blob: 4b639eecf5f94e5ae3095f0a28427c32ddea6320 [file] [log] [blame]
/*
* Copyright 2017 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* on the rights to use, copy, modify, merge, publish, distribute, sub
* license, and/or sell copies of the Software, and to permit persons to whom
* the Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "ac_llvm_cull.h"
#include "si_pipe.h"
#include "si_shader_internal.h"
#include "sid.h"
#include "util/u_memory.h"
#include "util/u_prim.h"
static LLVMValueRef get_wave_id_in_tg(struct si_shader_context *ctx)
{
return si_unpack_param(ctx, ctx->merged_wave_info, 24, 4);
}
static LLVMValueRef get_tgsize(struct si_shader_context *ctx)
{
return si_unpack_param(ctx, ctx->merged_wave_info, 28, 4);
}
static LLVMValueRef get_thread_id_in_tg(struct si_shader_context *ctx)
{
LLVMBuilderRef builder = ctx->ac.builder;
LLVMValueRef tmp;
tmp = LLVMBuildMul(builder, get_wave_id_in_tg(ctx),
LLVMConstInt(ctx->ac.i32, ctx->ac.wave_size, false), "");
return LLVMBuildAdd(builder, tmp, ac_get_thread_id(&ctx->ac), "");
}
static LLVMValueRef ngg_get_vtx_cnt(struct si_shader_context *ctx)
{
return si_unpack_param(ctx, ctx->gs_tg_info, 12, 9);
}
static LLVMValueRef ngg_get_prim_cnt(struct si_shader_context *ctx)
{
return si_unpack_param(ctx, ctx->gs_tg_info, 22, 9);
}
static LLVMValueRef ngg_get_ordered_id(struct si_shader_context *ctx)
{
return si_unpack_param(ctx, ctx->gs_tg_info, 0, 12);
}
static LLVMValueRef ngg_get_query_buf(struct si_shader_context *ctx)
{
LLVMValueRef buf_ptr = ac_get_arg(&ctx->ac, ctx->rw_buffers);
return ac_build_load_to_sgpr(&ctx->ac, buf_ptr,
LLVMConstInt(ctx->ac.i32, GFX10_GS_QUERY_BUF, false));
}
static LLVMValueRef ngg_get_initial_edgeflag(struct si_shader_context *ctx, unsigned index)
{
if (ctx->type == PIPE_SHADER_VERTEX) {
LLVMValueRef tmp;
tmp = LLVMBuildLShr(ctx->ac.builder, ac_get_arg(&ctx->ac, ctx->args.gs_invocation_id),
LLVMConstInt(ctx->ac.i32, 8 + index, false), "");
return LLVMBuildTrunc(ctx->ac.builder, tmp, ctx->ac.i1, "");
}
return ctx->ac.i1false;
}
/**
* Return the number of vertices as a constant in \p num_vertices,
* and return a more precise value as LLVMValueRef from the function.
*/
static LLVMValueRef ngg_get_vertices_per_prim(struct si_shader_context *ctx, unsigned *num_vertices)
{
const struct si_shader_info *info = &ctx->shader->selector->info;
if (ctx->type == PIPE_SHADER_VERTEX) {
if (info->properties[TGSI_PROPERTY_VS_BLIT_SGPRS_AMD]) {
/* Blits always use axis-aligned rectangles with 3 vertices. */
*num_vertices = 3;
return LLVMConstInt(ctx->ac.i32, 3, 0);
} else {
/* We always build up all three indices for the prim export
* independent of the primitive type. The additional garbage
* data shouldn't hurt. This number doesn't matter with
* NGG passthrough.
*/
*num_vertices = 3;
/* Extract OUTPRIM field. */
LLVMValueRef num = si_unpack_param(ctx, ctx->vs_state_bits, 2, 2);
return LLVMBuildAdd(ctx->ac.builder, num, ctx->ac.i32_1, "");
}
} else {
assert(ctx->type == PIPE_SHADER_TESS_EVAL);
if (info->properties[TGSI_PROPERTY_TES_POINT_MODE])
*num_vertices = 1;
else if (info->properties[TGSI_PROPERTY_TES_PRIM_MODE] == PIPE_PRIM_LINES)
*num_vertices = 2;
else
*num_vertices = 3;
return LLVMConstInt(ctx->ac.i32, *num_vertices, false);
}
}
bool gfx10_ngg_export_prim_early(struct si_shader *shader)
{
struct si_shader_selector *sel = shader->selector;
assert(shader->key.as_ngg && !shader->key.as_es);
return sel->type != PIPE_SHADER_GEOMETRY && !sel->info.writes_edgeflag;
}
void gfx10_ngg_build_sendmsg_gs_alloc_req(struct si_shader_context *ctx)
{
ac_build_sendmsg_gs_alloc_req(&ctx->ac, get_wave_id_in_tg(ctx), ngg_get_vtx_cnt(ctx),
ngg_get_prim_cnt(ctx));
}
void gfx10_ngg_build_export_prim(struct si_shader_context *ctx, LLVMValueRef user_edgeflags[3],
LLVMValueRef prim_passthrough)
{
LLVMBuilderRef builder = ctx->ac.builder;
if (gfx10_is_ngg_passthrough(ctx->shader) || ctx->shader->key.opt.ngg_culling) {
ac_build_ifcc(&ctx->ac, si_is_gs_thread(ctx), 6001);
{
struct ac_ngg_prim prim = {};
if (prim_passthrough)
prim.passthrough = prim_passthrough;
else
prim.passthrough = ac_get_arg(&ctx->ac, ctx->gs_vtx01_offset);
/* This is only used with NGG culling, which returns the NGG
* passthrough prim export encoding.
*/
if (ctx->shader->selector->info.writes_edgeflag) {
unsigned all_bits_no_edgeflags = ~SI_NGG_PRIM_EDGE_FLAG_BITS;
LLVMValueRef edgeflags = LLVMConstInt(ctx->ac.i32, all_bits_no_edgeflags, 0);
unsigned num_vertices;
ngg_get_vertices_per_prim(ctx, &num_vertices);
for (unsigned i = 0; i < num_vertices; i++) {
unsigned shift = 9 + i * 10;
LLVMValueRef edge;
edge = LLVMBuildLoad(builder, user_edgeflags[i], "");
edge = LLVMBuildZExt(builder, edge, ctx->ac.i32, "");
edge = LLVMBuildShl(builder, edge, LLVMConstInt(ctx->ac.i32, shift, 0), "");
edgeflags = LLVMBuildOr(builder, edgeflags, edge, "");
}
prim.passthrough = LLVMBuildAnd(builder, prim.passthrough, edgeflags, "");
}
ac_build_export_prim(&ctx->ac, &prim);
}
ac_build_endif(&ctx->ac, 6001);
return;
}
ac_build_ifcc(&ctx->ac, si_is_gs_thread(ctx), 6001);
{
struct ac_ngg_prim prim = {};
ngg_get_vertices_per_prim(ctx, &prim.num_vertices);
prim.isnull = ctx->ac.i1false;
prim.index[0] = si_unpack_param(ctx, ctx->gs_vtx01_offset, 0, 16);
prim.index[1] = si_unpack_param(ctx, ctx->gs_vtx01_offset, 16, 16);
prim.index[2] = si_unpack_param(ctx, ctx->gs_vtx23_offset, 0, 16);
for (unsigned i = 0; i < prim.num_vertices; ++i) {
prim.edgeflag[i] = ngg_get_initial_edgeflag(ctx, i);
if (ctx->shader->selector->info.writes_edgeflag) {
LLVMValueRef edge;
edge = LLVMBuildLoad(ctx->ac.builder, user_edgeflags[i], "");
edge = LLVMBuildAnd(ctx->ac.builder, prim.edgeflag[i], edge, "");
prim.edgeflag[i] = edge;
}
}
ac_build_export_prim(&ctx->ac, &prim);
}
ac_build_endif(&ctx->ac, 6001);
}
static void build_streamout_vertex(struct si_shader_context *ctx, LLVMValueRef *so_buffer,
LLVMValueRef *wg_offset_dw, unsigned stream,
LLVMValueRef offset_vtx, LLVMValueRef vertexptr)
{
struct si_shader_info *info = &ctx->shader->selector->info;
struct pipe_stream_output_info *so = &ctx->shader->selector->so;
LLVMBuilderRef builder = ctx->ac.builder;
LLVMValueRef offset[4] = {};
LLVMValueRef tmp;
for (unsigned buffer = 0; buffer < 4; ++buffer) {
if (!wg_offset_dw[buffer])
continue;
tmp = LLVMBuildMul(builder, offset_vtx, LLVMConstInt(ctx->ac.i32, so->stride[buffer], false),
"");
tmp = LLVMBuildAdd(builder, wg_offset_dw[buffer], tmp, "");
offset[buffer] = LLVMBuildShl(builder, tmp, LLVMConstInt(ctx->ac.i32, 2, false), "");
}
for (unsigned i = 0; i < so->num_outputs; ++i) {
if (so->output[i].stream != stream)
continue;
unsigned reg = so->output[i].register_index;
struct si_shader_output_values out;
out.semantic_name = info->output_semantic_name[reg];
out.semantic_index = info->output_semantic_index[reg];
for (unsigned comp = 0; comp < 4; comp++) {
tmp = ac_build_gep0(&ctx->ac, vertexptr, LLVMConstInt(ctx->ac.i32, 4 * reg + comp, false));
out.values[comp] = LLVMBuildLoad(builder, tmp, "");
out.vertex_stream[comp] = (info->output_streams[reg] >> (2 * comp)) & 3;
}
si_llvm_streamout_store_output(ctx, so_buffer, offset, &so->output[i], &out);
}
}
struct ngg_streamout {
LLVMValueRef num_vertices;
/* per-thread data */
LLVMValueRef prim_enable[4]; /* i1 per stream */
LLVMValueRef vertices[3]; /* [N x i32] addrspace(LDS)* */
/* Output */
LLVMValueRef emit[4]; /* per-stream emitted primitives (only valid for used streams) */
};
/**
* Build streamout logic.
*
* Implies a barrier.
*
* Writes number of emitted primitives to gs_ngg_scratch[4:8].
*
* Clobbers gs_ngg_scratch[8:].
