blob: ee90baed8934b8244c8158dd2ddef86d1725316f [file] [log] [blame]
/*
* Copyright © 2019 Raspberry Pi
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "v3dv_private.h"
#include "broadcom/cle/v3dx_pack.h"
#include "util/u_pack_color.h"
#include "vk_format_info.h"
const struct v3dv_dynamic_state default_dynamic_state = {
.viewport = {
.count = 0,
},
.scissor = {
.count = 0,
},
.stencil_compare_mask =
{
.front = ~0u,
.back = ~0u,
},
.stencil_write_mask =
{
.front = ~0u,
.back = ~0u,
},
.stencil_reference =
{
.front = 0u,
.back = 0u,
},
.blend_constants = { 0.0f, 0.0f, 0.0f, 0.0f },
};
void
v3dv_job_add_bo(struct v3dv_job *job, struct v3dv_bo *bo)
{
if (!bo)
return;
if (_mesa_set_search(job->bos, bo))
return;
_mesa_set_add(job->bos, bo);
job->bo_count++;
}
void
v3dv_job_add_extra_bo(struct v3dv_job *job, struct v3dv_bo *bo)
{
assert(bo);
assert(!_mesa_set_search(job->extra_bos, bo));
_mesa_set_add(job->extra_bos, bo);
}
static void
cmd_buffer_emit_render_pass_rcl(struct v3dv_cmd_buffer *cmd_buffer);
VkResult
v3dv_CreateCommandPool(VkDevice _device,
const VkCommandPoolCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkCommandPool *pCmdPool)
{
V3DV_FROM_HANDLE(v3dv_device, device, _device);
struct v3dv_cmd_pool *pool;
/* We only support one queue */
assert(pCreateInfo->queueFamilyIndex == 0);
pool = vk_alloc2(&device->alloc, pAllocator, sizeof(*pool), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (pool == NULL)
return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
if (pAllocator)
pool->alloc = *pAllocator;
else
pool->alloc = device->alloc;
list_inithead(&pool->cmd_buffers);
*pCmdPool = v3dv_cmd_pool_to_handle(pool);
return VK_SUCCESS;
}
static void
cmd_buffer_init(struct v3dv_cmd_buffer *cmd_buffer,
struct v3dv_device *device,
struct v3dv_cmd_pool *pool,
VkCommandBufferLevel level)
{
/* Do not reset the loader data header! If we are calling this from
* a command buffer reset that would reset the loader's dispatch table for
* the command buffer.
*/
const uint32_t ld_size = sizeof(VK_LOADER_DATA);
uint8_t *cmd_buffer_driver_start = ((uint8_t *) cmd_buffer) + ld_size;
memset(cmd_buffer_driver_start, 0, sizeof(*cmd_buffer) - ld_size);
cmd_buffer->device = device;
cmd_buffer->pool = pool;
cmd_buffer->level = level;
list_inithead(&cmd_buffer->submit_jobs);
assert(pool);
list_addtail(&cmd_buffer->pool_link, &pool->cmd_buffers);
cmd_buffer->state.subpass_idx = -1;
cmd_buffer->state.meta.subpass_idx = -1;
cmd_buffer->status = V3DV_CMD_BUFFER_STATUS_INITIALIZED;
}
static VkResult
cmd_buffer_create(struct v3dv_device *device,
struct v3dv_cmd_pool *pool,
VkCommandBufferLevel level,
VkCommandBuffer *pCommandBuffer)
{
struct v3dv_cmd_buffer *cmd_buffer;
cmd_buffer = vk_alloc(&pool->alloc, sizeof(*cmd_buffer), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (cmd_buffer == NULL)
return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
cmd_buffer_init(cmd_buffer, device, pool, level);
cmd_buffer->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
*pCommandBuffer = v3dv_cmd_buffer_to_handle(cmd_buffer);
return VK_SUCCESS;
}
void
v3dv_job_destroy(struct v3dv_job *job)
{
assert(job);
list_del(&job->list_link);
if (job->type == V3DV_JOB_TYPE_GPU_CL) {
v3dv_cl_destroy(&job->bcl);
v3dv_cl_destroy(&job->rcl);
v3dv_cl_destroy(&job->indirect);
/* Since we don't ref BOs, when we add them to the command buffer, don't
* unref them here either.
*/
#if 0
set_foreach(job->bos, entry) {
struct v3dv_bo *bo = (struct v3dv_bo *)entry->key;
v3dv_bo_free(cmd_buffer->device, bo);
}
#endif
_mesa_set_destroy(job->bos, NULL);
set_foreach(job->extra_bos, entry) {
struct v3dv_bo *bo = (struct v3dv_bo *)entry->key;
v3dv_bo_free(job->device, bo);
}
_mesa_set_destroy(job->extra_bos, NULL);
v3dv_bo_free(job->device, job->tile_alloc);
v3dv_bo_free(job->device, job->tile_state);
}
vk_free(&job->device->alloc, job);
}
static void
cmd_buffer_free_resources(struct v3dv_cmd_buffer *cmd_buffer)
{
list_del(&cmd_buffer->pool_link);
list_for_each_entry_safe(struct v3dv_job, job,
&cmd_buffer->submit_jobs, list_link) {
v3dv_job_destroy(job);
}
if (cmd_buffer->state.job)
v3dv_job_destroy(cmd_buffer->state.job);
if (cmd_buffer->state.attachments) {
assert(cmd_buffer->state.attachment_count > 0);
vk_free(&cmd_buffer->pool->alloc, cmd_buffer->state.attachments);
}
if (cmd_buffer->state.query.end.alloc_count > 0)
vk_free(&cmd_buffer->device->alloc, cmd_buffer->state.query.end.states);
if (cmd_buffer->push_constants_resource.bo)
v3dv_bo_free(cmd_buffer->device, cmd_buffer->push_constants_resource.bo);
}
static void
cmd_buffer_destroy(struct v3dv_cmd_buffer *cmd_buffer)
{
cmd_buffer_free_resources(cmd_buffer);
vk_free(&cmd_buffer->pool->alloc, cmd_buffer);
}
void
v3dv_job_emit_binning_flush(struct v3dv_job *job)
{
assert(job);
v3dv_cl_ensure_space_with_branch(&job->bcl, cl_packet_length(FLUSH));
cl_emit(&job->bcl, FLUSH, flush);
}
static bool
attachment_list_is_subset(struct v3dv_subpass_attachment *l1, uint32_t l1_count,
struct v3dv_subpass_attachment *l2, uint32_t l2_count)
{
for (uint32_t i = 0; i < l1_count; i++) {
uint32_t attachment_idx = l1[i].attachment;
if (attachment_idx == VK_ATTACHMENT_UNUSED)
continue;
uint32_t j;
for (j = 0; j < l2_count; j++) {
if (l2[j].attachment == attachment_idx)
break;
}
if (j == l2_count)
return false;
}
return true;
}
static bool
cmd_buffer_can_merge_subpass(struct v3dv_cmd_buffer *cmd_buffer,
uint32_t subpass_idx)
{
const struct v3dv_cmd_buffer_state *state = &cmd_buffer->state;
assert(state->pass);
const struct v3dv_physical_device *physical_device =
&cmd_buffer->device->instance->physicalDevice;
if (!cmd_buffer->state.job)
return false;
if (cmd_buffer->state.job->always_flush)
return false;
if (!physical_device->options.merge_jobs)
return false;
/* Each render pass starts a new job */
if (subpass_idx == 0)
return false;
/* Two subpasses can be merged in the same job if we can emit a single RCL
* for them (since the RCL includes the END_OF_RENDERING command that
* triggers the "render job finished" interrupt). We can do this so long
* as both subpasses render against the same attachments.
*/
assert(state->subpass_idx == subpass_idx - 1);
struct v3dv_subpass *prev_subpass = &state->pass->subpasses[state->subpass_idx];
struct v3dv_subpass *subpass = &state->pass->subpasses[subpass_idx];
/* Because the list of subpass attachments can include VK_ATTACHMENT_UNUSED,
* we need to check that for each subpass all its used attachments are
* used by the other subpass.
*/
bool compatible =
attachment_list_is_subset(prev_subpass->color_attachments,
prev_subpass->color_count,
subpass->color_attachments,
subpass->color_count);
if (!compatible)
return false;
compatible =
attachment_list_is_subset(subpass->color_attachments,
subpass->color_count,
prev_subpass->color_attachments,
prev_subpass->color_count);
if (!compatible)
return false;
/* FIXME: resolve attachments */
if (subpass->ds_attachment.attachment !=
prev_subpass->ds_attachment.attachment)
return false;
return true;
}
/**
* Computes and sets the job frame tiling information required to setup frame
* binning and rendering.
*/
static struct v3dv_frame_tiling *
job_compute_frame_tiling(struct v3dv_job *job,
uint32_t width,
uint32_t height,
uint32_t layers,
uint32_t render_target_count,
uint8_t max_internal_bpp)
{
static const uint8_t tile_sizes[] = {
64, 64,
64, 32,
32, 32,
32, 16,
16, 16,
};
assert(job);
struct v3dv_frame_tiling *tiling = &job->frame_tiling;
tiling->width = width;
tiling->height = height;
tiling->layers = layers;
tiling->render_target_count = render_target_count;
uint32_t tile_size_index = 0;
/* FIXME: MSAA */
if (render_target_count > 2)
tile_size_index += 2;
else if (render_target_count > 1)
tile_size_index += 1;
tiling->internal_bpp = max_internal_bpp;
tile_size_index += tiling->internal_bpp;
assert(tile_size_index < ARRAY_SIZE(tile_sizes));
tiling->tile_width = tile_sizes[tile_size_index * 2];
tiling->tile_height = tile_sizes[tile_size_index * 2 + 1];
tiling->draw_tiles_x = DIV_ROUND_UP(width, tiling->tile_width);
tiling->draw_tiles_y = DIV_ROUND_UP(height, tiling->tile_height);
/* Size up our supertiles until we get under the limit */
const uint32_t max_supertiles = 256;
tiling->supertile_width = 1;
tiling->supertile_height = 1;
for (;;) {
tiling->frame_width_in_supertiles =
DIV_ROUND_UP(tiling->draw_tiles_x, tiling->supertile_width);
tiling->frame_height_in_supertiles =
DIV_ROUND_UP(tiling->draw_tiles_y, tiling->supertile_height);
const uint32_t num_supertiles = tiling->frame_width_in_supertiles *
tiling->frame_height_in_supertiles;
if (num_supertiles < max_supertiles)
break;
if (tiling->supertile_width < tiling->supertile_height)
tiling->supertile_width++;
else
tiling->supertile_height++;
}
return tiling;
}
void
v3dv_job_start_frame(struct v3dv_job *job,
uint32_t width,
uint32_t height,
uint32_t layers,
uint32_t render_target_count,
uint8_t max_internal_bpp)
{
assert(job);
/* Start by computing frame tiling spec for this job */
const struct v3dv_frame_tiling *tiling =
job_compute_frame_tiling(job,
width, height, layers,
render_target_count, max_internal_bpp);
v3dv_cl_ensure_space_with_branch(&job->bcl, 256);
/* The PTB will request the tile alloc initial size per tile at start
* of tile binning.
*/
uint32_t tile_alloc_size = 64 * tiling->layers *
tiling->draw_tiles_x *
tiling->draw_tiles_y;
/* The PTB allocates in aligned 4k chunks after the initial setup. */
tile_alloc_size = align(tile_alloc_size, 4096);
/* Include the first two chunk allocations that the PTB does so that
* we definitely clear the OOM condition before triggering one (the HW
* won't trigger OOM during the first allocations).
*/
tile_alloc_size += 8192;
/* For performance, allocate some extra initial memory after the PTB's
* minimal allocations, so that we hopefully don't have to block the
* GPU on the kernel handling an OOM signal.
*/
tile_alloc_size += 512 * 1024;
job->tile_alloc = v3dv_bo_alloc(job->device, tile_alloc_size,
"tile_alloc");
v3dv_job_add_bo(job, job->tile_alloc);
const uint32_t tsda_per_tile_size = 256;
const uint32_t tile_state_size = tiling->layers *
tiling->draw_tiles_x *
tiling->draw_tiles_y *
tsda_per_tile_size;
job->tile_state = v3dv_bo_alloc(job->device, tile_state_size, "TSDA");
v3dv_job_add_bo(job, job->tile_state);
/* This must go before the binning mode configuration. It is
* required for layered framebuffers to work.
*/
cl_emit(&job->bcl, NUMBER_OF_LAYERS, config) {
config.number_of_layers = layers;
}
cl_emit(&job->bcl, TILE_BINNING_MODE_CFG, config) {
config.width_in_pixels = tiling->width;
config.height_in_pixels = tiling->height;
config.number_of_render_targets = MAX2(tiling->render_target_count, 1);
config.multisample_mode_4x = false; /* FIXME */
config.maximum_bpp_of_all_render_targets = tiling->internal_bpp;
}
/* There's definitely nothing in the VCD cache we want. */
cl_emit(&job->bcl, FLUSH_VCD_CACHE, bin);
/* "Binning mode lists must have a Start Tile Binning item (6) after
* any prefix state data before the binning list proper starts."
*/
cl_emit(&job->bcl, START_TILE_BINNING, bin);
job->ez_state = VC5_EZ_UNDECIDED;
job->first_ez_state = VC5_EZ_UNDECIDED;
}
static void
cmd_buffer_end_render_pass_frame(struct v3dv_cmd_buffer *cmd_buffer)
{
assert(cmd_buffer->state.job);
/* Typically, we have a single job for each subpass and we emit the job's RCL
* here when we are ending the frame for the subpass. However, some commands
* such as vkCmdClearAttachments need to run in their own separate job and
* they emit their own RCL even if they execute inside a subpass. In this
* scenario, we don't want to emit subpass RCL when we end the frame for
* those jobs, so we only emit the subpass RCL if the job has not recorded
* any RCL commands of its own.
