blob: 7246fb74e0cf1411c4e77041857dc48a3bc3033e [file] [log] [blame]
/*
* Copyright © 2019 Valve Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
*/
#include "aco_ir.h"
#include "aco_builder.h"
#include "util/u_math.h"
namespace aco {
namespace {
enum WQMState : uint8_t {
Unspecified = 0,
Exact = 1 << 0,
WQM = 1 << 1, /* with control flow applied */
Preserve_WQM = 1 << 2,
Exact_Branch = 1 << 3,
};
enum mask_type : uint8_t {
mask_type_global = 1 << 0,
mask_type_exact = 1 << 1,
mask_type_wqm = 1 << 2,
mask_type_loop = 1 << 3, /* active lanes of a loop */
mask_type_initial = 1 << 4, /* initially active lanes */
};
struct wqm_ctx {
Program* program;
/* state for WQM propagation */
std::set<unsigned> worklist;
std::vector<uint16_t> defined_in;
std::vector<bool> needs_wqm;
std::vector<bool> branch_wqm; /* true if the branch condition in this block should be in wqm */
bool loop;
bool wqm;
wqm_ctx(Program* program) : program(program),
defined_in(program->peekAllocationId(), 0xFFFF),
needs_wqm(program->peekAllocationId()),
branch_wqm(program->blocks.size()),
loop(false),
wqm(false)
{
for (unsigned i = 0; i < program->blocks.size(); i++)
worklist.insert(i);
}
};
struct loop_info {
Block* loop_header;
uint16_t num_exec_masks;
uint8_t needs;
bool has_divergent_break;
bool has_divergent_continue;
bool has_discard; /* has a discard or demote */
loop_info(Block* b, uint16_t num, uint8_t needs, bool breaks, bool cont, bool discard) :
loop_header(b), num_exec_masks(num), needs(needs), has_divergent_break(breaks),
has_divergent_continue(cont), has_discard(discard) {}
};
struct block_info {
std::vector<std::pair<Temp, uint8_t>> exec;
std::vector<WQMState> instr_needs;
uint8_t block_needs;
uint8_t ever_again_needs;
bool logical_end_wqm;
/* more... */
};
struct exec_ctx {
Program *program;
std::vector<block_info> info;
std::vector<loop_info> loop;
bool handle_wqm = false;
exec_ctx(Program *program) : program(program), info(program->blocks.size()) {}
};
bool pred_by_exec_mask(aco_ptr<Instruction>& instr) {
if (instr->isSALU())
return instr->reads_exec();
if (instr->format == Format::SMEM || instr->isSALU())
return false;
if (instr->format == Format::PSEUDO_BARRIER)
return false;
if (instr->format == Format::PSEUDO) {
switch (instr->opcode) {
case aco_opcode::p_create_vector:
case aco_opcode::p_extract_vector:
case aco_opcode::p_split_vector:
for (Definition def : instr->definitions) {
if (def.getTemp().type() == RegType::vgpr)
return true;
}
return false;
case aco_opcode::p_spill:
case aco_opcode::p_reload:
return false;
default:
break;
}
}
if (instr->opcode == aco_opcode::v_readlane_b32 ||
instr->opcode == aco_opcode::v_readlane_b32_e64 ||
instr->opcode == aco_opcode::v_writelane_b32 ||
instr->opcode == aco_opcode::v_writelane_b32_e64)
return false;
return true;
}
bool needs_exact(aco_ptr<Instruction>& instr) {
if (instr->format == Format::MUBUF) {
MUBUF_instruction *mubuf = static_cast<MUBUF_instruction *>(instr.get());
return mubuf->disable_wqm;
} else if (instr->format == Format::MTBUF) {
MTBUF_instruction *mtbuf = static_cast<MTBUF_instruction *>(instr.get());
return mtbuf->disable_wqm;
} else if (instr->format == Format::MIMG) {
MIMG_instruction *mimg = static_cast<MIMG_instruction *>(instr.get());
return mimg->disable_wqm;
} else if (instr->format == Format::FLAT || instr->format == Format::GLOBAL) {
FLAT_instruction *flat = static_cast<FLAT_instruction *>(instr.get());
return flat->disable_wqm;
} else {
return instr->format == Format::EXP || instr->opcode == aco_opcode::p_fs_buffer_store_smem;
}
}
void set_needs_wqm(wqm_ctx &ctx, Temp tmp)
{
if (!ctx.needs_wqm[tmp.id()]) {
ctx.needs_wqm[tmp.id()] = true;
if (ctx.defined_in[tmp.id()] != 0xFFFF)
ctx.worklist.insert(ctx.defined_in[tmp.id()]);
}
}
void mark_block_wqm(wqm_ctx &ctx, unsigned block_idx)
{
if (ctx.branch_wqm[block_idx])
return;
ctx.branch_wqm[block_idx] = true;
Block& block = ctx.program->blocks[block_idx];
aco_ptr<Instruction>& branch = block.instructions.back();
if (branch->opcode != aco_opcode::p_branch) {
assert(!branch->operands.empty() && branch->operands[0].isTemp());
set_needs_wqm(ctx, branch->operands[0].getTemp());
}
/* TODO: this sets more branch conditions to WQM than it needs to
* it should be enough to stop at the "exec mask top level" */
if (block.kind & block_kind_top_level)
return;
for (unsigned pred_idx : block.logical_preds)
mark_block_wqm(ctx, pred_idx);
}
void get_block_needs(wqm_ctx &ctx, exec_ctx &exec_ctx, Block* block)
{
block_info& info = exec_ctx.info[block->index];
