blob: daa0c2408a8160ab04349ea82b53a637f4eb87bc [file] [log] [blame]
/*
* Copyright © 2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "brw_context.h"
#include "brw_cfg.h"
#include "brw_eu.h"
#include "brw_fs.h"
#include "brw_nir.h"
#include "brw_vec4_tes.h"
#include "main/uniforms.h"
extern "C" void
brw_mark_surface_used(struct brw_stage_prog_data *prog_data,
unsigned surf_index)
{
assert(surf_index < BRW_MAX_SURFACES);
prog_data->binding_table.size_bytes =
MAX2(prog_data->binding_table.size_bytes, (surf_index + 1) * 4);
}
enum brw_reg_type
brw_type_for_base_type(const struct glsl_type *type)
{
switch (type->base_type) {
case GLSL_TYPE_FLOAT:
return BRW_REGISTER_TYPE_F;
case GLSL_TYPE_INT:
case GLSL_TYPE_BOOL:
case GLSL_TYPE_SUBROUTINE:
return BRW_REGISTER_TYPE_D;
case GLSL_TYPE_UINT:
return BRW_REGISTER_TYPE_UD;
case GLSL_TYPE_ARRAY:
return brw_type_for_base_type(type->fields.array);
case GLSL_TYPE_STRUCT:
case GLSL_TYPE_SAMPLER:
case GLSL_TYPE_ATOMIC_UINT:
/* These should be overridden with the type of the member when
* dereferenced into. BRW_REGISTER_TYPE_UD seems like a likely
* way to trip up if we don't.
*/
return BRW_REGISTER_TYPE_UD;
case GLSL_TYPE_IMAGE:
return BRW_REGISTER_TYPE_UD;
case GLSL_TYPE_DOUBLE:
return BRW_REGISTER_TYPE_DF;
case GLSL_TYPE_VOID:
case GLSL_TYPE_ERROR:
case GLSL_TYPE_INTERFACE:
case GLSL_TYPE_FUNCTION:
unreachable("not reached");
}
return BRW_REGISTER_TYPE_F;
}
enum brw_conditional_mod
brw_conditional_for_comparison(unsigned int op)
{
switch (op) {
case ir_binop_less:
return BRW_CONDITIONAL_L;
case ir_binop_greater:
return BRW_CONDITIONAL_G;
case ir_binop_lequal:
return BRW_CONDITIONAL_LE;
case ir_binop_gequal:
return BRW_CONDITIONAL_GE;
case ir_binop_equal:
case ir_binop_all_equal: /* same as equal for scalars */
return BRW_CONDITIONAL_Z;
case ir_binop_nequal:
case ir_binop_any_nequal: /* same as nequal for scalars */
return BRW_CONDITIONAL_NZ;
default:
unreachable("not reached: bad operation for comparison");
}
}
uint32_t
brw_math_function(enum opcode op)
{
switch (op) {
case SHADER_OPCODE_RCP:
return BRW_MATH_FUNCTION_INV;
case SHADER_OPCODE_RSQ:
return BRW_MATH_FUNCTION_RSQ;
case SHADER_OPCODE_SQRT:
return BRW_MATH_FUNCTION_SQRT;
case SHADER_OPCODE_EXP2:
return BRW_MATH_FUNCTION_EXP;
case SHADER_OPCODE_LOG2:
return BRW_MATH_FUNCTION_LOG;
case SHADER_OPCODE_POW:
return BRW_MATH_FUNCTION_POW;
case SHADER_OPCODE_SIN:
return BRW_MATH_FUNCTION_SIN;
case SHADER_OPCODE_COS:
return BRW_MATH_FUNCTION_COS;
case SHADER_OPCODE_INT_QUOTIENT:
return BRW_MATH_FUNCTION_INT_DIV_QUOTIENT;
case SHADER_OPCODE_INT_REMAINDER:
return BRW_MATH_FUNCTION_INT_DIV_REMAINDER;
default:
unreachable("not reached: unknown math function");
}
}
bool
brw_texture_offset(int *offsets, unsigned num_components, uint32_t *offset_bits)
{
if (!offsets) return false; /* nonconstant offset; caller will handle it. */
/* offset out of bounds; caller will handle it. */
for (unsigned i = 0; i < num_components; i++)
if (offsets[i] > 7 || offsets[i] < -8)
return false;
/* Combine all three offsets into a single unsigned dword:
*
* bits 11:8 - U Offset (X component)
* bits 7:4 - V Offset (Y component)
* bits 3:0 - R Offset (Z component)
*/
*offset_bits = 0;
for (unsigned i = 0; i < num_components; i++) {
const unsigned shift = 4 * (2 - i);
*offset_bits |= (offsets[i] << shift) & (0xF << shift);
}
return true;
}
const char *
brw_instruction_name(const struct gen_device_info *devinfo, enum opcode op)
{
switch (op) {
case BRW_OPCODE_ILLEGAL ... BRW_OPCODE_NOP:
/* The DO instruction doesn't exist on Gen6+, but we use it to mark the
* start of a loop in the IR.
