow.
*/
static LLVMBasicBlockRef append_basic_block(struct si_shader_context *ctx,
const char *name)
{
struct gallivm_state *gallivm = &ctx->gallivm;
assert(ctx->flow_depth >= 1);
if (ctx->flow_depth >= 2) {
struct si_llvm_flow *flow = &ctx->flow[ctx->flow_depth - 2];
return LLVMInsertBasicBlockInContext(gallivm->context,
flow->next_block, name);
}
return LLVMAppendBasicBlockInContext(gallivm->context, ctx->main_fn, name);
}
/* Emit a branch to the given default target for the current block if
* applicable -- that is, if the current block does not already contain a
* branch from a break or continue.
*/
static void emit_default_branch(LLVMBuilderRef builder, LLVMBasicBlockRef target)
{
if (!LLVMGetBasicBlockTerminator(LLVMGetInsertBlock(builder)))
LLVMBuildBr(builder, target);
}
static void bgnloop_emit(const struct lp_build_tgsi_action *action,
struct lp_build_tgsi_context *bld_base,
struct lp_build_emit_data *emit_data)
{
struct si_shader_context *ctx = si_shader_context(bld_base);
struct gallivm_state *gallivm = bld_base->base.gallivm;
struct si_llvm_flow *flow = push_flow(ctx);
flow->loop_entry_block = append_basic_block(ctx, "LOOP");
flow->next_block = append_basic_block(ctx, "ENDLOOP");
set_basicblock_name(flow->loop_entry_block, "loop", bld_base->pc);
LLVMBuildBr(gallivm->builder, flow->loop_entry_block);
LLVMPositionBuilderAtEnd(gallivm->builder, flow->loop_entry_block);
}
static void brk_emit(const struct lp_build_tgsi_action *action,
struct lp_build_tgsi_context *bld_base,
struct lp_build_emit_data *emit_data)
{
struct si_shader_context *ctx = si_shader_context(bld_base);
struct gallivm_state *gallivm = bld_base->base.gallivm;
struct si_llvm_flow *flow = get_innermost_loop(ctx);
LLVMBuildBr(gallivm->builder, flow->next_block);
}
static void cont_emit(const struct lp_build_tgsi_action *action,
struct lp_build_tgsi_context *bld_base,
struct lp_build_emit_data *emit_data)
{
struct si_shader_context *ctx = si_shader_context(bld_base);
struct gallivm_state *gallivm = bld_base->base.gallivm;
struct si_llvm_flow *flow = get_innermost_loop(ctx);
LLVMBuildBr(gallivm->builder, flow->loop_entry_block);
}
static void else_emit(const struct lp_build_tgsi_action *action,
struct lp_build_tgsi_context *bld_base,
struct lp_build_emit_data *emit_data)
{
struct si_shader_context *ctx = si_shader_context(bld_base);
struct gallivm_state *gallivm = bld_base->base.gallivm;
struct si_llvm_flow *current_branch = get_current_flow(ctx);
LLVMBasicBlockRef endif_block;
assert(!current_branch->loop_entry_block);
endif_block = append_basic_block(ctx, "ENDIF");
emit_default_branch(gallivm->builder, endif_block);
LLVMPositionBuilderAtEnd(gallivm->builder, current_branch->next_block);
set_basicblock_name(current_branch->next_block, "else", bld_base->pc);
current_branch->next_block = endif_block;
}
static void endif_emit(const struct lp_build_tgsi_action *action,
struct lp_build_tgsi_context *bld_base,
struct lp_build_emit_data *emit_data)
{
struct si_shader_context *ctx = si_shader_context(bld_base);
struct gallivm_state *gallivm = bld_base->base.gallivm;