std::vector<WQMState> instr_needs(block->instructions.size());
if (block->kind & block_kind_top_level) {
if (ctx.loop && ctx.wqm) {
unsigned block_idx = block->index + 1;
while (!(ctx.program->blocks[block_idx].kind & block_kind_top_level)) {
/* flag all break conditions as WQM:
* the conditions might be computed outside the nested CF */
if (ctx.program->blocks[block_idx].kind & block_kind_break)
mark_block_wqm(ctx, block_idx);
/* flag all blocks as WQM to ensure we enter all (nested) loops in WQM */
exec_ctx.info[block_idx].block_needs |= WQM;
block_idx++;
}
} else if (ctx.loop && !ctx.wqm) {
/* Ensure a branch never results in an exec mask with only helper
* invocations (which can cause a loop to repeat infinitively if it's
* break branches are done in exact). */
unsigned block_idx = block->index;
do {
if ((ctx.program->blocks[block_idx].kind & block_kind_branch))
exec_ctx.info[block_idx].block_needs |= Exact_Branch;
block_idx++;
} while (!(ctx.program->blocks[block_idx].kind & block_kind_top_level));
}
ctx.loop = false;
ctx.wqm = false;
}
for (int i = block->instructions.size() - 1; i >= 0; --i) {
aco_ptr<Instruction>& instr = block->instructions[i];
WQMState needs = needs_exact(instr) ? Exact : Unspecified;
bool propagate_wqm = instr->opcode == aco_opcode::p_wqm;
bool preserve_wqm = instr->opcode == aco_opcode::p_discard_if;
bool pred_by_exec = pred_by_exec_mask(instr);
for (const Definition& definition : instr->definitions) {
if (!definition.isTemp())
continue;
const unsigned def = definition.tempId();
ctx.defined_in[def] = block->index;
if (needs == Unspecified && ctx.needs_wqm[def]) {
needs = pred_by_exec ? WQM : Unspecified;
propagate_wqm = true;
}
}
if (propagate_wqm) {
for (const Operand& op : instr->operands) {
if (op.isTemp()) {
set_needs_wqm(ctx, op.getTemp());
}
}
} else if (preserve_wqm && info.block_needs & WQM) {
needs = Preserve_WQM;
}
/* ensure the condition controlling the control flow for this phi is in WQM */
if (needs == WQM && instr->opcode == aco_opcode::p_phi) {
for (unsigned pred_idx : block->logical_preds) {
mark_block_wqm(ctx, pred_idx);
exec_ctx.info[pred_idx].logical_end_wqm = true;
ctx.worklist.insert(pred_idx);
}
}
if ((instr->opcode == aco_opcode::p_logical_end && info.logical_end_wqm) ||
instr->opcode == aco_opcode::p_wqm) {
assert(needs != Exact);
needs = WQM;
}
instr_needs[i] = needs;
info.block_needs |= needs;
}
info.instr_needs = instr_needs;
/* for "if (<cond>) <wqm code>" or "while (<cond>) <wqm code>",
* <cond> should be computed in WQM */
if (info.block_needs & WQM && !(block->kind & block_kind_top_level)) {
for (unsigned pred_idx : block->logical_preds)
mark_block_wqm(ctx, pred_idx);
ctx.wqm = true;
}
if (block->kind & block_kind_loop_header)
ctx.loop = true;
}
void calculate_wqm_needs(exec_ctx& exec_ctx)
{
wqm_ctx ctx(exec_ctx.program);
while (!ctx.worklist.empty()) {
unsigned block_index = *std::prev(ctx.worklist.end());
ctx.worklist.erase(std::prev(ctx.worklist.end()));
get_block_needs(ctx, exec_ctx, &exec_ctx.program->blocks[block_index]);
}
uint8_t ever_again_needs = 0;
for (int i = exec_ctx.program->blocks.size() - 1; i >= 0; i--) {
exec_ctx.info[i].ever_again_needs = ever_again_needs;
Block& block = exec_ctx.program->blocks[i];
if (block.kind & block_kind_needs_lowering)
exec_ctx.info[i].block_needs |= Exact;
/* if discard is used somewhere in nested CF, we need to preserve the WQM mask */
if ((block.kind & block_kind_discard ||
block.kind & block_kind_uses_discard_if) &&
ever_again_needs & WQM)
exec_ctx.info[i].block_needs |= Preserve_WQM;
ever_again_needs |= exec_ctx.info[i].block_needs & ~Exact_Branch;
if (block.kind & block_kind_discard ||
block.kind & block_kind_uses_discard_if ||
block.kind & block_kind_uses_demote)
ever_again_needs |= Exact;
/* don't propagate WQM preservation further than the next top_level block */
if (block.kind & block_kind_top_level)
ever_again_needs &= ~Preserve_WQM;
else
exec_ctx.info[i].block_needs &= ~Preserve_WQM;
}
exec_ctx.handle_wqm = true;
}
void transition_to_WQM(exec_ctx& ctx, Builder bld, unsigned idx)
{
if (ctx.info[idx].exec.back().second & mask_type_wqm)
return;
if (ctx.info[idx].exec.back().second & mask_type_global) {
Temp exec_mask = ctx.info[idx].exec.back().first;
/* TODO: we might generate better code if we pass the uncopied "exec_mask"
* directly to the s_wqm (we still need to keep this parallelcopy for
* potential later uses of exec_mask though). We currently can't do this
* because of a RA bug. */
exec_mask = bld.pseudo(aco_opcode::p_parallelcopy, bld.def(bld.lm), bld.exec(exec_mask));