*/
static void build_streamout(struct si_shader_context *ctx, struct ngg_streamout *nggso)
{
struct si_shader_info *info = &ctx->shader->selector->info;
struct pipe_stream_output_info *so = &ctx->shader->selector->so;
LLVMBuilderRef builder = ctx->ac.builder;
LLVMValueRef buf_ptr = ac_get_arg(&ctx->ac, ctx->rw_buffers);
LLVMValueRef tid = get_thread_id_in_tg(ctx);
LLVMValueRef tmp, tmp2;
LLVMValueRef i32_2 = LLVMConstInt(ctx->ac.i32, 2, false);
LLVMValueRef i32_4 = LLVMConstInt(ctx->ac.i32, 4, false);
LLVMValueRef i32_8 = LLVMConstInt(ctx->ac.i32, 8, false);
LLVMValueRef so_buffer[4] = {};
unsigned max_num_vertices = 1 + (nggso->vertices[1] ? 1 : 0) + (nggso->vertices[2] ? 1 : 0);
LLVMValueRef prim_stride_dw[4] = {};
LLVMValueRef prim_stride_dw_vgpr = LLVMGetUndef(ctx->ac.i32);
int stream_for_buffer[4] = {-1, -1, -1, -1};
unsigned bufmask_for_stream[4] = {};
bool isgs = ctx->type == PIPE_SHADER_GEOMETRY;
unsigned scratch_emit_base = isgs ? 4 : 0;
LLVMValueRef scratch_emit_basev = isgs ? i32_4 : ctx->ac.i32_0;
unsigned scratch_offset_base = isgs ? 8 : 4;
LLVMValueRef scratch_offset_basev = isgs ? i32_8 : i32_4;
ac_llvm_add_target_dep_function_attr(ctx->main_fn, "amdgpu-gds-size", 256);
/* Determine the mapping of streamout buffers to vertex streams. */
for (unsigned i = 0; i < so->num_outputs; ++i) {
unsigned buf = so->output[i].output_buffer;
unsigned stream = so->output[i].stream;
assert(stream_for_buffer[buf] < 0 || stream_for_buffer[buf] == stream);
stream_for_buffer[buf] = stream;
bufmask_for_stream[stream] |= 1 << buf;
}
for (unsigned buffer = 0; buffer < 4; ++buffer) {
if (stream_for_buffer[buffer] == -1)
continue;
assert(so->stride[buffer]);
tmp = LLVMConstInt(ctx->ac.i32, so->stride[buffer], false);
prim_stride_dw[buffer] = LLVMBuildMul(builder, tmp, nggso->num_vertices, "");
prim_stride_dw_vgpr =
ac_build_writelane(&ctx->ac, prim_stride_dw_vgpr, prim_stride_dw[buffer],
LLVMConstInt(ctx->ac.i32, buffer, false));
so_buffer[buffer] = ac_build_load_to_sgpr(
&ctx->ac, buf_ptr, LLVMConstInt(ctx->ac.i32, SI_VS_STREAMOUT_BUF0 + buffer, false));
}
tmp = LLVMBuildICmp(builder, LLVMIntEQ, get_wave_id_in_tg(ctx), ctx->ac.i32_0, "");
ac_build_ifcc(&ctx->ac, tmp, 5200);
{
LLVMTypeRef gdsptr = LLVMPointerType(ctx->ac.i32, AC_ADDR_SPACE_GDS);
LLVMValueRef gdsbase = LLVMBuildIntToPtr(builder, ctx->ac.i32_0, gdsptr, "");
/* Advance the streamout offsets in GDS. */
LLVMValueRef offsets_vgpr = ac_build_alloca_undef(&ctx->ac, ctx->ac.i32, "");
LLVMValueRef generated_by_stream_vgpr = ac_build_alloca_undef(&ctx->ac, ctx->ac.i32, "");
tmp = LLVMBuildICmp(builder, LLVMIntULT, ac_get_thread_id(&ctx->ac), i32_4, "");
ac_build_ifcc(&ctx->ac, tmp, 5210);
{
if (isgs) {
tmp = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, tid);
tmp = LLVMBuildLoad(builder, tmp, "");
} else {
tmp = ac_build_writelane(&ctx->ac, ctx->ac.i32_0, ngg_get_prim_cnt(ctx), ctx->ac.i32_0);
}
LLVMBuildStore(builder, tmp, generated_by_stream_vgpr);
unsigned swizzle[4];
int unused_stream = -1;
for (unsigned stream = 0; stream < 4; ++stream) {
if (!info->num_stream_output_components[stream]) {
unused_stream = stream;
break;
}
}
for (unsigned buffer = 0; buffer < 4; ++buffer) {
if (stream_for_buffer[buffer] >= 0) {
swizzle[buffer] = stream_for_buffer[buffer];
} else {
assert(unused_stream >= 0);
swizzle[buffer] = unused_stream;
}
}
tmp = ac_build_quad_swizzle(&ctx->ac, tmp, swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
tmp = LLVMBuildMul(builder, tmp, prim_stride_dw_vgpr, "");
LLVMValueRef args[] = {
LLVMBuildIntToPtr(builder, ngg_get_ordered_id(ctx), gdsptr, ""),
tmp,
ctx->ac.i32_0, // ordering
ctx->ac.i32_0, // scope
ctx->ac.i1false, // isVolatile
LLVMConstInt(ctx->ac.i32, 4 << 24, false), // OA index
ctx->ac.i1true, // wave release
ctx->ac.i1true, // wave done
};
tmp = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.ds.ordered.add", ctx->ac.i32, args,
ARRAY_SIZE(args), 0);
/* Keep offsets in a VGPR for quick retrieval via readlane by
* the first wave for bounds checking, and also store in LDS
* for retrieval by all waves later. */
LLVMBuildStore(builder, tmp, offsets_vgpr);
tmp2 = LLVMBuildAdd(builder, ac_get_thread_id(&ctx->ac), scratch_offset_basev, "");
tmp2 = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, tmp2);
LLVMBuildStore(builder, tmp, tmp2);
}
ac_build_endif(&ctx->ac, 5210);
/* Determine the max emit per buffer. This is done via the SALU, in part
* because LLVM can't generate divide-by-multiply if we try to do this
* via VALU with one lane per buffer.
*/
LLVMValueRef max_emit[4] = {};
for (unsigned buffer = 0; buffer < 4; ++buffer) {
if (stream_for_buffer[buffer] == -1)
continue;
LLVMValueRef bufsize_dw = LLVMBuildLShr(
builder, LLVMBuildExtractElement(builder, so_buffer[buffer], i32_2, ""), i32_2, "");
tmp = LLVMBuildLoad(builder, offsets_vgpr, "");
LLVMValueRef offset_dw =
ac_build_readlane(&ctx->ac, tmp, LLVMConstInt(ctx->ac.i32, buffer, false));
tmp = LLVMBuildSub(builder, bufsize_dw, offset_dw, "");
tmp = LLVMBuildUDiv(builder, tmp, prim_stride_dw[buffer], "");
tmp2 = LLVMBuildICmp(builder, LLVMIntULT, bufsize_dw, offset_dw, "");
max_emit[buffer] = LLVMBuildSelect(builder, tmp2, ctx->ac.i32_0, tmp, "");
}
/* Determine the number of emitted primitives per stream and fixup the
* GDS counter if necessary.
*
* This is complicated by the fact that a single stream can emit to
* multiple buffers (but luckily not vice versa).
*/
LLVMValueRef emit_vgpr = ctx->ac.i32_0;
for (unsigned stream = 0; stream < 4; ++stream) {
if (!info->num_stream_output_components[stream])
continue;
tmp = LLVMBuildLoad(builder, generated_by_stream_vgpr, "");
LLVMValueRef generated =
ac_build_readlane(&ctx->ac, tmp, LLVMConstInt(ctx->ac.i32, stream, false));
LLVMValueRef emit = generated;
for (unsigned buffer = 0; buffer < 4; ++buffer) {
if (stream_for_buffer[buffer] == stream)
emit = ac_build_umin(&ctx->ac, emit, max_emit[buffer]);
}
emit_vgpr =
ac_build_writelane(&ctx->ac, emit_vgpr, emit, LLVMConstInt(ctx->ac.i32, stream, false));
/* Fixup the offset using a plain GDS atomic if we overflowed. */
tmp = LLVMBuildICmp(builder, LLVMIntULT, emit, generated, "");
ac_build_ifcc(&ctx->ac, tmp, 5221); /* scalar branch */
tmp = LLVMBuildLShr(builder, LLVMConstInt(ctx->ac.i32, bufmask_for_stream[stream], false),
ac_get_thread_id(&ctx->ac), "");
tmp = LLVMBuildTrunc(builder, tmp, ctx->ac.i1, "");
ac_build_ifcc(&ctx->ac, tmp, 5222);
{
tmp = LLVMBuildSub(builder, generated, emit, "");
tmp = LLVMBuildMul(builder, tmp, prim_stride_dw_vgpr, "");
tmp2 = LLVMBuildGEP(builder, gdsbase, &tid, 1, "");
LLVMBuildAtomicRMW(builder, LLVMAtomicRMWBinOpSub, tmp2, tmp,
LLVMAtomicOrderingMonotonic, false);
}
ac_build_endif(&ctx->ac, 5222);
ac_build_endif(&ctx->ac, 5221);
}
tmp = LLVMBuildICmp(builder, LLVMIntULT, ac_get_thread_id(&ctx->ac), i32_4, "");
ac_build_ifcc(&ctx->ac, tmp, 5225);
{
tmp = LLVMBuildAdd(builder, ac_get_thread_id(&ctx->ac), scratch_emit_basev, "");
tmp = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, tmp);
LLVMBuildStore(builder, emit_vgpr, tmp);
}
ac_build_endif(&ctx->ac, 5225);
}
ac_build_endif(&ctx->ac, 5200);
/* Determine the workgroup-relative per-thread / primitive offset into
* the streamout buffers */
struct ac_wg_scan primemit_scan[4] = {};
if (isgs) {
for (unsigned stream = 0; stream < 4; ++stream) {
if (!info->num_stream_output_components[stream])
continue;
primemit_scan[stream].enable_exclusive = true;
primemit_scan[stream].op = nir_op_iadd;
primemit_scan[stream].src = nggso->prim_enable[stream];
primemit_scan[stream].scratch = ac_build_gep0(
&ctx->ac, ctx->gs_ngg_scratch, LLVMConstInt(ctx->ac.i32, 12 + 8 * stream, false));
primemit_scan[stream].waveidx = get_wave_id_in_tg(ctx);
primemit_scan[stream].numwaves = get_tgsize(ctx);
primemit_scan[stream].maxwaves = 8;
ac_build_wg_scan_top(&ctx->ac, &primemit_scan[stream]);
}
}
ac_build_s_barrier(&ctx->ac);
/* Fetch the per-buffer offsets and per-stream emit counts in all waves. */
LLVMValueRef wgoffset_dw[4] = {};
{
LLVMValueRef scratch_vgpr;
tmp = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, ac_get_thread_id(&ctx->ac));
scratch_vgpr = LLVMBuildLoad(builder, tmp, "");
for (unsigned buffer = 0; buffer < 4; ++buffer) {
if (stream_for_buffer[buffer] >= 0) {
wgoffset_dw[buffer] =
ac_build_readlane(&ctx->ac, scratch_vgpr,
LLVMConstInt(ctx->ac.i32, scratch_offset_base + buffer, false));
}
}
for (unsigned stream = 0; stream < 4; ++stream) {
if (info->num_stream_output_components[stream]) {
nggso->emit[stream] =
ac_build_readlane(&ctx->ac, scratch_vgpr,
LLVMConstInt(ctx->ac.i32, scratch_emit_base + stream, false));
}
}
}
/* Write out primitive data */
for (unsigned stream = 0; stream < 4; ++stream) {
if (!info->num_stream_output_components[stream])
continue;
if (isgs) {
ac_build_wg_scan_bottom(&ctx->ac, &primemit_scan[stream]);
} else {
primemit_scan[stream].result_exclusive = tid;
}
tmp = LLVMBuildICmp(builder, LLVMIntULT, primemit_scan[stream].result_exclusive,
nggso->emit[stream], "");
tmp = LLVMBuildAnd(builder, tmp, nggso->prim_enable[stream], "");
ac_build_ifcc(&ctx->ac, tmp, 5240);
{
LLVMValueRef offset_vtx =
LLVMBuildMul(builder, primemit_scan[stream].result_exclusive, nggso->num_vertices, "");
for (unsigned i = 0; i < max_num_vertices; ++i) {
tmp = LLVMBuildICmp(builder, LLVMIntULT, LLVMConstInt(ctx->ac.i32, i, false),
nggso->num_vertices, "");
ac_build_ifcc(&ctx->ac, tmp, 5241);
build_streamout_vertex(ctx, so_buffer, wgoffset_dw, stream, offset_vtx,
nggso->vertices[i]);
ac_build_endif(&ctx->ac, 5241);
offset_vtx = LLVMBuildAdd(builder, offset_vtx, ctx->ac.i32_1, "");
}
}
ac_build_endif(&ctx->ac, 5240);
}
}
/* LDS layout of ES vertex data for NGG culling. */
enum
{
/* Byte 0: Boolean ES thread accepted (unculled) flag, and later the old
* ES thread ID. After vertex compaction, compacted ES threads
* store the old thread ID here to copy input VGPRs from uncompacted
* ES threads.
* Byte 1: New ES thread ID, loaded by GS to prepare the prim export value.
* Byte 2: TES rel patch ID
* Byte 3: Unused
*/
lds_byte0_accept_flag = 0,
lds_byte0_old_thread_id = 0,
lds_byte1_new_thread_id,
lds_byte2_tes_rel_patch_id,
lds_byte3_unused,
lds_packed_data = 0, /* lds_byteN_... */
lds_pos_x,
lds_pos_y,
lds_pos_z,
lds_pos_w,
lds_pos_x_div_w,
lds_pos_y_div_w,
/* If VS: */
lds_vertex_id,
lds_instance_id, /* optional */
/* If TES: */
lds_tes_u = lds_vertex_id,
lds_tes_v = lds_instance_id,
lds_tes_patch_id, /* optional */
};
static LLVMValueRef si_build_gep_i8(struct si_shader_context *ctx, LLVMValueRef ptr,
unsigned byte_index)
{
assert(byte_index < 4);
LLVMTypeRef pi8 = LLVMPointerType(ctx->ac.i8, AC_ADDR_SPACE_LDS);
LLVMValueRef index = LLVMConstInt(ctx->ac.i32, byte_index, 0);
return LLVMBuildGEP(ctx->ac.builder, LLVMBuildPointerCast(ctx->ac.builder, ptr, pi8, ""), &index,
1, "");
}
static unsigned ngg_nogs_vertex_size(struct si_shader *shader)
{
unsigned lds_vertex_size = 0;
/* The edgeflag is always stored in the last element that's also
* used for padding to reduce LDS bank conflicts. */
if (shader->selector->so.num_outputs)
lds_vertex_size = 4 * shader->selector->info.num_outputs + 1;
if (shader->selector->info.writes_edgeflag)
lds_vertex_size = MAX2(lds_vertex_size, 1);
/* LDS size for passing data from GS to ES.