struct si_llvm_flow *current_branch = get_current_flow(ctx);
assert(!current_branch->loop_entry_block);
emit_default_branch(gallivm->builder, current_branch->next_block);
LLVMPositionBuilderAtEnd(gallivm->builder, current_branch->next_block);
set_basicblock_name(current_branch->next_block, "endif", bld_base->pc);
ctx->flow_depth--;
}
static void endloop_emit(const struct lp_build_tgsi_action *action,
struct lp_build_tgsi_context *bld_base,
struct lp_build_emit_data *emit_data)
{
struct si_shader_context *ctx = si_shader_context(bld_base);
struct gallivm_state *gallivm = bld_base->base.gallivm;
struct si_llvm_flow *current_loop = get_current_flow(ctx);
assert(current_loop->loop_entry_block);
emit_default_branch(gallivm->builder, current_loop->loop_entry_block);
LLVMPositionBuilderAtEnd(gallivm->builder, current_loop->next_block);
set_basicblock_name(current_loop->next_block, "endloop", bld_base->pc);
ctx->flow_depth--;
}
static void if_cond_emit(const struct lp_build_tgsi_action *action,
struct lp_build_tgsi_context *bld_base,
struct lp_build_emit_data *emit_data,
LLVMValueRef cond)
{
struct si_shader_context *ctx = si_shader_context(bld_base);
struct gallivm_state *gallivm = bld_base->base.gallivm;
struct si_llvm_flow *flow = push_flow(ctx);
LLVMBasicBlockRef if_block;
if_block = append_basic_block(ctx, "IF");
flow->next_block = append_basic_block(ctx, "ELSE");
set_basicblock_name(if_block, "if", bld_base->pc);
LLVMBuildCondBr(gallivm->builder, cond, if_block, flow->next_block);
LLVMPositionBuilderAtEnd(gallivm->builder, if_block);
}
static void if_emit(const struct lp_build_tgsi_action *action,
struct lp_build_tgsi_context *bld_base,
struct lp_build_emit_data *emit_data)
{
struct gallivm_state *gallivm = bld_base->base.gallivm;
LLVMValueRef cond;
cond = LLVMBuildFCmp(gallivm->builder, LLVMRealUNE,
emit_data->args[0],
bld_base->base.zero, "");
if_cond_emit(action, bld_base, emit_data, cond);
}
static void uif_emit(const struct lp_build_tgsi_action *action,
struct lp_build_tgsi_context *bld_base,
struct lp_build_emit_data *emit_data)
{
struct gallivm_state *gallivm = bld_base->base.gallivm;
LLVMValueRef cond;
cond = LLVMBuildICmp(gallivm->builder, LLVMIntNE,
bitcast(bld_base, TGSI_TYPE_UNSIGNED, emit_data->args[0]),
bld_base->int_bld.zero, "");
if_cond_emit(action, bld_base, emit_data, cond);
}
static void emit_immediate(struct lp_build_tgsi_context *bld_base,
const struct tgsi_full_immediate *imm)
{
unsigned i;
struct si_shader_context *ctx = si_shader_context(bld_base);
for (i = 0; i < 4; ++i) {
ctx->imms[ctx->imms_num * TGSI_NUM_CHANNELS + i] =
LLVMConstInt(bld_base->uint_bld.elem_type, imm->u[i].Uint, false );
}
ctx->imms_num++;
}
void si_llvm_context_init(struct si_shader_context *ctx,
struct si_screen *sscreen,
struct si_shader *shader,
LLVMTargetMachineRef tm,
const struct tgsi_shader_info *info,
const struct tgsi_token *tokens)
{
struct lp_type type;
/* Initialize the gallivm object:
* We are only using the module, context, and builder fields of this struct.
* This should be enough for us to be able to pass our gallivm struct to the
* helper functions in the gallivm module.