ctx.info[idx].exec.back().first = exec_mask;
exec_mask = bld.sop1(Builder::s_wqm, bld.def(bld.lm, exec), bld.def(s1, scc), exec_mask);
ctx.info[idx].exec.emplace_back(exec_mask, mask_type_global | mask_type_wqm);
return;
}
/* otherwise, the WQM mask should be one below the current mask */
ctx.info[idx].exec.pop_back();
assert(ctx.info[idx].exec.back().second & mask_type_wqm);
assert(ctx.info[idx].exec.back().first.size() == bld.lm.size());
ctx.info[idx].exec.back().first = bld.pseudo(aco_opcode::p_parallelcopy, bld.def(bld.lm, exec),
ctx.info[idx].exec.back().first);
}
void transition_to_Exact(exec_ctx& ctx, Builder bld, unsigned idx)
{
if (ctx.info[idx].exec.back().second & mask_type_exact)
return;
/* We can't remove the loop exec mask, because that can cause exec.size() to
* be less than num_exec_masks. The loop exec mask also needs to be kept
* around for various uses. */
if ((ctx.info[idx].exec.back().second & mask_type_global) &&
!(ctx.info[idx].exec.back().second & mask_type_loop)) {
ctx.info[idx].exec.pop_back();
assert(ctx.info[idx].exec.back().second & mask_type_exact);
assert(ctx.info[idx].exec.back().first.size() == bld.lm.size());
ctx.info[idx].exec.back().first = bld.pseudo(aco_opcode::p_parallelcopy, bld.def(bld.lm, exec),
ctx.info[idx].exec.back().first);
return;
}
/* otherwise, we create an exact mask and push to the stack */
Temp wqm = ctx.info[idx].exec.back().first;
Temp exact = bld.tmp(bld.lm);
wqm = bld.sop1(Builder::s_and_saveexec, bld.def(bld.lm), bld.def(s1, scc),
bld.exec(Definition(exact)), ctx.info[idx].exec[0].first, bld.exec(wqm));
ctx.info[idx].exec.back().first = wqm;
ctx.info[idx].exec.emplace_back(exact, mask_type_exact);
}
unsigned add_coupling_code(exec_ctx& ctx, Block* block,
std::vector<aco_ptr<Instruction>>& instructions)
{
unsigned idx = block->index;
Builder bld(ctx.program, &instructions);
std::vector<unsigned>& preds = block->linear_preds;
/* start block */
if (idx == 0) {
aco_ptr<Instruction>& startpgm = block->instructions[0];
assert(startpgm->opcode == aco_opcode::p_startpgm);
Temp exec_mask = startpgm->definitions.back().getTemp();
bld.insert(std::move(startpgm));
/* exec seems to need to be manually initialized with combined shaders */
if (util_bitcount(ctx.program->stage & sw_mask) > 1 || (ctx.program->stage & hw_ngg_gs)) {
bld.sop1(Builder::s_mov, bld.exec(Definition(exec_mask)), bld.lm == s2 ? Operand(UINT64_MAX) : Operand(UINT32_MAX));
instructions[0]->definitions.pop_back();
}
if (ctx.handle_wqm) {
ctx.info[0].exec.emplace_back(exec_mask, mask_type_global | mask_type_exact | mask_type_initial);
/* if this block only needs WQM, initialize already */
if (ctx.info[0].block_needs == WQM)
transition_to_WQM(ctx, bld, 0);
} else {
uint8_t mask = mask_type_global;
if (ctx.program->needs_wqm) {
exec_mask = bld.sop1(Builder::s_wqm, bld.def(bld.lm, exec), bld.def(s1, scc), bld.exec(exec_mask));
mask |= mask_type_wqm;
} else {
mask |= mask_type_exact;
}
ctx.info[0].exec.emplace_back(exec_mask, mask);
}
return 1;
}
/* loop entry block */
if (block->kind & block_kind_loop_header) {
assert(preds[0] == idx - 1);
ctx.info[idx].exec = ctx.info[idx - 1].exec;
loop_info& info = ctx.loop.back();
while (ctx.info[idx].exec.size() > info.num_exec_masks)
ctx.info[idx].exec.pop_back();
/* create ssa names for outer exec masks */
if (info.has_discard) {
aco_ptr<Pseudo_instruction> phi;
for (int i = 0; i < info.num_exec_masks - 1; i++) {
phi.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, preds.size(), 1));
phi->definitions[0] = bld.def(bld.lm);
phi->operands[0] = Operand(ctx.info[preds[0]].exec[i].first);
ctx.info[idx].exec[i].first = bld.insert(std::move(phi));
}
}
/* create ssa name for restore mask */
if (info.has_divergent_break) {
/* this phi might be trivial but ensures a parallelcopy on the loop header */
aco_ptr<Pseudo_instruction> phi{create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, preds.size(), 1)};
phi->definitions[0] = bld.def(bld.lm);
phi->operands[0] = Operand(ctx.info[preds[0]].exec[info.num_exec_masks - 1].first);
ctx.info[idx].exec.back().first = bld.insert(std::move(phi));
}
/* create ssa name for loop active mask */
aco_ptr<Pseudo_instruction> phi{create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, preds.size(), 1)};
if (info.has_divergent_continue)
phi->definitions[0] = bld.def(bld.lm);
else
phi->definitions[0] = bld.def(bld.lm, exec);
phi->operands[0] = Operand(ctx.info[preds[0]].exec.back().first);
Temp loop_active = bld.insert(std::move(phi));
if (info.has_divergent_break) {
