blob: 153cd931f26cfb06a87292715204b35a341569bb [file] [log] [blame]
/*
* Copyright © 2014 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Connor Abbott (cwabbott0@gmail.com)
* Jason Ekstrand (jason@jlekstrand.net)
*
*/
/*
* This lowering pass converts references to input/output variables with
* loads/stores to actual input/output intrinsics.
*/
#include "nir.h"
#include "nir_builder.h"
#include "nir_deref.h"
struct lower_io_state {
void *dead_ctx;
nir_builder builder;
int (*type_size)(const struct glsl_type *type, bool);
nir_variable_mode modes;
nir_lower_io_options options;
};
static nir_intrinsic_op
ssbo_atomic_for_deref(nir_intrinsic_op deref_op)
{
switch (deref_op) {
#define OP(O) case nir_intrinsic_deref_##O: return nir_intrinsic_ssbo_##O;
OP(atomic_exchange)
OP(atomic_comp_swap)
OP(atomic_add)
OP(atomic_imin)
OP(atomic_umin)
OP(atomic_imax)
OP(atomic_umax)
OP(atomic_and)
OP(atomic_or)
OP(atomic_xor)
OP(atomic_fadd)
OP(atomic_fmin)
OP(atomic_fmax)
OP(atomic_fcomp_swap)
#undef OP
default:
unreachable("Invalid SSBO atomic");
}
}
static nir_intrinsic_op
global_atomic_for_deref(nir_intrinsic_op deref_op)
{
switch (deref_op) {
#define OP(O) case nir_intrinsic_deref_##O: return nir_intrinsic_global_##O;
OP(atomic_exchange)
OP(atomic_comp_swap)
OP(atomic_add)
OP(atomic_imin)
OP(atomic_umin)
OP(atomic_imax)
OP(atomic_umax)
OP(atomic_and)
OP(atomic_or)
OP(atomic_xor)
OP(atomic_fadd)
OP(atomic_fmin)
OP(atomic_fmax)
OP(atomic_fcomp_swap)
#undef OP
default:
unreachable("Invalid SSBO atomic");
}
}
void
nir_assign_var_locations(struct exec_list *var_list, unsigned *size,
int (*type_size)(const struct glsl_type *, bool))
{
unsigned location = 0;
nir_foreach_variable(var, var_list) {
/*
* UBOs have their own address spaces, so don't count them towards the
* number of global uniforms
*/
if (var->data.mode == nir_var_mem_ubo || var->data.mode == nir_var_mem_ssbo)
continue;
var->data.driver_location = location;
bool bindless_type_size = var->data.mode == nir_var_shader_in ||
var->data.mode == nir_var_shader_out ||
var->data.bindless;
location += type_size(var->type, bindless_type_size);
}
*size = location;
}
/**
* Return true if the given variable is a per-vertex input/output array.
* (such as geometry shader inputs).
*/
bool
nir_is_per_vertex_io(const nir_variable *var, gl_shader_stage stage)
{
if (var->data.patch || !glsl_type_is_array(var->type))
return false;
if (var->data.mode == nir_var_shader_in)
return stage == MESA_SHADER_GEOMETRY ||
stage == MESA_SHADER_TESS_CTRL ||
stage == MESA_SHADER_TESS_EVAL;
if (var->data.mode == nir_var_shader_out)
return stage == MESA_SHADER_TESS_CTRL;
return false;
}
static nir_ssa_def *
get_io_offset(nir_builder *b, nir_deref_instr *deref,
nir_ssa_def **vertex_index,
int (*type_size)(const struct glsl_type *, bool),
unsigned *component, bool bts)
{
nir_deref_path path;
nir_deref_path_init(&path, deref, NULL);
assert(path.path[0]->deref_type == nir_deref_type_var);
nir_deref_instr **p = &path.path[1];
/* For per-vertex input arrays (i.e. geometry shader inputs), keep the
* outermost array index separate. Process the rest normally.