*/
if (v3dv_cl_offset(&cmd_buffer->state.job->rcl) == 0)
cmd_buffer_emit_render_pass_rcl(cmd_buffer);
v3dv_job_emit_binning_flush(cmd_buffer->state.job);
}
static struct v3dv_job *
cmd_buffer_create_cpu_job(struct v3dv_device *device,
enum v3dv_job_type type,
struct v3dv_cmd_buffer *cmd_buffer,
uint32_t subpass_idx)
{
struct v3dv_job *job = vk_zalloc(&device->alloc,
sizeof(struct v3dv_job), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
v3dv_job_init(job, type, device, cmd_buffer, subpass_idx);
return job;
}
static void
cmd_buffer_add_cpu_jobs_for_pending_state(struct v3dv_cmd_buffer *cmd_buffer)
{
struct v3dv_cmd_buffer_state *state = &cmd_buffer->state;
if (state->query.end.used_count > 0) {
const uint32_t query_count = state->query.end.used_count;
for (uint32_t i = 0; i < query_count; i++) {
assert(i < state->query.end.used_count);
struct v3dv_job *job =
cmd_buffer_create_cpu_job(cmd_buffer->device,
V3DV_JOB_TYPE_CPU_END_QUERY,
cmd_buffer, -1);
job->cpu.query_end = state->query.end.states[i];
list_addtail(&job->list_link, &cmd_buffer->submit_jobs);
}
}
}
void
v3dv_cmd_buffer_finish_job(struct v3dv_cmd_buffer *cmd_buffer)
{
struct v3dv_job *job = cmd_buffer->state.job;
if (!job)
return;
assert(v3dv_cl_offset(&job->bcl) != 0);
/* When we merge multiple subpasses into the same job we must only emit one
* RCL, so we do that here, when we decided that we need to finish the job.
* Any rendering that happens outside a render pass is never merged, so
* the RCL should have been emitted by the time we got here.
*/
assert(v3dv_cl_offset(&job->rcl) != 0 || cmd_buffer->state.pass);
if (cmd_buffer->state.pass)
cmd_buffer_end_render_pass_frame(cmd_buffer);
list_addtail(&job->list_link, &cmd_buffer->submit_jobs);
cmd_buffer->state.job = NULL;
/* If we have recorded any state with this last GPU job that requires to
* emit CPU jobs after the job is completed, add them now.
*/
cmd_buffer_add_cpu_jobs_for_pending_state(cmd_buffer);
}
void
v3dv_job_init(struct v3dv_job *job,
enum v3dv_job_type type,
struct v3dv_device *device,
struct v3dv_cmd_buffer *cmd_buffer,
int32_t subpass_idx)
{
assert(job);
job->type = type;
job->device = device;
job->cmd_buffer = cmd_buffer;
if (type == V3DV_JOB_TYPE_GPU_CL) {
job->bos =
_mesa_set_create(NULL, _mesa_hash_pointer, _mesa_key_pointer_equal);
job->bo_count = 0;
job->extra_bos =
_mesa_set_create(NULL, _mesa_hash_pointer, _mesa_key_pointer_equal);
v3dv_cl_init(job, &job->bcl);
v3dv_cl_begin(&job->bcl);
v3dv_cl_init(job, &job->rcl);
v3dv_cl_begin(&job->rcl);
v3dv_cl_init(job, &job->indirect);
v3dv_cl_begin(&job->indirect);
if (V3D_DEBUG & V3D_DEBUG_ALWAYS_FLUSH)
job->always_flush = true;
}
if (cmd_buffer) {
/* Flag all state as dirty. Generally, we need to re-emit state for each
* new job.
*
* FIXME: there may be some exceptions, in which case we could skip some
* bits.
*/
cmd_buffer->state.dirty = ~0;
/* Keep track of the first subpass that we are recording in this new job.
* We will use this when we emit the RCL to decide how to emit our loads
* and stores.
*/
if (cmd_buffer->state.pass)
job->first_subpass = subpass_idx;
}
}
struct v3dv_job *
v3dv_cmd_buffer_start_job(struct v3dv_cmd_buffer *cmd_buffer,
int32_t subpass_idx)
{
/* Don't create a new job if we can merge the current subpass into
* the current job.
*/
if (cmd_buffer->state.pass &&
subpass_idx != -1 &&
cmd_buffer_can_merge_subpass(cmd_buffer, subpass_idx)) {
cmd_buffer->state.job->is_subpass_finish = false;
return cmd_buffer->state.job;
}
/* Ensure we are not starting a new job without finishing a previous one */
if (cmd_buffer->state.job != NULL)
v3dv_cmd_buffer_finish_job(cmd_buffer);
assert(cmd_buffer->state.job == NULL);
struct v3dv_job *job = vk_zalloc(&cmd_buffer->device->alloc,
sizeof(struct v3dv_job), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
cmd_buffer->state.job = job;
if (!job) {
fprintf(stderr, "Error: failed to allocate CPU memory for job\n");
cmd_buffer->state.oom = true;
return NULL;
}
v3dv_job_init(job, V3DV_JOB_TYPE_GPU_CL, cmd_buffer->device,
cmd_buffer, subpass_idx);
return job;
}
static VkResult
cmd_buffer_reset(struct v3dv_cmd_buffer *cmd_buffer,
VkCommandBufferResetFlags flags)
{
if (cmd_buffer->status != V3DV_CMD_BUFFER_STATUS_INITIALIZED) {
struct v3dv_device *device = cmd_buffer->device;
struct v3dv_cmd_pool *pool = cmd_buffer->pool;
VkCommandBufferLevel level = cmd_buffer->level;
/* FIXME: For now we always free all resources as if
* VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT was set.
*/
if (cmd_buffer->status != V3DV_CMD_BUFFER_STATUS_NEW)
cmd_buffer_free_resources(cmd_buffer);
cmd_buffer_init(cmd_buffer, device, pool, level);
}
assert(cmd_buffer->status == V3DV_CMD_BUFFER_STATUS_INITIALIZED);
return VK_SUCCESS;
}
VkResult
v3dv_AllocateCommandBuffers(VkDevice _device,
const VkCommandBufferAllocateInfo *pAllocateInfo,
VkCommandBuffer *pCommandBuffers)
{
V3DV_FROM_HANDLE(v3dv_device, device, _device);
V3DV_FROM_HANDLE(v3dv_cmd_pool, pool, pAllocateInfo->commandPool);
/* FIXME: implement secondary command buffers */
assert(pAllocateInfo->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
VkResult result = VK_SUCCESS;
uint32_t i;
for (i = 0; i < pAllocateInfo->commandBufferCount; i++) {
result = cmd_buffer_create(device, pool, pAllocateInfo->level,
&pCommandBuffers[i]);
if (result != VK_SUCCESS)
break;
}
if (result != VK_SUCCESS) {
v3dv_FreeCommandBuffers(_device, pAllocateInfo->commandPool,
i, pCommandBuffers);
for (i = 0; i < pAllocateInfo->commandBufferCount; i++)
pCommandBuffers[i] = VK_NULL_HANDLE;
}
return result;
}
void
v3dv_FreeCommandBuffers(VkDevice device,
VkCommandPool commandPool,
uint32_t commandBufferCount,
const VkCommandBuffer *pCommandBuffers)
{
for (uint32_t i = 0; i < commandBufferCount; i++) {
V3DV_FROM_HANDLE(v3dv_cmd_buffer, cmd_buffer, pCommandBuffers[i]);
if (!cmd_buffer)
continue;
cmd_buffer_destroy(cmd_buffer);
}
}
void
v3dv_DestroyCommandPool(VkDevice _device,
VkCommandPool commandPool,
const VkAllocationCallbacks *pAllocator)
{
V3DV_FROM_HANDLE(v3dv_device, device, _device);
V3DV_FROM_HANDLE(v3dv_cmd_pool, pool, commandPool);
if (!pool)
return;
list_for_each_entry_safe(struct v3dv_cmd_buffer, cmd_buffer,
&pool->cmd_buffers, pool_link) {
cmd_buffer_destroy(cmd_buffer);
}
vk_free2(&device->alloc, pAllocator, pool);
}
VkResult
v3dv_BeginCommandBuffer(VkCommandBuffer commandBuffer,
const VkCommandBufferBeginInfo *pBeginInfo)
{
V3DV_FROM_HANDLE(v3dv_cmd_buffer, cmd_buffer, commandBuffer);
/* If this is the first vkBeginCommandBuffer, we must initialize the
* command buffer's state. Otherwise, we must reset its state. In both
* cases we reset it.
*/
VkResult result = cmd_buffer_reset(cmd_buffer, 0);
if (result != VK_SUCCESS)
return result;
assert(cmd_buffer->status == V3DV_CMD_BUFFER_STATUS_INITIALIZED);
cmd_buffer->usage_flags = pBeginInfo->flags;
cmd_buffer->status = V3DV_CMD_BUFFER_STATUS_RECORDING;
return VK_SUCCESS;
}
VkResult
v3dv_ResetCommandBuffer(VkCommandBuffer commandBuffer,
VkCommandBufferResetFlags flags)
{
V3DV_FROM_HANDLE(v3dv_cmd_buffer, cmd_buffer, commandBuffer);
return cmd_buffer_reset(cmd_buffer, flags);
}
VkResult
v3dv_ResetCommandPool(VkDevice device,
VkCommandPool commandPool,
VkCommandPoolResetFlags flags)
{
V3DV_FROM_HANDLE(v3dv_cmd_pool, pool, commandPool);
VkCommandBufferResetFlags reset_flags = 0;
if (flags & VK_COMMAND_POOL_RESET_RELEASE_RESOURCES_BIT)
reset_flags = VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT;
list_for_each_entry(struct v3dv_cmd_buffer, cmd_buffer,
&pool->cmd_buffers, pool_link) {
cmd_buffer_reset(cmd_buffer, reset_flags);
}
return VK_SUCCESS;
}
static void
emit_clip_window(struct v3dv_job *job, const VkRect2D *rect)
{
assert(job);
cl_emit(&job->bcl, CLIP_WINDOW, clip) {
clip.clip_window_left_pixel_coordinate = rect->offset.x;
clip.clip_window_bottom_pixel_coordinate = rect->offset.y;
clip.clip_window_width_in_pixels = rect->extent.width;
clip.clip_window_height_in_pixels = rect->extent.height;
}
}
/* Checks whether the clip rectangle covers a region that is aligned to
* tile boundaries, which means that for all tiles covered by the clip
* region, there are no uncovered pixels (unless they are also outside the
* framebuffer).
*/
static void
cmd_buffer_update_tile_alignment(struct v3dv_cmd_buffer *cmd_buffer,
const VkRect2D *clip_rect,
const VkExtent2D *fb_extent)
{
/* Render areas and scissor/viewport are only relevant inside render passes,
* otherwise we are dealing with transfer operations where these elements
* don't apply.
*/
if (!cmd_buffer->state.pass) {
cmd_buffer->state.tile_aligned_render_area = true;
return;
}
VkExtent2D granularity;
v3dv_subpass_get_granularity(cmd_buffer->state.pass,
cmd_buffer->state.subpass_idx,
&granularity);
cmd_buffer->state.tile_aligned_render_area =
clip_rect->offset.x % granularity.width == 0 &&
clip_rect->offset.y % granularity.height == 0 &&
(clip_rect->extent.width % granularity.width == 0 ||
clip_rect->offset.x + clip_rect->extent.width >= fb_extent->width) &&
(clip_rect->extent.height % granularity.height == 0 ||
clip_rect->offset.y + clip_rect->extent.height >= fb_extent->height);
}
void
v3dv_get_hw_clear_color(const VkClearColorValue *color,
uint32_t internal_type,
uint32_t internal_size,
uint32_t *hw_color)
{
union util_color uc;
switch (internal_type) {
case V3D_INTERNAL_TYPE_8:
util_pack_color(color->float32, PIPE_FORMAT_R8G8B8A8_UNORM, &uc);
memcpy(hw_color, uc.ui, internal_size);
break;
case V3D_INTERNAL_TYPE_8I:
case V3D_INTERNAL_TYPE_8UI:
hw_color[0] = ((color->uint32[0] & 0xff) |
(color->uint32[1] & 0xff) << 8 |
(color->uint32[2] & 0xff) << 16 |
(color->uint32[3] & 0xff) << 24);
break;
case V3D_INTERNAL_TYPE_16F:
util_pack_color(color->float32, PIPE_FORMAT_R16G16B16A16_FLOAT, &uc);
memcpy(hw_color, uc.ui, internal_size);
break;
case V3D_INTERNAL_TYPE_16I:
case V3D_INTERNAL_TYPE_16UI:
hw_color[0] = ((color->uint32[0] & 0xffff) | color->uint32[1] << 16);
hw_color[1] = ((color->uint32[2] & 0xffff) | color->uint32[3] << 16);
break;
case V3D_INTERNAL_TYPE_32F:
case V3D_INTERNAL_TYPE_32I:
case V3D_INTERNAL_TYPE_32UI:
memcpy(hw_color, color->uint32, internal_size);
break;
}
}
static void
cmd_buffer_state_set_attachment_clear_color(struct v3dv_cmd_buffer *cmd_buffer,
uint32_t attachment_idx,
const VkClearColorValue *color)
{
assert(attachment_idx < cmd_buffer->state.pass->attachment_count);
const struct v3dv_render_pass_attachment *attachment =
&cmd_buffer->state.pass->attachments[attachment_idx];
uint32_t internal_type, internal_bpp;
const struct v3dv_format *format = v3dv_get_format(attachment->desc.format);
v3dv_get_internal_type_bpp_for_output_format(format->rt_type,
&internal_type,
&internal_bpp);
uint32_t internal_size = 4 << internal_bpp;
struct v3dv_cmd_buffer_attachment_state *attachment_state =
&cmd_buffer->state.attachments[attachment_idx];
v3dv_get_hw_clear_color(color, internal_type, internal_size,
&attachment_state->clear_value.color[0]);
attachment_state->vk_clear_value.color = *color;
}
static void
cmd_buffer_state_set_attachment_clear_depth_stencil(
struct v3dv_cmd_buffer *cmd_buffer,
uint32_t attachment_idx,
bool clear_depth, bool clear_stencil,
const VkClearDepthStencilValue *ds)
{
struct v3dv_cmd_buffer_attachment_state *attachment_state =
&cmd_buffer->state.attachments[attachment_idx];
if (clear_depth)
attachment_state->clear_value.z = ds->depth;
if (clear_stencil)
attachment_state->clear_value.s = ds->stencil;
attachment_state->vk_clear_value.depthStencil = *ds;
}
static void
cmd_buffer_state_set_clear_values(struct v3dv_cmd_buffer *cmd_buffer,
uint32_t count, const VkClearValue *values)
{
struct v3dv_cmd_buffer_state *state = &cmd_buffer->state;
const struct v3dv_render_pass *pass = state->pass;
/* There could be less clear values than attachments in the render pass, in
* which case we only want to process as many as we have, or there could be
* more, in which case we want to ignore those for which we don't have a
* corresponding attachment.