* GS stores Primitive IDs into LDS at the address corresponding
* to the ES thread of the provoking vertex. All ES threads
* load and export PrimitiveID for their thread.
*/
if (shader->selector->type == PIPE_SHADER_VERTEX && shader->key.mono.u.vs_export_prim_id)
lds_vertex_size = MAX2(lds_vertex_size, 1);
if (shader->key.opt.ngg_culling) {
if (shader->selector->type == PIPE_SHADER_VERTEX) {
STATIC_ASSERT(lds_instance_id + 1 == 9);
lds_vertex_size = MAX2(lds_vertex_size, 9);
} else {
assert(shader->selector->type == PIPE_SHADER_TESS_EVAL);
if (shader->selector->info.uses_primid || shader->key.mono.u.vs_export_prim_id) {
STATIC_ASSERT(lds_tes_patch_id + 2 == 11);
lds_vertex_size = MAX2(lds_vertex_size, 11);
} else {
STATIC_ASSERT(lds_tes_v + 1 == 9);
lds_vertex_size = MAX2(lds_vertex_size, 9);
}
}
}
return lds_vertex_size;
}
/**
* Returns an `[N x i32] addrspace(LDS)*` pointing at contiguous LDS storage
* for the vertex outputs.
*/
static LLVMValueRef ngg_nogs_vertex_ptr(struct si_shader_context *ctx, LLVMValueRef vtxid)
{
/* The extra dword is used to avoid LDS bank conflicts. */
unsigned vertex_size = ngg_nogs_vertex_size(ctx->shader);
LLVMTypeRef ai32 = LLVMArrayType(ctx->ac.i32, vertex_size);
LLVMTypeRef pai32 = LLVMPointerType(ai32, AC_ADDR_SPACE_LDS);
LLVMValueRef tmp = LLVMBuildBitCast(ctx->ac.builder, ctx->esgs_ring, pai32, "");
return LLVMBuildGEP(ctx->ac.builder, tmp, &vtxid, 1, "");
}
static LLVMValueRef si_insert_input_v4i32(struct si_shader_context *ctx, LLVMValueRef ret,
struct ac_arg param, unsigned return_index)
{
LLVMValueRef v = ac_get_arg(&ctx->ac, param);
for (unsigned i = 0; i < 4; i++) {
ret = LLVMBuildInsertValue(ctx->ac.builder, ret, ac_llvm_extract_elem(&ctx->ac, v, i),
return_index + i, "");
}
return ret;
}
static void load_bitmasks_2x64(struct si_shader_context *ctx, LLVMValueRef lds_ptr,
unsigned dw_offset, LLVMValueRef mask[2],
LLVMValueRef *total_bitcount)
{
LLVMBuilderRef builder = ctx->ac.builder;
LLVMValueRef ptr64 = LLVMBuildPointerCast(
builder, lds_ptr, LLVMPointerType(LLVMArrayType(ctx->ac.i64, 2), AC_ADDR_SPACE_LDS), "");
for (unsigned i = 0; i < 2; i++) {
LLVMValueRef index = LLVMConstInt(ctx->ac.i32, dw_offset / 2 + i, 0);
mask[i] = LLVMBuildLoad(builder, ac_build_gep0(&ctx->ac, ptr64, index), "");
}
/* We get better code if we don't use the 128-bit bitcount. */
*total_bitcount = LLVMBuildAdd(builder, ac_build_bit_count(&ctx->ac, mask[0]),
ac_build_bit_count(&ctx->ac, mask[1]), "");
}
/**
* Given a total thread count, update total and per-wave thread counts in input SGPRs
* and return the per-wave thread count.
*
* \param new_num_threads Total thread count on the input, per-wave thread count on the output.
* \param tg_info tg_info SGPR value
* \param tg_info_num_bits the bit size of thread count field in tg_info
* \param tg_info_shift the bit offset of the thread count field in tg_info
* \param wave_info merged_wave_info SGPR value
* \param wave_info_num_bits the bit size of thread count field in merged_wave_info
* \param wave_info_shift the bit offset of the thread count field in merged_wave_info
*/
static void update_thread_counts(struct si_shader_context *ctx, LLVMValueRef *new_num_threads,
LLVMValueRef *tg_info, unsigned tg_info_num_bits,
unsigned tg_info_shift, LLVMValueRef *wave_info,
unsigned wave_info_num_bits, unsigned wave_info_shift)
{
LLVMBuilderRef builder = ctx->ac.builder;
/* Update the total thread count. */
unsigned tg_info_mask = ~(u_bit_consecutive(0, tg_info_num_bits) << tg_info_shift);
*tg_info = LLVMBuildAnd(builder, *tg_info, LLVMConstInt(ctx->ac.i32, tg_info_mask, 0), "");
*tg_info = LLVMBuildOr(
builder, *tg_info,
LLVMBuildShl(builder, *new_num_threads, LLVMConstInt(ctx->ac.i32, tg_info_shift, 0), ""), "");
/* Update the per-wave thread count. */
LLVMValueRef prev_threads = LLVMBuildMul(builder, get_wave_id_in_tg(ctx),
LLVMConstInt(ctx->ac.i32, ctx->ac.wave_size, 0), "");
*new_num_threads = LLVMBuildSub(builder, *new_num_threads, prev_threads, "");
*new_num_threads = ac_build_imax(&ctx->ac, *new_num_threads, ctx->ac.i32_0);
*new_num_threads =
ac_build_imin(&ctx->ac, *new_num_threads, LLVMConstInt(ctx->ac.i32, ctx->ac.wave_size, 0));
unsigned wave_info_mask = ~(u_bit_consecutive(0, wave_info_num_bits) << wave_info_shift);
*wave_info = LLVMBuildAnd(builder, *wave_info, LLVMConstInt(ctx->ac.i32, wave_info_mask, 0), "");
*wave_info = LLVMBuildOr(
builder, *wave_info,
LLVMBuildShl(builder, *new_num_threads, LLVMConstInt(ctx->ac.i32, wave_info_shift, 0), ""),
"");
}
/**
* Cull primitives for NGG VS or TES, then compact vertices, which happens
* before the VS or TES main function. Return values for the main function.
* Also return the position, which is passed to the shader as an input,
* so that we don't compute it twice.
*/
void gfx10_emit_ngg_culling_epilogue(struct ac_shader_abi *abi, unsigned max_outputs,
LLVMValueRef *addrs)
{
struct si_shader_context *ctx = si_shader_context_from_abi(abi);
struct si_shader *shader = ctx->shader;
struct si_shader_selector *sel = shader->selector;
struct si_shader_info *info = &sel->info;
LLVMBuilderRef builder = ctx->ac.builder;
unsigned max_waves = ctx->ac.wave_size == 64 ? 2 : 4;
LLVMValueRef ngg_scratch = ctx->gs_ngg_scratch;
if (ctx->ac.wave_size == 64) {
ngg_scratch = LLVMBuildPointerCast(builder, ngg_scratch,
LLVMPointerType(LLVMArrayType(ctx->ac.i64, max_waves),
AC_ADDR_SPACE_LDS), "");
}
assert(shader->key.opt.ngg_culling);
assert(shader->key.as_ngg);
assert(sel->type == PIPE_SHADER_VERTEX ||
(sel->type == PIPE_SHADER_TESS_EVAL && !shader->key.as_es));
LLVMValueRef position[4] = {};
for (unsigned i = 0; i < info->num_outputs; i++) {
switch (info->output_semantic_name[i]) {
case TGSI_SEMANTIC_POSITION:
for (unsigned j = 0; j < 4; j++) {
position[j] = LLVMBuildLoad(ctx->ac.builder, addrs[4 * i + j], "");
}
break;
}
}
assert(position[0]);
/* Store Position.XYZW into LDS. */
LLVMValueRef es_vtxptr = ngg_nogs_vertex_ptr(ctx, get_thread_id_in_tg(ctx));
for (unsigned chan = 0; chan < 4; chan++) {
LLVMBuildStore(
builder, ac_to_integer(&ctx->ac, position[chan]),
ac_build_gep0(&ctx->ac, es_vtxptr, LLVMConstInt(ctx->ac.i32, lds_pos_x + chan, 0)));
}
/* Store Position.XY / W into LDS. */
for (unsigned chan = 0; chan < 2; chan++) {
LLVMValueRef val = ac_build_fdiv(&ctx->ac, position[chan], position[3]);
LLVMBuildStore(
builder, ac_to_integer(&ctx->ac, val),
ac_build_gep0(&ctx->ac, es_vtxptr, LLVMConstInt(ctx->ac.i32, lds_pos_x_div_w + chan, 0)));
}
/* Store VertexID and InstanceID. ES threads will have to load them
* from LDS after vertex compaction and use them instead of their own
* system values.
*/
bool uses_instance_id = false;
bool uses_tes_prim_id = false;
LLVMValueRef packed_data = ctx->ac.i32_0;
if (ctx->type == PIPE_SHADER_VERTEX) {
uses_instance_id = sel->info.uses_instanceid ||
shader->key.part.vs.prolog.instance_divisor_is_one ||
shader->key.part.vs.prolog.instance_divisor_is_fetched;
LLVMBuildStore(
builder, ctx->abi.vertex_id,
ac_build_gep0(&ctx->ac, es_vtxptr, LLVMConstInt(ctx->ac.i32, lds_vertex_id, 0)));
if (uses_instance_id) {
LLVMBuildStore(
builder, ctx->abi.instance_id,
ac_build_gep0(&ctx->ac, es_vtxptr, LLVMConstInt(ctx->ac.i32, lds_instance_id, 0)));
}
} else {
uses_tes_prim_id = sel->info.uses_primid || shader->key.mono.u.vs_export_prim_id;
assert(ctx->type == PIPE_SHADER_TESS_EVAL);
LLVMBuildStore(builder, ac_to_integer(&ctx->ac, ac_get_arg(&ctx->ac, ctx->tes_u)),
ac_build_gep0(&ctx->ac, es_vtxptr, LLVMConstInt(ctx->ac.i32, lds_tes_u, 0)));
LLVMBuildStore(builder, ac_to_integer(&ctx->ac, ac_get_arg(&ctx->ac, ctx->tes_v)),
ac_build_gep0(&ctx->ac, es_vtxptr, LLVMConstInt(ctx->ac.i32, lds_tes_v, 0)));
packed_data = LLVMBuildShl(builder, ac_get_arg(&ctx->ac, ctx->tes_rel_patch_id),
LLVMConstInt(ctx->ac.i32, lds_byte2_tes_rel_patch_id * 8, 0), "");
if (uses_tes_prim_id) {
LLVMBuildStore(
builder, ac_get_arg(&ctx->ac, ctx->args.tes_patch_id),
ac_build_gep0(&ctx->ac, es_vtxptr, LLVMConstInt(ctx->ac.i32, lds_tes_patch_id, 0)));
}
}
/* Initialize the packed data. */
LLVMBuildStore(
builder, packed_data,
ac_build_gep0(&ctx->ac, es_vtxptr, LLVMConstInt(ctx->ac.i32, lds_packed_data, 0)));
ac_build_endif(&ctx->ac, ctx->merged_wrap_if_label);
LLVMValueRef tid = ac_get_thread_id(&ctx->ac);
/* Initialize all but the first element of ngg_scratch to 0, because we may have less
* than the maximum number of waves, but we always read all values. This is where
* the thread bitmasks of unculled threads will be stored.
*
* ngg_scratch layout: iN_wavemask esmask[0..n]
*/
ac_build_ifcc(&ctx->ac,
LLVMBuildICmp(builder, LLVMIntULT, get_thread_id_in_tg(ctx),
LLVMConstInt(ctx->ac.i32, max_waves - 1, 0), ""),
16101);
{
LLVMValueRef index = LLVMBuildAdd(builder, tid, ctx->ac.i32_1, "");
LLVMBuildStore(builder, LLVMConstInt(ctx->ac.iN_wavemask, 0, 0),
ac_build_gep0(&ctx->ac, ngg_scratch, index));
}
ac_build_endif(&ctx->ac, 16101);
ac_build_s_barrier(&ctx->ac);
/* The hardware requires that there are no holes between unculled vertices,
* which means we have to pack ES threads, i.e. reduce the ES thread count
* and move ES input VGPRs to lower threads. The upside is that varyings
* are only fetched and computed for unculled vertices.