*/
if (vertex_index != NULL) {
assert((*p)->deref_type == nir_deref_type_array);
*vertex_index = nir_ssa_for_src(b, (*p)->arr.index, 1);
p++;
}
if (path.path[0]->var->data.compact) {
assert((*p)->deref_type == nir_deref_type_array);
assert(glsl_type_is_scalar((*p)->type));
/* We always lower indirect dereferences for "compact" array vars. */
const unsigned index = nir_src_as_uint((*p)->arr.index);
const unsigned total_offset = *component + index;
const unsigned slot_offset = total_offset / 4;
*component = total_offset % 4;
return nir_imm_int(b, type_size(glsl_vec4_type(), bts) * slot_offset);
}
/* Just emit code and let constant-folding go to town */
nir_ssa_def *offset = nir_imm_int(b, 0);
for (; *p; p++) {
if ((*p)->deref_type == nir_deref_type_array) {
unsigned size = type_size((*p)->type, bts);
nir_ssa_def *mul =
nir_imul_imm(b, nir_ssa_for_src(b, (*p)->arr.index, 1), size);
offset = nir_iadd(b, offset, mul);
} else if ((*p)->deref_type == nir_deref_type_struct) {
/* p starts at path[1], so this is safe */
nir_deref_instr *parent = *(p - 1);
unsigned field_offset = 0;
for (unsigned i = 0; i < (*p)->strct.index; i++) {
field_offset += type_size(glsl_get_struct_field(parent->type, i), bts);
}
offset = nir_iadd_imm(b, offset, field_offset);
} else {
unreachable("Unsupported deref type");
}
}
nir_deref_path_finish(&path);
return offset;
}
static nir_intrinsic_instr *
lower_load(nir_intrinsic_instr *intrin, struct lower_io_state *state,
nir_ssa_def *vertex_index, nir_variable *var, nir_ssa_def *offset,
unsigned component)
{
const nir_shader *nir = state->builder.shader;
nir_variable_mode mode = var->data.mode;
nir_ssa_def *barycentric = NULL;
nir_intrinsic_op op;
switch (mode) {
case nir_var_shader_in:
if (nir->info.stage == MESA_SHADER_FRAGMENT &&
nir->options->use_interpolated_input_intrinsics &&
var->data.interpolation != INTERP_MODE_FLAT) {
assert(vertex_index == NULL);
nir_intrinsic_op bary_op;
if (var->data.sample ||
(state->options & nir_lower_io_force_sample_interpolation))
bary_op = nir_intrinsic_load_barycentric_sample;
else if (var->data.centroid)
bary_op = nir_intrinsic_load_barycentric_centroid;
else
bary_op = nir_intrinsic_load_barycentric_pixel;
barycentric = nir_load_barycentric(&state->builder, bary_op,
var->data.interpolation);
op = nir_intrinsic_load_interpolated_input;
} else {
op = vertex_index ? nir_intrinsic_load_per_vertex_input :
nir_intrinsic_load_input;
}
break;
case nir_var_shader_out:
op = vertex_index ? nir_intrinsic_load_per_vertex_output :
nir_intrinsic_load_output;
break;
case nir_var_uniform:
op = nir_intrinsic_load_uniform;
break;
case nir_var_mem_shared:
op = nir_intrinsic_load_shared;
break;
default:
unreachable("Unknown variable mode");
}
nir_intrinsic_instr *load =
nir_intrinsic_instr_create(state->builder.shader, op);
load->num_components = intrin->num_components;
nir_intrinsic_set_base(load, var->data.driver_location);
if (mode == nir_var_shader_in || mode == nir_var_shader_out)
nir_intrinsic_set_component(load, component);
if (load->intrinsic == nir_intrinsic_load_uniform)
nir_intrinsic_set_range(load,
state->type_size(var->type, var->data.bindless));
if (vertex_index) {
load->src[0] = nir_src_for_ssa(vertex_index);
load->src[1] = nir_src_for_ssa(offset);
} else if (barycentric) {
load->src[0] = nir_src_for_ssa(barycentric);
load->src[1] = nir_src_for_ssa(offset);
} else {
load->src[0] = nir_src_for_ssa(offset);
}
return load;
}
static nir_intrinsic_instr *
lower_store(nir_intrinsic_instr *intrin, struct lower_io_state *state,
nir_ssa_def *vertex_index, nir_variable *var, nir_ssa_def *offset,
unsigned component)
{
nir_variable_mode mode = var->data.mode;
nir_intrinsic_op op;
if (mode == nir_var_mem_shared) {
op = nir_intrinsic_store_shared;
} else {
assert(mode == nir_var_shader_out);
op = vertex_index ? nir_intrinsic_store_per_vertex_output :
nir_intrinsic_store_output;
}
nir_intrinsic_instr *store =
nir_intrinsic_instr_create(state->builder.shader, op);
store->num_components = intrin->num_components;
nir_src_copy(&store->src[0], &intrin->src[1], store);
nir_intrinsic_set_base(store, var->data.driver_location);
if (mode == nir_var_shader_out)
nir_intrinsic_set_component(store, component);
nir_intrinsic_set_write_mask(store, nir_intrinsic_write_mask(intrin));
if (vertex_index)
store->src[1] = nir_src_for_ssa(vertex_index);
store->src[vertex_index ? 2 : 1] = nir_src_for_ssa(offset);
return store;
}
static nir_intrinsic_instr *
lower_atomic(nir_intrinsic_instr *intrin, struct lower_io_state *state,
nir_variable *var, nir_ssa_def *offset)
{
assert(var->data.mode == nir_var_mem_shared);
nir_intrinsic_op op;
switch (intrin->intrinsic) {
#define OP(O) case nir_intrinsic_deref_##O: op = nir_intrinsic_shared_##O; break;
OP(atomic_exchange)
OP(atomic_comp_swap)
OP(atomic_add)
OP(atomic_imin)
OP(atomic_umin)
OP(atomic_imax)
OP(atomic_umax)
OP(atomic_and)
OP(atomic_or)
OP(atomic_xor)
OP(atomic_fadd)
OP(atomic_fmin)
OP(atomic_fmax)
OP(atomic_fcomp_swap)
#undef OP
default:
unreachable("Invalid atomic");
}
nir_intrinsic_instr *atomic =
nir_intrinsic_instr_create(state->builder.shader, op);
nir_intrinsic_set_base(atomic, var->data.driver_location);
atomic->src[0] = nir_src_for_ssa(offset);
assert(nir_intrinsic_infos[intrin->intrinsic].num_srcs ==
nir_intrinsic_infos[op].num_srcs);
for (unsigned i = 1; i < nir_intrinsic_infos[op].num_srcs; i++) {
nir_src_copy(&atomic->src[i], &intrin->src[i], atomic);
}
return atomic;
}
static nir_intrinsic_instr *
lower_interpolate_at(nir_intrinsic_instr *intrin, struct lower_io_state *state,
nir_variable *var, nir_ssa_def *offset, unsigned component)
{
assert(var->data.mode == nir_var_shader_in);
/* Ignore interpolateAt() for flat variables - flat is flat. */
if (var->data.interpolation == INTERP_MODE_FLAT)
return lower_load(intrin, state, NULL, var, offset, component);
nir_intrinsic_op bary_op;
switch (intrin->intrinsic) {
case nir_intrinsic_interp_deref_at_centroid:
bary_op = (state->options & nir_lower_io_force_sample_interpolation) ?