uint8_t mask_type = (ctx.info[idx].exec.back().second & (mask_type_wqm | mask_type_exact)) | mask_type_loop;
ctx.info[idx].exec.emplace_back(loop_active, mask_type);
} else {
ctx.info[idx].exec.back().first = loop_active;
ctx.info[idx].exec.back().second |= mask_type_loop;
}
/* create a parallelcopy to move the active mask to exec */
unsigned i = 0;
if (info.has_divergent_continue) {
while (block->instructions[i]->opcode != aco_opcode::p_logical_start) {
bld.insert(std::move(block->instructions[i]));
i++;
}
uint8_t mask_type = ctx.info[idx].exec.back().second & (mask_type_wqm | mask_type_exact);
assert(ctx.info[idx].exec.back().first.size() == bld.lm.size());
ctx.info[idx].exec.emplace_back(bld.pseudo(aco_opcode::p_parallelcopy, bld.def(bld.lm, exec),
ctx.info[idx].exec.back().first), mask_type);
}
return i;
}
/* loop exit block */
if (block->kind & block_kind_loop_exit) {
Block* header = ctx.loop.back().loop_header;
loop_info& info = ctx.loop.back();
for (ASSERTED unsigned pred : preds)
assert(ctx.info[pred].exec.size() >= info.num_exec_masks);
/* fill the loop header phis */
std::vector<unsigned>& header_preds = header->linear_preds;
int k = 0;
if (info.has_discard) {
while (k < info.num_exec_masks - 1) {
aco_ptr<Instruction>& phi = header->instructions[k];
assert(phi->opcode == aco_opcode::p_linear_phi);
for (unsigned i = 1; i < phi->operands.size(); i++)
phi->operands[i] = Operand(ctx.info[header_preds[i]].exec[k].first);
k++;
}
}
aco_ptr<Instruction>& phi = header->instructions[k++];
assert(phi->opcode == aco_opcode::p_linear_phi);
for (unsigned i = 1; i < phi->operands.size(); i++)
phi->operands[i] = Operand(ctx.info[header_preds[i]].exec[info.num_exec_masks - 1].first);
if (info.has_divergent_break) {
aco_ptr<Instruction>& phi = header->instructions[k];
assert(phi->opcode == aco_opcode::p_linear_phi);
for (unsigned i = 1; i < phi->operands.size(); i++)
phi->operands[i] = Operand(ctx.info[header_preds[i]].exec[info.num_exec_masks].first);
}
assert(!(block->kind & block_kind_top_level) || info.num_exec_masks <= 2);
/* create the loop exit phis if not trivial */
bool need_parallelcopy = false;
for (unsigned k = 0; k < info.num_exec_masks; k++) {
Temp same = ctx.info[preds[0]].exec[k].first;
uint8_t type = ctx.info[header_preds[0]].exec[k].second;
bool trivial = true;
for (unsigned i = 1; i < preds.size() && trivial; i++) {
if (ctx.info[preds[i]].exec[k].first != same)
trivial = false;
}
if (k == info.num_exec_masks - 1u) {
bool all_liveout_exec = true;
bool all_not_liveout_exec = true;
for (unsigned pred : preds) {
all_liveout_exec = all_liveout_exec && same == ctx.program->blocks[pred].live_out_exec;
all_not_liveout_exec = all_not_liveout_exec && same != ctx.program->blocks[pred].live_out_exec;
}
if (!all_liveout_exec && !all_not_liveout_exec)
trivial = false;
else if (all_not_liveout_exec)
need_parallelcopy = true;
need_parallelcopy |= !trivial;
}
if (trivial) {
ctx.info[idx].exec.emplace_back(same, type);
} else {
/* create phi for loop footer */
aco_ptr<Pseudo_instruction> phi{create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, preds.size(), 1)};
phi->definitions[0] = bld.def(bld.lm);
if (k == info.num_exec_masks - 1u) {
phi->definitions[0].setFixed(exec);
need_parallelcopy = false;
}
for (unsigned i = 0; i < phi->operands.size(); i++)
phi->operands[i] = Operand(ctx.info[preds[i]].exec[k].first);
ctx.info[idx].exec.emplace_back(bld.insert(std::move(phi)), type);
}
}
assert(ctx.info[idx].exec.size() == info.num_exec_masks);
/* create a parallelcopy to move the live mask to exec */
unsigned i = 0;
while (block->instructions[i]->opcode != aco_opcode::p_logical_start) {
bld.insert(std::move(block->instructions[i]));
i++;
}
if (ctx.handle_wqm) {
if (block->kind & block_kind_top_level && ctx.info[idx].exec.size() == 2) {
if ((ctx.info[idx].block_needs | ctx.info[idx].ever_again_needs) == 0 ||
(ctx.info[idx].block_needs | ctx.info[idx].ever_again_needs) == Exact) {
ctx.info[idx].exec.back().second |= mask_type_global;
transition_to_Exact(ctx, bld, idx);
ctx.handle_wqm = false;
}
}
if (ctx.info[idx].block_needs == WQM)
transition_to_WQM(ctx, bld, idx);
else if (ctx.info[idx].block_needs == Exact)
transition_to_Exact(ctx, bld, idx);
}
assert(ctx.info[idx].exec.back().first.size() == bld.lm.size());
if (need_parallelcopy) {
/* only create this parallelcopy is needed, since the operand isn't
* fixed to exec which causes the spiller to miscalculate register demand */
/* TODO: Fix register_demand calculation for spilling on loop exits.