*
* Vertex compaction in GS threads:
*
* Part 1: Compute the surviving vertex mask in GS threads:
* - Compute 4 32-bit surviving vertex masks in LDS. (max 4 waves)
* - In GS, notify ES threads whether the vertex survived.
* - Barrier
* - ES threads will create the mask and store it in LDS.
* - Barrier
* - Each GS thread loads the vertex masks from LDS.
*
* Part 2: Compact ES threads in GS threads:
* - Compute the prefix sum for all 3 vertices from the masks. These are the new
* thread IDs for each vertex within the primitive.
* - Write the value of the old thread ID into the LDS address of the new thread ID.
* The ES thread will load the old thread ID and use it to load the position, VertexID,
* and InstanceID.
* - Update vertex indices and null flag in the GS input VGPRs.
* - Barrier
*
* Part 3: Update inputs GPRs
* - For all waves, update per-wave thread counts in input SGPRs.
* - In ES threads, update the ES input VGPRs (VertexID, InstanceID, TES inputs).
*/
LLVMValueRef vtxindex[3];
if (shader->key.opt.ngg_culling & SI_NGG_CULL_GS_FAST_LAUNCH_ALL) {
/* For the GS fast launch, the VS prologs simply puts the Vertex IDs
* into these VGPRs.
*/
vtxindex[0] = ac_get_arg(&ctx->ac, ctx->gs_vtx01_offset);
vtxindex[1] = ac_get_arg(&ctx->ac, ctx->gs_vtx23_offset);
vtxindex[2] = ac_get_arg(&ctx->ac, ctx->gs_vtx45_offset);
} else {
vtxindex[0] = si_unpack_param(ctx, ctx->gs_vtx01_offset, 0, 16);
vtxindex[1] = si_unpack_param(ctx, ctx->gs_vtx01_offset, 16, 16);
vtxindex[2] = si_unpack_param(ctx, ctx->gs_vtx23_offset, 0, 16);
};
LLVMValueRef gs_vtxptr[] = {
ngg_nogs_vertex_ptr(ctx, vtxindex[0]),
ngg_nogs_vertex_ptr(ctx, vtxindex[1]),
ngg_nogs_vertex_ptr(ctx, vtxindex[2]),
};
es_vtxptr = ngg_nogs_vertex_ptr(ctx, get_thread_id_in_tg(ctx));
LLVMValueRef gs_accepted = ac_build_alloca(&ctx->ac, ctx->ac.i32, "");
/* Do culling in GS threads. */
ac_build_ifcc(&ctx->ac, si_is_gs_thread(ctx), 16002);
{
/* Load positions. */
LLVMValueRef pos[3][4] = {};
for (unsigned vtx = 0; vtx < 3; vtx++) {
for (unsigned chan = 0; chan < 4; chan++) {
unsigned index;
if (chan == 0 || chan == 1)
index = lds_pos_x_div_w + chan;
else if (chan == 3)
index = lds_pos_w;
else
continue;
LLVMValueRef addr =
ac_build_gep0(&ctx->ac, gs_vtxptr[vtx], LLVMConstInt(ctx->ac.i32, index, 0));
pos[vtx][chan] = LLVMBuildLoad(builder, addr, "");
pos[vtx][chan] = ac_to_float(&ctx->ac, pos[vtx][chan]);
}
}
/* Load the viewport state for small prim culling. */
LLVMValueRef vp = ac_build_load_invariant(
&ctx->ac, ac_get_arg(&ctx->ac, ctx->small_prim_cull_info), ctx->ac.i32_0);
vp = LLVMBuildBitCast(builder, vp, ctx->ac.v4f32, "");
LLVMValueRef vp_scale[2], vp_translate[2];
vp_scale[0] = ac_llvm_extract_elem(&ctx->ac, vp, 0);
vp_scale[1] = ac_llvm_extract_elem(&ctx->ac, vp, 1);
vp_translate[0] = ac_llvm_extract_elem(&ctx->ac, vp, 2);
vp_translate[1] = ac_llvm_extract_elem(&ctx->ac, vp, 3);
/* Get the small prim filter precision. */
LLVMValueRef small_prim_precision = si_unpack_param(ctx, ctx->vs_state_bits, 7, 4);
small_prim_precision =
LLVMBuildOr(builder, small_prim_precision, LLVMConstInt(ctx->ac.i32, 0x70, 0), "");
small_prim_precision =
LLVMBuildShl(builder, small_prim_precision, LLVMConstInt(ctx->ac.i32, 23, 0), "");
small_prim_precision = LLVMBuildBitCast(builder, small_prim_precision, ctx->ac.f32, "");
/* Execute culling code. */
struct ac_cull_options options = {};
options.cull_front = shader->key.opt.ngg_culling & SI_NGG_CULL_FRONT_FACE;
options.cull_back = shader->key.opt.ngg_culling & SI_NGG_CULL_BACK_FACE;
options.cull_view_xy = shader->key.opt.ngg_culling & SI_NGG_CULL_VIEW_SMALLPRIMS;
options.cull_small_prims = options.cull_view_xy;
options.cull_zero_area = options.cull_front || options.cull_back;
options.cull_w = true;
/* Tell ES threads whether their vertex survived. */
ac_build_ifcc(&ctx->ac,
ac_cull_triangle(&ctx->ac, pos, ctx->ac.i1true, vp_scale, vp_translate,
small_prim_precision, &options),
16003);
{
LLVMBuildStore(builder, ctx->ac.i32_1, gs_accepted);
for (unsigned vtx = 0; vtx < 3; vtx++) {
LLVMBuildStore(builder, ctx->ac.i8_1,
si_build_gep_i8(ctx, gs_vtxptr[vtx], lds_byte0_accept_flag));
}
}
ac_build_endif(&ctx->ac, 16003);
}
ac_build_endif(&ctx->ac, 16002);
ac_build_s_barrier(&ctx->ac);
gs_accepted = LLVMBuildLoad(builder, gs_accepted, "");
LLVMValueRef es_accepted = ac_build_alloca(&ctx->ac, ctx->ac.i1, "");
/* Convert the per-vertex flag to a thread bitmask in ES threads and store it in LDS. */
ac_build_ifcc(&ctx->ac, si_is_es_thread(ctx), 16007);
{
LLVMValueRef es_accepted_flag =
LLVMBuildLoad(builder, si_build_gep_i8(ctx, es_vtxptr, lds_byte0_accept_flag), "");
LLVMValueRef es_accepted_bool =
LLVMBuildICmp(builder, LLVMIntNE, es_accepted_flag, ctx->ac.i8_0, "");
LLVMValueRef es_mask = ac_get_i1_sgpr_mask(&ctx->ac, es_accepted_bool);
LLVMBuildStore(builder, es_accepted_bool, es_accepted);
ac_build_ifcc(&ctx->ac, LLVMBuildICmp(builder, LLVMIntEQ, tid, ctx->ac.i32_0, ""), 16008);
{
LLVMBuildStore(builder, es_mask,
ac_build_gep0(&ctx->ac, ngg_scratch, get_wave_id_in_tg(ctx)));
}
ac_build_endif(&ctx->ac, 16008);
}
ac_build_endif(&ctx->ac, 16007);
ac_build_s_barrier(&ctx->ac);
/* Load the vertex masks and compute the new ES thread count. */
LLVMValueRef es_mask[2], new_num_es_threads, kill_wave;
load_bitmasks_2x64(ctx, ngg_scratch, 0, es_mask, &new_num_es_threads);
new_num_es_threads = ac_build_readlane_no_opt_barrier(&ctx->ac, new_num_es_threads, NULL);
/* ES threads compute their prefix sum, which is the new ES thread ID.
* Then they write the value of the old thread ID into the LDS address
* of the new thread ID. It will be used it to load input VGPRs from
* the old thread's LDS location.
*/
ac_build_ifcc(&ctx->ac, LLVMBuildLoad(builder, es_accepted, ""), 16009);
{
LLVMValueRef old_id = get_thread_id_in_tg(ctx);
LLVMValueRef new_id = ac_prefix_bitcount_2x64(&ctx->ac, es_mask, old_id);
LLVMBuildStore(
builder, LLVMBuildTrunc(builder, old_id, ctx->ac.i8, ""),
si_build_gep_i8(ctx, ngg_nogs_vertex_ptr(ctx, new_id), lds_byte0_old_thread_id));
LLVMBuildStore(builder, LLVMBuildTrunc(builder, new_id, ctx->ac.i8, ""),
si_build_gep_i8(ctx, es_vtxptr, lds_byte1_new_thread_id));
}
ac_build_endif(&ctx->ac, 16009);
/* Kill waves that have inactive threads. */
kill_wave = LLVMBuildICmp(builder, LLVMIntULE,
ac_build_imax(&ctx->ac, new_num_es_threads, ngg_get_prim_cnt(ctx)),
LLVMBuildMul(builder, get_wave_id_in_tg(ctx),
LLVMConstInt(ctx->ac.i32, ctx->ac.wave_size, 0), ""),
"");
ac_build_ifcc(&ctx->ac, kill_wave, 19202);
{
/* If we are killing wave 0, send that there are no primitives
* in this threadgroup.
*/
ac_build_sendmsg_gs_alloc_req(&ctx->ac, get_wave_id_in_tg(ctx), ctx->ac.i32_0, ctx->ac.i32_0);
ac_build_s_endpgm(&ctx->ac);
}
ac_build_endif(&ctx->ac, 19202);
ac_build_s_barrier(&ctx->ac);
/* Send the final vertex and primitive counts. */
ac_build_sendmsg_gs_alloc_req(&ctx->ac, get_wave_id_in_tg(ctx), new_num_es_threads,
ngg_get_prim_cnt(ctx));
/* Update thread counts in SGPRs. */
LLVMValueRef new_gs_tg_info = ac_get_arg(&ctx->ac, ctx->gs_tg_info);
LLVMValueRef new_merged_wave_info = ac_get_arg(&ctx->ac, ctx->merged_wave_info);
/* This also converts the thread count from the total count to the per-wave count. */
update_thread_counts(ctx, &new_num_es_threads, &new_gs_tg_info, 9, 12, &new_merged_wave_info, 8,
0);
/* Update vertex indices in VGPR0 (same format as NGG passthrough). */
LLVMValueRef new_vgpr0 = ac_build_alloca_undef(&ctx->ac, ctx->ac.i32, "");
/* Set the null flag at the beginning (culled), and then
* overwrite it for accepted primitives.