*/
if (devinfo->gen >= 6 && op == BRW_OPCODE_DO)
return "do";
assert(brw_opcode_desc(devinfo, op)->name);
return brw_opcode_desc(devinfo, op)->name;
case FS_OPCODE_FB_WRITE:
return "fb_write";
case FS_OPCODE_FB_WRITE_LOGICAL:
return "fb_write_logical";
case FS_OPCODE_REP_FB_WRITE:
return "rep_fb_write";
case FS_OPCODE_FB_READ:
return "fb_read";
case FS_OPCODE_FB_READ_LOGICAL:
return "fb_read_logical";
case SHADER_OPCODE_RCP:
return "rcp";
case SHADER_OPCODE_RSQ:
return "rsq";
case SHADER_OPCODE_SQRT:
return "sqrt";
case SHADER_OPCODE_EXP2:
return "exp2";
case SHADER_OPCODE_LOG2:
return "log2";
case SHADER_OPCODE_POW:
return "pow";
case SHADER_OPCODE_INT_QUOTIENT:
return "int_quot";
case SHADER_OPCODE_INT_REMAINDER:
return "int_rem";
case SHADER_OPCODE_SIN:
return "sin";
case SHADER_OPCODE_COS:
return "cos";
case SHADER_OPCODE_TEX:
return "tex";
case SHADER_OPCODE_TEX_LOGICAL:
return "tex_logical";
case SHADER_OPCODE_TXD:
return "txd";
case SHADER_OPCODE_TXD_LOGICAL:
return "txd_logical";
case SHADER_OPCODE_TXF:
return "txf";
case SHADER_OPCODE_TXF_LOGICAL:
return "txf_logical";
case SHADER_OPCODE_TXF_LZ:
return "txf_lz";
case SHADER_OPCODE_TXL:
return "txl";
case SHADER_OPCODE_TXL_LOGICAL:
return "txl_logical";
case SHADER_OPCODE_TXL_LZ:
return "txl_lz";
case SHADER_OPCODE_TXS:
return "txs";
case SHADER_OPCODE_TXS_LOGICAL:
return "txs_logical";
case FS_OPCODE_TXB:
return "txb";
case FS_OPCODE_TXB_LOGICAL:
return "txb_logical";
case SHADER_OPCODE_TXF_CMS:
return "txf_cms";
case SHADER_OPCODE_TXF_CMS_LOGICAL:
return "txf_cms_logical";
case SHADER_OPCODE_TXF_CMS_W:
return "txf_cms_w";
case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
return "txf_cms_w_logical";
case SHADER_OPCODE_TXF_UMS:
return "txf_ums";
case SHADER_OPCODE_TXF_UMS_LOGICAL:
return "txf_ums_logical";
case SHADER_OPCODE_TXF_MCS:
return "txf_mcs";
case SHADER_OPCODE_TXF_MCS_LOGICAL:
return "txf_mcs_logical";
case SHADER_OPCODE_LOD:
return "lod";
case SHADER_OPCODE_LOD_LOGICAL:
return "lod_logical";
case SHADER_OPCODE_TG4:
return "tg4";
case SHADER_OPCODE_TG4_LOGICAL:
return "tg4_logical";
case SHADER_OPCODE_TG4_OFFSET:
return "tg4_offset";
case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
return "tg4_offset_logical";
case SHADER_OPCODE_SAMPLEINFO:
return "sampleinfo";
case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
return "sampleinfo_logical";
case SHADER_OPCODE_SHADER_TIME_ADD:
return "shader_time_add";
case SHADER_OPCODE_UNTYPED_ATOMIC:
return "untyped_atomic";
case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
return "untyped_atomic_logical";
case SHADER_OPCODE_UNTYPED_SURFACE_READ:
return "untyped_surface_read";
case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
return "untyped_surface_read_logical";
case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
return "untyped_surface_write";
case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
return "untyped_surface_write_logical";
case SHADER_OPCODE_TYPED_ATOMIC:
return "typed_atomic";
case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
return "typed_atomic_logical";
case SHADER_OPCODE_TYPED_SURFACE_READ:
return "typed_surface_read";
case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
return "typed_surface_read_logical";
case SHADER_OPCODE_TYPED_SURFACE_WRITE:
return "typed_surface_write";
case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
return "typed_surface_write_logical";
case SHADER_OPCODE_MEMORY_FENCE:
return "memory_fence";
case SHADER_OPCODE_LOAD_PAYLOAD:
return "load_payload";
case FS_OPCODE_PACK:
return "pack";
case SHADER_OPCODE_GEN4_SCRATCH_READ:
return "gen4_scratch_read";
case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
return "gen4_scratch_write";
case SHADER_OPCODE_GEN7_SCRATCH_READ:
return "gen7_scratch_read";
case SHADER_OPCODE_URB_WRITE_SIMD8:
return "gen8_urb_write_simd8";
case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
return "gen8_urb_write_simd8_per_slot";
case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
return "gen8_urb_write_simd8_masked";
case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
return "gen8_urb_write_simd8_masked_per_slot";
case SHADER_OPCODE_URB_READ_SIMD8:
return "urb_read_simd8";
case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
return "urb_read_simd8_per_slot";
case SHADER_OPCODE_FIND_LIVE_CHANNEL:
return "find_live_channel";
case SHADER_OPCODE_BROADCAST:
return "broadcast";
case VEC4_OPCODE_MOV_BYTES:
return "mov_bytes";
case VEC4_OPCODE_PACK_BYTES:
return "pack_bytes";
case VEC4_OPCODE_UNPACK_UNIFORM:
return "unpack_uniform";
case VEC4_OPCODE_FROM_DOUBLE:
return "double_to_single";
case VEC4_OPCODE_TO_DOUBLE:
return "single_to_double";
case VEC4_OPCODE_PICK_LOW_32BIT:
return "pick_low_32bit";
case VEC4_OPCODE_PICK_HIGH_32BIT:
return "pick_high_32bit";
case VEC4_OPCODE_SET_LOW_32BIT:
return "set_low_32bit";
case VEC4_OPCODE_SET_HIGH_32BIT:
return "set_high_32bit";
case FS_OPCODE_DDX_COARSE:
return "ddx_coarse";
case FS_OPCODE_DDX_FINE:
return "ddx_fine";
case FS_OPCODE_DDY_COARSE:
return "ddy_coarse";
case FS_OPCODE_DDY_FINE:
return "ddy_fine";
case FS_OPCODE_CINTERP:
return "cinterp";
case FS_OPCODE_LINTERP:
return "linterp";
case FS_OPCODE_PIXEL_X:
return "pixel_x";
case FS_OPCODE_PIXEL_Y:
return "pixel_y";
case FS_OPCODE_GET_BUFFER_SIZE:
return "fs_get_buffer_size";
case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
return "uniform_pull_const";
case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
return "uniform_pull_const_gen7";
case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
return "varying_pull_const_gen4";
case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
return "varying_pull_const_gen7";
case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
return "varying_pull_const_logical";
case FS_OPCODE_MOV_DISPATCH_TO_FLAGS:
return "mov_dispatch_to_flags";
case FS_OPCODE_DISCARD_JUMP:
return "discard_jump";
case FS_OPCODE_SET_SAMPLE_ID:
return "set_sample_id";
case FS_OPCODE_PACK_HALF_2x16_SPLIT:
return "pack_half_2x16_split";
case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X:
return "unpack_half_2x16_split_x";
case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y:
return "unpack_half_2x16_split_y";
case FS_OPCODE_PLACEHOLDER_HALT:
return "placeholder_halt";
case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
return "interp_sample";
case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
return "interp_shared_offset";
case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
return "interp_per_slot_offset";
case VS_OPCODE_URB_WRITE:
return "vs_urb_write";
case VS_OPCODE_PULL_CONSTANT_LOAD:
return "pull_constant_load";
case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7:
return "pull_constant_load_gen7";
case VS_OPCODE_SET_SIMD4X2_HEADER_GEN9:
return "set_simd4x2_header_gen9";
case VS_OPCODE_GET_BUFFER_SIZE:
return "vs_get_buffer_size";
case VS_OPCODE_UNPACK_FLAGS_SIMD4X2:
return "unpack_flags_simd4x2";
case GS_OPCODE_URB_WRITE:
return "gs_urb_write";
case GS_OPCODE_URB_WRITE_ALLOCATE:
return "gs_urb_write_allocate";
case GS_OPCODE_THREAD_END:
return "gs_thread_end";
case GS_OPCODE_SET_WRITE_OFFSET:
return "set_write_offset";
case GS_OPCODE_SET_VERTEX_COUNT:
return "set_vertex_count";
case GS_OPCODE_SET_DWORD_2:
return "set_dword_2";
case GS_OPCODE_PREPARE_CHANNEL_MASKS:
return "prepare_channel_masks";
case GS_OPCODE_SET_CHANNEL_MASKS:
return "set_channel_masks";
case GS_OPCODE_GET_INSTANCE_ID:
return "get_instance_id";
case GS_OPCODE_FF_SYNC:
return "ff_sync";
case GS_OPCODE_SET_PRIMITIVE_ID:
return "set_primitive_id";
case GS_OPCODE_SVB_WRITE:
return "gs_svb_write";
case GS_OPCODE_SVB_SET_DST_INDEX:
return "gs_svb_set_dst_index";
case GS_OPCODE_FF_SYNC_SET_PRIMITIVES:
return "gs_ff_sync_set_primitives";
case CS_OPCODE_CS_TERMINATE:
return "cs_terminate";
case SHADER_OPCODE_BARRIER:
return "barrier";
case SHADER_OPCODE_MULH:
return "mulh";
case SHADER_OPCODE_MOV_INDIRECT:
return "mov_indirect";
case VEC4_OPCODE_URB_READ:
return "urb_read";
case TCS_OPCODE_GET_INSTANCE_ID:
return "tcs_get_instance_id";
case TCS_OPCODE_URB_WRITE:
return "tcs_urb_write";
case TCS_OPCODE_SET_INPUT_URB_OFFSETS:
return "tcs_set_input_urb_offsets";
case TCS_OPCODE_SET_OUTPUT_URB_OFFSETS:
return "tcs_set_output_urb_offsets";
case TCS_OPCODE_GET_PRIMITIVE_ID:
return "tcs_get_primitive_id";
case TCS_OPCODE_CREATE_BARRIER_HEADER:
return "tcs_create_barrier_header";
case TCS_OPCODE_SRC0_010_IS_ZERO:
return "tcs_src0<0,1,0>_is_zero";
case TCS_OPCODE_RELEASE_INPUT:
return "tcs_release_input";
case TCS_OPCODE_THREAD_END:
return "tcs_thread_end";
case TES_OPCODE_CREATE_INPUT_READ_HEADER:
return "tes_create_input_read_header";
case TES_OPCODE_ADD_INDIRECT_URB_OFFSET:
return "tes_add_indirect_urb_offset";
case TES_OPCODE_GET_PRIMITIVE_ID:
return "tes_get_primitive_id";
}
unreachable("not reached");
}
bool
brw_saturate_immediate(enum brw_reg_type type, struct brw_reg *reg)
{
union {
unsigned ud;
int d;
float f;
double df;
} imm, sat_imm = { 0 };
const unsigned size = type_sz(type);
/* We want to either do a 32-bit or 64-bit data copy, the type is otherwise
* irrelevant, so just check the size of the type and copy from/to an
* appropriately sized field.