nir_intrinsic_load_barycentric_sample :
nir_intrinsic_load_barycentric_centroid;
break;
case nir_intrinsic_interp_deref_at_sample:
bary_op = nir_intrinsic_load_barycentric_at_sample;
break;
case nir_intrinsic_interp_deref_at_offset:
bary_op = nir_intrinsic_load_barycentric_at_offset;
break;
default:
unreachable("Bogus interpolateAt() intrinsic.");
}
nir_intrinsic_instr *bary_setup =
nir_intrinsic_instr_create(state->builder.shader, bary_op);
nir_ssa_dest_init(&bary_setup->instr, &bary_setup->dest, 2, 32, NULL);
nir_intrinsic_set_interp_mode(bary_setup, var->data.interpolation);
if (intrin->intrinsic == nir_intrinsic_interp_deref_at_sample ||
intrin->intrinsic == nir_intrinsic_interp_deref_at_offset)
nir_src_copy(&bary_setup->src[0], &intrin->src[1], bary_setup);
nir_builder_instr_insert(&state->builder, &bary_setup->instr);
nir_intrinsic_instr *load =
nir_intrinsic_instr_create(state->builder.shader,
nir_intrinsic_load_interpolated_input);
load->num_components = intrin->num_components;
nir_intrinsic_set_base(load, var->data.driver_location);
nir_intrinsic_set_component(load, component);
load->src[0] = nir_src_for_ssa(&bary_setup->dest.ssa);
load->src[1] = nir_src_for_ssa(offset);
return load;
}
static bool
nir_lower_io_block(nir_block *block,
struct lower_io_state *state)
{
nir_builder *b = &state->builder;
const nir_shader_compiler_options *options = b->shader->options;
bool progress = false;
nir_foreach_instr_safe(instr, block) {
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
switch (intrin->intrinsic) {
case nir_intrinsic_load_deref:
case nir_intrinsic_store_deref:
case nir_intrinsic_deref_atomic_add:
case nir_intrinsic_deref_atomic_imin:
case nir_intrinsic_deref_atomic_umin:
case nir_intrinsic_deref_atomic_imax:
case nir_intrinsic_deref_atomic_umax:
case nir_intrinsic_deref_atomic_and:
case nir_intrinsic_deref_atomic_or:
case nir_intrinsic_deref_atomic_xor:
case nir_intrinsic_deref_atomic_exchange:
case nir_intrinsic_deref_atomic_comp_swap:
case nir_intrinsic_deref_atomic_fadd:
case nir_intrinsic_deref_atomic_fmin:
case nir_intrinsic_deref_atomic_fmax:
case nir_intrinsic_deref_atomic_fcomp_swap:
/* We can lower the io for this nir instrinsic */
break;
case nir_intrinsic_interp_deref_at_centroid:
case nir_intrinsic_interp_deref_at_sample:
case nir_intrinsic_interp_deref_at_offset:
/* We can optionally lower these to load_interpolated_input */
if (options->use_interpolated_input_intrinsics)
break;
default:
/* We can't lower the io for this nir instrinsic, so skip it */
continue;
}
nir_deref_instr *deref = nir_src_as_deref(intrin->src[0]);
nir_variable *var = nir_deref_instr_get_variable(deref);
nir_variable_mode mode = var->data.mode;
if ((state->modes & mode) == 0)
continue;
if (mode != nir_var_shader_in &&
mode != nir_var_shader_out &&
mode != nir_var_mem_shared &&
mode != nir_var_uniform)
continue;
b->cursor = nir_before_instr(instr);
const bool per_vertex = nir_is_per_vertex_io(var, b->shader->info.stage);
nir_ssa_def *offset;
nir_ssa_def *vertex_index = NULL;
unsigned component_offset = var->data.location_frac;
bool bindless_type_size = mode == nir_var_shader_in ||
mode == nir_var_shader_out ||
var->data.bindless;
offset = get_io_offset(b, deref, per_vertex ? &vertex_index : NULL,
state->type_size, &component_offset,
bindless_type_size);
nir_intrinsic_instr *replacement;
switch (intrin->intrinsic) {
case nir_intrinsic_load_deref:
replacement = lower_load(intrin, state, vertex_index, var, offset,
component_offset);
break;
case nir_intrinsic_store_deref:
replacement = lower_store(intrin, state, vertex_index, var, offset,
component_offset);
break;
case nir_intrinsic_deref_atomic_add:
case nir_intrinsic_deref_atomic_imin:
case nir_intrinsic_deref_atomic_umin:
case nir_intrinsic_deref_atomic_imax:
case nir_intrinsic_deref_atomic_umax:
case nir_intrinsic_deref_atomic_and:
case nir_intrinsic_deref_atomic_or:
case nir_intrinsic_deref_atomic_xor:
case nir_intrinsic_deref_atomic_exchange:
case nir_intrinsic_deref_atomic_comp_swap:
case nir_intrinsic_deref_atomic_fadd:
case nir_intrinsic_deref_atomic_fmin:
case nir_intrinsic_deref_atomic_fmax:
case nir_intrinsic_deref_atomic_fcomp_swap:
assert(vertex_index == NULL);
replacement = lower_atomic(intrin, state, var, offset);