* The problem is only mitigated because the register demand could be
* higher if the exec phi doesn't get assigned to exec. */
ctx.info[idx].exec.back().first = bld.pseudo(aco_opcode::p_parallelcopy, bld.def(bld.lm, exec),
ctx.info[idx].exec.back().first);
}
ctx.loop.pop_back();
return i;
}
if (preds.size() == 1) {
ctx.info[idx].exec = ctx.info[preds[0]].exec;
} else {
assert(preds.size() == 2);
/* if one of the predecessors ends in exact mask, we pop it from stack */
unsigned num_exec_masks = std::min(ctx.info[preds[0]].exec.size(),
ctx.info[preds[1]].exec.size());
if (block->kind & block_kind_top_level && !(block->kind & block_kind_merge))
num_exec_masks = std::min(num_exec_masks, 2u);
/* create phis for diverged exec masks */
for (unsigned i = 0; i < num_exec_masks; i++) {
bool in_exec = i == num_exec_masks - 1 && !(block->kind & block_kind_merge);
if (!in_exec && ctx.info[preds[0]].exec[i].first == ctx.info[preds[1]].exec[i].first) {
assert(ctx.info[preds[0]].exec[i].second == ctx.info[preds[1]].exec[i].second);
ctx.info[idx].exec.emplace_back(ctx.info[preds[0]].exec[i]);
continue;
}
Temp phi = bld.pseudo(aco_opcode::p_linear_phi, in_exec ? bld.def(bld.lm, exec) : bld.def(bld.lm),
ctx.info[preds[0]].exec[i].first,
ctx.info[preds[1]].exec[i].first);
uint8_t mask_type = ctx.info[preds[0]].exec[i].second & ctx.info[preds[1]].exec[i].second;
ctx.info[idx].exec.emplace_back(phi, mask_type);
}
}
unsigned i = 0;
while (block->instructions[i]->opcode == aco_opcode::p_phi ||
block->instructions[i]->opcode == aco_opcode::p_linear_phi) {
bld.insert(std::move(block->instructions[i]));
i++;
}
if (block->kind & block_kind_merge)
ctx.info[idx].exec.pop_back();
if (block->kind & block_kind_top_level && ctx.info[idx].exec.size() == 3) {
assert(ctx.info[idx].exec.back().second == mask_type_exact);
assert(block->kind & block_kind_merge);
ctx.info[idx].exec.pop_back();
}
/* try to satisfy the block's needs */
if (ctx.handle_wqm) {
if (block->kind & block_kind_top_level && ctx.info[idx].exec.size() == 2) {
if ((ctx.info[idx].block_needs | ctx.info[idx].ever_again_needs) == 0 ||
(ctx.info[idx].block_needs | ctx.info[idx].ever_again_needs) == Exact) {
ctx.info[idx].exec.back().second |= mask_type_global;
transition_to_Exact(ctx, bld, idx);
ctx.handle_wqm = false;
}
}
if (ctx.info[idx].block_needs == WQM)
transition_to_WQM(ctx, bld, idx);
else if (ctx.info[idx].block_needs == Exact)
transition_to_Exact(ctx, bld, idx);
}
if (block->kind & block_kind_merge) {
Temp restore = ctx.info[idx].exec.back().first;
assert(restore.size() == bld.lm.size());
ctx.info[idx].exec.back().first = bld.pseudo(aco_opcode::p_parallelcopy, bld.def(bld.lm, exec), restore);
}
return i;
}
void lower_fs_buffer_store_smem(Builder& bld, bool need_check, aco_ptr<Instruction>& instr, Temp cur_exec)
{
Operand offset = instr->operands[1];
if (need_check) {
/* if exec is zero, then use UINT32_MAX as an offset and make this store a no-op */
Temp nonempty = bld.sopc(Builder::s_cmp_lg, bld.def(s1, scc), cur_exec, Operand(0u));
if (offset.isLiteral())
offset = bld.sop1(aco_opcode::s_mov_b32, bld.def(s1), offset);
offset = bld.sop2(aco_opcode::s_cselect_b32, bld.hint_m0(bld.def(s1)),
offset, Operand(UINT32_MAX), bld.scc(nonempty));
} else if (offset.isConstant() && offset.constantValue() > 0xFFFFF) {
offset = bld.sop1(aco_opcode::s_mov_b32, bld.hint_m0(bld.def(s1)), offset);
}
if (!offset.isConstant())
offset.setFixed(m0);
switch (instr->operands[2].size()) {
case 1:
instr->opcode = aco_opcode::s_buffer_store_dword;
break;
case 2:
instr->opcode = aco_opcode::s_buffer_store_dwordx2;
break;
case 4:
instr->opcode = aco_opcode::s_buffer_store_dwordx4;
break;
default:
unreachable("Invalid SMEM buffer store size");
}
instr->operands[1] = offset;
/* as_uniform() needs to be done here so it's done in exact mode and helper
* lanes don't contribute. */
instr->operands[2] = Operand(bld.as_uniform(instr->operands[2]));
}
void process_instructions(exec_ctx& ctx, Block* block,
std::vector<aco_ptr<Instruction>>& instructions,
unsigned idx)
{
WQMState state;
if (ctx.info[block->index].exec.back().second & mask_type_wqm)
state = WQM;
else {
assert(!ctx.handle_wqm || ctx.info[block->index].exec.back().second & mask_type_exact);
state = Exact;
}
/* if the block doesn't need both, WQM and Exact, we can skip processing the instructions */
bool process = (ctx.handle_wqm &&
(ctx.info[block->index].block_needs & state) !=
(ctx.info[block->index].block_needs & (WQM | Exact))) ||
block->kind & block_kind_uses_discard_if ||
block->kind & block_kind_uses_demote ||
block->kind & block_kind_needs_lowering;
if (!process) {
std::vector<aco_ptr<Instruction>>::iterator it = std::next(block->instructions.begin(), idx);
instructions.insert(instructions.end(),
std::move_iterator<std::vector<aco_ptr<Instruction>>::iterator>(it),
std::move_iterator<std::vector<aco_ptr<Instruction>>::iterator>(block->instructions.end()));
return;
}
Builder bld(ctx.program, &instructions);
for (; idx < block->instructions.size(); idx++) {