*/
count = MIN2(count, pass->attachment_count);
for (uint32_t i = 0; i < count; i++) {
const struct v3dv_render_pass_attachment *attachment =
&pass->attachments[i];
if (attachment->desc.loadOp != VK_ATTACHMENT_LOAD_OP_CLEAR)
continue;
VkImageAspectFlags aspects = vk_format_aspects(attachment->desc.format);
if (aspects & VK_IMAGE_ASPECT_COLOR_BIT) {
cmd_buffer_state_set_attachment_clear_color(cmd_buffer, i,
&values[i].color);
} else if (aspects & (VK_IMAGE_ASPECT_DEPTH_BIT |
VK_IMAGE_ASPECT_STENCIL_BIT)) {
cmd_buffer_state_set_attachment_clear_depth_stencil(
cmd_buffer, i,
aspects & VK_IMAGE_ASPECT_DEPTH_BIT,
aspects & VK_IMAGE_ASPECT_STENCIL_BIT,
&values[i].depthStencil);
}
}
}
static void
cmd_buffer_init_render_pass_attachment_state(struct v3dv_cmd_buffer *cmd_buffer,
const VkRenderPassBeginInfo *pRenderPassBegin)
{
cmd_buffer_state_set_clear_values(cmd_buffer,
pRenderPassBegin->clearValueCount,
pRenderPassBegin->pClearValues);
}
static void
cmd_buffer_ensure_render_pass_attachment_state(struct v3dv_cmd_buffer *cmd_buffer)
{
struct v3dv_cmd_buffer_state *state = &cmd_buffer->state;
const struct v3dv_render_pass *pass = state->pass;
if (state->attachment_count < pass->attachment_count) {
if (state->attachment_count > 0)
vk_free(&cmd_buffer->device->alloc, state->attachments);
uint32_t size = sizeof(struct v3dv_cmd_buffer_attachment_state) *
pass->attachment_count;
state->attachments = vk_zalloc(&cmd_buffer->device->alloc, size, 8,
VK_SYSTEM_ALLOCATION_SCOPE_COMMAND);
state->attachment_count = pass->attachment_count;
}
assert(state->attachment_count >= pass->attachment_count);
}
void
v3dv_CmdBeginRenderPass(VkCommandBuffer commandBuffer,
const VkRenderPassBeginInfo *pRenderPassBegin,
VkSubpassContents contents)
{
V3DV_FROM_HANDLE(v3dv_cmd_buffer, cmd_buffer, commandBuffer);
V3DV_FROM_HANDLE(v3dv_render_pass, pass, pRenderPassBegin->renderPass);
V3DV_FROM_HANDLE(v3dv_framebuffer, framebuffer, pRenderPassBegin->framebuffer);
struct v3dv_cmd_buffer_state *state = &cmd_buffer->state;
state->pass = pass;
state->framebuffer = framebuffer;
cmd_buffer_ensure_render_pass_attachment_state(cmd_buffer);
cmd_buffer_init_render_pass_attachment_state(cmd_buffer, pRenderPassBegin);
state->render_area = pRenderPassBegin->renderArea;
/* If our render area is smaller than the current clip window we will have
* to emit a new clip window to constraint it to the render area.
*/
uint32_t min_render_x = state->render_area.offset.x;
uint32_t min_render_y = state->render_area.offset.x;
uint32_t max_render_x = min_render_x + state->render_area.extent.width - 1;
uint32_t max_render_y = min_render_y + state->render_area.extent.height - 1;
uint32_t min_clip_x = state->clip_window.offset.x;
uint32_t min_clip_y = state->clip_window.offset.y;
uint32_t max_clip_x = min_clip_x + state->clip_window.extent.width - 1;
uint32_t max_clip_y = min_clip_y + state->clip_window.extent.height - 1;
if (min_render_x > min_clip_x || min_render_y > min_clip_y ||
max_render_x < max_clip_x || max_render_y < max_clip_y) {
state->dirty |= V3DV_CMD_DIRTY_SCISSOR;
}
/* Setup for first subpass */
v3dv_cmd_buffer_subpass_start(cmd_buffer, 0);
}
void
v3dv_CmdNextSubpass(VkCommandBuffer commandBuffer, VkSubpassContents contents)
{
V3DV_FROM_HANDLE(v3dv_cmd_buffer, cmd_buffer, commandBuffer);
struct v3dv_cmd_buffer_state *state = &cmd_buffer->state;
assert(state->subpass_idx < state->pass->subpass_count - 1);
/* Finish the previous subpass */
v3dv_cmd_buffer_subpass_finish(cmd_buffer);
/* Start the next subpass */
v3dv_cmd_buffer_subpass_start(cmd_buffer, state->subpass_idx + 1);
}
void
v3dv_render_pass_setup_render_target(struct v3dv_cmd_buffer *cmd_buffer,
int rt,
uint32_t *rt_bpp,
uint32_t *rt_type,
uint32_t *rt_clamp)
{
const struct v3dv_cmd_buffer_state *state = &cmd_buffer->state;
assert(state->subpass_idx < state->pass->subpass_count);
const struct v3dv_subpass *subpass =
&state->pass->subpasses[state->subpass_idx];
if (rt >= subpass->color_count)
return;
struct v3dv_subpass_attachment *attachment = &subpass->color_attachments[rt];
const uint32_t attachment_idx = attachment->attachment;
if (attachment_idx == VK_ATTACHMENT_UNUSED)
return;
const struct v3dv_framebuffer *framebuffer = state->framebuffer;
assert(attachment_idx < framebuffer->attachment_count);
struct v3dv_image_view *iview = framebuffer->attachments[attachment_idx];
assert(iview->aspects & VK_IMAGE_ASPECT_COLOR_BIT);
*rt_bpp = iview->internal_bpp;
*rt_type = iview->internal_type;
*rt_clamp = V3D_RENDER_TARGET_CLAMP_NONE;
}
static void
cmd_buffer_render_pass_emit_load(struct v3dv_cmd_buffer *cmd_buffer,
struct v3dv_cl *cl,
struct v3dv_image_view *iview,
uint32_t layer,
uint32_t buffer)
{
const struct v3dv_image *image = iview->image;
const struct v3d_resource_slice *slice = &image->slices[iview->base_level];
uint32_t layer_offset = v3dv_layer_offset(image,
iview->base_level,
iview->first_layer + layer);
cl_emit(cl, LOAD_TILE_BUFFER_GENERAL, load) {
load.buffer_to_load = buffer;
load.address = v3dv_cl_address(image->mem->bo, layer_offset);
load.input_image_format = iview->format->rt_type;
load.r_b_swap = iview->swap_rb;
load.memory_format = slice->tiling;
if (slice->tiling == VC5_TILING_UIF_NO_XOR ||
slice->tiling == VC5_TILING_UIF_XOR) {
load.height_in_ub_or_stride =
slice->padded_height_of_output_image_in_uif_blocks;
} else if (slice->tiling == VC5_TILING_RASTER) {
load.height_in_ub_or_stride = slice->stride;
}
if (image->samples > VK_SAMPLE_COUNT_1_BIT)
load.decimate_mode = V3D_DECIMATE_MODE_ALL_SAMPLES;
else
load.decimate_mode = V3D_DECIMATE_MODE_SAMPLE_0;
}
}
static void
cmd_buffer_render_pass_emit_loads(struct v3dv_cmd_buffer *cmd_buffer,
struct v3dv_cl *cl,
uint32_t layer)
{
const struct v3dv_cmd_buffer_state *state = &cmd_buffer->state;
const struct v3dv_framebuffer *framebuffer = state->framebuffer;
const struct v3dv_render_pass *pass = state->pass;
const struct v3dv_subpass *subpass = &pass->subpasses[state->subpass_idx];
for (uint32_t i = 0; i < subpass->color_count; i++) {
uint32_t attachment_idx = subpass->color_attachments[i].attachment;
if (attachment_idx == VK_ATTACHMENT_UNUSED)
continue;
const struct v3dv_render_pass_attachment *attachment =
&state->pass->attachments[attachment_idx];
/* According to the Vulkan spec:
*
* "The load operation for each sample in an attachment happens before
* any recorded command which accesses the sample in the first subpass
* where the attachment is used."
*
* If the load operation is CLEAR, we must only clear once on the first
* subpass that uses the attachment (and in that case we don't LOAD).
* After that, we always want to load so we don't lose any rendering done
* by a previous subpass to the same attachment. We also want to load
* if the current job is continuing subpass work started by a previous
* job, for the same reason.
*
* If the render area is not aligned to tile boundaries then we have
* tiles which are partially covered by it. In this case, we need to
* load the tiles so we can preserve the pixels that are outside the
* render area for any such tiles.
*/
assert(state->job->first_subpass >= attachment->first_subpass);
bool needs_load =
state->job->first_subpass > attachment->first_subpass ||
state->job->is_subpass_continue ||
attachment->desc.loadOp == VK_ATTACHMENT_LOAD_OP_LOAD ||
!state->tile_aligned_render_area;
if (needs_load) {
struct v3dv_image_view *iview = framebuffer->attachments[attachment_idx];
cmd_buffer_render_pass_emit_load(cmd_buffer, cl, iview,
layer, RENDER_TARGET_0 + i);
}
}
uint32_t ds_attachment_idx = subpass->ds_attachment.attachment;
if (ds_attachment_idx != VK_ATTACHMENT_UNUSED) {
const struct v3dv_render_pass_attachment *ds_attachment =
&state->pass->attachments[ds_attachment_idx];
assert(state->job->first_subpass >= ds_attachment->first_subpass);
bool needs_load =
state->job->first_subpass > ds_attachment->first_subpass ||
state->job->is_subpass_continue ||
ds_attachment->desc.loadOp == VK_ATTACHMENT_LOAD_OP_LOAD ||
ds_attachment->desc.stencilLoadOp == VK_ATTACHMENT_LOAD_OP_LOAD ||
!state->tile_aligned_render_area;
if (needs_load) {
struct v3dv_image_view *iview =
framebuffer->attachments[ds_attachment_idx];
/* From the Vulkan spec:
*
* "When an image view of a depth/stencil image is used as a
* depth/stencil framebuffer attachment, the aspectMask is ignored
* and both depth and stencil image subresources are used."
*/
const uint32_t zs_buffer =
v3dv_zs_buffer_from_vk_format(iview->image->vk_format);
cmd_buffer_render_pass_emit_load(cmd_buffer, cl,
iview, layer, zs_buffer);
}
}
cl_emit(cl, END_OF_LOADS, end);
}
static void
cmd_buffer_render_pass_emit_store(struct v3dv_cmd_buffer *cmd_buffer,
struct v3dv_cl *cl,
uint32_t attachment_idx,
uint32_t layer,
uint32_t buffer,
bool clear)
{
const struct v3dv_image_view *iview =
cmd_buffer->state.framebuffer->attachments[attachment_idx];
const struct v3dv_image *image = iview->image;
const struct v3d_resource_slice *slice = &image->slices[iview->base_level];
uint32_t layer_offset = v3dv_layer_offset(image,
iview->base_level,
iview->first_layer + layer);
cl_emit(cl, STORE_TILE_BUFFER_GENERAL, store) {
store.buffer_to_store = buffer;
store.address = v3dv_cl_address(image->mem->bo, layer_offset);
store.clear_buffer_being_stored = clear;
store.output_image_format = iview->format->rt_type;
store.r_b_swap = iview->swap_rb;
store.memory_format = slice->tiling;
if (slice->tiling == VC5_TILING_UIF_NO_XOR ||
slice->tiling == VC5_TILING_UIF_XOR) {
store.height_in_ub_or_stride =
slice->padded_height_of_output_image_in_uif_blocks;
} else if (slice->tiling == VC5_TILING_RASTER) {
store.height_in_ub_or_stride = slice->stride;
}
if (image->samples > VK_SAMPLE_COUNT_1_BIT)
store.decimate_mode = V3D_DECIMATE_MODE_ALL_SAMPLES;
else
store.decimate_mode = V3D_DECIMATE_MODE_SAMPLE_0;
}
}
static void
cmd_buffer_render_pass_emit_stores(struct v3dv_cmd_buffer *cmd_buffer,
struct v3dv_cl *cl,
uint32_t layer)
{
struct v3dv_cmd_buffer_state *state = &cmd_buffer->state;
const struct v3dv_subpass *subpass =
&state->pass->subpasses[state->subpass_idx];
bool has_stores = false;
for (uint32_t i = 0; i < subpass->color_count; i++) {
uint32_t attachment_idx = subpass->color_attachments[i].attachment;
if (attachment_idx == VK_ATTACHMENT_UNUSED)
continue;
const struct v3dv_render_pass_attachment *attachment =
&state->pass->attachments[attachment_idx];
assert(state->job->first_subpass >= attachment->first_subpass);
assert(state->subpass_idx >= attachment->first_subpass);
assert(state->subpass_idx <= attachment->last_subpass);
/* Only clear once on the first subpass that uses the attachment */
bool needs_clear =
state->tile_aligned_render_area &&
state->job->first_subpass == attachment->first_subpass &&
attachment->desc.loadOp == VK_ATTACHMENT_LOAD_OP_CLEAR &&
!state->job->is_subpass_continue;
/* Skip the last store if it is not required */
bool needs_store =
state->subpass_idx < attachment->last_subpass ||
attachment->desc.storeOp == VK_ATTACHMENT_STORE_OP_STORE ||
needs_clear ||
!state->job->is_subpass_finish;
if (needs_store) {
cmd_buffer_render_pass_emit_store(cmd_buffer, cl,
attachment_idx, layer,
RENDER_TARGET_0 + i,
needs_clear);
has_stores = true;
}
}
/* FIXME: separate stencil
*
* GFXH-1461/GFXH-1689: The per-buffer store command's clear
* buffer bit is broken for depth/stencil. In addition, the
* clear packet's Z/S bit is broken, but the RTs bit ends up
* clearing Z/S.