*/
if (size < 8)
imm.ud = reg->ud;
else
imm.df = reg->df;
switch (type) {
case BRW_REGISTER_TYPE_UD:
case BRW_REGISTER_TYPE_D:
case BRW_REGISTER_TYPE_UW:
case BRW_REGISTER_TYPE_W:
case BRW_REGISTER_TYPE_UQ:
case BRW_REGISTER_TYPE_Q:
/* Nothing to do. */
return false;
case BRW_REGISTER_TYPE_F:
sat_imm.f = CLAMP(imm.f, 0.0f, 1.0f);
break;
case BRW_REGISTER_TYPE_DF:
sat_imm.df = CLAMP(imm.df, 0.0, 1.0);
break;
case BRW_REGISTER_TYPE_UB:
case BRW_REGISTER_TYPE_B:
unreachable("no UB/B immediates");
case BRW_REGISTER_TYPE_V:
case BRW_REGISTER_TYPE_UV:
case BRW_REGISTER_TYPE_VF:
unreachable("unimplemented: saturate vector immediate");
case BRW_REGISTER_TYPE_HF:
unreachable("unimplemented: saturate HF immediate");
}
if (size < 8) {
if (imm.ud != sat_imm.ud) {
reg->ud = sat_imm.ud;
return true;
}
} else {
if (imm.df != sat_imm.df) {
reg->df = sat_imm.df;
return true;
}
}
return false;
}
bool
brw_negate_immediate(enum brw_reg_type type, struct brw_reg *reg)
{
switch (type) {
case BRW_REGISTER_TYPE_D:
case BRW_REGISTER_TYPE_UD:
reg->d = -reg->d;
return true;
case BRW_REGISTER_TYPE_W:
case BRW_REGISTER_TYPE_UW:
reg->d = -(int16_t)reg->ud;
return true;
case BRW_REGISTER_TYPE_F:
reg->f = -reg->f;
return true;
case BRW_REGISTER_TYPE_VF:
reg->ud ^= 0x80808080;
return true;
case BRW_REGISTER_TYPE_DF:
reg->df = -reg->df;
return true;
case BRW_REGISTER_TYPE_UB:
case BRW_REGISTER_TYPE_B:
unreachable("no UB/B immediates");
case BRW_REGISTER_TYPE_UV:
case BRW_REGISTER_TYPE_V:
assert(!"unimplemented: negate UV/V immediate");
case BRW_REGISTER_TYPE_UQ:
case BRW_REGISTER_TYPE_Q:
assert(!"unimplemented: negate UQ/Q immediate");
case BRW_REGISTER_TYPE_HF:
assert(!"unimplemented: negate HF immediate");
}
return false;
}
bool
brw_abs_immediate(enum brw_reg_type type, struct brw_reg *reg)
{
switch (type) {
case BRW_REGISTER_TYPE_D:
reg->d = abs(reg->d);
return true;
case BRW_REGISTER_TYPE_W:
reg->d = abs((int16_t)reg->ud);
return true;
case BRW_REGISTER_TYPE_F:
reg->f = fabsf(reg->f);
return true;
case BRW_REGISTER_TYPE_DF:
reg->df = fabs(reg->df);
return true;
case BRW_REGISTER_TYPE_VF:
reg->ud &= ~0x80808080;
return true;
case BRW_REGISTER_TYPE_UB:
case BRW_REGISTER_TYPE_B:
unreachable("no UB/B immediates");
case BRW_REGISTER_TYPE_UQ:
case BRW_REGISTER_TYPE_UD:
case BRW_REGISTER_TYPE_UW:
case BRW_REGISTER_TYPE_UV:
/* Presumably the absolute value modifier on an unsigned source is a
* nop, but it would be nice to confirm.
*/
assert(!"unimplemented: abs unsigned immediate");
case BRW_REGISTER_TYPE_V:
assert(!"unimplemented: abs V immediate");
case BRW_REGISTER_TYPE_Q:
assert(!"unimplemented: abs Q immediate");
case BRW_REGISTER_TYPE_HF:
assert(!"unimplemented: abs HF immediate");
}
return false;
}
/**
* Get the appropriate atomic op for an image atomic intrinsic.
*/
unsigned
get_atomic_counter_op(nir_intrinsic_op op)
{
switch (op) {
case nir_intrinsic_atomic_counter_inc:
return BRW_AOP_INC;
case nir_intrinsic_atomic_counter_dec:
return BRW_AOP_PREDEC;
case nir_intrinsic_atomic_counter_add:
return BRW_AOP_ADD;
case nir_intrinsic_atomic_counter_min:
return BRW_AOP_UMIN;
case nir_intrinsic_atomic_counter_max:
return BRW_AOP_UMAX;
case nir_intrinsic_atomic_counter_and:
return BRW_AOP_AND;
case nir_intrinsic_atomic_counter_or:
return BRW_AOP_OR;
case nir_intrinsic_atomic_counter_xor:
return BRW_AOP_XOR;
case nir_intrinsic_atomic_counter_exchange:
return BRW_AOP_MOV;
case nir_intrinsic_atomic_counter_comp_swap:
return BRW_AOP_CMPWR;
default:
unreachable("Not reachable.");
}
}
backend_shader::backend_shader(const struct brw_compiler *compiler,
void *log_data,
void *mem_ctx,
const nir_shader *shader,
struct brw_stage_prog_data *stage_prog_data)
: compiler(compiler),
log_data(log_data),
devinfo(compiler->devinfo),
nir(shader),
stage_prog_data(stage_prog_data),
mem_ctx(mem_ctx),
cfg(NULL),
stage(shader->stage)
{
debug_enabled = INTEL_DEBUG & intel_debug_flag_for_shader_stage(stage);
stage_name = _mesa_shader_stage_to_string(stage);
stage_abbrev = _mesa_shader_stage_to_abbrev(stage);
}
bool
backend_reg::equals(const backend_reg &r) const
{
return brw_regs_equal(this, &r) && offset == r.offset;
}
bool
backend_reg::is_zero() const
{
if (file != IMM)
return false;
switch (type) {
case BRW_REGISTER_TYPE_F:
return f == 0;
case BRW_REGISTER_TYPE_DF:
return df == 0;
case BRW_REGISTER_TYPE_D:
case BRW_REGISTER_TYPE_UD:
return d == 0;
default:
return false;
}
}
bool
backend_reg::is_one() const
{