*/
memset(ctx, 0, sizeof(*ctx));
ctx->shader = shader;
ctx->screen = sscreen;
ctx->tm = tm;
ctx->type = info ? info->processor : -1;
ctx->gallivm.context = LLVMContextCreate();
ctx->gallivm.module = LLVMModuleCreateWithNameInContext("tgsi",
ctx->gallivm.context);
LLVMSetTarget(ctx->gallivm.module, "amdgcn--");
bool unsafe_fpmath = (sscreen->b.debug_flags & DBG_UNSAFE_MATH) != 0;
ctx->gallivm.builder = lp_create_builder(ctx->gallivm.context,
unsafe_fpmath);
ac_llvm_context_init(&ctx->ac, ctx->gallivm.context);
ctx->ac.module = ctx->gallivm.module;
ctx->ac.builder = ctx->gallivm.builder;
struct lp_build_tgsi_context *bld_base = &ctx->soa.bld_base;
bld_base->info = info;
if (info && info->array_max[TGSI_FILE_TEMPORARY] > 0) {
int size = info->array_max[TGSI_FILE_TEMPORARY];
ctx->temp_arrays = CALLOC(size, sizeof(ctx->temp_arrays[0]));
ctx->temp_array_allocas = CALLOC(size, sizeof(ctx->temp_array_allocas[0]));
if (tokens)
tgsi_scan_arrays(tokens, TGSI_FILE_TEMPORARY, size,
ctx->temp_arrays);
}
if (info && info->file_max[TGSI_FILE_IMMEDIATE] >= 0) {
int size = info->file_max[TGSI_FILE_IMMEDIATE] + 1;
ctx->imms = MALLOC(size * TGSI_NUM_CHANNELS * sizeof(LLVMValueRef));
}
type.floating = true;
type.fixed = false;
type.sign = true;
type.norm = false;
type.width = 32;
type.length = 1;
lp_build_context_init(&bld_base->base, &ctx->gallivm, type);
lp_build_context_init(&ctx->soa.bld_base.uint_bld, &ctx->gallivm, lp_uint_type(type));
lp_build_context_init(&ctx->soa.bld_base.int_bld, &ctx->gallivm, lp_int_type(type));
type.width *= 2;
lp_build_context_init(&ctx->soa.bld_base.dbl_bld, &ctx->gallivm, type);
lp_build_context_init(&ctx->soa.bld_base.uint64_bld, &ctx->gallivm, lp_uint_type(type));
lp_build_context_init(&ctx->soa.bld_base.int64_bld, &ctx->gallivm, lp_int_type(type));
bld_base->soa = 1;
bld_base->emit_store = si_llvm_emit_store;
bld_base->emit_swizzle = emit_swizzle;
bld_base->emit_declaration = emit_declaration;
bld_base->emit_immediate = emit_immediate;
bld_base->emit_fetch_funcs[TGSI_FILE_IMMEDIATE] = si_llvm_emit_fetch;
bld_base->emit_fetch_funcs[TGSI_FILE_INPUT] = si_llvm_emit_fetch;
bld_base->emit_fetch_funcs[TGSI_FILE_TEMPORARY] = si_llvm_emit_fetch;
bld_base->emit_fetch_funcs[TGSI_FILE_OUTPUT] = si_llvm_emit_fetch;
bld_base->emit_fetch_funcs[TGSI_FILE_SYSTEM_VALUE] = fetch_system_value;
/* metadata allowing 2.5 ULP */
ctx->fpmath_md_kind = LLVMGetMDKindIDInContext(ctx->gallivm.context,
"fpmath", 6);
LLVMValueRef arg = lp_build_const_float(&ctx->gallivm, 2.5);
ctx->fpmath_md_2p5_ulp = LLVMMDNodeInContext(ctx->gallivm.context,
&arg, 1);
/* Allocate outputs */
ctx->soa.outputs = ctx->outputs;
bld_base->op_actions[TGSI_OPCODE_BGNLOOP].emit = bgnloop_emit;
bld_base->op_actions[TGSI_OPCODE_BRK].emit = brk_emit;
bld_base->op_actions[TGSI_OPCODE_CONT].emit = cont_emit;
bld_base->op_actions[TGSI_OPCODE_IF].emit = if_emit;
bld_base->op_actions[TGSI_OPCODE_UIF].emit = uif_emit;
bld_base->op_actions[TGSI_OPCODE_ELSE].emit = else_emit;
bld_base->op_actions[TGSI_OPCODE_ENDIF].emit = endif_emit;
bld_base->op_actions[TGSI_OPCODE_ENDLOOP].emit = endloop_emit;