*
* This means that when we implement depth/stencil clearing we
* need to emit a separate clear before we start the render pass,
* since the RTs bit is for clearing all render targets, and we might
* not want to do that. We might want to consider emitting clears for
* all RTs needing clearing just once ahead of the first subpass.
*/
bool needs_depth_clear = false;
bool needs_stencil_clear = false;
uint32_t ds_attachment_idx = subpass->ds_attachment.attachment;
if (ds_attachment_idx != VK_ATTACHMENT_UNUSED) {
const struct v3dv_render_pass_attachment *ds_attachment =
&state->pass->attachments[ds_attachment_idx];
assert(state->job->first_subpass >= ds_attachment->first_subpass);
assert(state->subpass_idx >= ds_attachment->first_subpass);
assert(state->subpass_idx <= ds_attachment->last_subpass);
/* From the Vulkan spec, VkImageSubresourceRange:
*
* "When an image view of a depth/stencil image is used as a
* depth/stencil framebuffer attachment, the aspectMask is ignored
* and both depth and stencil image subresources are used."
*
* So we ignore the aspects from the subresource range of the image view
* for the depth/stencil attachment, but we still need to restrict this
* to aspects that actually exist in the image.
*/
const VkImageAspectFlags aspects =
vk_format_aspects(ds_attachment->desc.format);
/* Only clear once on the first subpass that uses the attachment */
needs_depth_clear =
(aspects & VK_IMAGE_ASPECT_DEPTH_BIT) &&
state->tile_aligned_render_area &&
state->job->first_subpass == ds_attachment->first_subpass &&
ds_attachment->desc.loadOp == VK_ATTACHMENT_LOAD_OP_CLEAR &&
!state->job->is_subpass_continue;
needs_stencil_clear =
(aspects & VK_IMAGE_ASPECT_STENCIL_BIT) &&
state->tile_aligned_render_area &&
state->job->first_subpass == ds_attachment->first_subpass &&
ds_attachment->desc.stencilLoadOp == VK_ATTACHMENT_LOAD_OP_CLEAR &&
!state->job->is_subpass_continue;
/* Skip the last store if it is not required */
bool needs_depth_store =
(aspects & VK_IMAGE_ASPECT_DEPTH_BIT) &&
(state->subpass_idx < ds_attachment->last_subpass ||
ds_attachment->desc.storeOp == VK_ATTACHMENT_STORE_OP_STORE ||
needs_depth_clear ||
!state->job->is_subpass_finish);
bool needs_stencil_store =
(aspects & VK_IMAGE_ASPECT_STENCIL_BIT) &&
(state->subpass_idx < ds_attachment->last_subpass ||
ds_attachment->desc.stencilStoreOp == VK_ATTACHMENT_STORE_OP_STORE ||
needs_stencil_clear ||
!state->job->is_subpass_finish);
bool needs_ds_clear = needs_stencil_clear || needs_depth_clear;
bool needs_ds_store = needs_stencil_store || needs_depth_store;
if (needs_ds_store) {
uint32_t zs_buffer = v3dv_zs_buffer_from_aspect_bits(aspects);
cmd_buffer_render_pass_emit_store(cmd_buffer, cl,
ds_attachment_idx, layer,
zs_buffer, needs_ds_clear);
has_stores = true;
}
}
/* We always need to emit at least one dummy store */
if (!has_stores) {
cl_emit(cl, STORE_TILE_BUFFER_GENERAL, store) {
store.buffer_to_store = NONE;
}
}
/* FIXME: see fixme remark for depth/stencil above */
if (needs_depth_clear && needs_stencil_clear) {
cl_emit(cl, CLEAR_TILE_BUFFERS, clear) {
clear.clear_z_stencil_buffer = true;
clear.clear_all_render_targets = true;
}
}
}
static void
cmd_buffer_render_pass_emit_per_tile_rcl(struct v3dv_cmd_buffer *cmd_buffer,
uint32_t layer)
{
struct v3dv_job *job = cmd_buffer->state.job;
assert(job);
/* Emit the generic list in our indirect state -- the rcl will just
* have pointers into it.
*/
struct v3dv_cl *cl = &job->indirect;
v3dv_cl_ensure_space(cl, 200, 1);
struct v3dv_cl_reloc tile_list_start = v3dv_cl_get_address(cl);
cl_emit(cl, TILE_COORDINATES_IMPLICIT, coords);
cmd_buffer_render_pass_emit_loads(cmd_buffer, cl, layer);
/* The binner starts out writing tiles assuming that the initial mode
* is triangles, so make sure that's the case.
*/
cl_emit(cl, PRIM_LIST_FORMAT, fmt) {
fmt.primitive_type = LIST_TRIANGLES;
}
cl_emit(cl, BRANCH_TO_IMPLICIT_TILE_LIST, branch);
cmd_buffer_render_pass_emit_stores(cmd_buffer, cl, layer);
cl_emit(cl, END_OF_TILE_MARKER, end);
cl_emit(cl, RETURN_FROM_SUB_LIST, ret);
cl_emit(&job->rcl, START_ADDRESS_OF_GENERIC_TILE_LIST, branch) {
branch.start = tile_list_start;
branch.end = v3dv_cl_get_address(cl);
}
}
static void
cmd_buffer_emit_render_pass_layer_rcl(struct v3dv_cmd_buffer *cmd_buffer,
uint32_t layer)
{
const struct v3dv_cmd_buffer_state *state = &cmd_buffer->state;
struct v3dv_job *job = cmd_buffer->state.job;
struct v3dv_cl *rcl = &job->rcl;
/* If doing multicore binning, we would need to initialize each
* core's tile list here.
*/
const struct v3dv_frame_tiling *tiling = &job->frame_tiling;
const uint32_t tile_alloc_offset =
64 * layer * tiling->draw_tiles_x * tiling->draw_tiles_y;
cl_emit(rcl, MULTICORE_RENDERING_TILE_LIST_SET_BASE, list) {
list.address = v3dv_cl_address(job->tile_alloc, tile_alloc_offset);
}
cl_emit(rcl, MULTICORE_RENDERING_SUPERTILE_CFG, config) {
config.number_of_bin_tile_lists = 1;
config.total_frame_width_in_tiles = tiling->draw_tiles_x;
config.total_frame_height_in_tiles = tiling->draw_tiles_y;
config.supertile_width_in_tiles = tiling->supertile_width;
config.supertile_height_in_tiles = tiling->supertile_height;
config.total_frame_width_in_supertiles =
tiling->frame_width_in_supertiles;
config.total_frame_height_in_supertiles =
tiling->frame_height_in_supertiles;
}
/* Start by clearing the tile buffer. */
cl_emit(rcl, TILE_COORDINATES, coords) {
coords.tile_column_number = 0;
coords.tile_row_number = 0;
}
/* Emit an initial clear of the tile buffers. This is necessary
* for any buffers that should be cleared (since clearing
* normally happens at the *end* of the generic tile list), but
* it's also nice to clear everything so the first tile doesn't
* inherit any contents from some previous frame.
*
* Also, implement the GFXH-1742 workaround. There's a race in
* the HW between the RCL updating the TLB's internal type/size
* and the spawning of the QPU instances using the TLB's current
* internal type/size. To make sure the QPUs get the right
* state, we need 1 dummy store in between internal type/size
* changes on V3D 3.x, and 2 dummy stores on 4.x.
*/
for (int i = 0; i < 2; i++) {
if (i > 0)
cl_emit(rcl, TILE_COORDINATES, coords);
cl_emit(rcl, END_OF_LOADS, end);
cl_emit(rcl, STORE_TILE_BUFFER_GENERAL, store) {
store.buffer_to_store = NONE;
}
if (i == 0 && cmd_buffer->state.tile_aligned_render_area) {
cl_emit(rcl, CLEAR_TILE_BUFFERS, clear) {
clear.clear_z_stencil_buffer = true;
clear.clear_all_render_targets = true;
}
}
cl_emit(rcl, END_OF_TILE_MARKER, end);
}
cl_emit(rcl, FLUSH_VCD_CACHE, flush);
cmd_buffer_render_pass_emit_per_tile_rcl(cmd_buffer, layer);
uint32_t supertile_w_in_pixels =
tiling->tile_width * tiling->supertile_width;
uint32_t supertile_h_in_pixels =
tiling->tile_height * tiling->supertile_height;
const uint32_t min_x_supertile =
state->render_area.offset.x / supertile_w_in_pixels;
const uint32_t min_y_supertile =
state->render_area.offset.y / supertile_h_in_pixels;
uint32_t max_render_x = state->render_area.offset.x;
if (state->render_area.extent.width > 0)
max_render_x += state->render_area.extent.width - 1;
uint32_t max_render_y = state->render_area.offset.y;
if (state->render_area.extent.height > 0)
max_render_y += state->render_area.extent.height - 1;
const uint32_t max_x_supertile = max_render_x / supertile_w_in_pixels;
const uint32_t max_y_supertile = max_render_y / supertile_h_in_pixels;
for (int y = min_y_supertile; y <= max_y_supertile; y++) {
for (int x = min_x_supertile; x <= max_x_supertile; x++) {
cl_emit(rcl, SUPERTILE_COORDINATES, coords) {
coords.column_number_in_supertiles = x;
coords.row_number_in_supertiles = y;
}
}
}
}
static void
set_rcl_early_z_config(struct v3dv_job *job,
bool *early_z_disable,
uint32_t *early_z_test_and_update_direction)
{
switch (job->first_ez_state) {
case VC5_EZ_UNDECIDED:
case VC5_EZ_LT_LE:
*early_z_disable = false;
*early_z_test_and_update_direction = EARLY_Z_DIRECTION_LT_LE;
break;
case VC5_EZ_GT_GE:
*early_z_disable = false;
*early_z_test_and_update_direction = EARLY_Z_DIRECTION_GT_GE;
break;
case VC5_EZ_DISABLED:
*early_z_disable = true;
break;
}
}
static void
cmd_buffer_emit_render_pass_rcl(struct v3dv_cmd_buffer *cmd_buffer)
{
struct v3dv_job *job = cmd_buffer->state.job;
assert(job);
const struct v3dv_frame_tiling *tiling = &job->frame_tiling;
const struct v3dv_cmd_buffer_state *state = &cmd_buffer->state;
const struct v3dv_framebuffer *framebuffer = state->framebuffer;
const uint32_t fb_layers = framebuffer->layers;
v3dv_cl_ensure_space_with_branch(&job->rcl, 200 +
MAX2(fb_layers, 1) * 256 *
cl_packet_length(SUPERTILE_COORDINATES));
assert(state->subpass_idx < state->pass->subpass_count);
const struct v3dv_subpass *subpass =
&state->pass->subpasses[state->subpass_idx];
struct v3dv_cl *rcl = &job->rcl;
/* Comon config must be the first TILE_RENDERING_MODE_CFG and
* Z_STENCIL_CLEAR_VALUES must be last. The ones in between are optional
* updates to the previous HW state.
*/
const uint32_t ds_attachment_idx = subpass->ds_attachment.attachment;
cl_emit(rcl, TILE_RENDERING_MODE_CFG_COMMON, config) {
config.image_width_pixels = framebuffer->width;
config.image_height_pixels = framebuffer->height;
config.number_of_render_targets = MAX2(subpass->color_count, 1);
config.multisample_mode_4x = false; /* FIXME */
config.maximum_bpp_of_all_render_targets = tiling->internal_bpp;
if (ds_attachment_idx != VK_ATTACHMENT_UNUSED) {
const struct v3dv_image_view *iview =
framebuffer->attachments[ds_attachment_idx];
config.internal_depth_type = iview->internal_type;
set_rcl_early_z_config(job,
&config.early_z_disable,
&config.early_z_test_and_update_direction);
} else {
config.early_z_disable = true;
}
}
for (uint32_t i = 0; i < subpass->color_count; i++) {
uint32_t attachment_idx = subpass->color_attachments[i].attachment;
if (attachment_idx == VK_ATTACHMENT_UNUSED)
continue;
struct v3dv_image_view *iview =
state->framebuffer->attachments[attachment_idx];
const struct v3dv_image *image = iview->image;
const struct v3d_resource_slice *slice = &image->slices[iview->base_level];
const uint32_t *clear_color =
&state->attachments[attachment_idx].clear_value.color[0];
uint32_t clear_pad = 0;
if (slice->tiling == VC5_TILING_UIF_NO_XOR ||
slice->tiling == VC5_TILING_UIF_XOR) {
int uif_block_height = v3d_utile_height(image->cpp) * 2;
uint32_t implicit_padded_height =
align(framebuffer->height, uif_block_height) / uif_block_height;
if (slice->padded_height_of_output_image_in_uif_blocks -
implicit_padded_height >= 15) {
clear_pad = slice->padded_height_of_output_image_in_uif_blocks;
}
}
cl_emit(rcl, TILE_RENDERING_MODE_CFG_CLEAR_COLORS_PART1, clear) {
clear.clear_color_low_32_bits = clear_color[0];
clear.clear_color_next_24_bits = clear_color[1] & 0xffffff;
clear.render_target_number = i;
};
if (iview->internal_bpp >= V3D_INTERNAL_BPP_64) {
cl_emit(rcl, TILE_RENDERING_MODE_CFG_CLEAR_COLORS_PART2, clear) {
clear.clear_color_mid_low_32_bits =
((clear_color[1] >> 24) | (clear_color[2] << 8));
clear.clear_color_mid_high_24_bits =
((clear_color[2] >> 24) | ((clear_color[3] & 0xffff) << 8));
clear.render_target_number = i;
};
}
if (iview->internal_bpp >= V3D_INTERNAL_BPP_128 || clear_pad) {
cl_emit(rcl, TILE_RENDERING_MODE_CFG_CLEAR_COLORS_PART3, clear) {
clear.uif_padded_height_in_uif_blocks = clear_pad;
clear.clear_color_high_16_bits = clear_color[3] >> 16;
clear.render_target_number = i;
};
}
}
cl_emit(rcl, TILE_RENDERING_MODE_CFG_COLOR, rt) {
v3dv_render_pass_setup_render_target(cmd_buffer, 0,
&rt.render_target_0_internal_bpp,
&rt.render_target_0_internal_type,
&rt.render_target_0_clamp);
v3dv_render_pass_setup_render_target(cmd_buffer, 1,
&rt.render_target_1_internal_bpp,
&rt.render_target_1_internal_type,
&rt.render_target_1_clamp);
v3dv_render_pass_setup_render_target(cmd_buffer, 2,
&rt.render_target_2_internal_bpp,
&rt.render_target_2_internal_type,
&rt.render_target_2_clamp);
v3dv_render_pass_setup_render_target(cmd_buffer, 3,
&rt.render_target_3_internal_bpp,
&rt.render_target_3_internal_type,
&rt.render_target_3_clamp);
}
/* Ends rendering mode config. */
if (ds_attachment_idx != VK_ATTACHMENT_UNUSED) {
cl_emit(rcl, TILE_RENDERING_MODE_CFG_ZS_CLEAR_VALUES, clear) {
clear.z_clear_value =
state->attachments[ds_attachment_idx].clear_value.z;
clear.stencil_clear_value =
state->attachments[ds_attachment_idx].clear_value.s;
};
} else {
cl_emit(rcl, TILE_RENDERING_MODE_CFG_ZS_CLEAR_VALUES, clear) {
clear.z_clear_value = 1.0f;
clear.stencil_clear_value = 0;
};
}
/* Always set initial block size before the first branch, which needs
* to match the value from binning mode config.