*/
LLVMBuildStore(builder, LLVMConstInt(ctx->ac.i32, 1u << 31, 0), new_vgpr0);
/* Get vertex indices after vertex compaction. */
ac_build_ifcc(&ctx->ac, LLVMBuildTrunc(builder, gs_accepted, ctx->ac.i1, ""), 16011);
{
struct ac_ngg_prim prim = {};
prim.num_vertices = 3;
prim.isnull = ctx->ac.i1false;
for (unsigned vtx = 0; vtx < 3; vtx++) {
prim.index[vtx] = LLVMBuildLoad(
builder, si_build_gep_i8(ctx, gs_vtxptr[vtx], lds_byte1_new_thread_id), "");
prim.index[vtx] = LLVMBuildZExt(builder, prim.index[vtx], ctx->ac.i32, "");
prim.edgeflag[vtx] = ngg_get_initial_edgeflag(ctx, vtx);
}
/* Set the new GS input VGPR. */
LLVMBuildStore(builder, ac_pack_prim_export(&ctx->ac, &prim), new_vgpr0);
}
ac_build_endif(&ctx->ac, 16011);
if (gfx10_ngg_export_prim_early(shader))
gfx10_ngg_build_export_prim(ctx, NULL, LLVMBuildLoad(builder, new_vgpr0, ""));
/* Set the new ES input VGPRs. */
LLVMValueRef es_data[4];
LLVMValueRef old_thread_id = ac_build_alloca_undef(&ctx->ac, ctx->ac.i32, "");
for (unsigned i = 0; i < 4; i++)
es_data[i] = ac_build_alloca_undef(&ctx->ac, ctx->ac.i32, "");
ac_build_ifcc(&ctx->ac, LLVMBuildICmp(ctx->ac.builder, LLVMIntULT, tid, new_num_es_threads, ""),
16012);
{
LLVMValueRef old_id, old_es_vtxptr, tmp;
/* Load ES input VGPRs from the ES thread before compaction. */
old_id = LLVMBuildLoad(builder, si_build_gep_i8(ctx, es_vtxptr, lds_byte0_old_thread_id), "");
old_id = LLVMBuildZExt(builder, old_id, ctx->ac.i32, "");
LLVMBuildStore(builder, old_id, old_thread_id);
old_es_vtxptr = ngg_nogs_vertex_ptr(ctx, old_id);
for (unsigned i = 0; i < 2; i++) {
tmp = LLVMBuildLoad(
builder,
ac_build_gep0(&ctx->ac, old_es_vtxptr, LLVMConstInt(ctx->ac.i32, lds_vertex_id + i, 0)),
"");
LLVMBuildStore(builder, tmp, es_data[i]);
}
if (ctx->type == PIPE_SHADER_TESS_EVAL) {
tmp = LLVMBuildLoad(builder,
si_build_gep_i8(ctx, old_es_vtxptr, lds_byte2_tes_rel_patch_id), "");
tmp = LLVMBuildZExt(builder, tmp, ctx->ac.i32, "");
LLVMBuildStore(builder, tmp, es_data[2]);
if (uses_tes_prim_id) {
tmp = LLVMBuildLoad(builder,
ac_build_gep0(&ctx->ac, old_es_vtxptr,
LLVMConstInt(ctx->ac.i32, lds_tes_patch_id, 0)),
"");
LLVMBuildStore(builder, tmp, es_data[3]);
}
}
}
ac_build_endif(&ctx->ac, 16012);
/* Return values for the main function. */
LLVMValueRef ret = ctx->return_value;
LLVMValueRef val;
ret = LLVMBuildInsertValue(ctx->ac.builder, ret, new_gs_tg_info, 2, "");
ret = LLVMBuildInsertValue(ctx->ac.builder, ret, new_merged_wave_info, 3, "");
if (ctx->type == PIPE_SHADER_TESS_EVAL)
ret = si_insert_input_ret(ctx, ret, ctx->tcs_offchip_offset, 4);
ret = si_insert_input_ptr(ctx, ret, ctx->rw_buffers, 8 + SI_SGPR_RW_BUFFERS);
ret = si_insert_input_ptr(ctx, ret, ctx->bindless_samplers_and_images,
8 + SI_SGPR_BINDLESS_SAMPLERS_AND_IMAGES);
ret = si_insert_input_ptr(ctx, ret, ctx->const_and_shader_buffers,
8 + SI_SGPR_CONST_AND_SHADER_BUFFERS);
ret = si_insert_input_ptr(ctx, ret, ctx->samplers_and_images, 8 + SI_SGPR_SAMPLERS_AND_IMAGES);
ret = si_insert_input_ptr(ctx, ret, ctx->vs_state_bits, 8 + SI_SGPR_VS_STATE_BITS);
if (ctx->type == PIPE_SHADER_VERTEX) {
ret = si_insert_input_ptr(ctx, ret, ctx->args.base_vertex, 8 + SI_SGPR_BASE_VERTEX);
ret = si_insert_input_ptr(ctx, ret, ctx->args.start_instance, 8 + SI_SGPR_START_INSTANCE);
ret = si_insert_input_ptr(ctx, ret, ctx->args.draw_id, 8 + SI_SGPR_DRAWID);
ret = si_insert_input_ptr(ctx, ret, ctx->vertex_buffers, 8 + SI_VS_NUM_USER_SGPR);
for (unsigned i = 0; i < shader->selector->num_vbos_in_user_sgprs; i++) {
ret = si_insert_input_v4i32(ctx, ret, ctx->vb_descriptors[i],
8 + SI_SGPR_VS_VB_DESCRIPTOR_FIRST + i * 4);
}
} else {
assert(ctx->type == PIPE_SHADER_TESS_EVAL);
ret = si_insert_input_ptr(ctx, ret, ctx->tcs_offchip_layout, 8 + SI_SGPR_TES_OFFCHIP_LAYOUT);
ret = si_insert_input_ptr(ctx, ret, ctx->tes_offchip_addr, 8 + SI_SGPR_TES_OFFCHIP_ADDR);
}
unsigned vgpr;
if (ctx->type == PIPE_SHADER_VERTEX) {
if (shader->selector->num_vbos_in_user_sgprs) {
vgpr = 8 + SI_SGPR_VS_VB_DESCRIPTOR_FIRST + shader->selector->num_vbos_in_user_sgprs * 4;
} else {
vgpr = 8 + GFX9_VSGS_NUM_USER_SGPR + 1;
}
} else {
vgpr = 8 + GFX9_TESGS_NUM_USER_SGPR;
}
val = LLVMBuildLoad(builder, new_vgpr0, "");
ret = LLVMBuildInsertValue(builder, ret, ac_to_float(&ctx->ac, val), vgpr++, "");
vgpr++; /* gs_vtx23_offset */
ret = si_insert_input_ret_float(ctx, ret, ctx->args.gs_prim_id, vgpr++);
ret = si_insert_input_ret_float(ctx, ret, ctx->args.gs_invocation_id, vgpr++);
vgpr++; /* gs_vtx45_offset */
if (ctx->type == PIPE_SHADER_VERTEX) {
val = LLVMBuildLoad(builder, es_data[0], "");
ret = LLVMBuildInsertValue(builder, ret, ac_to_float(&ctx->ac, val), vgpr++,
""); /* VGPR5 - VertexID */
vgpr += 2;
if (uses_instance_id) {
val = LLVMBuildLoad(builder, es_data[1], "");
ret = LLVMBuildInsertValue(builder, ret, ac_to_float(&ctx->ac, val), vgpr++,
""); /* VGPR8 - InstanceID */
} else {
vgpr++;
}
} else {
assert(ctx->type == PIPE_SHADER_TESS_EVAL);
unsigned num_vgprs = uses_tes_prim_id ? 4 : 3;
for (unsigned i = 0; i < num_vgprs; i++) {
val = LLVMBuildLoad(builder, es_data[i], "");
ret = LLVMBuildInsertValue(builder, ret, ac_to_float(&ctx->ac, val), vgpr++, "");
}
if (num_vgprs == 3)
vgpr++;
}
/* Return the old thread ID. */
val = LLVMBuildLoad(builder, old_thread_id, "");
ret = LLVMBuildInsertValue(builder, ret, ac_to_float(&ctx->ac, val), vgpr++, "");
/* These two also use LDS. */
if (sel->info.writes_edgeflag ||
(ctx->type == PIPE_SHADER_VERTEX && shader->key.mono.u.vs_export_prim_id))
ac_build_s_barrier(&ctx->ac);
ctx->return_value = ret;
}
/**
* Emit the epilogue of an API VS or TES shader compiled as ESGS shader.
*/
void gfx10_emit_ngg_epilogue(struct ac_shader_abi *abi, unsigned max_outputs, LLVMValueRef *addrs)
{
struct si_shader_context *ctx = si_shader_context_from_abi(abi);
struct si_shader_selector *sel = ctx->shader->selector;
struct si_shader_info *info = &sel->info;
struct si_shader_output_values outputs[PIPE_MAX_SHADER_OUTPUTS];
LLVMBuilderRef builder = ctx->ac.builder;
LLVMValueRef tmp, tmp2;
assert(!ctx->shader->is_gs_copy_shader);
assert(info->num_outputs <= max_outputs);
LLVMValueRef vertex_ptr = NULL;
if (sel->so.num_outputs || sel->info.writes_edgeflag)
vertex_ptr = ngg_nogs_vertex_ptr(ctx, get_thread_id_in_tg(ctx));
for (unsigned i = 0; i < info->num_outputs; i++) {
outputs[i].semantic_name = info->output_semantic_name[i];
outputs[i].semantic_index = info->output_semantic_index[i];
for (unsigned j = 0; j < 4; j++) {
outputs[i].vertex_stream[j] = (info->output_streams[i] >> (2 * j)) & 3;
/* TODO: we may store more outputs than streamout needs,
* but streamout performance isn't that important.
*/
if (sel->so.num_outputs) {
tmp = ac_build_gep0(&ctx->ac, vertex_ptr, LLVMConstInt(ctx->ac.i32, 4 * i + j, false));
tmp2 = LLVMBuildLoad(builder, addrs[4 * i + j], "");
tmp2 = ac_to_integer(&ctx->ac, tmp2);
LLVMBuildStore(builder, tmp2, tmp);
}
}
/* Store the edgeflag at the end (if streamout is enabled) */
if (info->output_semantic_name[i] == TGSI_SEMANTIC_EDGEFLAG && sel->info.writes_edgeflag) {
LLVMValueRef edgeflag = LLVMBuildLoad(builder, addrs[4 * i], "");
/* The output is a float, but the hw expects a 1-bit integer. */
edgeflag = LLVMBuildFPToUI(ctx->ac.builder, edgeflag, ctx->ac.i32, "");
edgeflag = ac_build_umin(&ctx->ac, edgeflag, ctx->ac.i32_1);
tmp = LLVMConstInt(ctx->ac.i32, ngg_nogs_vertex_size(ctx->shader) - 1, 0);
tmp = ac_build_gep0(&ctx->ac, vertex_ptr, tmp);
LLVMBuildStore(builder, edgeflag, tmp);
}
}
bool unterminated_es_if_block =
!sel->so.num_outputs && !sel->info.writes_edgeflag &&
!ctx->screen->use_ngg_streamout && /* no query buffer */
(ctx->type != PIPE_SHADER_VERTEX || !ctx->shader->key.mono.u.vs_export_prim_id);
if (!unterminated_es_if_block)
ac_build_endif(&ctx->ac, ctx->merged_wrap_if_label);
LLVMValueRef is_gs_thread = si_is_gs_thread(ctx);
LLVMValueRef is_es_thread = si_is_es_thread(ctx);
LLVMValueRef vtxindex[3];
if (ctx->shader->key.opt.ngg_culling) {
vtxindex[0] = si_unpack_param(ctx, ctx->gs_vtx01_offset, 0, 9);
vtxindex[1] = si_unpack_param(ctx, ctx->gs_vtx01_offset, 10, 9);
vtxindex[2] = si_unpack_param(ctx, ctx->gs_vtx01_offset, 20, 9);
} else {
vtxindex[0] = si_unpack_param(ctx, ctx->gs_vtx01_offset, 0, 16);
vtxindex[1] = si_unpack_param(ctx, ctx->gs_vtx01_offset, 16, 16);
vtxindex[2] = si_unpack_param(ctx, ctx->gs_vtx23_offset, 0, 16);
}
/* Determine the number of vertices per primitive. */
unsigned num_vertices;
LLVMValueRef num_vertices_val = ngg_get_vertices_per_prim(ctx, &num_vertices);
/* Streamout */
LLVMValueRef emitted_prims = NULL;
if (sel->so.num_outputs) {
assert(!unterminated_es_if_block);
struct ngg_streamout nggso = {};
nggso.num_vertices = num_vertices_val;
nggso.prim_enable[0] = is_gs_thread;
for (unsigned i = 0; i < num_vertices; ++i)
nggso.vertices[i] = ngg_nogs_vertex_ptr(ctx, vtxindex[i]);
build_streamout(ctx, &nggso);
emitted_prims = nggso.emit[0];
}
LLVMValueRef user_edgeflags[3] = {};
if (sel->info.writes_edgeflag) {
assert(!unterminated_es_if_block);
/* Streamout already inserted the barrier, so don't insert it again. */
if (!sel->so.num_outputs)
ac_build_s_barrier(&ctx->ac);
ac_build_ifcc(&ctx->ac, is_gs_thread, 5400);
/* Load edge flags from ES threads and store them into VGPRs in GS threads. */
for (unsigned i = 0; i < num_vertices; i++) {
tmp = ngg_nogs_vertex_ptr(ctx, vtxindex[i]);
tmp2 = LLVMConstInt(ctx->ac.i32, ngg_nogs_vertex_size(ctx->shader) - 1, 0);
tmp = ac_build_gep0(&ctx->ac, tmp, tmp2);
tmp = LLVMBuildLoad(builder, tmp, "");
tmp = LLVMBuildTrunc(builder, tmp, ctx->ac.i1, "");
user_edgeflags[i] = ac_build_alloca_undef(&ctx->ac, ctx->ac.i1, "");
LLVMBuildStore(builder, tmp, user_edgeflags[i]);
}
ac_build_endif(&ctx->ac, 5400);
}
/* Copy Primitive IDs from GS threads to the LDS address corresponding
* to the ES thread of the provoking vertex.