break;
case nir_intrinsic_interp_deref_at_centroid:
case nir_intrinsic_interp_deref_at_sample:
case nir_intrinsic_interp_deref_at_offset:
assert(vertex_index == NULL);
replacement = lower_interpolate_at(intrin, state, var, offset,
component_offset);
break;
default:
continue;
}
if (nir_intrinsic_infos[intrin->intrinsic].has_dest) {
if (intrin->dest.is_ssa) {
nir_ssa_dest_init(&replacement->instr, &replacement->dest,
intrin->dest.ssa.num_components,
intrin->dest.ssa.bit_size, NULL);
nir_ssa_def_rewrite_uses(&intrin->dest.ssa,
nir_src_for_ssa(&replacement->dest.ssa));
} else {
nir_dest_copy(&replacement->dest, &intrin->dest, &intrin->instr);
}
}
nir_instr_insert_before(&intrin->instr, &replacement->instr);
nir_instr_remove(&intrin->instr);
progress = true;
}
return progress;
}
static bool
nir_lower_io_impl(nir_function_impl *impl,
nir_variable_mode modes,
int (*type_size)(const struct glsl_type *, bool),
nir_lower_io_options options)
{
struct lower_io_state state;
bool progress = false;
nir_builder_init(&state.builder, impl);
state.dead_ctx = ralloc_context(NULL);
state.modes = modes;
state.type_size = type_size;
state.options = options;
nir_foreach_block(block, impl) {
progress |= nir_lower_io_block(block, &state);
}
ralloc_free(state.dead_ctx);
nir_metadata_preserve(impl, nir_metadata_block_index |
nir_metadata_dominance);
return progress;
}
bool
nir_lower_io(nir_shader *shader, nir_variable_mode modes,
int (*type_size)(const struct glsl_type *, bool),
nir_lower_io_options options)
{
bool progress = false;
nir_foreach_function(function, shader) {
if (function->impl) {
progress |= nir_lower_io_impl(function->impl, modes,
type_size, options);
}
}
return progress;
}
static unsigned
type_scalar_size_bytes(const struct glsl_type *type)
{
assert(glsl_type_is_vector_or_scalar(type) ||
glsl_type_is_matrix(type));
return glsl_type_is_boolean(type) ? 4 : glsl_get_bit_size(type) / 8;
}
static nir_ssa_def *
build_addr_iadd(nir_builder *b, nir_ssa_def *addr,
nir_address_format addr_format, nir_ssa_def *offset)
{
assert(offset->num_components == 1);
assert(addr->bit_size == offset->bit_size);
switch (addr_format) {
case nir_address_format_32bit_global:
case nir_address_format_64bit_global:
case nir_address_format_32bit_offset:
assert(addr->num_components == 1);
return nir_iadd(b, addr, offset);
case nir_address_format_64bit_bounded_global:
assert(addr->num_components == 4);
return nir_vec4(b, nir_channel(b, addr, 0),
nir_channel(b, addr, 1),
nir_channel(b, addr, 2),
nir_iadd(b, nir_channel(b, addr, 3), offset));
case nir_address_format_32bit_index_offset:
assert(addr->num_components == 2);
return nir_vec2(b, nir_channel(b, addr, 0),
nir_iadd(b, nir_channel(b, addr, 1), offset));
case nir_address_format_logical:
unreachable("Unsupported address format");
}
unreachable("Invalid address format");
}
static nir_ssa_def *
build_addr_iadd_imm(nir_builder *b, nir_ssa_def *addr,
nir_address_format addr_format, int64_t offset)
{
return build_addr_iadd(b, addr, addr_format,
nir_imm_intN_t(b, offset, addr->bit_size));
}
static nir_ssa_def *
addr_to_index(nir_builder *b, nir_ssa_def *addr,
nir_address_format addr_format)
{
assert(addr_format == nir_address_format_32bit_index_offset);
assert(addr->num_components == 2);
return nir_channel(b, addr, 0);
}
static nir_ssa_def *
addr_to_offset(nir_builder *b, nir_ssa_def *addr,
nir_address_format addr_format)
{
assert(addr_format == nir_address_format_32bit_index_offset);
assert(addr->num_components == 2);
return nir_channel(b, addr, 1);
}
/** Returns true if the given address format resolves to a global address */
static bool
addr_format_is_global(nir_address_format addr_format)
{
return addr_format == nir_address_format_32bit_global ||
addr_format == nir_address_format_64bit_global ||
addr_format == nir_address_format_64bit_bounded_global;
}
static nir_ssa_def *
addr_to_global(nir_builder *b, nir_ssa_def *addr,
nir_address_format addr_format)
{
switch (addr_format) {
case nir_address_format_32bit_global:
case nir_address_format_64bit_global:
assert(addr->num_components == 1);
return addr;
case nir_address_format_64bit_bounded_global:
assert(addr->num_components == 4);
return nir_iadd(b, nir_pack_64_2x32(b, nir_channels(b, addr, 0x3)),