*/
cl_emit(rcl, TILE_LIST_INITIAL_BLOCK_SIZE, init) {
init.use_auto_chained_tile_lists = true;
init.size_of_first_block_in_chained_tile_lists =
TILE_ALLOCATION_BLOCK_SIZE_64B;
}
for (int layer = 0; layer < MAX2(1, fb_layers); layer++)
cmd_buffer_emit_render_pass_layer_rcl(cmd_buffer, layer);
cl_emit(rcl, END_OF_RENDERING, end);
}
static void
cmd_buffer_emit_subpass_clears(struct v3dv_cmd_buffer *cmd_buffer)
{
assert(cmd_buffer->state.pass);
assert(cmd_buffer->state.subpass_idx < cmd_buffer->state.pass->subpass_count);
const struct v3dv_cmd_buffer_state *state = &cmd_buffer->state;
const struct v3dv_render_pass *pass = state->pass;
const struct v3dv_subpass *subpass = &pass->subpasses[state->subpass_idx];
uint32_t att_count = 0;
VkClearAttachment atts[V3D_MAX_DRAW_BUFFERS + 1]; /* 4 color + D/S */
for (uint32_t i = 0; i < subpass->color_count; i++) {
const uint32_t att_idx = subpass->color_attachments[i].attachment;
if (att_idx == VK_ATTACHMENT_UNUSED)
continue;
struct v3dv_render_pass_attachment *att = &pass->attachments[att_idx];
if (att->desc.loadOp != VK_ATTACHMENT_LOAD_OP_CLEAR)
continue;
if (state->subpass_idx != att->first_subpass)
continue;
atts[att_count].aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
atts[att_count].colorAttachment = i;
atts[att_count].clearValue = state->attachments[att_idx].vk_clear_value;
att_count++;
}
const uint32_t ds_att_idx = subpass->ds_attachment.attachment;
if (ds_att_idx != VK_ATTACHMENT_UNUSED) {
struct v3dv_render_pass_attachment *att = &pass->attachments[ds_att_idx];
if (state->subpass_idx == att->first_subpass) {
VkImageAspectFlags aspects = vk_format_aspects(att->desc.format);
if (att->desc.loadOp != VK_ATTACHMENT_LOAD_OP_CLEAR)
aspects &= ~VK_IMAGE_ASPECT_DEPTH_BIT;
if (att->desc.stencilLoadOp != VK_ATTACHMENT_LOAD_OP_CLEAR)
aspects &= ~VK_IMAGE_ASPECT_STENCIL_BIT;
atts[att_count].aspectMask = aspects;
atts[att_count].colorAttachment = 0; /* Ignored */
atts[att_count].clearValue =
state->attachments[ds_att_idx].vk_clear_value;
att_count++;
}
}
if (att_count == 0)
return;
perf_debug("Render area doesn't match render pass granularity, falling "
"back to vkCmdClearAttachments for VK_ATTACHMENT_LOAD_OP_CLEAR");
/* From the Vulkan 1.0 spec:
*
* "VK_ATTACHMENT_LOAD_OP_CLEAR specifies that the contents within the
* render area will be cleared to a uniform value, which is specified
* when a render pass instance is begun."
*
* So the clear is only constrained by the render area and not by pipeline
* state such as scissor or viewport, these are the semantics of
* vkCmdClearAttachments as well.
*/
VkCommandBuffer _cmd_buffer = v3dv_cmd_buffer_to_handle(cmd_buffer);
VkClearRect rect = {
.rect = state->render_area,
.baseArrayLayer = 0,
.layerCount = 1,
};
v3dv_CmdClearAttachments(_cmd_buffer, att_count, atts, 1, &rect);
}
static struct v3dv_job *
cmd_buffer_subpass_create_job(struct v3dv_cmd_buffer *cmd_buffer,
uint32_t subpass_idx)
{
struct v3dv_cmd_buffer_state *state = &cmd_buffer->state;
assert(subpass_idx < state->pass->subpass_count);
/* Starting a new job can trigger a finish of the current one, so don't
* change the command buffer state for the new job until we are done creating
* the new job.
*/
struct v3dv_job *job = v3dv_cmd_buffer_start_job(cmd_buffer, subpass_idx);
if (!job)
return NULL;
state->subpass_idx = subpass_idx;
/* If we are starting a new job we need to setup binning. */
if (job->first_subpass == state->subpass_idx) {
const struct v3dv_subpass *subpass =
&state->pass->subpasses[state->subpass_idx];
const struct v3dv_framebuffer *framebuffer = state->framebuffer;
const uint8_t internal_bpp =
v3dv_framebuffer_compute_internal_bpp(framebuffer, subpass);
v3dv_job_start_frame(job,
framebuffer->width,
framebuffer->height,
framebuffer->layers,
subpass->color_count,
internal_bpp);
/* FIXME: we don't support input/resolve attachments yet */
assert(subpass->input_count == 0);
assert(subpass->resolve_attachments == NULL);
}
return job;
}
struct v3dv_job *
v3dv_cmd_buffer_subpass_start(struct v3dv_cmd_buffer *cmd_buffer,
uint32_t subpass_idx)
{
struct v3dv_cmd_buffer_state *state = &cmd_buffer->state;
assert(subpass_idx < state->pass->subpass_count);
struct v3dv_job *job =
cmd_buffer_subpass_create_job(cmd_buffer, subpass_idx);
if (!job)
return NULL;
/* Check if our render area is aligned to tile boundaries. We have to do
* this in each subpass because the subset of attachments used can change
* and with that the tile size selected by the hardware can change too.
*/
assert(state->framebuffer);
VkExtent2D fb_extent = {
.width = state->framebuffer->width,
.height = state->framebuffer->height
};
cmd_buffer_update_tile_alignment(cmd_buffer, &state->render_area, &fb_extent);
/* If we can't use TLB clears then we need to emit draw clears for any
* LOAD_OP_CLEAR attachments in this subpass now.
*/
if (!cmd_buffer->state.tile_aligned_render_area)
cmd_buffer_emit_subpass_clears(cmd_buffer);
return job;
}
struct v3dv_job *
v3dv_cmd_buffer_subpass_resume(struct v3dv_cmd_buffer *cmd_buffer,
uint32_t subpass_idx)
{
struct v3dv_cmd_buffer_state *state = &cmd_buffer->state;
assert(subpass_idx < state->pass->subpass_count);
struct v3dv_job *job =
cmd_buffer_subpass_create_job(cmd_buffer, subpass_idx);
if (!job)
return NULL;
job->is_subpass_continue = true;
return job;
}
void
v3dv_cmd_buffer_subpass_finish(struct v3dv_cmd_buffer *cmd_buffer)
{
/* We can end up here without a job if the last command recorded into the
* subpass already finished the job (for example a pipeline barrier). In
* that case we miss to set the is_subpass_finish flag, but that is not
* required for proper behavior.
*/
struct v3dv_job *job = cmd_buffer->state.job;
if (job)
job->is_subpass_finish = true;
}
void
v3dv_CmdEndRenderPass(VkCommandBuffer commandBuffer)
{
V3DV_FROM_HANDLE(v3dv_cmd_buffer, cmd_buffer, commandBuffer);
/* Emit last subpass */
struct v3dv_cmd_buffer_state *state = &cmd_buffer->state;
assert(state->subpass_idx == state->pass->subpass_count - 1);
/* See v3dv_cmd_buffer_subpass_finish for why we can get here without an
* active job.
*/
if (cmd_buffer->state.job) {
v3dv_cmd_buffer_subpass_finish(cmd_buffer);
v3dv_cmd_buffer_finish_job(cmd_buffer);
}
/* We are no longer inside a render pass */
state->framebuffer = NULL;
state->pass = NULL;
state->subpass_idx = -1;
}
VkResult
v3dv_EndCommandBuffer(VkCommandBuffer commandBuffer)
{
V3DV_FROM_HANDLE(v3dv_cmd_buffer, cmd_buffer, commandBuffer);
if (cmd_buffer->state.oom)
return VK_ERROR_OUT_OF_HOST_MEMORY;
cmd_buffer->status = V3DV_CMD_BUFFER_STATUS_EXECUTABLE;
struct v3dv_job *job = cmd_buffer->state.job;
if (job) {
/* We get here if we recorded commands after the last render pass in the
* command buffer. Make sure we finish this last job.
*
* FIXME: is this even possible?
*/
assert(v3dv_cl_offset(&job->bcl) != 0);
v3dv_cmd_buffer_finish_job(cmd_buffer);
}
return VK_SUCCESS;
}
/* This goes though the list of possible dynamic states in the pipeline and,
* for those that are not configured as dynamic, copies relevant state into
* the command buffer.
*/
static void
cmd_buffer_bind_pipeline_static_state(struct v3dv_cmd_buffer *cmd_buffer,
const struct v3dv_dynamic_state *src)
{
struct v3dv_dynamic_state *dest = &cmd_buffer->state.dynamic;
uint32_t dynamic_mask = src->mask;
uint32_t dirty = 0;
/* See note on SetViewport. We follow radv approach to only allow to set
* the number of viewports/scissors at pipeline creation time.
*/
dest->viewport.count = src->viewport.count;
dest->scissor.count = src->scissor.count;
if (!(dynamic_mask & V3DV_DYNAMIC_VIEWPORT)) {
if (memcmp(&dest->viewport.viewports, &src->viewport.viewports,
src->viewport.count * sizeof(VkViewport))) {
typed_memcpy(dest->viewport.viewports,
src->viewport.viewports,
src->viewport.count);
typed_memcpy(dest->viewport.scale, src->viewport.scale,
src->viewport.count);
typed_memcpy(dest->viewport.translate, src->viewport.translate,
src->viewport.count);
dirty |= V3DV_CMD_DIRTY_VIEWPORT;
}
}
if (!(dynamic_mask & V3DV_DYNAMIC_SCISSOR)) {
if (memcmp(&dest->scissor.scissors, &src->scissor.scissors,
src->scissor.count * sizeof(VkRect2D))) {
typed_memcpy(dest->scissor.scissors,
src->scissor.scissors, src->scissor.count);
dirty |= V3DV_CMD_DIRTY_SCISSOR;
}
}
if (!(dynamic_mask & V3DV_DYNAMIC_STENCIL_COMPARE_MASK)) {
if (memcmp(&dest->stencil_compare_mask, &src->stencil_compare_mask,
sizeof(src->stencil_compare_mask))) {
dest->stencil_compare_mask = src->stencil_compare_mask;
dirty |= V3DV_CMD_DIRTY_STENCIL_COMPARE_MASK;
}
}
if (!(dynamic_mask & V3DV_DYNAMIC_STENCIL_WRITE_MASK)) {
if (memcmp(&dest->stencil_write_mask, &src->stencil_write_mask,
sizeof(src->stencil_write_mask))) {
dest->stencil_write_mask = src->stencil_write_mask;
dirty |= V3DV_CMD_DIRTY_STENCIL_WRITE_MASK;
}
}
if (!(dynamic_mask & V3DV_DYNAMIC_STENCIL_REFERENCE)) {
if (memcmp(&dest->stencil_reference, &src->stencil_reference,
sizeof(src->stencil_reference))) {
dest->stencil_reference = src->stencil_reference;
dirty |= V3DV_CMD_DIRTY_STENCIL_REFERENCE;
}
}
if (!(dynamic_mask & V3DV_DYNAMIC_BLEND_CONSTANTS)) {
if (memcmp(dest->blend_constants, src->blend_constants,
sizeof(src->blend_constants))) {
memcpy(dest->blend_constants, src->blend_constants,
sizeof(src->blend_constants));
dirty |= V3DV_CMD_DIRTY_BLEND_CONSTANTS;
}
}
cmd_buffer->state.dynamic.mask = dynamic_mask;
cmd_buffer->state.dirty |= dirty;
}
static void
cmd_buffer_update_ez_state(struct v3dv_cmd_buffer *cmd_buffer,
struct v3dv_pipeline *pipeline)
{
struct v3dv_job *job = cmd_buffer->state.job;
assert(job);
switch (pipeline->ez_state) {
case VC5_EZ_UNDECIDED:
/* If the pipeline didn't pick a direction but didn't disable, then go
* along with the current EZ state. This allows EZ optimization for Z
* func == EQUAL or NEVER.
*/
break;
case VC5_EZ_LT_LE:
case VC5_EZ_GT_GE:
/* If the pipeline picked a direction, then it needs to match the current
* direction if we've decided on one.
*/
if (job->ez_state == VC5_EZ_UNDECIDED)
job->ez_state = pipeline->ez_state;
else if (job->ez_state != pipeline->ez_state)
job->ez_state = VC5_EZ_DISABLED;
break;
case VC5_EZ_DISABLED:
/* If the pipeline disables EZ because of a bad Z func or stencil
* operation, then we can't do any more EZ in this frame.