if (file != IMM)
return false;
switch (type) {
case BRW_REGISTER_TYPE_F:
return f == 1.0f;
case BRW_REGISTER_TYPE_DF:
return df == 1.0;
case BRW_REGISTER_TYPE_D:
case BRW_REGISTER_TYPE_UD:
return d == 1;
default:
return false;
}
}
bool
backend_reg::is_negative_one() const
{
if (file != IMM)
return false;
switch (type) {
case BRW_REGISTER_TYPE_F:
return f == -1.0;
case BRW_REGISTER_TYPE_DF:
return df == -1.0;
case BRW_REGISTER_TYPE_D:
return d == -1;
default:
return false;
}
}
bool
backend_reg::is_null() const
{
return file == ARF && nr == BRW_ARF_NULL;
}
bool
backend_reg::is_accumulator() const
{
return file == ARF && nr == BRW_ARF_ACCUMULATOR;
}
bool
backend_instruction::is_commutative() const
{
switch (opcode) {
case BRW_OPCODE_AND:
case BRW_OPCODE_OR:
case BRW_OPCODE_XOR:
case BRW_OPCODE_ADD:
case BRW_OPCODE_MUL:
case SHADER_OPCODE_MULH:
return true;
case BRW_OPCODE_SEL:
/* MIN and MAX are commutative. */
if (conditional_mod == BRW_CONDITIONAL_GE ||
conditional_mod == BRW_CONDITIONAL_L) {
return true;
}
/* fallthrough */
default:
return false;
}
}
bool
backend_instruction::is_3src(const struct gen_device_info *devinfo) const
{
return ::is_3src(devinfo, opcode);
}
bool
backend_instruction::is_tex() const
{
return (opcode == SHADER_OPCODE_TEX ||
opcode == FS_OPCODE_TXB ||
opcode == SHADER_OPCODE_TXD ||
opcode == SHADER_OPCODE_TXF ||
opcode == SHADER_OPCODE_TXF_LZ ||
opcode == SHADER_OPCODE_TXF_CMS ||
opcode == SHADER_OPCODE_TXF_CMS_W ||
opcode == SHADER_OPCODE_TXF_UMS ||
opcode == SHADER_OPCODE_TXF_MCS ||
opcode == SHADER_OPCODE_TXL ||
opcode == SHADER_OPCODE_TXL_LZ ||
opcode == SHADER_OPCODE_TXS ||
opcode == SHADER_OPCODE_LOD ||
opcode == SHADER_OPCODE_TG4 ||
opcode == SHADER_OPCODE_TG4_OFFSET ||
opcode == SHADER_OPCODE_SAMPLEINFO);
}
bool
backend_instruction::is_math() const
{
return (opcode == SHADER_OPCODE_RCP ||
opcode == SHADER_OPCODE_RSQ ||
opcode == SHADER_OPCODE_SQRT ||
opcode == SHADER_OPCODE_EXP2 ||
opcode == SHADER_OPCODE_LOG2 ||
opcode == SHADER_OPCODE_SIN ||
opcode == SHADER_OPCODE_COS ||
opcode == SHADER_OPCODE_INT_QUOTIENT ||
opcode == SHADER_OPCODE_INT_REMAINDER ||
opcode == SHADER_OPCODE_POW);
}
bool
backend_instruction::is_control_flow() const
{
switch (opcode) {
case BRW_OPCODE_DO:
case BRW_OPCODE_WHILE:
case BRW_OPCODE_IF:
case BRW_OPCODE_ELSE:
case BRW_OPCODE_ENDIF:
case BRW_OPCODE_BREAK:
case BRW_OPCODE_CONTINUE:
return true;
default:
return false;
}
}
bool
backend_instruction::can_do_source_mods() const
{
switch (opcode) {
case BRW_OPCODE_ADDC:
case BRW_OPCODE_BFE:
case BRW_OPCODE_BFI1:
case BRW_OPCODE_BFI2:
case BRW_OPCODE_BFREV:
case BRW_OPCODE_CBIT:
case BRW_OPCODE_FBH:
case BRW_OPCODE_FBL:
case BRW_OPCODE_SUBB:
return false;
default:
return true;
}
}
bool
backend_instruction::can_do_saturate() const
{
switch (opcode) {
case BRW_OPCODE_ADD:
case BRW_OPCODE_ASR:
case BRW_OPCODE_AVG:
case BRW_OPCODE_DP2:
case BRW_OPCODE_DP3:
case BRW_OPCODE_DP4:
case BRW_OPCODE_DPH:
case BRW_OPCODE_F16TO32:
case BRW_OPCODE_F32TO16:
case BRW_OPCODE_LINE:
case BRW_OPCODE_LRP:
case BRW_OPCODE_MAC:
case BRW_OPCODE_MAD:
case BRW_OPCODE_MATH:
case BRW_OPCODE_MOV:
case BRW_OPCODE_MUL:
case SHADER_OPCODE_MULH:
case BRW_OPCODE_PLN:
case BRW_OPCODE_RNDD:
case BRW_OPCODE_RNDE:
case BRW_OPCODE_RNDU:
case BRW_OPCODE_RNDZ:
case BRW_OPCODE_SEL:
case BRW_OPCODE_SHL:
case BRW_OPCODE_SHR:
case FS_OPCODE_LINTERP:
case SHADER_OPCODE_COS:
case SHADER_OPCODE_EXP2:
case SHADER_OPCODE_LOG2:
case SHADER_OPCODE_POW:
case SHADER_OPCODE_RCP:
case SHADER_OPCODE_RSQ:
case SHADER_OPCODE_SIN:
case SHADER_OPCODE_SQRT:
return true;
default:
return false;
}
}
bool
backend_instruction::can_do_cmod() const
{
switch (opcode) {
case BRW_OPCODE_ADD:
case BRW_OPCODE_ADDC:
case BRW_OPCODE_AND:
case BRW_OPCODE_ASR:
case BRW_OPCODE_AVG:
case BRW_OPCODE_CMP:
case BRW_OPCODE_CMPN:
case BRW_OPCODE_DP2:
case BRW_OPCODE_DP3:
case BRW_OPCODE_DP4:
case BRW_OPCODE_DPH:
case BRW_OPCODE_F16TO32:
case BRW_OPCODE_F32TO16:
case BRW_OPCODE_FRC:
case BRW_OPCODE_LINE:
case BRW_OPCODE_LRP:
case BRW_OPCODE_LZD:
case BRW_OPCODE_MAC:
case BRW_OPCODE_MACH:
case BRW_OPCODE_MAD:
case BRW_OPCODE_MOV:
case BRW_OPCODE_MUL:
case BRW_OPCODE_NOT:
case BRW_OPCODE_OR:
case BRW_OPCODE_PLN:
case BRW_OPCODE_RNDD:
case BRW_OPCODE_RNDE:
case BRW_OPCODE_RNDU:
case BRW_OPCODE_RNDZ:
case BRW_OPCODE_SAD2:
case BRW_OPCODE_SADA2:
case BRW_OPCODE_SHL:
case BRW_OPCODE_SHR:
case BRW_OPCODE_SUBB:
case BRW_OPCODE_XOR:
case FS_OPCODE_CINTERP:
case FS_OPCODE_LINTERP:
return true;
default:
return false;
}
}
bool
backend_instruction::reads_accumulator_implicitly() const
{
switch (opcode) {
case BRW_OPCODE_MAC:
case BRW_OPCODE_MACH:
case BRW_OPCODE_SADA2:
return true;
default:
return false;
}
}
bool
backend_instruction::writes_accumulator_implicitly(const struct gen_device_info *devinfo) const
{
return writes_accumulator ||
(devinfo->gen < 6 &&
((opcode >= BRW_OPCODE_ADD && opcode < BRW_OPCODE_NOP) ||
(opcode >= FS_OPCODE_DDX_COARSE && opcode <= FS_OPCODE_LINTERP &&
opcode != FS_OPCODE_CINTERP)));
}
bool
backend_instruction::has_side_effects() const
{
switch (opcode) {
case SHADER_OPCODE_UNTYPED_ATOMIC:
case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
case SHADER_OPCODE_TYPED_ATOMIC:
case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
case SHADER_OPCODE_TYPED_SURFACE_WRITE:
case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
case SHADER_OPCODE_MEMORY_FENCE:
case SHADER_OPCODE_URB_WRITE_SIMD8:
case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
case FS_OPCODE_FB_WRITE:
case FS_OPCODE_FB_WRITE_LOGICAL:
case SHADER_OPCODE_BARRIER:
case TCS_OPCODE_URB_WRITE:
case TCS_OPCODE_RELEASE_INPUT:
return true;
default:
return false;
}
}
bool
backend_instruction::is_volatile() const
{
switch (opcode) {
case SHADER_OPCODE_UNTYPED_SURFACE_READ:
case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
case SHADER_OPCODE_TYPED_SURFACE_READ:
case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
case SHADER_OPCODE_URB_READ_SIMD8:
case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
case VEC4_OPCODE_URB_READ:
return true;
default:
return false;
}
}
#ifndef NDEBUG
static bool
inst_is_in_block(const bblock_t *block, const backend_instruction *inst)
{
bool found = false;
foreach_inst_in_block (backend_instruction, i, block) {
if (inst == i) {
found = true;
}
}
return found;
}
#endif
static void
adjust_later_block_ips(bblock_t *start_block, int ip_adjustment)
{
for (bblock_t *block_iter = start_block->next();
block_iter;
block_iter = block_iter->next()) {
block_iter->start_ip += ip_adjustment;
block_iter->end_ip += ip_adjustment;
}
}
void
backend_instruction::insert_after(bblock_t *block, backend_instruction *inst)
{
assert(this != inst);
if (!this->is_head_sentinel())
assert(inst_is_in_block(block, this) || !"Instruction not in block");
block->end_ip++;
adjust_later_block_ips(block, 1);
exec_node::insert_after(inst);
}
void
backend_instruction::insert_before(bblock_t *block, backend_instruction *inst)
{
assert(this != inst);
if (!this->is_tail_sentinel())
assert(inst_is_in_block(block, this) || !"Instruction not in block");
block->end_ip++;
adjust_later_block_ips(block, 1);
exec_node::insert_before(inst);
}
void
backend_instruction::insert_before(bblock_t *block, exec_list *list)
{
assert(inst_is_in_block(block, this) || !"Instruction not in block");
unsigned num_inst = list->length();
block->end_ip += num_inst;
adjust_later_block_ips(block, num_inst);
exec_node::insert_before(list);
}
void
backend_instruction::remove(bblock_t *block)
{
assert(inst_is_in_block(block, this) || !"Instruction not in block");
adjust_later_block_ips(block, -1);
if (block->start_ip == block->end_ip) {
block->cfg->remove_block(block);
} else {
block->end_ip--;
}
exec_node::remove();
}
void
backend_shader::dump_instructions()
{
dump_instructions(NULL);
}
void
backend_shader::dump_instructions(const char *name)
{
FILE *file = stderr;
if (name && geteuid() != 0) {
file = fopen(name, "w");
if (!file)
file = stderr;
}
if (cfg) {
int ip = 0;
foreach_block_and_inst(block, backend_instruction, inst, cfg) {
if (!unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER))
fprintf(file, "%4d: ", ip++);
dump_instruction(inst, file);
}
} else {
int ip = 0;
foreach_in_list(backend_instruction, inst, &instructions) {
if (!unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER))
fprintf(file, "%4d: ", ip++);
dump_instruction(inst, file);
}
}
if (file != stderr) {
fclose(file);
}
}
void
backend_shader::calculate_cfg()
{
if (this->cfg)
return;
cfg = new(mem_ctx) cfg_t(&this->instructions);
}
/**
* Sets up the starting offsets for the groups of binding table entries
* commong to all pipeline stages.
*
* Unused groups are initialized to 0xd0d0d0d0 to make it obvious that they're
* unused but also make sure that addition of small offsets to them will
* trigger some of our asserts that surface indices are < BRW_MAX_SURFACES.