nir_u2u64(b, nir_channel(b, addr, 3)));
case nir_address_format_32bit_index_offset:
case nir_address_format_32bit_offset:
case nir_address_format_logical:
unreachable("Cannot get a 64-bit address with this address format");
}
unreachable("Invalid address format");
}
static bool
addr_format_needs_bounds_check(nir_address_format addr_format)
{
return addr_format == nir_address_format_64bit_bounded_global;
}
static nir_ssa_def *
addr_is_in_bounds(nir_builder *b, nir_ssa_def *addr,
nir_address_format addr_format, unsigned size)
{
assert(addr_format == nir_address_format_64bit_bounded_global);
assert(addr->num_components == 4);
return nir_ige(b, nir_channel(b, addr, 2),
nir_iadd_imm(b, nir_channel(b, addr, 3), size));
}
static nir_ssa_def *
build_explicit_io_load(nir_builder *b, nir_intrinsic_instr *intrin,
nir_ssa_def *addr, nir_address_format addr_format,
unsigned num_components)
{
nir_variable_mode mode = nir_src_as_deref(intrin->src[0])->mode;
nir_intrinsic_op op;
switch (mode) {
case nir_var_mem_ubo:
op = nir_intrinsic_load_ubo;
break;
case nir_var_mem_ssbo:
if (addr_format_is_global(addr_format))
op = nir_intrinsic_load_global;
else
op = nir_intrinsic_load_ssbo;
break;
case nir_var_mem_global:
assert(addr_format_is_global(addr_format));
op = nir_intrinsic_load_global;
break;
case nir_var_shader_in:
assert(addr_format_is_global(addr_format));
op = nir_intrinsic_load_kernel_input;
break;
default:
unreachable("Unsupported explicit IO variable mode");
}
nir_intrinsic_instr *load = nir_intrinsic_instr_create(b->shader, op);
if (addr_format_is_global(addr_format)) {
load->src[0] = nir_src_for_ssa(addr_to_global(b, addr, addr_format));
} else {
load->src[0] = nir_src_for_ssa(addr_to_index(b, addr, addr_format));
load->src[1] = nir_src_for_ssa(addr_to_offset(b, addr, addr_format));
}
if (mode != nir_var_mem_ubo && mode != nir_var_shader_in)
nir_intrinsic_set_access(load, nir_intrinsic_access(intrin));
/* TODO: We should try and provide a better alignment. For OpenCL, we need
* to plumb the alignment through from SPIR-V when we have one.
*/
nir_intrinsic_set_align(load, intrin->dest.ssa.bit_size / 8, 0);
assert(intrin->dest.is_ssa);
load->num_components = num_components;
nir_ssa_dest_init(&load->instr, &load->dest, num_components,
intrin->dest.ssa.bit_size, intrin->dest.ssa.name);
assert(load->dest.ssa.bit_size % 8 == 0);
if (addr_format_needs_bounds_check(addr_format)) {
/* The Vulkan spec for robustBufferAccess gives us quite a few options
* as to what we can do with an OOB read. Unfortunately, returning
* undefined values isn't one of them so we return an actual zero.
*/
nir_ssa_def *zero = nir_imm_zero(b, load->num_components,
load->dest.ssa.bit_size);
const unsigned load_size =
(load->dest.ssa.bit_size / 8) * load->num_components;
nir_push_if(b, addr_is_in_bounds(b, addr, addr_format, load_size));
nir_builder_instr_insert(b, &load->instr);
nir_pop_if(b, NULL);
return nir_if_phi(b, &load->dest.ssa, zero);
} else {
nir_builder_instr_insert(b, &load->instr);
return &load->dest.ssa;
}
}
static void
build_explicit_io_store(nir_builder *b, nir_intrinsic_instr *intrin,
nir_ssa_def *addr, nir_address_format addr_format,
nir_ssa_def *value, nir_component_mask_t write_mask)
{
nir_variable_mode mode = nir_src_as_deref(intrin->src[0])->mode;
nir_intrinsic_op op;
switch (mode) {
case nir_var_mem_ssbo:
if (addr_format_is_global(addr_format))
op = nir_intrinsic_store_global;
else
op = nir_intrinsic_store_ssbo;
break;
case nir_var_mem_global:
assert(addr_format_is_global(addr_format));
op = nir_intrinsic_store_global;
break;
default:
unreachable("Unsupported explicit IO variable mode");
}
nir_intrinsic_instr *store = nir_intrinsic_instr_create(b->shader, op);
store->src[0] = nir_src_for_ssa(value);
if (addr_format_is_global(addr_format)) {
store->src[1] = nir_src_for_ssa(addr_to_global(b, addr, addr_format));
} else {
store->src[1] = nir_src_for_ssa(addr_to_index(b, addr, addr_format));
store->src[2] = nir_src_for_ssa(addr_to_offset(b, addr, addr_format));
}
nir_intrinsic_set_write_mask(store, write_mask);
nir_intrinsic_set_access(store, nir_intrinsic_access(intrin));
/* TODO: We should try and provide a better alignment. For OpenCL, we need
* to plumb the alignment through from SPIR-V when we have one.