*/
if (ctx->type == PIPE_SHADER_VERTEX && ctx->shader->key.mono.u.vs_export_prim_id) {
assert(!unterminated_es_if_block);
/* Streamout and edge flags use LDS. Make it idle, so that we can reuse it. */
if (sel->so.num_outputs || sel->info.writes_edgeflag)
ac_build_s_barrier(&ctx->ac);
ac_build_ifcc(&ctx->ac, is_gs_thread, 5400);
/* Extract the PROVOKING_VTX_INDEX field. */
LLVMValueRef provoking_vtx_in_prim = si_unpack_param(ctx, ctx->vs_state_bits, 4, 2);
/* provoking_vtx_index = vtxindex[provoking_vtx_in_prim]; */
LLVMValueRef indices = ac_build_gather_values(&ctx->ac, vtxindex, 3);
LLVMValueRef provoking_vtx_index =
LLVMBuildExtractElement(builder, indices, provoking_vtx_in_prim, "");
LLVMValueRef vertex_ptr = ngg_nogs_vertex_ptr(ctx, provoking_vtx_index);
LLVMBuildStore(builder, ac_get_arg(&ctx->ac, ctx->args.gs_prim_id),
ac_build_gep0(&ctx->ac, vertex_ptr, ctx->ac.i32_0));
ac_build_endif(&ctx->ac, 5400);
}
/* Update query buffer */
if (ctx->screen->use_ngg_streamout && !info->properties[TGSI_PROPERTY_VS_BLIT_SGPRS_AMD]) {
assert(!unterminated_es_if_block);
tmp = si_unpack_param(ctx, ctx->vs_state_bits, 6, 1);
tmp = LLVMBuildTrunc(builder, tmp, ctx->ac.i1, "");
ac_build_ifcc(&ctx->ac, tmp, 5029); /* if (STREAMOUT_QUERY_ENABLED) */
tmp = LLVMBuildICmp(builder, LLVMIntEQ, get_wave_id_in_tg(ctx), ctx->ac.i32_0, "");
ac_build_ifcc(&ctx->ac, tmp, 5030);
tmp = LLVMBuildICmp(builder, LLVMIntULE, ac_get_thread_id(&ctx->ac),
sel->so.num_outputs ? ctx->ac.i32_1 : ctx->ac.i32_0, "");
ac_build_ifcc(&ctx->ac, tmp, 5031);
{
LLVMValueRef args[] = {
ngg_get_prim_cnt(ctx),
ngg_get_query_buf(ctx),
LLVMConstInt(ctx->ac.i32, 16, false), /* offset of stream[0].generated_primitives */
ctx->ac.i32_0, /* soffset */
ctx->ac.i32_0, /* cachepolicy */
};
if (sel->so.num_outputs) {
args[0] = ac_build_writelane(&ctx->ac, args[0], emitted_prims, ctx->ac.i32_1);
args[2] = ac_build_writelane(&ctx->ac, args[2], LLVMConstInt(ctx->ac.i32, 24, false),
ctx->ac.i32_1);
}
/* TODO: should this be 64-bit atomics? */
ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.raw.buffer.atomic.add.i32", ctx->ac.i32, args, 5,
0);
}
ac_build_endif(&ctx->ac, 5031);
ac_build_endif(&ctx->ac, 5030);
ac_build_endif(&ctx->ac, 5029);
}
/* Build the primitive export. */
if (!gfx10_ngg_export_prim_early(ctx->shader)) {
assert(!unterminated_es_if_block);
gfx10_ngg_build_export_prim(ctx, user_edgeflags, NULL);
}
/* Export per-vertex data (positions and parameters). */
if (!unterminated_es_if_block)
ac_build_ifcc(&ctx->ac, is_es_thread, 6002);
{
unsigned i;
/* Unconditionally (re-)load the values for proper SSA form. */
for (i = 0; i < info->num_outputs; i++) {
/* If the NGG cull shader part computed the position, don't
* use the position from the current shader part. Instead,
* load it from LDS.
*/
if (info->output_semantic_name[i] == TGSI_SEMANTIC_POSITION &&
ctx->shader->key.opt.ngg_culling) {
vertex_ptr = ngg_nogs_vertex_ptr(ctx, ac_get_arg(&ctx->ac, ctx->ngg_old_thread_id));
for (unsigned j = 0; j < 4; j++) {
tmp = LLVMConstInt(ctx->ac.i32, lds_pos_x + j, 0);
tmp = ac_build_gep0(&ctx->ac, vertex_ptr, tmp);
tmp = LLVMBuildLoad(builder, tmp, "");
outputs[i].values[j] = ac_to_float(&ctx->ac, tmp);
}
} else {
for (unsigned j = 0; j < 4; j++) {
outputs[i].values[j] = LLVMBuildLoad(builder, addrs[4 * i + j], "");
}
}
}
if (ctx->shader->key.mono.u.vs_export_prim_id) {
outputs[i].semantic_name = TGSI_SEMANTIC_PRIMID;
outputs[i].semantic_index = 0;
if (ctx->type == PIPE_SHADER_VERTEX) {
/* Wait for GS stores to finish. */
ac_build_s_barrier(&ctx->ac);
tmp = ngg_nogs_vertex_ptr(ctx, get_thread_id_in_tg(ctx));
tmp = ac_build_gep0(&ctx->ac, tmp, ctx->ac.i32_0);
outputs[i].values[0] = LLVMBuildLoad(builder, tmp, "");
} else {
assert(ctx->type == PIPE_SHADER_TESS_EVAL);
outputs[i].values[0] = si_get_primitive_id(ctx, 0);
}
outputs[i].values[0] = ac_to_float(&ctx->ac, outputs[i].values[0]);
for (unsigned j = 1; j < 4; j++)
outputs[i].values[j] = LLVMGetUndef(ctx->ac.f32);
memset(outputs[i].vertex_stream, 0, sizeof(outputs[i].vertex_stream));
i++;
}
si_llvm_build_vs_exports(ctx, outputs, i);
}
ac_build_endif(&ctx->ac, 6002);
}
static LLVMValueRef ngg_gs_get_vertex_storage(struct si_shader_context *ctx)
{
const struct si_shader_selector *sel = ctx->shader->selector;
const struct si_shader_info *info = &sel->info;
LLVMTypeRef elements[2] = {
LLVMArrayType(ctx->ac.i32, 4 * info->num_outputs),
LLVMArrayType(ctx->ac.i8, 4),
};
LLVMTypeRef type = LLVMStructTypeInContext(ctx->ac.context, elements, 2, false);
type = LLVMPointerType(LLVMArrayType(type, 0), AC_ADDR_SPACE_LDS);
return LLVMBuildBitCast(ctx->ac.builder, ctx->gs_ngg_emit, type, "");
}
/**
* Return a pointer to the LDS storage reserved for the N'th vertex, where N
* is in emit order; that is:
* - during the epilogue, N is the threadidx (relative to the entire threadgroup)
* - during vertex emit, i.e. while the API GS shader invocation is running,
* N = threadidx * gs_max_out_vertices + emitidx
*
* Goals of the LDS memory layout:
* 1. Eliminate bank conflicts on write for geometry shaders that have all emits
* in uniform control flow
* 2. Eliminate bank conflicts on read for export if, additionally, there is no
* culling
* 3. Agnostic to the number of waves (since we don't know it before compiling)
* 4. Allow coalescing of LDS instructions (ds_write_b128 etc.)
* 5. Avoid wasting memory.
*
* We use an AoS layout due to point 4 (this also helps point 3). In an AoS
* layout, elimination of bank conflicts requires that each vertex occupy an
* odd number of dwords. We use the additional dword to store the output stream
* index as well as a flag to indicate whether this vertex ends a primitive
* for rasterization.
*
* Swizzling is required to satisfy points 1 and 2 simultaneously.
*
* Vertices are stored in export order (gsthread * gs_max_out_vertices + emitidx).
* Indices are swizzled in groups of 32, which ensures point 1 without
* disturbing point 2.
*
* \return an LDS pointer to type {[N x i32], [4 x i8]}
*/
static LLVMValueRef ngg_gs_vertex_ptr(struct si_shader_context *ctx, LLVMValueRef vertexidx)
{
struct si_shader_selector *sel = ctx->shader->selector;
LLVMBuilderRef builder = ctx->ac.builder;
LLVMValueRef storage = ngg_gs_get_vertex_storage(ctx);
/* gs_max_out_vertices = 2^(write_stride_2exp) * some odd number */
unsigned write_stride_2exp = ffs(sel->gs_max_out_vertices) - 1;
if (write_stride_2exp) {
LLVMValueRef row = LLVMBuildLShr(builder, vertexidx, LLVMConstInt(ctx->ac.i32, 5, false), "");
LLVMValueRef swizzle = LLVMBuildAnd(
builder, row, LLVMConstInt(ctx->ac.i32, (1u << write_stride_2exp) - 1, false), "");
vertexidx = LLVMBuildXor(builder, vertexidx, swizzle, "");
}
return ac_build_gep0(&ctx->ac, storage, vertexidx);
}
static LLVMValueRef ngg_gs_emit_vertex_ptr(struct si_shader_context *ctx, LLVMValueRef gsthread,
LLVMValueRef emitidx)
{
struct si_shader_selector *sel = ctx->shader->selector;
LLVMBuilderRef builder = ctx->ac.builder;
LLVMValueRef tmp;
tmp = LLVMConstInt(ctx->ac.i32, sel->gs_max_out_vertices, false);
tmp = LLVMBuildMul(builder, tmp, gsthread, "");
const LLVMValueRef vertexidx = LLVMBuildAdd(builder, tmp, emitidx, "");
return ngg_gs_vertex_ptr(ctx, vertexidx);
}
static LLVMValueRef ngg_gs_get_emit_output_ptr(struct si_shader_context *ctx,
LLVMValueRef vertexptr, unsigned out_idx)
{
LLVMValueRef gep_idx[3] = {
ctx->ac.i32_0, /* implied C-style array */
ctx->ac.i32_0, /* first struct entry */
LLVMConstInt(ctx->ac.i32, out_idx, false),
};
return LLVMBuildGEP(ctx->ac.builder, vertexptr, gep_idx, 3, "");
}
static LLVMValueRef ngg_gs_get_emit_primflag_ptr(struct si_shader_context *ctx,
LLVMValueRef vertexptr, unsigned stream)
{
LLVMValueRef gep_idx[3] = {
ctx->ac.i32_0, /* implied C-style array */
ctx->ac.i32_1, /* second struct entry */
LLVMConstInt(ctx->ac.i32, stream, false),
};
return LLVMBuildGEP(ctx->ac.builder, vertexptr, gep_idx, 3, "");
}
void gfx10_ngg_gs_emit_vertex(struct si_shader_context *ctx, unsigned stream, LLVMValueRef *addrs)
{
const struct si_shader_selector *sel = ctx->shader->selector;
const struct si_shader_info *info = &sel->info;
LLVMBuilderRef builder = ctx->ac.builder;
LLVMValueRef tmp;
const LLVMValueRef vertexidx = LLVMBuildLoad(builder, ctx->gs_next_vertex[stream], "");
/* If this thread has already emitted the declared maximum number of
* vertices, skip the write: excessive vertex emissions are not
* supposed to have any effect.