aco_ptr<Instruction> instr = std::move(block->instructions[idx]);
WQMState needs = ctx.handle_wqm ? ctx.info[block->index].instr_needs[idx] : Unspecified;
if (instr->opcode == aco_opcode::p_discard_if) {
if (ctx.info[block->index].block_needs & Preserve_WQM) {
assert(block->kind & block_kind_top_level);
transition_to_WQM(ctx, bld, block->index);
ctx.info[block->index].exec.back().second &= ~mask_type_global;
}
int num = ctx.info[block->index].exec.size();
assert(num);
Operand cond = instr->operands[0];
for (int i = num - 1; i >= 0; i--) {
Instruction *andn2 = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc),
ctx.info[block->index].exec[i].first, cond);
if (i == num - 1) {
andn2->operands[0].setFixed(exec);
andn2->definitions[0].setFixed(exec);
}
if (i == 0) {
instr->opcode = aco_opcode::p_exit_early_if;
instr->operands[0] = bld.scc(andn2->definitions[1].getTemp());
}
ctx.info[block->index].exec[i].first = andn2->definitions[0].getTemp();
}
assert(!ctx.handle_wqm || (ctx.info[block->index].exec[0].second & mask_type_wqm) == 0);
} else if (needs == WQM && state != WQM) {
transition_to_WQM(ctx, bld, block->index);
state = WQM;
} else if (needs == Exact && state != Exact) {
transition_to_Exact(ctx, bld, block->index);
state = Exact;
}
if (instr->opcode == aco_opcode::p_is_helper || instr->opcode == aco_opcode::p_load_helper) {
Definition dst = instr->definitions[0];
assert(dst.size() == bld.lm.size());
if (state == Exact) {
instr.reset(create_instruction<SOP1_instruction>(bld.w64or32(Builder::s_mov), Format::SOP1, 1, 1));
instr->operands[0] = Operand(0u);
instr->definitions[0] = dst;
} else {
std::pair<Temp, uint8_t>& exact_mask = ctx.info[block->index].exec[0];
if (instr->opcode == aco_opcode::p_load_helper &&
!(ctx.info[block->index].exec[0].second & mask_type_initial)) {
/* find last initial exact mask */
for (int i = block->index; i >= 0; i--) {
if (ctx.program->blocks[i].kind & block_kind_top_level &&
ctx.info[i].exec[0].second & mask_type_initial) {
exact_mask = ctx.info[i].exec[0];
break;
}
}
}
assert(instr->opcode == aco_opcode::p_is_helper || exact_mask.second & mask_type_initial);
assert(exact_mask.second & mask_type_exact);
instr.reset(create_instruction<SOP2_instruction>(bld.w64or32(Builder::s_andn2), Format::SOP2, 2, 2));
instr->operands[0] = Operand(ctx.info[block->index].exec.back().first); /* current exec */
instr->operands[1] = Operand(exact_mask.first);
instr->definitions[0] = dst;
instr->definitions[1] = bld.def(s1, scc);
}
} else if (instr->opcode == aco_opcode::p_demote_to_helper) {
/* turn demote into discard_if with only exact masks */
assert((ctx.info[block->index].exec[0].second & (mask_type_exact | mask_type_global)) == (mask_type_exact | mask_type_global));
ctx.info[block->index].exec[0].second &= ~mask_type_initial;
int num;
Temp cond, exit_cond;
if (instr->operands[0].isConstant()) {
assert(instr->operands[0].constantValue() == -1u);
/* transition to exact and set exec to zero */
Temp old_exec = ctx.info[block->index].exec.back().first;
Temp new_exec = bld.tmp(bld.lm);
exit_cond = bld.tmp(s1);
cond = bld.sop1(Builder::s_and_saveexec, bld.def(bld.lm), bld.scc(Definition(exit_cond)),
bld.exec(Definition(new_exec)), Operand(0u), bld.exec(old_exec));
num = ctx.info[block->index].exec.size() - 2;
if (ctx.info[block->index].exec.back().second & mask_type_exact) {
ctx.info[block->index].exec.back().first = new_exec;
} else {
ctx.info[block->index].exec.back().first = cond;
ctx.info[block->index].exec.emplace_back(new_exec, mask_type_exact);
}
} else {
/* demote_if: transition to exact */
transition_to_Exact(ctx, bld, block->index);
assert(instr->operands[0].isTemp());
cond = instr->operands[0].getTemp();
num = ctx.info[block->index].exec.size() - 1;
}
for (int i = num; i >= 0; i--) {
if (ctx.info[block->index].exec[i].second & mask_type_exact) {
Instruction *andn2 = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc),
ctx.info[block->index].exec[i].first, cond);
if (i == (int)ctx.info[block->index].exec.size() - 1) {
andn2->operands[0].setFixed(exec);
andn2->definitions[0].setFixed(exec);
}
ctx.info[block->index].exec[i].first = andn2->definitions[0].getTemp();
exit_cond = andn2->definitions[1].getTemp();
} else {
assert(i != 0);
}
}
instr->opcode = aco_opcode::p_exit_early_if;
instr->operands[0] = bld.scc(exit_cond);
state = Exact;
} else if (instr->opcode == aco_opcode::p_fs_buffer_store_smem) {
bool need_check = ctx.info[block->index].exec.size() != 1 &&
!(ctx.info[block->index].exec[ctx.info[block->index].exec.size() - 2].second & Exact);
lower_fs_buffer_store_smem(bld, need_check, instr, ctx.info[block->index].exec.back().first);
}
bld.insert(std::move(instr));
}
}
void add_branch_code(exec_ctx& ctx, Block* block)
{
unsigned idx = block->index;
Builder bld(ctx.program, block);
if (idx == ctx.program->blocks.size() - 1)
return;
/* try to disable wqm handling */
if (ctx.handle_wqm && block->kind & block_kind_top_level) {
if (ctx.info[idx].exec.size() == 3) {
assert(ctx.info[idx].exec[1].second == mask_type_wqm);