*/
nir_intrinsic_set_align(store, value->bit_size / 8, 0);
assert(value->num_components == 1 ||
value->num_components == intrin->num_components);
store->num_components = value->num_components;
assert(value->bit_size % 8 == 0);
if (addr_format_needs_bounds_check(addr_format)) {
const unsigned store_size = (value->bit_size / 8) * store->num_components;
nir_push_if(b, addr_is_in_bounds(b, addr, addr_format, store_size));
nir_builder_instr_insert(b, &store->instr);
nir_pop_if(b, NULL);
} else {
nir_builder_instr_insert(b, &store->instr);
}
}
static nir_ssa_def *
build_explicit_io_atomic(nir_builder *b, nir_intrinsic_instr *intrin,
nir_ssa_def *addr, nir_address_format addr_format)
{
nir_variable_mode mode = nir_src_as_deref(intrin->src[0])->mode;
const unsigned num_data_srcs =
nir_intrinsic_infos[intrin->intrinsic].num_srcs - 1;
nir_intrinsic_op op;
switch (mode) {
case nir_var_mem_ssbo:
if (addr_format_is_global(addr_format))
op = global_atomic_for_deref(intrin->intrinsic);
else
op = ssbo_atomic_for_deref(intrin->intrinsic);
break;
case nir_var_mem_global:
assert(addr_format_is_global(addr_format));
op = global_atomic_for_deref(intrin->intrinsic);
break;
default:
unreachable("Unsupported explicit IO variable mode");
}
nir_intrinsic_instr *atomic = nir_intrinsic_instr_create(b->shader, op);
unsigned src = 0;
if (addr_format_is_global(addr_format)) {
atomic->src[src++] = nir_src_for_ssa(addr_to_global(b, addr, addr_format));
} else {
atomic->src[src++] = nir_src_for_ssa(addr_to_index(b, addr, addr_format));
atomic->src[src++] = nir_src_for_ssa(addr_to_offset(b, addr, addr_format));
}
for (unsigned i = 0; i < num_data_srcs; i++) {
atomic->src[src++] = nir_src_for_ssa(intrin->src[1 + i].ssa);
}
/* Global atomics don't have access flags because they assume that the
* address may be non-uniform.
*/
if (!addr_format_is_global(addr_format))
nir_intrinsic_set_access(atomic, nir_intrinsic_access(intrin));
assert(intrin->dest.ssa.num_components == 1);
nir_ssa_dest_init(&atomic->instr, &atomic->dest,
1, intrin->dest.ssa.bit_size, intrin->dest.ssa.name);
assert(atomic->dest.ssa.bit_size % 8 == 0);
if (addr_format_needs_bounds_check(addr_format)) {
const unsigned atomic_size = atomic->dest.ssa.bit_size / 8;
nir_push_if(b, addr_is_in_bounds(b, addr, addr_format, atomic_size));
nir_builder_instr_insert(b, &atomic->instr);
nir_pop_if(b, NULL);
return nir_if_phi(b, &atomic->dest.ssa,
nir_ssa_undef(b, 1, atomic->dest.ssa.bit_size));
} else {
nir_builder_instr_insert(b, &atomic->instr);
return &atomic->dest.ssa;
}
}
nir_ssa_def *
nir_explicit_io_address_from_deref(nir_builder *b, nir_deref_instr *deref,
nir_ssa_def *base_addr,
nir_address_format addr_format)
{
assert(deref->dest.is_ssa);
switch (deref->deref_type) {
case nir_deref_type_var:
assert(deref->mode == nir_var_shader_in);
return nir_imm_intN_t(b, deref->var->data.driver_location,
deref->dest.ssa.bit_size);
case nir_deref_type_array: {
nir_deref_instr *parent = nir_deref_instr_parent(deref);
unsigned stride = glsl_get_explicit_stride(parent->type);
if ((glsl_type_is_matrix(parent->type) &&
glsl_matrix_type_is_row_major(parent->type)) ||
(glsl_type_is_vector(parent->type) && stride == 0))
stride = type_scalar_size_bytes(parent->type);
assert(stride > 0);
nir_ssa_def *index = nir_ssa_for_src(b, deref->arr.index, 1);
index = nir_i2i(b, index, base_addr->bit_size);
return build_addr_iadd(b, base_addr, addr_format,
nir_imul_imm(b, index, stride));
}
case nir_deref_type_ptr_as_array: {
nir_ssa_def *index = nir_ssa_for_src(b, deref->arr.index, 1);
index = nir_i2i(b, index, base_addr->bit_size);
unsigned stride = nir_deref_instr_ptr_as_array_stride(deref);
return build_addr_iadd(b, base_addr, addr_format,
nir_imul_imm(b, index, stride));
}
case nir_deref_type_array_wildcard:
unreachable("Wildcards should be lowered by now");
break;
case nir_deref_type_struct: {
nir_deref_instr *parent = nir_deref_instr_parent(deref);
int offset = glsl_get_struct_field_offset(parent->type,
deref->strct.index);
assert(offset >= 0);
return build_addr_iadd_imm(b, base_addr, addr_format, offset);
}
case nir_deref_type_cast:
/* Nothing to do here */
return base_addr;
}
unreachable("Invalid NIR deref type");
}
void
nir_lower_explicit_io_instr(nir_builder *b,