*/
const LLVMValueRef can_emit =
LLVMBuildICmp(builder, LLVMIntULT, vertexidx,
LLVMConstInt(ctx->ac.i32, sel->gs_max_out_vertices, false), "");
tmp = LLVMBuildAdd(builder, vertexidx, ctx->ac.i32_1, "");
tmp = LLVMBuildSelect(builder, can_emit, tmp, vertexidx, "");
LLVMBuildStore(builder, tmp, ctx->gs_next_vertex[stream]);
ac_build_ifcc(&ctx->ac, can_emit, 9001);
const LLVMValueRef vertexptr = ngg_gs_emit_vertex_ptr(ctx, get_thread_id_in_tg(ctx), vertexidx);
unsigned out_idx = 0;
for (unsigned i = 0; i < info->num_outputs; i++) {
for (unsigned chan = 0; chan < 4; chan++, out_idx++) {
if (!(info->output_usagemask[i] & (1 << chan)) ||
((info->output_streams[i] >> (2 * chan)) & 3) != stream)
continue;
LLVMValueRef out_val = LLVMBuildLoad(builder, addrs[4 * i + chan], "");
out_val = ac_to_integer(&ctx->ac, out_val);
LLVMBuildStore(builder, out_val, ngg_gs_get_emit_output_ptr(ctx, vertexptr, out_idx));
}
}
assert(out_idx * 4 == sel->gsvs_vertex_size);
/* Determine and store whether this vertex completed a primitive. */
const LLVMValueRef curverts = LLVMBuildLoad(builder, ctx->gs_curprim_verts[stream], "");
tmp = LLVMConstInt(ctx->ac.i32, u_vertices_per_prim(sel->gs_output_prim) - 1, false);
const LLVMValueRef iscompleteprim = LLVMBuildICmp(builder, LLVMIntUGE, curverts, tmp, "");
/* Since the geometry shader emits triangle strips, we need to
* track which primitive is odd and swap vertex indices to get
* the correct vertex order.
*/
LLVMValueRef is_odd = ctx->ac.i1false;
if (stream == 0 && u_vertices_per_prim(sel->gs_output_prim) == 3) {
tmp = LLVMBuildAnd(builder, curverts, ctx->ac.i32_1, "");
is_odd = LLVMBuildICmp(builder, LLVMIntEQ, tmp, ctx->ac.i32_1, "");
}
tmp = LLVMBuildAdd(builder, curverts, ctx->ac.i32_1, "");
LLVMBuildStore(builder, tmp, ctx->gs_curprim_verts[stream]);
/* The per-vertex primitive flag encoding:
* bit 0: whether this vertex finishes a primitive
* bit 1: whether the primitive is odd (if we are emitting triangle strips)
*/
tmp = LLVMBuildZExt(builder, iscompleteprim, ctx->ac.i8, "");
tmp = LLVMBuildOr(
builder, tmp,
LLVMBuildShl(builder, LLVMBuildZExt(builder, is_odd, ctx->ac.i8, ""), ctx->ac.i8_1, ""), "");
LLVMBuildStore(builder, tmp, ngg_gs_get_emit_primflag_ptr(ctx, vertexptr, stream));
tmp = LLVMBuildLoad(builder, ctx->gs_generated_prims[stream], "");
tmp = LLVMBuildAdd(builder, tmp, LLVMBuildZExt(builder, iscompleteprim, ctx->ac.i32, ""), "");
LLVMBuildStore(builder, tmp, ctx->gs_generated_prims[stream]);
ac_build_endif(&ctx->ac, 9001);
}
void gfx10_ngg_gs_emit_prologue(struct si_shader_context *ctx)
{
/* Zero out the part of LDS scratch that is used to accumulate the
* per-stream generated primitive count.
*/
LLVMBuilderRef builder = ctx->ac.builder;
LLVMValueRef scratchptr = ctx->gs_ngg_scratch;
LLVMValueRef tid = get_thread_id_in_tg(ctx);
LLVMValueRef tmp;
tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, LLVMConstInt(ctx->ac.i32, 4, false), "");
ac_build_ifcc(&ctx->ac, tmp, 5090);
{
LLVMValueRef ptr = ac_build_gep0(&ctx->ac, scratchptr, tid);
LLVMBuildStore(builder, ctx->ac.i32_0, ptr);
}
ac_build_endif(&ctx->ac, 5090);
ac_build_s_barrier(&ctx->ac);
}
void gfx10_ngg_gs_emit_epilogue(struct si_shader_context *ctx)
{
const struct si_shader_selector *sel = ctx->shader->selector;
const struct si_shader_info *info = &sel->info;
const unsigned verts_per_prim = u_vertices_per_prim(sel->gs_output_prim);
LLVMBuilderRef builder = ctx->ac.builder;
LLVMValueRef i8_0 = LLVMConstInt(ctx->ac.i8, 0, false);
LLVMValueRef tmp, tmp2;
/* Zero out remaining (non-emitted) primitive flags.
*
* Note: Alternatively, we could pass the relevant gs_next_vertex to
* the emit threads via LDS. This is likely worse in the expected
* typical case where each GS thread emits the full set of
* vertices.
*/
for (unsigned stream = 0; stream < 4; ++stream) {
if (!info->num_stream_output_components[stream])
continue;
const LLVMValueRef gsthread = get_thread_id_in_tg(ctx);
ac_build_bgnloop(&ctx->ac, 5100);
const LLVMValueRef vertexidx = LLVMBuildLoad(builder, ctx->gs_next_vertex[stream], "");
tmp = LLVMBuildICmp(builder, LLVMIntUGE, vertexidx,
LLVMConstInt(ctx->ac.i32, sel->gs_max_out_vertices, false), "");
ac_build_ifcc(&ctx->ac, tmp, 5101);
ac_build_break(&ctx->ac);
ac_build_endif(&ctx->ac, 5101);
tmp = LLVMBuildAdd(builder, vertexidx, ctx->ac.i32_1, "");
LLVMBuildStore(builder, tmp, ctx->gs_next_vertex[stream]);
tmp = ngg_gs_emit_vertex_ptr(ctx, gsthread, vertexidx);
LLVMBuildStore(builder, i8_0, ngg_gs_get_emit_primflag_ptr(ctx, tmp, stream));
ac_build_endloop(&ctx->ac, 5100);
}
/* Accumulate generated primitives counts across the entire threadgroup. */
for (unsigned stream = 0; stream < 4; ++stream) {
if (!info->num_stream_output_components[stream])
continue;
LLVMValueRef numprims = LLVMBuildLoad(builder, ctx->gs_generated_prims[stream], "");
numprims = ac_build_reduce(&ctx->ac, numprims, nir_op_iadd, ctx->ac.wave_size);
tmp = LLVMBuildICmp(builder, LLVMIntEQ, ac_get_thread_id(&ctx->ac), ctx->ac.i32_0, "");
ac_build_ifcc(&ctx->ac, tmp, 5105);
{
LLVMBuildAtomicRMW(
builder, LLVMAtomicRMWBinOpAdd,
ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, LLVMConstInt(ctx->ac.i32, stream, false)),
numprims, LLVMAtomicOrderingMonotonic, false);
}
ac_build_endif(&ctx->ac, 5105);
}
ac_build_endif(&ctx->ac, ctx->merged_wrap_if_label);
ac_build_s_barrier(&ctx->ac);
const LLVMValueRef tid = get_thread_id_in_tg(ctx);
LLVMValueRef num_emit_threads = ngg_get_prim_cnt(ctx);
/* Streamout */
if (sel->so.num_outputs) {
struct ngg_streamout nggso = {};
nggso.num_vertices = LLVMConstInt(ctx->ac.i32, verts_per_prim, false);
LLVMValueRef vertexptr = ngg_gs_vertex_ptr(ctx, tid);
for (unsigned stream = 0; stream < 4; ++stream) {
if (!info->num_stream_output_components[stream])
continue;
tmp = LLVMBuildLoad(builder, ngg_gs_get_emit_primflag_ptr(ctx, vertexptr, stream), "");
tmp = LLVMBuildTrunc(builder, tmp, ctx->ac.i1, "");
tmp2 = LLVMBuildICmp(builder, LLVMIntULT, tid, num_emit_threads, "");
nggso.prim_enable[stream] = LLVMBuildAnd(builder, tmp, tmp2, "");
}
for (unsigned i = 0; i < verts_per_prim; ++i) {
tmp = LLVMBuildSub(builder, tid, LLVMConstInt(ctx->ac.i32, verts_per_prim - i - 1, false),
"");
tmp = ngg_gs_vertex_ptr(ctx, tmp);
nggso.vertices[i] = ac_build_gep0(&ctx->ac, tmp, ctx->ac.i32_0);
}
build_streamout(ctx, &nggso);
}
/* Write shader query data. */
if (ctx->screen->use_ngg_streamout) {
tmp = si_unpack_param(ctx, ctx->vs_state_bits, 6, 1);
tmp = LLVMBuildTrunc(builder, tmp, ctx->ac.i1, "");
ac_build_ifcc(&ctx->ac, tmp, 5109); /* if (STREAMOUT_QUERY_ENABLED) */
unsigned num_query_comps = sel->so.num_outputs ? 8 : 4;
tmp = LLVMBuildICmp(builder, LLVMIntULT, tid,
LLVMConstInt(ctx->ac.i32, num_query_comps, false), "");
ac_build_ifcc(&ctx->ac, tmp, 5110);
{
LLVMValueRef offset;
tmp = tid;
if (sel->so.num_outputs)
tmp = LLVMBuildAnd(builder, tmp, LLVMConstInt(ctx->ac.i32, 3, false), "");
offset = LLVMBuildNUWMul(builder, tmp, LLVMConstInt(ctx->ac.i32, 32, false), "");
if (sel->so.num_outputs) {
tmp = LLVMBuildLShr(builder, tid, LLVMConstInt(ctx->ac.i32, 2, false), "");
tmp = LLVMBuildNUWMul(builder, tmp, LLVMConstInt(ctx->ac.i32, 8, false), "");
offset = LLVMBuildAdd(builder, offset, tmp, "");
}
tmp = LLVMBuildLoad(builder, ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, tid), "");
LLVMValueRef args[] = {
tmp, ngg_get_query_buf(ctx),
offset, LLVMConstInt(ctx->ac.i32, 16, false), /* soffset */
ctx->ac.i32_0, /* cachepolicy */
};
ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.raw.buffer.atomic.add.i32", ctx->ac.i32, args, 5,
0);
}
ac_build_endif(&ctx->ac, 5110);
ac_build_endif(&ctx->ac, 5109);
}
/* Determine vertex liveness. */
LLVMValueRef vertliveptr = ac_build_alloca(&ctx->ac, ctx->ac.i1, "vertexlive");
tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, num_emit_threads, "");
ac_build_ifcc(&ctx->ac, tmp, 5120);
{
for (unsigned i = 0; i < verts_per_prim; ++i) {
const LLVMValueRef primidx =
LLVMBuildAdd(builder, tid, LLVMConstInt(ctx->ac.i32, i, false), "");
if (i > 0) {
tmp = LLVMBuildICmp(builder, LLVMIntULT, primidx, num_emit_threads, "");
ac_build_ifcc(&ctx->ac, tmp, 5121 + i);
}
/* Load primitive liveness */
tmp = ngg_gs_vertex_ptr(ctx, primidx);
tmp = LLVMBuildLoad(builder, ngg_gs_get_emit_primflag_ptr(ctx, tmp, 0), "");
const LLVMValueRef primlive = LLVMBuildTrunc(builder, tmp, ctx->ac.i1, "");
tmp = LLVMBuildLoad(builder, vertliveptr, "");
tmp = LLVMBuildOr(builder, tmp, primlive, ""), LLVMBuildStore(builder, tmp, vertliveptr);
if (i > 0)
ac_build_endif(&ctx->ac, 5121 + i);
}
}
ac_build_endif(&ctx->ac, 5120);
/* Inclusive scan addition across the current wave. */
LLVMValueRef vertlive = LLVMBuildLoad(builder, vertliveptr, "");
struct ac_wg_scan vertlive_scan = {};
vertlive_scan.op = nir_op_iadd;
vertlive_scan.enable_reduce = true;
vertlive_scan.enable_exclusive = true;
vertlive_scan.src = vertlive;
vertlive_scan.scratch = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, ctx->ac.i32_0);
vertlive_scan.waveidx = get_wave_id_in_tg(ctx);
vertlive_scan.numwaves = get_tgsize(ctx);
vertlive_scan.maxwaves = 8;
ac_build_wg_scan(&ctx->ac, &vertlive_scan);
/* Skip all exports (including index exports) when possible. At least on
* early gfx10 revisions this is also to avoid hangs.
*/
LLVMValueRef have_exports =
LLVMBuildICmp(builder, LLVMIntNE, vertlive_scan.result_reduce, ctx->ac.i32_0, "");
num_emit_threads = LLVMBuildSelect(builder, have_exports, num_emit_threads, ctx->ac.i32_0, "");
/* Allocate export space. Send this message as early as possible, to
* hide the latency of the SQ <-> SPI roundtrip.
*
* Note: We could consider compacting primitives for export as well.