ctx.info[idx].exec.pop_back();
}
assert(ctx.info[idx].exec.size() <= 2);
if (ctx.info[idx].ever_again_needs == 0 ||
ctx.info[idx].ever_again_needs == Exact) {
/* transition to Exact */
aco_ptr<Instruction> branch = std::move(block->instructions.back());
block->instructions.pop_back();
ctx.info[idx].exec.back().second |= mask_type_global;
transition_to_Exact(ctx, bld, idx);
bld.insert(std::move(branch));
ctx.handle_wqm = false;
} else if (ctx.info[idx].block_needs & Preserve_WQM) {
/* transition to WQM and remove global flag */
aco_ptr<Instruction> branch = std::move(block->instructions.back());
block->instructions.pop_back();
transition_to_WQM(ctx, bld, idx);
ctx.info[idx].exec.back().second &= ~mask_type_global;
bld.insert(std::move(branch));
}
}
if (block->kind & block_kind_loop_preheader) {
/* collect information about the succeeding loop */
bool has_divergent_break = false;
bool has_divergent_continue = false;
bool has_discard = false;
uint8_t needs = 0;
unsigned loop_nest_depth = ctx.program->blocks[idx + 1].loop_nest_depth;
for (unsigned i = idx + 1; ctx.program->blocks[i].loop_nest_depth >= loop_nest_depth; i++) {
Block& loop_block = ctx.program->blocks[i];
needs |= ctx.info[i].block_needs;
if (loop_block.kind & block_kind_uses_discard_if ||
loop_block.kind & block_kind_discard ||
loop_block.kind & block_kind_uses_demote)
has_discard = true;
if (loop_block.loop_nest_depth != loop_nest_depth)
continue;
if (loop_block.kind & block_kind_uniform)
continue;
else if (loop_block.kind & block_kind_break)
has_divergent_break = true;
else if (loop_block.kind & block_kind_continue)
has_divergent_continue = true;
}
if (ctx.handle_wqm) {
if (needs & WQM) {
aco_ptr<Instruction> branch = std::move(block->instructions.back());
block->instructions.pop_back();
transition_to_WQM(ctx, bld, idx);
bld.insert(std::move(branch));
} else {
aco_ptr<Instruction> branch = std::move(block->instructions.back());
block->instructions.pop_back();
transition_to_Exact(ctx, bld, idx);
bld.insert(std::move(branch));
}
}
unsigned num_exec_masks = ctx.info[idx].exec.size();
if (block->kind & block_kind_top_level)
num_exec_masks = std::min(num_exec_masks, 2u);
ctx.loop.emplace_back(&ctx.program->blocks[block->linear_succs[0]],
num_exec_masks,
needs,
has_divergent_break,
has_divergent_continue,
has_discard);
}
if (block->kind & block_kind_discard) {
assert(block->instructions.back()->format == Format::PSEUDO_BRANCH);
aco_ptr<Instruction> branch = std::move(block->instructions.back());
block->instructions.pop_back();
/* create a discard_if() instruction with the exec mask as condition */
unsigned num = 0;
if (ctx.loop.size()) {
/* if we're in a loop, only discard from the outer exec masks */
num = ctx.loop.back().num_exec_masks;
} else {
num = ctx.info[idx].exec.size() - 1;
}
Temp old_exec = ctx.info[idx].exec.back().first;
Temp new_exec = bld.tmp(bld.lm);
Temp cond = bld.sop1(Builder::s_and_saveexec, bld.def(bld.lm), bld.def(s1, scc),
bld.exec(Definition(new_exec)), Operand(0u), bld.exec(old_exec));
ctx.info[idx].exec.back().first = new_exec;
for (int i = num - 1; i >= 0; i--) {
Instruction *andn2 = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc),
ctx.info[block->index].exec[i].first, cond);
if (i == (int)ctx.info[idx].exec.size() - 1)
andn2->definitions[0].setFixed(exec);
if (i == 0)
bld.pseudo(aco_opcode::p_exit_early_if, bld.scc(andn2->definitions[1].getTemp()));
ctx.info[block->index].exec[i].first = andn2->definitions[0].getTemp();
}
assert(!ctx.handle_wqm || (ctx.info[block->index].exec[0].second & mask_type_wqm) == 0);
if ((block->kind & (block_kind_break | block_kind_uniform)) == block_kind_break)
ctx.info[idx].exec.back().first = cond;
bld.insert(std::move(branch));
/* no return here as it can be followed by a divergent break */
}
if (block->kind & block_kind_continue_or_break) {
assert(ctx.program->blocks[ctx.program->blocks[block->linear_succs[1]].linear_succs[0]].kind & block_kind_loop_header);
assert(ctx.program->blocks[ctx.program->blocks[block->linear_succs[0]].linear_succs[0]].kind & block_kind_loop_exit);
assert(block->instructions.back()->opcode == aco_opcode::p_branch);
block->instructions.pop_back();
bool need_parallelcopy = false;
while (!(ctx.info[idx].exec.back().second & mask_type_loop)) {
ctx.info[idx].exec.pop_back();
need_parallelcopy = true;
}
if (need_parallelcopy)
ctx.info[idx].exec.back().first = bld.pseudo(aco_opcode::p_parallelcopy, bld.def(bld.lm, exec), ctx.info[idx].exec.back().first);
bld.branch(aco_opcode::p_cbranch_nz, bld.exec(ctx.info[idx].exec.back().first), block->linear_succs[1], block->linear_succs[0]);
return;
}
if (block->kind & block_kind_uniform) {
Pseudo_branch_instruction* branch = static_cast<Pseudo_branch_instruction*>(block->instructions.back().get());
if (branch->opcode == aco_opcode::p_branch) {
branch->target[0] = block->linear_succs[0];
} else {
branch->target[0] = block->linear_succs[1];
branch->target[1] = block->linear_succs[0];
}
return;
}
if (block->kind & block_kind_branch) {