*/
uint32_t
brw_assign_common_binding_table_offsets(const struct gen_device_info *devinfo,
const struct gl_program *prog,
struct brw_stage_prog_data *stage_prog_data,
uint32_t next_binding_table_offset)
{
int num_textures = util_last_bit(prog->SamplersUsed);
stage_prog_data->binding_table.texture_start = next_binding_table_offset;
next_binding_table_offset += num_textures;
if (prog->info.num_ubos) {
assert(prog->info.num_ubos <= BRW_MAX_UBO);
stage_prog_data->binding_table.ubo_start = next_binding_table_offset;
next_binding_table_offset += prog->info.num_ubos;
} else {
stage_prog_data->binding_table.ubo_start = 0xd0d0d0d0;
}
if (prog->info.num_ssbos) {
assert(prog->info.num_ssbos <= BRW_MAX_SSBO);
stage_prog_data->binding_table.ssbo_start = next_binding_table_offset;
next_binding_table_offset += prog->info.num_ssbos;
} else {
stage_prog_data->binding_table.ssbo_start = 0xd0d0d0d0;
}
if (INTEL_DEBUG & DEBUG_SHADER_TIME) {
stage_prog_data->binding_table.shader_time_start = next_binding_table_offset;
next_binding_table_offset++;
} else {
stage_prog_data->binding_table.shader_time_start = 0xd0d0d0d0;
}
if (prog->nir->info->uses_texture_gather) {
if (devinfo->gen >= 8) {
stage_prog_data->binding_table.gather_texture_start =
stage_prog_data->binding_table.texture_start;
} else {
stage_prog_data->binding_table.gather_texture_start = next_binding_table_offset;
next_binding_table_offset += num_textures;
}
} else {
stage_prog_data->binding_table.gather_texture_start = 0xd0d0d0d0;
}
if (prog->info.num_abos) {
stage_prog_data->binding_table.abo_start = next_binding_table_offset;
next_binding_table_offset += prog->info.num_abos;
} else {
stage_prog_data->binding_table.abo_start = 0xd0d0d0d0;
}
if (prog->info.num_images) {
stage_prog_data->binding_table.image_start = next_binding_table_offset;
next_binding_table_offset += prog->info.num_images;
} else {
stage_prog_data->binding_table.image_start = 0xd0d0d0d0;
}
/* This may or may not be used depending on how the compile goes. */
stage_prog_data->binding_table.pull_constants_start = next_binding_table_offset;
next_binding_table_offset++;
/* Plane 0 is just the regular texture section */
stage_prog_data->binding_table.plane_start[0] = stage_prog_data->binding_table.texture_start;
stage_prog_data->binding_table.plane_start[1] = next_binding_table_offset;
next_binding_table_offset += num_textures;
stage_prog_data->binding_table.plane_start[2] = next_binding_table_offset;
next_binding_table_offset += num_textures;
/* prog_data->base.binding_table.size will be set by brw_mark_surface_used. */
assert(next_binding_table_offset <= BRW_MAX_SURFACES);
return next_binding_table_offset;
}
static void
setup_vec4_uniform_value(const gl_constant_value **params,
const gl_constant_value *values,
unsigned n)
{
static const gl_constant_value zero = { 0 };
for (unsigned i = 0; i < n; ++i)
params[i] = &values[i];
for (unsigned i = n; i < 4; ++i)
params[i] = &zero;
}
void
brw_setup_image_uniform_values(gl_shader_stage stage,
struct brw_stage_prog_data *stage_prog_data,
unsigned param_start_index,
const gl_uniform_storage *storage)
{
const gl_constant_value **param =
&stage_prog_data->param[param_start_index];
for (unsigned i = 0; i < MAX2(storage->array_elements, 1); i++) {
const unsigned image_idx = storage->opaque[stage].index + i;
const brw_image_param *image_param =
&stage_prog_data->image_param[image_idx];
/* Upload the brw_image_param structure. The order is expected to match
* the BRW_IMAGE_PARAM_*_OFFSET defines.
*/
setup_vec4_uniform_value(param + BRW_IMAGE_PARAM_SURFACE_IDX_OFFSET,
(const gl_constant_value *)&image_param->surface_idx, 1);
setup_vec4_uniform_value(param + BRW_IMAGE_PARAM_OFFSET_OFFSET,
(const gl_constant_value *)image_param->offset, 2);
setup_vec4_uniform_value(param + BRW_IMAGE_PARAM_SIZE_OFFSET,
(const gl_constant_value *)image_param->size, 3);
setup_vec4_uniform_value(param + BRW_IMAGE_PARAM_STRIDE_OFFSET,
(const gl_constant_value *)image_param->stride, 4);
setup_vec4_uniform_value(param + BRW_IMAGE_PARAM_TILING_OFFSET,
(const gl_constant_value *)image_param->tiling, 3);
setup_vec4_uniform_value(param + BRW_IMAGE_PARAM_SWIZZLING_OFFSET,
(const gl_constant_value *)image_param->swizzling, 2);
param += BRW_IMAGE_PARAM_SIZE;
brw_mark_surface_used(
stage_prog_data,
stage_prog_data->binding_table.image_start + image_idx);
}
}
/**
* Decide which set of clip planes should be used when clipping via
* gl_Position or gl_ClipVertex.
*/
gl_clip_plane *brw_select_clip_planes(struct gl_context *ctx)
{
if (ctx->_Shader->CurrentProgram[MESA_SHADER_VERTEX]) {
/* There is currently a GLSL vertex shader, so clip according to GLSL
* rules, which means compare gl_ClipVertex (or gl_Position, if
* gl_ClipVertex wasn't assigned) against the eye-coordinate clip planes
* that were stored in EyeUserPlane at the time the clip planes were
* specified.