*/
job->ez_state = VC5_EZ_DISABLED;
break;
}
/* If the FS writes Z, then it may update against the chosen EZ direction */
if (pipeline->fs->current_variant->prog_data.fs->writes_z)
job->ez_state = VC5_EZ_DISABLED;
if (job->first_ez_state == VC5_EZ_UNDECIDED &&
job->ez_state != VC5_EZ_DISABLED) {
job->first_ez_state = job->ez_state;
}
}
/* Note that the following poopulate methods doesn't do a detailed fill-up of
* the v3d_fs_key. Here we just fill-up cmd_buffer specific info. All info
* coming from the pipeline create info was alredy filled up when the pipeline
* was created
*
* It also returns if it was able to populate the info based on the descriptor
* info. Note that returning false is a possible valid outcome, that could
* happens if the descriptors are being bound with more than one
* CmdBindDescriptorSet call (and this is needed in some cases, like if you
* are skipping descriptor sets). If that is the case we just stop trying
* getting the variant.
*/
static bool
cmd_buffer_populate_v3d_key(struct v3d_key *key,
struct v3dv_cmd_buffer *cmd_buffer)
{
if (cmd_buffer->state.pipeline->combined_index_map != NULL) {
struct v3dv_descriptor_map *texture_map = &cmd_buffer->state.pipeline->texture_map;
struct v3dv_descriptor_map *sampler_map = &cmd_buffer->state.pipeline->sampler_map;
struct v3dv_descriptor_state *descriptor_state =
&cmd_buffer->state.descriptor_state;
hash_table_foreach(cmd_buffer->state.pipeline->combined_index_map, entry) {
uint32_t combined_idx = (uint32_t)(uintptr_t) (entry->data);
uint32_t combined_idx_key =
cmd_buffer->state.pipeline->combined_index_to_key_map[combined_idx];
uint32_t texture_idx;
uint32_t sampler_idx;
v3dv_pipeline_combined_index_key_unpack(combined_idx_key,
&texture_idx, &sampler_idx);
struct v3dv_image_view *image_view =
v3dv_descriptor_map_get_image_view(descriptor_state,
texture_map,
cmd_buffer->state.pipeline->layout,
texture_idx);
if (image_view == NULL)
return false;
const struct v3dv_sampler *sampler = NULL;
if (sampler_idx != V3DV_NO_SAMPLER_IDX) {
sampler =
v3dv_descriptor_map_get_sampler(descriptor_state,
sampler_map,
cmd_buffer->state.pipeline->layout,
sampler_idx);
if (sampler == NULL)
return false;
}
key->tex[combined_idx].return_size =
v3dv_get_tex_return_size(image_view->format,
sampler ? sampler->compare_enable : false);
if (key->tex[combined_idx].return_size == 16) {
key->tex[combined_idx].return_channels = 2;
} else {
key->tex[combined_idx].return_channels = 4;
}
/* Note: we don't need to do anything for the swizzle, as that is
* handled with the swizzle info at the Texture State, and the
* default values for key->tex[].swizzle were already filled up on
* the pipeline populate.
*/
}
}
return true;
}
static bool
update_fs_variant(struct v3dv_cmd_buffer *cmd_buffer)
{
struct v3dv_shader_variant *variant;
struct v3dv_pipeline_stage *p_stage = cmd_buffer->state.pipeline->fs;
struct v3d_fs_key local_key;
/* We start with a copy of the original pipeline key */
memcpy(&local_key, &p_stage->key.fs, sizeof(struct v3d_fs_key));
if (cmd_buffer_populate_v3d_key(&local_key.base, cmd_buffer)) {
variant = v3dv_get_shader_variant(p_stage, &local_key.base,
sizeof(struct v3d_fs_key));
if (p_stage->current_variant != variant) {
p_stage->current_variant = variant;
}
} else {
return false;
}
return true;
}
static bool
update_vs_variant(struct v3dv_cmd_buffer *cmd_buffer)
{
struct v3dv_shader_variant *variant;
struct v3dv_pipeline_stage *p_stage = cmd_buffer->state.pipeline->vs;
struct v3d_vs_key local_key;
/* We start with a copy of the original pipeline key */
memcpy(&local_key, &p_stage->key.vs, sizeof(struct v3d_vs_key));
if (cmd_buffer_populate_v3d_key(&local_key.base, cmd_buffer)) {
variant = v3dv_get_shader_variant(p_stage, &local_key.base,
sizeof(struct v3d_vs_key));
if (p_stage->current_variant != variant) {
p_stage->current_variant = variant;
}
} else {
return false;
}
p_stage = cmd_buffer->state.pipeline->vs_bin;
memcpy(&local_key, &p_stage->key.vs, sizeof(struct v3d_vs_key));
if (cmd_buffer_populate_v3d_key(&local_key.base, cmd_buffer)) {
variant = v3dv_get_shader_variant(p_stage, &local_key.base,
sizeof(struct v3d_vs_key));
if (p_stage->current_variant != variant) {
p_stage->current_variant = variant;
}
} else {
return false;
}
return true;
}
/*
* Some updates on the cmd buffer requires also updates on the shader being
* compiled at the pipeline. The poster boy here are textures, as the compiler
* needs to do certain things depending on the texture format. So here we
* re-create the v3d_keys and update the variant. Note that internally the
* pipeline has a variant cache (hash table) to avoid unneeded compilations
*
* Returns if it was able to go to the end of the update variants
* process. Note that this is not the same that getting a new variant or
* not. If at this moment we don't have all the descriptors bound, we can't
* check for a new variant, and the SHADER_VARIANTS flag needs to keep dirty.
*/
static bool
update_pipeline_variants(struct v3dv_cmd_buffer *cmd_buffer)
{
assert(cmd_buffer->state.pipeline);
return (update_fs_variant(cmd_buffer) ||
update_vs_variant(cmd_buffer));
}
static void
bind_graphics_pipeline(struct v3dv_cmd_buffer *cmd_buffer,
struct v3dv_pipeline *pipeline)
{
if (cmd_buffer->state.pipeline == pipeline)
return;
/* Enable always flush if we are blending to sRGB render targets. This
* fixes test failures in:
* dEQP-VK.pipeline.blend.format.r8g8b8a8_srgb.*
*
* FIXME: not sure why we need this. The tile buffer is always linear, with
* conversion from/to sRGB happening on tile load/store operations. This
* means that when we enable flushing the only difference is that we convert
* to sRGB on the store after each draw call and we convert from sRGB on the
* load before each draw call, but the blend happens in linear format in the
* tile buffer anyway, which is the same scenario as if we didn't flush.
*/
assert(pipeline->subpass);
if (pipeline->subpass->has_srgb_rt && pipeline->blend.enables) {
assert(cmd_buffer->state.job);
cmd_buffer->state.job->always_flush = true;
perf_debug("flushing draw calls for subpass %d because bound pipeline "
"uses sRGB blending\n", cmd_buffer->state.subpass_idx);
}
cmd_buffer->state.pipeline = pipeline;
cmd_buffer_bind_pipeline_static_state(cmd_buffer, &pipeline->dynamic_state);
cmd_buffer_update_ez_state(cmd_buffer, pipeline);
if (cmd_buffer->state.dirty & V3DV_CMD_DIRTY_SHADER_VARIANTS) {
if (update_pipeline_variants(cmd_buffer))
cmd_buffer->state.dirty &= ~V3DV_CMD_DIRTY_SHADER_VARIANTS;
}
cmd_buffer->state.dirty |= V3DV_CMD_DIRTY_PIPELINE;
}
void
v3dv_CmdBindPipeline(VkCommandBuffer commandBuffer,
VkPipelineBindPoint pipelineBindPoint,
VkPipeline _pipeline)
{
V3DV_FROM_HANDLE(v3dv_cmd_buffer, cmd_buffer, commandBuffer);
V3DV_FROM_HANDLE(v3dv_pipeline, pipeline, _pipeline);
switch (pipelineBindPoint) {
case VK_PIPELINE_BIND_POINT_COMPUTE:
assert(!"VK_PIPELINE_BIND_POINT_COMPUTE not supported yet");
break;
case VK_PIPELINE_BIND_POINT_GRAPHICS:
bind_graphics_pipeline(cmd_buffer, pipeline);
break;
default:
assert(!"invalid bind point");
break;
}
}
/* FIXME: C&P from radv. tu has similar code. Perhaps common place? */
void
v3dv_viewport_compute_xform(const VkViewport *viewport,
float scale[3],
float translate[3])
{
float x = viewport->x;
float y = viewport->y;
float half_width = 0.5f * viewport->width;
float half_height = 0.5f * viewport->height;
double n = viewport->minDepth;
double f = viewport->maxDepth;
scale[0] = half_width;
translate[0] = half_width + x;
scale[1] = half_height;
translate[1] = half_height + y;
scale[2] = (f - n);
translate[2] = n;
/* It seems that if the scale is small enough the hardware won't clip
* correctly so we work around this my choosing the smallest scale that
* seems to work.
*
* This case is exercised by CTS:
* dEQP-VK.draw.inverted_depth_ranges.nodepthclamp_deltazero
*/
const float min_abs_scale = 0.000009f;
if (fabs(scale[2]) < min_abs_scale)
scale[2] = min_abs_scale * (scale[2] < 0 ? -1.0f : 1.0f);
}
void
v3dv_CmdSetViewport(VkCommandBuffer commandBuffer,
uint32_t firstViewport,
uint32_t viewportCount,
const VkViewport *pViewports)
{
V3DV_FROM_HANDLE(v3dv_cmd_buffer, cmd_buffer, commandBuffer);
struct v3dv_cmd_buffer_state *state = &cmd_buffer->state;
const uint32_t total_count = firstViewport + viewportCount;
assert(firstViewport < MAX_VIEWPORTS);
assert(total_count >= 1 && total_count <= MAX_VIEWPORTS);
/* anv allows CmdSetViewPort to change how many viewports are being used,
* while radv not, using the value set on the pipeline creation. spec
* doesn't specify, but radv approach makes more sense, as CmdSetViewport
* is intended to set dynamically a specific viewport, increasing the
* number of viewport used seems like a non-defined collateral
* effect. Would make sense to open a spec issue to clarify. For now, as we
* only support one, it is not really important, but we follow radv
* approach.
*/
if (!memcmp(state->dynamic.viewport.viewports + firstViewport,
pViewports, viewportCount * sizeof(*pViewports))) {
return;
}
memcpy(state->dynamic.viewport.viewports + firstViewport, pViewports,
viewportCount * sizeof(*pViewports));
for (uint32_t i = firstViewport; i < firstViewport + viewportCount; i++) {
v3dv_viewport_compute_xform(&state->dynamic.viewport.viewports[i],
state->dynamic.viewport.scale[i],
state->dynamic.viewport.translate[i]);
}
cmd_buffer->state.dirty |= V3DV_CMD_DIRTY_VIEWPORT;
}
void
v3dv_CmdSetScissor(VkCommandBuffer commandBuffer,
uint32_t firstScissor,
uint32_t scissorCount,
const VkRect2D *pScissors)
{
V3DV_FROM_HANDLE(v3dv_cmd_buffer, cmd_buffer, commandBuffer);
struct v3dv_cmd_buffer_state *state = &cmd_buffer->state;
const uint32_t total_count = firstScissor + scissorCount;
assert(firstScissor < MAX_SCISSORS);
assert(total_count >= 1 && total_count <= MAX_SCISSORS);
/* See note on CmdSetViewport related to anv/radv differences about setting
* total viewports used. Also applies to scissor.
*/
if (!memcmp(state->dynamic.scissor.scissors + firstScissor,
pScissors, scissorCount * sizeof(*pScissors))) {
return;
}
memcpy(state->dynamic.scissor.scissors + firstScissor, pScissors,
scissorCount * sizeof(*pScissors));
cmd_buffer->state.dirty |= V3DV_CMD_DIRTY_SCISSOR;
}
static void
emit_scissor(struct v3dv_cmd_buffer *cmd_buffer)
{
struct v3dv_dynamic_state *dynamic = &cmd_buffer->state.dynamic;
/* FIXME: right now we only support one viewport. viewporst[0] would work
* now, but would need to change if we allow multiple viewports.
*/
float *vptranslate = dynamic->viewport.translate[0];
float *vpscale = dynamic->viewport.scale[0];
float vp_minx = -fabsf(vpscale[0]) + vptranslate[0];
float vp_maxx = fabsf(vpscale[0]) + vptranslate[0];
float vp_miny = -fabsf(vpscale[1]) + vptranslate[1];
float vp_maxy = fabsf(vpscale[1]) + vptranslate[1];
/* Quoting from v3dx_emit:
* "Clip to the scissor if it's enabled, but still clip to the
* drawable regardless since that controls where the binner
* tries to put things.
*
* Additionally, always clip the rendering to the viewport,
* since the hardware does guardband clipping, meaning
* primitives would rasterize outside of the view volume."
*/
uint32_t minx, miny, maxx, maxy;
/* From the Vulkan spec:
*
* "The application must ensure (using scissor if necessary) that all
* rendering is contained within the render area. The render area must be
* contained within the framebuffer dimensions."
*
* So it is the application's responsibility to ensure this. Still, we can
* help by automatically restricting the scissor rect to the render area.
*/
minx = MAX2(vp_minx, cmd_buffer->state.render_area.offset.x);
miny = MAX2(vp_miny, cmd_buffer->state.render_area.offset.y);
maxx = MIN2(vp_maxx, cmd_buffer->state.render_area.offset.x +
cmd_buffer->state.render_area.extent.width);
maxy = MIN2(vp_maxy, cmd_buffer->state.render_area.offset.y +
cmd_buffer->state.render_area.extent.height);
/* Clip against user provided scissor if needed.
*
* FIXME: right now we only allow one scissor. Below would need to be
* updated if we support more
*/
if (dynamic->scissor.count > 0) {
VkRect2D *scissor = &dynamic->scissor.scissors[0];
minx = MAX2(minx, scissor->offset.x);
miny = MAX2(miny, scissor->offset.y);
maxx = MIN2(maxx, scissor->offset.x + scissor->extent.width);
maxy = MIN2(maxy, scissor->offset.y + scissor->extent.height);
}
/* If the scissor is outside the viewport area we end up with
* min{x,y} > max{x,y}.