* PA processes 1 non-null prim / clock, but it fetches 4 DW of
* prim data per clock and skips null primitives at no additional
* cost. So compacting primitives can only be beneficial when
* there are 4 or more contiguous null primitives in the export
* (in the common case of single-dword prim exports).
*/
ac_build_sendmsg_gs_alloc_req(&ctx->ac, get_wave_id_in_tg(ctx), vertlive_scan.result_reduce,
num_emit_threads);
/* Setup the reverse vertex compaction permutation. We re-use stream 1
* of the primitive liveness flags, relying on the fact that each
* threadgroup can have at most 256 threads. */
ac_build_ifcc(&ctx->ac, vertlive, 5130);
{
tmp = ngg_gs_vertex_ptr(ctx, vertlive_scan.result_exclusive);
tmp2 = LLVMBuildTrunc(builder, tid, ctx->ac.i8, "");
LLVMBuildStore(builder, tmp2, ngg_gs_get_emit_primflag_ptr(ctx, tmp, 1));
}
ac_build_endif(&ctx->ac, 5130);
ac_build_s_barrier(&ctx->ac);
/* Export primitive data */
tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, num_emit_threads, "");
ac_build_ifcc(&ctx->ac, tmp, 5140);
{
LLVMValueRef flags;
struct ac_ngg_prim prim = {};
prim.num_vertices = verts_per_prim;
tmp = ngg_gs_vertex_ptr(ctx, tid);
flags = LLVMBuildLoad(builder, ngg_gs_get_emit_primflag_ptr(ctx, tmp, 0), "");
prim.isnull = LLVMBuildNot(builder, LLVMBuildTrunc(builder, flags, ctx->ac.i1, ""), "");
for (unsigned i = 0; i < verts_per_prim; ++i) {
prim.index[i] = LLVMBuildSub(builder, vertlive_scan.result_exclusive,
LLVMConstInt(ctx->ac.i32, verts_per_prim - i - 1, false), "");
prim.edgeflag[i] = ctx->ac.i1false;
}
/* Geometry shaders output triangle strips, but NGG expects triangles. */
if (verts_per_prim == 3) {
LLVMValueRef is_odd = LLVMBuildLShr(builder, flags, ctx->ac.i8_1, "");
is_odd = LLVMBuildTrunc(builder, is_odd, ctx->ac.i1, "");
LLVMValueRef flatshade_first = LLVMBuildICmp(
builder, LLVMIntEQ, si_unpack_param(ctx, ctx->vs_state_bits, 4, 2), ctx->ac.i32_0, "");
ac_build_triangle_strip_indices_to_triangle(&ctx->ac, is_odd, flatshade_first, prim.index);
}
ac_build_export_prim(&ctx->ac, &prim);
}
ac_build_endif(&ctx->ac, 5140);
/* Export position and parameter data */
tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, vertlive_scan.result_reduce, "");
ac_build_ifcc(&ctx->ac, tmp, 5145);
{
struct si_shader_output_values outputs[PIPE_MAX_SHADER_OUTPUTS];
tmp = ngg_gs_vertex_ptr(ctx, tid);
tmp = LLVMBuildLoad(builder, ngg_gs_get_emit_primflag_ptr(ctx, tmp, 1), "");
tmp = LLVMBuildZExt(builder, tmp, ctx->ac.i32, "");
const LLVMValueRef vertexptr = ngg_gs_vertex_ptr(ctx, tmp);
unsigned out_idx = 0;
for (unsigned i = 0; i < info->num_outputs; i++) {
outputs[i].semantic_name = info->output_semantic_name[i];
outputs[i].semantic_index = info->output_semantic_index[i];
for (unsigned j = 0; j < 4; j++, out_idx++) {
tmp = ngg_gs_get_emit_output_ptr(ctx, vertexptr, out_idx);
tmp = LLVMBuildLoad(builder, tmp, "");
outputs[i].values[j] = ac_to_float(&ctx->ac, tmp);
outputs[i].vertex_stream[j] = (info->output_streams[i] >> (2 * j)) & 3;
}
}
si_llvm_build_vs_exports(ctx, outputs, info->num_outputs);
}
ac_build_endif(&ctx->ac, 5145);
}
static void clamp_gsprims_to_esverts(unsigned *max_gsprims, unsigned max_esverts,
unsigned min_verts_per_prim, bool use_adjacency)
{
unsigned max_reuse = max_esverts - min_verts_per_prim;
if (use_adjacency)
max_reuse /= 2;
*max_gsprims = MIN2(*max_gsprims, 1 + max_reuse);
}
/**
* Determine subgroup information like maximum number of vertices and prims.
*
* This happens before the shader is uploaded, since LDS relocations during
* upload depend on the subgroup size.
*/
bool gfx10_ngg_calculate_subgroup_info(struct si_shader *shader)
{
const struct si_shader_selector *gs_sel = shader->selector;
const struct si_shader_selector *es_sel =
shader->previous_stage_sel ? shader->previous_stage_sel : gs_sel;
const enum pipe_shader_type gs_type = gs_sel->type;
const unsigned gs_num_invocations = MAX2(gs_sel->gs_num_invocations, 1);
const unsigned input_prim = si_get_input_prim(gs_sel);
const bool use_adjacency =
input_prim >= PIPE_PRIM_LINES_ADJACENCY && input_prim <= PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY;
const unsigned max_verts_per_prim = u_vertices_per_prim(input_prim);
const unsigned min_verts_per_prim = gs_type == PIPE_SHADER_GEOMETRY ? max_verts_per_prim : 1;
/* All these are in dwords: */
/* We can't allow using the whole LDS, because GS waves compete with
* other shader stages for LDS space.
*
* TODO: We should really take the shader's internal LDS use into
* account. The linker will fail if the size is greater than
* 8K dwords.
*/
const unsigned max_lds_size = 8 * 1024 - 768;
const unsigned target_lds_size = max_lds_size;
unsigned esvert_lds_size = 0;
unsigned gsprim_lds_size = 0;
/* All these are per subgroup: */
bool max_vert_out_per_gs_instance = false;
unsigned max_gsprims_base = 128; /* default prim group size clamp */
unsigned max_esverts_base = 128;
if (shader->key.opt.ngg_culling & SI_NGG_CULL_GS_FAST_LAUNCH_TRI_LIST) {
max_gsprims_base = 128 / 3;
max_esverts_base = max_gsprims_base * 3;
} else if (shader->key.opt.ngg_culling & SI_NGG_CULL_GS_FAST_LAUNCH_TRI_STRIP) {
max_gsprims_base = 126;
max_esverts_base = 128;
}
/* Hardware has the following non-natural restrictions on the value
* of GE_CNTL.VERT_GRP_SIZE based on based on the primitive type of
* the draw:
* - at most 252 for any line input primitive type
* - at most 251 for any quad input primitive type
* - at most 251 for triangle strips with adjacency (this happens to
* be the natural limit for triangle *lists* with adjacency)
*/
max_esverts_base = MIN2(max_esverts_base, 251 + max_verts_per_prim - 1);
if (gs_type == PIPE_SHADER_GEOMETRY) {
bool force_multi_cycling = false;
unsigned max_out_verts_per_gsprim = gs_sel->gs_max_out_vertices * gs_num_invocations;
retry_select_mode:
if (max_out_verts_per_gsprim <= 256 && !force_multi_cycling) {
if (max_out_verts_per_gsprim) {
max_gsprims_base = MIN2(max_gsprims_base, 256 / max_out_verts_per_gsprim);
}
} else {
/* Use special multi-cycling mode in which each GS
* instance gets its own subgroup. Does not work with
* tessellation. */
max_vert_out_per_gs_instance = true;
max_gsprims_base = 1;
max_out_verts_per_gsprim = gs_sel->gs_max_out_vertices;
}
esvert_lds_size = es_sel->esgs_itemsize / 4;
gsprim_lds_size = (gs_sel->gsvs_vertex_size / 4 + 1) * max_out_verts_per_gsprim;
if (gsprim_lds_size > target_lds_size && !force_multi_cycling) {
if (gs_sel->tess_turns_off_ngg || es_sel->type != PIPE_SHADER_TESS_EVAL) {
force_multi_cycling = true;
goto retry_select_mode;
}
}
} else {
/* VS and TES. */
/* LDS size for passing data from ES to GS. */
esvert_lds_size = ngg_nogs_vertex_size(shader);
}
unsigned max_gsprims = max_gsprims_base;
unsigned max_esverts = max_esverts_base;
if (esvert_lds_size)
max_esverts = MIN2(max_esverts, target_lds_size / esvert_lds_size);
if (gsprim_lds_size)
max_gsprims = MIN2(max_gsprims, target_lds_size / gsprim_lds_size);
max_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim);
clamp_gsprims_to_esverts(&max_gsprims, max_esverts, min_verts_per_prim, use_adjacency);
assert(max_esverts >= max_verts_per_prim && max_gsprims >= 1);
if (esvert_lds_size || gsprim_lds_size) {
/* Now that we have a rough proportionality between esverts
* and gsprims based on the primitive type, scale both of them
* down simultaneously based on required LDS space.
*
* We could be smarter about this if we knew how much vertex
* reuse to expect.
*/
unsigned lds_total = max_esverts * esvert_lds_size + max_gsprims * gsprim_lds_size;
if (lds_total > target_lds_size) {
max_esverts = max_esverts * target_lds_size / lds_total;
max_gsprims = max_gsprims * target_lds_size / lds_total;
max_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim);
clamp_gsprims_to_esverts(&max_gsprims, max_esverts, min_verts_per_prim, use_adjacency);
assert(max_esverts >= max_verts_per_prim && max_gsprims >= 1);
}
}
/* Round up towards full wave sizes for better ALU utilization. */
if (!max_vert_out_per_gs_instance) {
const unsigned wavesize = si_get_shader_wave_size(shader);
unsigned orig_max_esverts;
unsigned orig_max_gsprims;
do {
orig_max_esverts = max_esverts;
orig_max_gsprims = max_gsprims;
max_esverts = align(max_esverts, wavesize);
max_esverts = MIN2(max_esverts, max_esverts_base);
if (esvert_lds_size)
max_esverts =
MIN2(max_esverts, (max_lds_size - max_gsprims * gsprim_lds_size) / esvert_lds_size);
max_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim);
max_gsprims = align(max_gsprims, wavesize);
max_gsprims = MIN2(max_gsprims, max_gsprims_base);
if (gsprim_lds_size)
max_gsprims =
MIN2(max_gsprims, (max_lds_size - max_esverts * esvert_lds_size) / gsprim_lds_size);
clamp_gsprims_to_esverts(&max_gsprims, max_esverts, min_verts_per_prim, use_adjacency);
assert(max_esverts >= max_verts_per_prim && max_gsprims >= 1);
} while (orig_max_esverts != max_esverts || orig_max_gsprims != max_gsprims);
}
/* Hardware restriction: minimum value of max_esverts */
max_esverts = MAX2(max_esverts, 23 + max_verts_per_prim);
unsigned max_out_vertices =
max_vert_out_per_gs_instance
? gs_sel->gs_max_out_vertices
: gs_type == PIPE_SHADER_GEOMETRY
? max_gsprims * gs_num_invocations * gs_sel->gs_max_out_vertices
: max_esverts;
assert(max_out_vertices <= 256);
unsigned prim_amp_factor = 1;
if (gs_type == PIPE_SHADER_GEOMETRY) {
/* Number of output primitives per GS input primitive after
* GS instancing. */
prim_amp_factor = gs_sel->gs_max_out_vertices;
}
/* The GE only checks against the maximum number of ES verts after
* allocating a full GS primitive. So we need to ensure that whenever
* this check passes, there is enough space for a full primitive without
* vertex reuse.
*/
shader->ngg.hw_max_esverts = max_esverts - max_verts_per_prim + 1;
shader->ngg.max_gsprims = max_gsprims;
shader->ngg.max_out_verts = max_out_vertices;
shader->ngg.prim_amp_factor = prim_amp_factor;
shader->ngg.max_vert_out_per_gs_instance = max_vert_out_per_gs_instance;
shader->gs_info.esgs_ring_size = max_esverts * esvert_lds_size;
shader->ngg.ngg_emit_size = max_gsprims * gsprim_lds_size;
assert(shader->ngg.hw_max_esverts >= 24); /* HW limitation */
/* If asserts are disabled, we use the same conditions to return false */
return max_esverts >= max_verts_per_prim && max_gsprims >= 1 &&
max_out_vertices <= 256 &&
shader->ngg.hw_max_esverts >= 24;
}