if (ctx.handle_wqm &&
ctx.info[idx].exec.size() >= 2 &&
ctx.info[idx].exec.back().second == mask_type_exact &&
!(ctx.info[idx].block_needs & Exact_Branch) &&
ctx.info[idx].exec[ctx.info[idx].exec.size() - 2].second & mask_type_wqm) {
/* return to wqm before branching */
ctx.info[idx].exec.pop_back();
}
// orig = s_and_saveexec_b64
assert(block->linear_succs.size() == 2);
assert(block->instructions.back()->opcode == aco_opcode::p_cbranch_z);
Temp cond = block->instructions.back()->operands[0].getTemp();
block->instructions.pop_back();
if (ctx.info[idx].block_needs & Exact_Branch)
transition_to_Exact(ctx, bld, idx);
Temp current_exec = ctx.info[idx].exec.back().first;
uint8_t mask_type = ctx.info[idx].exec.back().second & (mask_type_wqm | mask_type_exact);
Temp then_mask = bld.tmp(bld.lm);
Temp old_exec = bld.sop1(Builder::s_and_saveexec, bld.def(bld.lm), bld.def(s1, scc),
bld.exec(Definition(then_mask)), cond, bld.exec(current_exec));
ctx.info[idx].exec.back().first = old_exec;
/* add next current exec to the stack */
ctx.info[idx].exec.emplace_back(then_mask, mask_type);
bld.branch(aco_opcode::p_cbranch_z, bld.exec(then_mask), block->linear_succs[1], block->linear_succs[0]);
return;
}
if (block->kind & block_kind_invert) {
// exec = s_andn2_b64 (original_exec, exec)
assert(block->instructions.back()->opcode == aco_opcode::p_cbranch_nz);
block->instructions.pop_back();
Temp then_mask = ctx.info[idx].exec.back().first;
uint8_t mask_type = ctx.info[idx].exec.back().second;
ctx.info[idx].exec.pop_back();
Temp orig_exec = ctx.info[idx].exec.back().first;
Temp else_mask = bld.sop2(Builder::s_andn2, bld.def(bld.lm, exec),
bld.def(s1, scc), orig_exec, bld.exec(then_mask));
/* add next current exec to the stack */
ctx.info[idx].exec.emplace_back(else_mask, mask_type);
bld.branch(aco_opcode::p_cbranch_z, bld.exec(else_mask), block->linear_succs[1], block->linear_succs[0]);
return;
}
if (block->kind & block_kind_break) {
// loop_mask = s_andn2_b64 (loop_mask, exec)
assert(block->instructions.back()->opcode == aco_opcode::p_branch);
block->instructions.pop_back();
Temp current_exec = ctx.info[idx].exec.back().first;
Temp cond = Temp();
for (int exec_idx = ctx.info[idx].exec.size() - 2; exec_idx >= 0; exec_idx--) {
cond = bld.tmp(s1);
Temp exec_mask = ctx.info[idx].exec[exec_idx].first;
exec_mask = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.scc(Definition(cond)),
exec_mask, bld.exec(current_exec));
ctx.info[idx].exec[exec_idx].first = exec_mask;
if (ctx.info[idx].exec[exec_idx].second & mask_type_loop)
break;
}
/* check if the successor is the merge block, otherwise set exec to 0 */
// TODO: this could be done better by directly branching to the merge block
unsigned succ_idx = ctx.program->blocks[block->linear_succs[1]].linear_succs[0];
Block& succ = ctx.program->blocks[succ_idx];
if (!(succ.kind & block_kind_invert || succ.kind & block_kind_merge)) {
ctx.info[idx].exec.back().first = bld.sop1(Builder::s_mov, bld.def(bld.lm, exec), Operand(0u));
}
bld.branch(aco_opcode::p_cbranch_nz, bld.scc(cond), block->linear_succs[1], block->linear_succs[0]);
return;
}
if (block->kind & block_kind_continue) {
assert(block->instructions.back()->opcode == aco_opcode::p_branch);
block->instructions.pop_back();
Temp current_exec = ctx.info[idx].exec.back().first;
Temp cond = Temp();
for (int exec_idx = ctx.info[idx].exec.size() - 2; exec_idx >= 0; exec_idx--) {
if (ctx.info[idx].exec[exec_idx].second & mask_type_loop)
break;
cond = bld.tmp(s1);
Temp exec_mask = ctx.info[idx].exec[exec_idx].first;
exec_mask = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.scc(Definition(cond)),
exec_mask, bld.exec(current_exec));
ctx.info[idx].exec[exec_idx].first = exec_mask;
}
assert(cond != Temp());
/* check if the successor is the merge block, otherwise set exec to 0 */
// TODO: this could be done better by directly branching to the merge block
unsigned succ_idx = ctx.program->blocks[block->linear_succs[1]].linear_succs[0];
Block& succ = ctx.program->blocks[succ_idx];
if (!(succ.kind & block_kind_invert || succ.kind & block_kind_merge)) {
ctx.info[idx].exec.back().first = bld.sop1(Builder::s_mov, bld.def(bld.lm, exec), Operand(0u));
}
bld.branch(aco_opcode::p_cbranch_nz, bld.scc(cond), block->linear_succs[1], block->linear_succs[0]);
return;
}
}
void process_block(exec_ctx& ctx, Block* block)
{
std::vector<aco_ptr<Instruction>> instructions;
instructions.reserve(block->instructions.size());
unsigned idx = add_coupling_code(ctx, block, instructions);
assert(block->index != ctx.program->blocks.size() - 1 ||
ctx.info[block->index].exec.size() <= 2);
process_instructions(ctx, block, instructions, idx);
block->instructions = std::move(instructions);
add_branch_code(ctx, block);
block->live_out_exec = ctx.info[block->index].exec.back().first;
}
} /* end namespace */
void insert_exec_mask(Program *program)
{
exec_ctx ctx(program);
if (program->needs_wqm && program->needs_exact)
calculate_wqm_needs(ctx);
for (Block& block : program->blocks)
process_block(ctx, &block);
}
}