*/
if (minx > maxx)
maxx = minx;
if (miny > maxy)
maxy = miny;
cmd_buffer->state.clip_window.offset.x = minx;
cmd_buffer->state.clip_window.offset.y = miny;
cmd_buffer->state.clip_window.extent.width = maxx - minx;
cmd_buffer->state.clip_window.extent.height = maxy - miny;
emit_clip_window(cmd_buffer->state.job, &cmd_buffer->state.clip_window);
cmd_buffer->state.dirty &= ~V3DV_CMD_DIRTY_SCISSOR;
}
static void
emit_viewport(struct v3dv_cmd_buffer *cmd_buffer)
{
struct v3dv_dynamic_state *dynamic = &cmd_buffer->state.dynamic;
/* FIXME: right now we only support one viewport. viewporst[0] would work
* now, would need to change if we allow multiple viewports
*/
float *vptranslate = dynamic->viewport.translate[0];
float *vpscale = dynamic->viewport.scale[0];
struct v3dv_job *job = cmd_buffer->state.job;
assert(job);
cl_emit(&job->bcl, CLIPPER_XY_SCALING, clip) {
clip.viewport_half_width_in_1_256th_of_pixel = vpscale[0] * 256.0f;
clip.viewport_half_height_in_1_256th_of_pixel = vpscale[1] * 256.0f;
}
cl_emit(&job->bcl, CLIPPER_Z_SCALE_AND_OFFSET, clip) {
clip.viewport_z_offset_zc_to_zs = vptranslate[2];
clip.viewport_z_scale_zc_to_zs = vpscale[2];
}
cl_emit(&job->bcl, CLIPPER_Z_MIN_MAX_CLIPPING_PLANES, clip) {
/* Vulkan's Z NDC is [0..1], unlile OpenGL which is [-1, 1] */
float z1 = vptranslate[2];
float z2 = vptranslate[2] + vpscale[2];
clip.minimum_zw = MIN2(z1, z2);
clip.maximum_zw = MAX2(z1, z2);
}
cl_emit(&job->bcl, VIEWPORT_OFFSET, vp) {
vp.viewport_centre_x_coordinate = vptranslate[0];
vp.viewport_centre_y_coordinate = vptranslate[1];
}
cmd_buffer->state.dirty &= ~V3DV_CMD_DIRTY_VIEWPORT;
}
static void
emit_stencil(struct v3dv_cmd_buffer *cmd_buffer)
{
struct v3dv_job *job = cmd_buffer->state.job;
assert(job);
struct v3dv_pipeline *pipeline = cmd_buffer->state.pipeline;
struct v3dv_dynamic_state *dynamic_state = &cmd_buffer->state.dynamic;
const uint32_t dynamic_stencil_states = V3DV_DYNAMIC_STENCIL_COMPARE_MASK |
V3DV_DYNAMIC_STENCIL_WRITE_MASK |
V3DV_DYNAMIC_STENCIL_REFERENCE;
bool emitted_stencil = false;
for (uint32_t i = 0; i < 2; i++) {
if (pipeline->emit_stencil_cfg[i]) {
if (dynamic_state->mask & dynamic_stencil_states) {
cl_emit_with_prepacked(&job->bcl, STENCIL_CFG,
pipeline->stencil_cfg[i], config) {
if (dynamic_state->mask & V3DV_DYNAMIC_STENCIL_COMPARE_MASK) {
config.stencil_test_mask =
i == 0 ? dynamic_state->stencil_compare_mask.front :
dynamic_state->stencil_compare_mask.back;
}
if (dynamic_state->mask & V3DV_DYNAMIC_STENCIL_WRITE_MASK) {
config.stencil_write_mask =
i == 0 ? dynamic_state->stencil_write_mask.front :
dynamic_state->stencil_write_mask.back;
}
if (dynamic_state->mask & V3DV_DYNAMIC_STENCIL_REFERENCE) {
config.stencil_ref_value =
i == 0 ? dynamic_state->stencil_reference.front :
dynamic_state->stencil_reference.back;
}
}
} else {
cl_emit_prepacked(&job->bcl, &pipeline->stencil_cfg[i]);
}
emitted_stencil = true;
}
}
if (emitted_stencil) {
const uint32_t dynamic_stencil_dirty_flags =
V3DV_CMD_DIRTY_STENCIL_COMPARE_MASK |
V3DV_CMD_DIRTY_STENCIL_WRITE_MASK |
V3DV_CMD_DIRTY_STENCIL_REFERENCE;
cmd_buffer->state.dirty &= ~dynamic_stencil_dirty_flags;
}
}
static void
emit_blend(struct v3dv_cmd_buffer *cmd_buffer)
{
struct v3dv_job *job = cmd_buffer->state.job;
assert(job);
struct v3dv_pipeline *pipeline = cmd_buffer->state.pipeline;
assert(pipeline);
const uint32_t blend_packets_size =
cl_packet_length(BLEND_ENABLES) +
cl_packet_length(BLEND_CONSTANT_COLOR) +
cl_packet_length(BLEND_CFG) * V3D_MAX_DRAW_BUFFERS +
cl_packet_length(COLOR_WRITE_MASKS);
v3dv_cl_ensure_space_with_branch(&job->bcl, blend_packets_size);
if (cmd_buffer->state.dirty & V3DV_CMD_DIRTY_PIPELINE) {
if (pipeline->blend.enables) {
cl_emit(&job->bcl, BLEND_ENABLES, enables) {
enables.mask = pipeline->blend.enables;
}
}
for (uint32_t i = 0; i < V3D_MAX_DRAW_BUFFERS; i++) {
if (pipeline->blend.enables & (1 << i))
cl_emit_prepacked(&job->bcl, &pipeline->blend.cfg[i]);
}
cl_emit(&job->bcl, COLOR_WRITE_MASKS, mask) {
mask.mask = pipeline->blend.color_write_masks;
}
}
if (pipeline->blend.needs_color_constants &&
cmd_buffer->state.dirty & V3DV_CMD_DIRTY_BLEND_CONSTANTS) {
cl_emit_prepacked(&job->bcl, &pipeline->blend.constant_color);
cmd_buffer->state.dirty &= ~V3DV_CMD_DIRTY_BLEND_CONSTANTS;
}
}
static void
emit_flat_shade_flags(struct v3dv_job *job,
int varying_offset,
uint32_t varyings,
enum V3DX(Varying_Flags_Action) lower,
enum V3DX(Varying_Flags_Action) higher)
{
cl_emit(&job->bcl, FLAT_SHADE_FLAGS, flags) {
flags.varying_offset_v0 = varying_offset;
flags.flat_shade_flags_for_varyings_v024 = varyings;
flags.action_for_flat_shade_flags_of_lower_numbered_varyings = lower;
flags.action_for_flat_shade_flags_of_higher_numbered_varyings = higher;
}
}
static void
emit_noperspective_flags(struct v3dv_job *job,
int varying_offset,
uint32_t varyings,
enum V3DX(Varying_Flags_Action) lower,
enum V3DX(Varying_Flags_Action) higher)
{
cl_emit(&job->bcl, NON_PERSPECTIVE_FLAGS, flags) {
flags.varying_offset_v0 = varying_offset;
flags.non_perspective_flags_for_varyings_v024 = varyings;
flags.action_for_non_perspective_flags_of_lower_numbered_varyings = lower;
flags.action_for_non_perspective_flags_of_higher_numbered_varyings = higher;
}
}
static void
emit_centroid_flags(struct v3dv_job *job,
int varying_offset,
uint32_t varyings,
enum V3DX(Varying_Flags_Action) lower,
enum V3DX(Varying_Flags_Action) higher)
{
cl_emit(&job->bcl, CENTROID_FLAGS, flags) {
flags.varying_offset_v0 = varying_offset;
flags.centroid_flags_for_varyings_v024 = varyings;
flags.action_for_centroid_flags_of_lower_numbered_varyings = lower;
flags.action_for_centroid_flags_of_higher_numbered_varyings = higher;
}
}
static bool
emit_varying_flags(struct v3dv_job *job,
uint32_t num_flags,
const uint32_t *flags,
void (*flag_emit_callback)(struct v3dv_job *job,
int varying_offset,
uint32_t flags,
enum V3DX(Varying_Flags_Action) lower,
enum V3DX(Varying_Flags_Action) higher))
{
bool emitted_any = false;
for (int i = 0; i < num_flags; i++) {
if (!flags[i])
continue;
if (emitted_any) {
flag_emit_callback(job, i, flags[i],
V3D_VARYING_FLAGS_ACTION_UNCHANGED,
V3D_VARYING_FLAGS_ACTION_UNCHANGED);
} else if (i == 0) {
flag_emit_callback(job, i, flags[i],
V3D_VARYING_FLAGS_ACTION_UNCHANGED,
V3D_VARYING_FLAGS_ACTION_ZEROED);
} else {
flag_emit_callback(job, i, flags[i],
V3D_VARYING_FLAGS_ACTION_ZEROED,
V3D_VARYING_FLAGS_ACTION_ZEROED);
}
emitted_any = true;
}
return emitted_any;
}
static void
emit_varyings_state(struct v3dv_cmd_buffer *cmd_buffer)
{
struct v3dv_job *job = cmd_buffer->state.job;
struct v3dv_pipeline *pipeline = cmd_buffer->state.pipeline;
struct v3d_fs_prog_data *prog_data_fs =
pipeline->fs->current_variant->prog_data.fs;
const uint32_t num_flags =
ARRAY_SIZE(prog_data_fs->flat_shade_flags);
const uint32_t *flat_shade_flags = prog_data_fs->flat_shade_flags;
const uint32_t *noperspective_flags = prog_data_fs->noperspective_flags;
const uint32_t *centroid_flags = prog_data_fs->centroid_flags;
if (!emit_varying_flags(job, num_flags, flat_shade_flags,
emit_flat_shade_flags)) {
cl_emit(&job->bcl, ZERO_ALL_FLAT_SHADE_FLAGS, flags);
}
if (!emit_varying_flags(job, num_flags, noperspective_flags,
emit_noperspective_flags)) {
cl_emit(&job->bcl, ZERO_ALL_NON_PERSPECTIVE_FLAGS, flags);
}
if (!emit_varying_flags(job, num_flags, centroid_flags,
emit_centroid_flags)) {
cl_emit(&job->bcl, ZERO_ALL_CENTROID_FLAGS, flags);
}
}
static void
emit_configuration_bits(struct v3dv_cmd_buffer *cmd_buffer)
{
struct v3dv_job *job = cmd_buffer->state.job;
struct v3dv_pipeline *pipeline = cmd_buffer->state.pipeline;
cl_emit_with_prepacked(&job->bcl, CFG_BITS, pipeline->cfg_bits, config) {
config.early_z_updates_enable = job->ez_state != VC5_EZ_DISABLED;
}
}
static void
emit_gl_shader_state(struct v3dv_cmd_buffer *cmd_buffer)
{
struct v3dv_job *job = cmd_buffer->state.job;
assert(job);
struct v3dv_cmd_buffer_state *state = &cmd_buffer->state;
struct v3dv_pipeline *pipeline = state->pipeline;
assert(pipeline);
/* Upload the uniforms to the indirect CL first */
struct v3dv_cl_reloc fs_uniforms =
v3dv_write_uniforms(cmd_buffer, pipeline->fs);
struct v3dv_cl_reloc vs_uniforms =
v3dv_write_uniforms(cmd_buffer, pipeline->vs);
struct v3dv_cl_reloc vs_bin_uniforms =
v3dv_write_uniforms(cmd_buffer, pipeline->vs_bin);
/* Update the cache dirty flag based on the shader progs data */
job->tmu_dirty_rcl |= pipeline->vs_bin->current_variant->prog_data.vs->base.tmu_dirty_rcl;
job->tmu_dirty_rcl |= pipeline->vs->current_variant->prog_data.vs->base.tmu_dirty_rcl;
job->tmu_dirty_rcl |= pipeline->fs->current_variant->prog_data.fs->base.tmu_dirty_rcl;
/* See GFXH-930 workaround below */
uint32_t num_elements_to_emit = MAX2(pipeline->va_count, 1);
uint32_t shader_rec_offset =
v3dv_cl_ensure_space(&job->indirect,
cl_packet_length(GL_SHADER_STATE_RECORD) +
num_elements_to_emit *
cl_packet_length(GL_SHADER_STATE_ATTRIBUTE_RECORD),
32);
cl_emit_with_prepacked(&job->indirect, GL_SHADER_STATE_RECORD,
pipeline->shader_state_record, shader) {
/* FIXME: we are setting this values here and during the
* prepacking. This is because both cl_emit_with_prepacked and v3dv_pack
* asserts for minimum values of these. It would be good to get
* v3dv_pack to assert on the final value if possible
*/
shader.min_coord_shader_input_segments_required_in_play =
pipeline->vpm_cfg_bin.As;
shader.min_vertex_shader_input_segments_required_in_play =
pipeline->vpm_cfg.As;
shader.coordinate_shader_code_address =
v3dv_cl_address(pipeline->vs_bin->current_variant->assembly_bo, 0);
shader.vertex_shader_code_address =
v3dv_cl_address(pipeline->vs->current_variant->assembly_bo, 0);
shader.fragment_shader_code_address =
v3dv_cl_address(pipeline->fs->current_variant->assembly_bo, 0);
shader.coordinate_shader_uniforms_address = vs_bin_uniforms;
shader.vertex_shader_uniforms_address = vs_uniforms;
shader.fragment_shader_uniforms_address = fs_uniforms;
shader.address_of_default_attribute_values =
v3dv_cl_address(pipeline->default_attribute_values, 0);
}
/* Upload vertex element attributes (SHADER_STATE_ATTRIBUTE_RECORD) */
bool cs_loaded_any = false;
const uint32_t packet_length =
cl_packet_length(GL_SHADER_STATE_ATTRIBUTE_RECORD);
for (uint32_t i = 0; i < pipeline->va_count; i++) {
uint32_t binding = pipeline->va[i].binding;
uint32_t location = pipeline->va[i].driver_location;
struct v3dv_vertex_binding *c_vb = &cmd_buffer->state.vertex_bindings[binding];
struct v3d_vs_prog_data *prog_data_vs =
pipeline->vs->current_variant->prog_data.vs;
struct v3d_vs_prog_data *prog_data_vs_bin =
pipeline->vs_bin->current_variant->prog_data.vs;
cl_emit_with_prepacked(&job->indirect, GL_SHADER_STATE_ATTRIBUTE_RECORD,
&pipeline->vertex_attrs[i * packet_length], attr) {
assert(c_vb->buffer->mem->bo);
attr.address = v3dv_cl_address(c_vb->buffer->mem->bo,
c_vb->buffer->mem_offset +
pipeline->va[i].offset +
c_vb->offset);
attr.number_of_values_read_by_coordinate_shader =
prog_data_vs_bin->vattr_sizes[location];
attr.number_of_values_read_by_vertex_shader =
prog_data_vs->vattr_sizes[location];
/* GFXH-930: At least one attribute must be enabled and read by CS
* and VS. If we have attributes being consumed by the VS but not
* the CS, then set up a dummy load of the last attribute into the
* CS's VPM inputs. (Since CS is just dead-code-elimination compared
* to VS, we can't have CS loading but not VS).