nir_intrinsic_instr *intrin,
nir_ssa_def *addr,
nir_address_format addr_format)
{
b->cursor = nir_after_instr(&intrin->instr);
nir_deref_instr *deref = nir_src_as_deref(intrin->src[0]);
unsigned vec_stride = glsl_get_explicit_stride(deref->type);
unsigned scalar_size = type_scalar_size_bytes(deref->type);
assert(vec_stride == 0 || glsl_type_is_vector(deref->type));
assert(vec_stride == 0 || vec_stride >= scalar_size);
if (intrin->intrinsic == nir_intrinsic_load_deref) {
nir_ssa_def *value;
if (vec_stride > scalar_size) {
nir_ssa_def *comps[4] = { NULL, };
for (unsigned i = 0; i < intrin->num_components; i++) {
nir_ssa_def *comp_addr = build_addr_iadd_imm(b, addr, addr_format,
vec_stride * i);
comps[i] = build_explicit_io_load(b, intrin, comp_addr,
addr_format, 1);
}
value = nir_vec(b, comps, intrin->num_components);
} else {
value = build_explicit_io_load(b, intrin, addr, addr_format,
intrin->num_components);
}
nir_ssa_def_rewrite_uses(&intrin->dest.ssa, nir_src_for_ssa(value));
} else if (intrin->intrinsic == nir_intrinsic_store_deref) {
assert(intrin->src[1].is_ssa);
nir_ssa_def *value = intrin->src[1].ssa;
nir_component_mask_t write_mask = nir_intrinsic_write_mask(intrin);
if (vec_stride > scalar_size) {
for (unsigned i = 0; i < intrin->num_components; i++) {
if (!(write_mask & (1 << i)))
continue;
nir_ssa_def *comp_addr = build_addr_iadd_imm(b, addr, addr_format,
vec_stride * i);
build_explicit_io_store(b, intrin, comp_addr, addr_format,
nir_channel(b, value, i), 1);
}
} else {
build_explicit_io_store(b, intrin, addr, addr_format,
value, write_mask);
}
} else {
nir_ssa_def *value =
build_explicit_io_atomic(b, intrin, addr, addr_format);
nir_ssa_def_rewrite_uses(&intrin->dest.ssa, nir_src_for_ssa(value));
}
nir_instr_remove(&intrin->instr);
}
static void
lower_explicit_io_deref(nir_builder *b, nir_deref_instr *deref,
nir_address_format addr_format)
{
/* Just delete the deref if it's not used. We can't use
* nir_deref_instr_remove_if_unused here because it may remove more than
* one deref which could break our list walking since we walk the list
* backwards.
*/
assert(list_empty(&deref->dest.ssa.if_uses));
if (list_empty(&deref->dest.ssa.uses)) {
nir_instr_remove(&deref->instr);
return;
}
b->cursor = nir_after_instr(&deref->instr);
nir_ssa_def *base_addr = NULL;
if (deref->deref_type != nir_deref_type_var) {
assert(deref->parent.is_ssa);
base_addr = deref->parent.ssa;
}
nir_ssa_def *addr = nir_explicit_io_address_from_deref(b, deref, base_addr,
addr_format);
nir_instr_remove(&deref->instr);
nir_ssa_def_rewrite_uses(&deref->dest.ssa, nir_src_for_ssa(addr));
}
static void
lower_explicit_io_access(nir_builder *b, nir_intrinsic_instr *intrin,
nir_address_format addr_format)
{
assert(intrin->src[0].is_ssa);
nir_lower_explicit_io_instr(b, intrin, intrin->src[0].ssa, addr_format);
}
static void
lower_explicit_io_array_length(nir_builder *b, nir_intrinsic_instr *intrin,
nir_address_format addr_format)
{
b->cursor = nir_after_instr(&intrin->instr);
nir_deref_instr *deref = nir_src_as_deref(intrin->src[0]);
assert(glsl_type_is_array(deref->type));
assert(glsl_get_length(deref->type) == 0);
unsigned stride = glsl_get_explicit_stride(deref->type);
assert(stride > 0);
assert(addr_format == nir_address_format_32bit_index_offset);
nir_ssa_def *addr = &deref->dest.ssa;
nir_ssa_def *index = addr_to_index(b, addr, addr_format);
nir_ssa_def *offset = addr_to_offset(b, addr, addr_format);
nir_intrinsic_instr *bsize =
nir_intrinsic_instr_create(b->shader, nir_intrinsic_get_buffer_size);
bsize->src[0] = nir_src_for_ssa(index);
nir_ssa_dest_init(&bsize->instr, &bsize->dest, 1, 32, NULL);
nir_builder_instr_insert(b, &bsize->instr);
nir_ssa_def *arr_size =
nir_idiv(b, nir_isub(b, &bsize->dest.ssa, offset),
nir_imm_int(b, stride));
nir_ssa_def_rewrite_uses(&intrin->dest.ssa, nir_src_for_ssa(arr_size));
nir_instr_remove(&intrin->instr);
}
static bool
nir_lower_explicit_io_impl(nir_function_impl *impl, nir_variable_mode modes,
nir_address_format addr_format)
{
bool progress = false;
nir_builder b;
nir_builder_init(&b, impl);
/* Walk in reverse order so that we can see the full deref chain when we
* lower the access operations. We lower them assuming that the derefs
* will be turned into address calculations later.