si_shader_context_init_alu(&ctx->soa.bld_base);
ctx->voidt = LLVMVoidTypeInContext(ctx->gallivm.context);
ctx->i1 = LLVMInt1TypeInContext(ctx->gallivm.context);
ctx->i8 = LLVMInt8TypeInContext(ctx->gallivm.context);
ctx->i32 = LLVMInt32TypeInContext(ctx->gallivm.context);
ctx->i64 = LLVMInt64TypeInContext(ctx->gallivm.context);
ctx->i128 = LLVMIntTypeInContext(ctx->gallivm.context, 128);
ctx->f32 = LLVMFloatTypeInContext(ctx->gallivm.context);
ctx->v16i8 = LLVMVectorType(ctx->i8, 16);
ctx->v2i32 = LLVMVectorType(ctx->i32, 2);
ctx->v4i32 = LLVMVectorType(ctx->i32, 4);
ctx->v4f32 = LLVMVectorType(ctx->f32, 4);
ctx->v8i32 = LLVMVectorType(ctx->i32, 8);
}
void si_llvm_create_func(struct si_shader_context *ctx,
const char *name,
LLVMTypeRef *return_types, unsigned num_return_elems,
LLVMTypeRef *ParamTypes, unsigned ParamCount)
{
LLVMTypeRef main_fn_type, ret_type;
LLVMBasicBlockRef main_fn_body;
if (num_return_elems)
ret_type = LLVMStructTypeInContext(ctx->gallivm.context,
return_types,
num_return_elems, true);
else
ret_type = LLVMVoidTypeInContext(ctx->gallivm.context);
/* Setup the function */
ctx->return_type = ret_type;
main_fn_type = LLVMFunctionType(ret_type, ParamTypes, ParamCount, 0);
ctx->main_fn = LLVMAddFunction(ctx->gallivm.module, name, main_fn_type);
main_fn_body = LLVMAppendBasicBlockInContext(ctx->gallivm.context,
ctx->main_fn, "main_body");
LLVMPositionBuilderAtEnd(ctx->gallivm.builder, main_fn_body);
}
void si_llvm_finalize_module(struct si_shader_context *ctx,
bool run_verifier)
{
struct gallivm_state *gallivm = ctx->soa.bld_base.base.gallivm;
const char *triple = LLVMGetTarget(gallivm->module);
LLVMTargetLibraryInfoRef target_library_info;
/* Create the pass manager */
gallivm->passmgr = LLVMCreatePassManager();
target_library_info = gallivm_create_target_library_info(triple);
LLVMAddTargetLibraryInfo(target_library_info, gallivm->passmgr);
if (run_verifier)
LLVMAddVerifierPass(gallivm->passmgr);
LLVMAddAlwaysInlinerPass(gallivm->passmgr);
/* This pass should eliminate all the load and store instructions */
LLVMAddPromoteMemoryToRegisterPass(gallivm->passmgr);
/* Add some optimization passes */
LLVMAddScalarReplAggregatesPass(gallivm->passmgr);
LLVMAddLICMPass(gallivm->passmgr);
LLVMAddAggressiveDCEPass(gallivm->passmgr);
LLVMAddCFGSimplificationPass(gallivm->passmgr);
LLVMAddInstructionCombiningPass(gallivm->passmgr);
/* Run the pass */
LLVMRunPassManager(gallivm->passmgr, ctx->gallivm.module);
LLVMDisposeBuilder(gallivm->builder);
LLVMDisposePassManager(gallivm->passmgr);
gallivm_dispose_target_library_info(target_library_info);
}
void si_llvm_dispose(struct si_shader_context *ctx)
{
LLVMDisposeModule(ctx->soa.bld_base.base.gallivm->module);
LLVMContextDispose(ctx->soa.bld_base.base.gallivm->context);
FREE(ctx->temp_arrays);
ctx->temp_arrays = NULL;
FREE(ctx->temp_array_allocas);
ctx->temp_array_allocas = NULL;
FREE(ctx->temps);
ctx->temps = NULL;
ctx->temps_count = 0;
FREE(ctx->imms);
ctx->imms = NULL;
ctx->imms_num = 0;
FREE(ctx->flow);
ctx->flow = NULL;
ctx->flow_depth_max = 0;
}