*/
return ctx->Transform.EyeUserPlane;
} else {
/* Either we are using fixed function or an ARB vertex program. In
* either case the clip planes are going to be compared against
* gl_Position (which is in clip coordinates) so we have to clip using
* _ClipUserPlane, which was transformed into clip coordinates by Mesa
* core.
*/
return ctx->Transform._ClipUserPlane;
}
}
extern "C" const unsigned *
brw_compile_tes(const struct brw_compiler *compiler,
void *log_data,
void *mem_ctx,
const struct brw_tes_prog_key *key,
struct brw_tes_prog_data *prog_data,
const nir_shader *src_shader,
struct gl_program *prog,
int shader_time_index,
unsigned *final_assembly_size,
char **error_str)
{
const struct gen_device_info *devinfo = compiler->devinfo;
const bool is_scalar = compiler->scalar_stage[MESA_SHADER_TESS_EVAL];
nir_shader *nir = nir_shader_clone(mem_ctx, src_shader);
nir->info->inputs_read = key->inputs_read;
nir->info->patch_inputs_read = key->patch_inputs_read;
struct brw_vue_map input_vue_map;
brw_compute_tess_vue_map(&input_vue_map, nir->info->inputs_read,
nir->info->patch_inputs_read);
nir = brw_nir_apply_sampler_key(nir, compiler, &key->tex, is_scalar);
brw_nir_lower_tes_inputs(nir, &input_vue_map);
brw_nir_lower_vue_outputs(nir, is_scalar);
nir = brw_postprocess_nir(nir, compiler, is_scalar);
brw_compute_vue_map(devinfo, &prog_data->base.vue_map,
nir->info->outputs_written,
nir->info->separate_shader);
unsigned output_size_bytes = prog_data->base.vue_map.num_slots * 4 * 4;
assert(output_size_bytes >= 1);
if (output_size_bytes > GEN7_MAX_DS_URB_ENTRY_SIZE_BYTES) {
if (error_str)
*error_str = ralloc_strdup(mem_ctx, "DS outputs exceed maximum size");
return NULL;
}
prog_data->base.clip_distance_mask =
((1 << nir->info->clip_distance_array_size) - 1);
prog_data->base.cull_distance_mask =
((1 << nir->info->cull_distance_array_size) - 1) <<
nir->info->clip_distance_array_size;
/* URB entry sizes are stored as a multiple of 64 bytes. */
prog_data->base.urb_entry_size = ALIGN(output_size_bytes, 64) / 64;
prog_data->base.urb_read_length = 0;
STATIC_ASSERT(BRW_TESS_PARTITIONING_INTEGER == TESS_SPACING_EQUAL - 1);
STATIC_ASSERT(BRW_TESS_PARTITIONING_ODD_FRACTIONAL ==
TESS_SPACING_FRACTIONAL_ODD - 1);
STATIC_ASSERT(BRW_TESS_PARTITIONING_EVEN_FRACTIONAL ==
TESS_SPACING_FRACTIONAL_EVEN - 1);
prog_data->partitioning =
(enum brw_tess_partitioning) (nir->info->tes.spacing - 1);
switch (nir->info->tes.primitive_mode) {
case GL_QUADS:
prog_data->domain = BRW_TESS_DOMAIN_QUAD;
break;
case GL_TRIANGLES:
prog_data->domain = BRW_TESS_DOMAIN_TRI;
break;
case GL_ISOLINES:
prog_data->domain = BRW_TESS_DOMAIN_ISOLINE;
break;
default:
unreachable("invalid domain shader primitive mode");
}
if (nir->info->tes.point_mode) {
prog_data->output_topology = BRW_TESS_OUTPUT_TOPOLOGY_POINT;
} else if (nir->info->tes.primitive_mode == GL_ISOLINES) {
prog_data->output_topology = BRW_TESS_OUTPUT_TOPOLOGY_LINE;
} else {
/* Hardware winding order is backwards from OpenGL */
prog_data->output_topology =
nir->info->tes.ccw ? BRW_TESS_OUTPUT_TOPOLOGY_TRI_CW
: BRW_TESS_OUTPUT_TOPOLOGY_TRI_CCW;
}
if (unlikely(INTEL_DEBUG & DEBUG_TES)) {
fprintf(stderr, "TES Input ");
brw_print_vue_map(stderr, &input_vue_map);
fprintf(stderr, "TES Output ");
brw_print_vue_map(stderr, &prog_data->base.vue_map);
}
if (is_scalar) {
fs_visitor v(compiler, log_data, mem_ctx, (void *) key,
&prog_data->base.base, NULL, nir, 8,
shader_time_index, &input_vue_map);
if (!v.run_tes()) {
if (error_str)
*error_str = ralloc_strdup(mem_ctx, v.fail_msg);
return NULL;
}
prog_data->base.base.dispatch_grf_start_reg = v.payload.num_regs;
prog_data->base.dispatch_mode = DISPATCH_MODE_SIMD8;
fs_generator g(compiler, log_data, mem_ctx, (void *) key,
&prog_data->base.base, v.promoted_constants, false,
MESA_SHADER_TESS_EVAL);
if (unlikely(INTEL_DEBUG & DEBUG_TES)) {
g.enable_debug(ralloc_asprintf(mem_ctx,
"%s tessellation evaluation shader %s",
nir->info->label ? nir->info->label
: "unnamed",
nir->info->name));
}
g.generate_code(v.cfg, 8);
return g.get_assembly(final_assembly_size);
} else {
brw::vec4_tes_visitor v(compiler, log_data, key, prog_data,
nir, mem_ctx, shader_time_index);
if (!v.run()) {
if (error_str)
*error_str = ralloc_strdup(mem_ctx, v.fail_msg);
return NULL;
}
if (unlikely(INTEL_DEBUG & DEBUG_TES))
v.dump_instructions();
return brw_vec4_generate_assembly(compiler, log_data, mem_ctx, nir,
&prog_data->base, v.cfg,
final_assembly_size);
}
}