*/
nir_foreach_block_reverse(block, impl) {
nir_foreach_instr_reverse_safe(instr, block) {
switch (instr->type) {
case nir_instr_type_deref: {
nir_deref_instr *deref = nir_instr_as_deref(instr);
if (deref->mode & modes) {
lower_explicit_io_deref(&b, deref, addr_format);
progress = true;
}
break;
}
case nir_instr_type_intrinsic: {
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
switch (intrin->intrinsic) {
case nir_intrinsic_load_deref:
case nir_intrinsic_store_deref:
case nir_intrinsic_deref_atomic_add:
case nir_intrinsic_deref_atomic_imin:
case nir_intrinsic_deref_atomic_umin:
case nir_intrinsic_deref_atomic_imax:
case nir_intrinsic_deref_atomic_umax:
case nir_intrinsic_deref_atomic_and:
case nir_intrinsic_deref_atomic_or:
case nir_intrinsic_deref_atomic_xor:
case nir_intrinsic_deref_atomic_exchange:
case nir_intrinsic_deref_atomic_comp_swap:
case nir_intrinsic_deref_atomic_fadd:
case nir_intrinsic_deref_atomic_fmin:
case nir_intrinsic_deref_atomic_fmax:
case nir_intrinsic_deref_atomic_fcomp_swap: {
nir_deref_instr *deref = nir_src_as_deref(intrin->src[0]);
if (deref->mode & modes) {
lower_explicit_io_access(&b, intrin, addr_format);
progress = true;
}
break;
}
case nir_intrinsic_deref_buffer_array_length: {
nir_deref_instr *deref = nir_src_as_deref(intrin->src[0]);
if (deref->mode & modes) {
lower_explicit_io_array_length(&b, intrin, addr_format);
progress = true;
}
break;
}
default:
break;
}
break;
}
default:
/* Nothing to do */
break;
}
}
}
if (progress) {
nir_metadata_preserve(impl, nir_metadata_block_index |
nir_metadata_dominance);
}
return progress;
}
bool
nir_lower_explicit_io(nir_shader *shader, nir_variable_mode modes,
nir_address_format addr_format)
{
bool progress = false;
nir_foreach_function(function, shader) {
if (function->impl &&
nir_lower_explicit_io_impl(function->impl, modes, addr_format))
progress = true;
}
return progress;
}
/**
* Return the offset source for a load/store intrinsic.
*/
nir_src *
nir_get_io_offset_src(nir_intrinsic_instr *instr)
{
switch (instr->intrinsic) {
case nir_intrinsic_load_input:
case nir_intrinsic_load_output:
case nir_intrinsic_load_shared:
case nir_intrinsic_load_uniform:
case nir_intrinsic_load_global:
case nir_intrinsic_load_scratch:
return &instr->src[0];
case nir_intrinsic_load_ubo:
case nir_intrinsic_load_ssbo:
case nir_intrinsic_load_per_vertex_input:
case nir_intrinsic_load_per_vertex_output:
case nir_intrinsic_load_interpolated_input:
case nir_intrinsic_store_output:
case nir_intrinsic_store_shared:
case nir_intrinsic_store_global:
case nir_intrinsic_store_scratch:
return &instr->src[1];
case nir_intrinsic_store_ssbo:
case nir_intrinsic_store_per_vertex_output:
return &instr->src[2];
default:
return NULL;
}
}
/**
* Return the vertex index source for a load/store per_vertex intrinsic.
*/
nir_src *
nir_get_io_vertex_index_src(nir_intrinsic_instr *instr)
{
switch (instr->intrinsic) {
case nir_intrinsic_load_per_vertex_input:
case nir_intrinsic_load_per_vertex_output:
return &instr->src[0];
case nir_intrinsic_store_per_vertex_output:
return &instr->src[1];
default:
return NULL;
}
}