*/
if (prog_data_vs->vattr_sizes[location])
cs_loaded_any = true;
if (binding == pipeline->va_count - 1 && !cs_loaded_any) {
attr.number_of_values_read_by_coordinate_shader = 1;
}
attr.maximum_index = 0xffffff;
}
}
if (pipeline->va_count == 0) {
/* GFXH-930: At least one attribute must be enabled and read
* by CS and VS. If we have no attributes being consumed by
* the shader, set up a dummy to be loaded into the VPM.
*/
cl_emit(&job->indirect, GL_SHADER_STATE_ATTRIBUTE_RECORD, attr) {
/* Valid address of data whose value will be unused. */
attr.address = v3dv_cl_address(job->indirect.bo, 0);
attr.type = ATTRIBUTE_FLOAT;
attr.stride = 0;
attr.vec_size = 1;
attr.number_of_values_read_by_coordinate_shader = 1;
attr.number_of_values_read_by_vertex_shader = 1;
}
}
cl_emit_prepacked(&job->bcl, &pipeline->vcm_cache_size);
cl_emit(&job->bcl, GL_SHADER_STATE, state) {
state.address = v3dv_cl_address(job->indirect.bo,
shader_rec_offset);
state.number_of_attribute_arrays = num_elements_to_emit;
}
cmd_buffer->state.dirty &= ~(V3DV_CMD_DIRTY_VERTEX_BUFFER |
V3DV_CMD_DIRTY_DESCRIPTOR_SETS |
V3DV_CMD_DIRTY_PUSH_CONSTANTS);
}
static void
emit_occlusion_query(struct v3dv_cmd_buffer *cmd_buffer)
{
struct v3dv_job *job = cmd_buffer->state.job;
assert(job);
cl_emit(&job->bcl, OCCLUSION_QUERY_COUNTER, counter) {
if (cmd_buffer->state.query.active_query) {
counter.address =
v3dv_cl_address(cmd_buffer->state.query.active_query, 0);
}
}
cmd_buffer->state.dirty &= ~V3DV_CMD_DIRTY_OCCLUSION_QUERY;
}
/* This stores command buffer state that we might be about to stomp for
* a meta operation.
*/
void
v3dv_cmd_buffer_meta_state_push(struct v3dv_cmd_buffer *cmd_buffer,
bool push_descriptor_state)
{
struct v3dv_cmd_buffer_state *state = &cmd_buffer->state;
if (state->subpass_idx != -1) {
state->meta.subpass_idx = state->subpass_idx;
state->meta.framebuffer = v3dv_framebuffer_to_handle(state->framebuffer);
state->meta.pass = v3dv_render_pass_to_handle(state->pass);
const uint32_t attachment_state_item_size =
sizeof(struct v3dv_cmd_buffer_attachment_state);
const uint32_t attachment_state_total_size =
attachment_state_item_size * state->attachment_count;
if (state->meta.attachment_alloc_count < state->attachment_count) {
if (state->meta.attachment_alloc_count > 0)
vk_free(&cmd_buffer->device->alloc, state->meta.attachments);
state->meta.attachments = vk_zalloc(&cmd_buffer->device->alloc,
attachment_state_total_size, 8,
VK_SYSTEM_ALLOCATION_SCOPE_COMMAND);
state->meta.attachment_alloc_count = state->attachment_count;
}
state->meta.attachment_count = state->attachment_count;
memcpy(state->meta.attachments, state->attachments,
attachment_state_total_size);
state->meta.tile_aligned_render_area = state->tile_aligned_render_area;
memcpy(&state->meta.render_area, &state->render_area, sizeof(VkRect2D));
}
state->meta.pipeline = v3dv_pipeline_to_handle(state->pipeline);
if (state->meta.pipeline)
memcpy(&state->meta.dynamic, &state->dynamic, sizeof(state->dynamic));
if (push_descriptor_state && state->descriptor_state.valid != 0) {
memcpy(&state->meta.descriptor_state, &state->descriptor_state,
sizeof(state->descriptor_state));
}
/* FIXME: if we keep track of wether we have bound any push constant state
* at all we could restruct this only to cases where it is actually
* necessary.
*/
memcpy(state->meta.push_constants, cmd_buffer->push_constants_data,
sizeof(state->meta.push_constants));
}
/* This restores command buffer state after a meta operation
*/
void
v3dv_cmd_buffer_meta_state_pop(struct v3dv_cmd_buffer *cmd_buffer,
uint32_t dirty_dynamic_state)
{
struct v3dv_cmd_buffer_state *state = &cmd_buffer->state;
if (state->meta.subpass_idx != -1) {
state->pass = v3dv_render_pass_from_handle(state->meta.pass);
state->framebuffer = v3dv_framebuffer_from_handle(state->meta.framebuffer);
assert(state->meta.attachment_count <= state->attachment_count);
const uint32_t attachment_state_item_size =
sizeof(struct v3dv_cmd_buffer_attachment_state);
const uint32_t attachment_state_total_size =
attachment_state_item_size * state->meta.attachment_count;
state->attachment_count = state->meta.attachment_count;
memcpy(state->attachments, state->meta.attachments,
attachment_state_total_size);
state->tile_aligned_render_area = state->meta.tile_aligned_render_area;
memcpy(&state->render_area, &state->meta.render_area, sizeof(VkRect2D));
v3dv_cmd_buffer_subpass_resume(cmd_buffer, state->meta.subpass_idx);
} else {
state->subpass_idx = -1;
}
if (state->meta.pipeline != VK_NULL_HANDLE) {
v3dv_CmdBindPipeline(v3dv_cmd_buffer_to_handle(cmd_buffer),
VK_PIPELINE_BIND_POINT_GRAPHICS,
state->meta.pipeline);
memcpy(&state->dynamic, &state->meta.dynamic, sizeof(state->dynamic));
state->dirty |= dirty_dynamic_state;
} else {
state->pipeline = VK_NULL_HANDLE;
}
if (state->meta.descriptor_state.valid != 0) {
memcpy(&state->descriptor_state, &state->meta.descriptor_state,
sizeof(state->descriptor_state));
} else {
state->descriptor_state.valid = 0;
}
memcpy(cmd_buffer->push_constants_data, state->meta.push_constants,
sizeof(state->meta.push_constants));
state->meta.pipeline = VK_NULL_HANDLE;
state->meta.framebuffer = VK_NULL_HANDLE;
state->meta.pass = VK_NULL_HANDLE;
state->meta.subpass_idx = -1;
state->meta.descriptor_state.valid = 0;
}
/* FIXME: C&P from v3dx_draw. Refactor to common place? */
static uint32_t
v3d_hw_prim_type(enum pipe_prim_type prim_type)
{
switch (prim_type) {
case PIPE_PRIM_POINTS:
case PIPE_PRIM_LINES:
case PIPE_PRIM_LINE_LOOP:
case PIPE_PRIM_LINE_STRIP:
case PIPE_PRIM_TRIANGLES:
case PIPE_PRIM_TRIANGLE_STRIP:
case PIPE_PRIM_TRIANGLE_FAN:
return prim_type;
case PIPE_PRIM_LINES_ADJACENCY:
case PIPE_PRIM_LINE_STRIP_ADJACENCY:
case PIPE_PRIM_TRIANGLES_ADJACENCY:
case PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY:
return 8 + (prim_type - PIPE_PRIM_LINES_ADJACENCY);
default:
unreachable("Unsupported primitive type");
}
}
struct v3dv_draw_info {
uint32_t vertex_count;
uint32_t instance_count;
uint32_t first_vertex;
uint32_t first_instance;
};
static void
cmd_buffer_emit_draw(struct v3dv_cmd_buffer *cmd_buffer,
struct v3dv_draw_info *info)
{
struct v3dv_job *job = cmd_buffer->state.job;
assert(job);
struct v3dv_cmd_buffer_state *state = &cmd_buffer->state;
struct v3dv_pipeline *pipeline = state->pipeline;
assert(pipeline);
uint32_t hw_prim_type = v3d_hw_prim_type(pipeline->vs->topology);
if (info->first_instance > 0) {
cl_emit(&job->bcl, BASE_VERTEX_BASE_INSTANCE, base) {
base.base_instance = info->first_instance;
base.base_vertex = 0;
}
}
if (info->instance_count > 1) {
cl_emit(&job->bcl, VERTEX_ARRAY_INSTANCED_PRIMS, prim) {
prim.mode = hw_prim_type;
prim.index_of_first_vertex = info->first_vertex;
prim.number_of_instances = info->instance_count;
prim.instance_length = info->vertex_count;
}
} else {
cl_emit(&job->bcl, VERTEX_ARRAY_PRIMS, prim) {
prim.mode = hw_prim_type;
prim.length = info->vertex_count;
prim.index_of_first_vertex = info->first_vertex;
}
}
}
static struct v3dv_job *
cmd_buffer_pre_draw_split_job(struct v3dv_cmd_buffer *cmd_buffer)
{
struct v3dv_job *job = cmd_buffer->state.job;
assert(job);
/* If the job has been flagged with 'always_flush' and it has already
* recorded any draw calls then we need to start a new job for it.
*/
if (job->always_flush && job->draw_count > 0) {
assert(cmd_buffer->state.pass);
/* First, flag the current job as not being the last in the
* current subpass
*/
job->is_subpass_finish = false;
/* Now start a new job in the same subpass and flag it as continuing
* the current subpass.
*/
job = v3dv_cmd_buffer_subpass_resume(cmd_buffer,
cmd_buffer->state.subpass_idx);
assert(job->draw_count == 0);
/* Inherit the 'always flush' behavior */
job->always_flush = true;
}
assert(job->draw_count == 0 || !job->always_flush);
return job;
}
static void
cmd_buffer_emit_pre_draw(struct v3dv_cmd_buffer *cmd_buffer)
{
/* If the job is configured to flush on every draw call we need to create
* a new job now.
*/
struct v3dv_job *job = cmd_buffer_pre_draw_split_job(cmd_buffer);
job->draw_count++;
/* FIXME: likely to be filtered by really needed states */
uint32_t *dirty = &cmd_buffer->state.dirty;
struct v3dv_dynamic_state *dynamic = &cmd_buffer->state.dynamic;
if (*dirty & (V3DV_CMD_DIRTY_PIPELINE |
V3DV_CMD_DIRTY_VERTEX_BUFFER |
V3DV_CMD_DIRTY_DESCRIPTOR_SETS |
V3DV_CMD_DIRTY_PUSH_CONSTANTS)) {
emit_gl_shader_state(cmd_buffer);
}
if (*dirty & (V3DV_CMD_DIRTY_PIPELINE)) {
emit_configuration_bits(cmd_buffer);
emit_varyings_state(cmd_buffer);
}
if (*dirty & (V3DV_CMD_DIRTY_VIEWPORT | V3DV_CMD_DIRTY_SCISSOR)) {
assert(dynamic->scissor.count > 0 || dynamic->viewport.count > 0);
emit_scissor(cmd_buffer);
}
if (*dirty & V3DV_CMD_DIRTY_VIEWPORT) {
emit_viewport(cmd_buffer);
}
const uint32_t dynamic_stencil_dirty_flags =
V3DV_CMD_DIRTY_STENCIL_COMPARE_MASK |
V3DV_CMD_DIRTY_STENCIL_WRITE_MASK |
V3DV_CMD_DIRTY_STENCIL_REFERENCE;
if (*dirty & (V3DV_CMD_DIRTY_PIPELINE | dynamic_stencil_dirty_flags))
emit_stencil(cmd_buffer);
if (*dirty & (V3DV_CMD_DIRTY_PIPELINE | V3DV_CMD_DIRTY_BLEND_CONSTANTS))
emit_blend(cmd_buffer);
if (*dirty & V3DV_CMD_DIRTY_OCCLUSION_QUERY)
emit_occlusion_query(cmd_buffer);
cmd_buffer->state.dirty &= ~V3DV_CMD_DIRTY_PIPELINE;
}
static void
cmd_buffer_draw(struct v3dv_cmd_buffer *cmd_buffer,
struct v3dv_draw_info *info)
{
cmd_buffer_emit_pre_draw(cmd_buffer);
cmd_buffer_emit_draw(cmd_buffer, info);
}
void
v3dv_CmdDraw(VkCommandBuffer commandBuffer,
uint32_t vertexCount,
uint32_t instanceCount,
uint32_t firstVertex,
uint32_t firstInstance)
{
V3DV_FROM_HANDLE(v3dv_cmd_buffer, cmd_buffer, commandBuffer);
struct v3dv_draw_info info = {};
info.vertex_count = vertexCount;
info.instance_count = instanceCount;
info.first_instance = firstInstance;
info.first_vertex = firstVertex;
cmd_buffer_draw(cmd_buffer, &info);
}
void
v3dv_CmdDrawIndexed(VkCommandBuffer commandBuffer,
uint32_t indexCount,
uint32_t instanceCount,
uint32_t firstIndex,
int32_t vertexOffset,
uint32_t firstInstance)
{
V3DV_FROM_HANDLE(v3dv_cmd_buffer, cmd_buffer, commandBuffer);
cmd_buffer_emit_pre_draw(cmd_buffer);
struct v3dv_job *job = cmd_buffer->state.job;
assert(job);
const struct v3dv_pipeline *pipeline = cmd_buffer->state.pipeline;
uint32_t hw_prim_type = v3d_hw_prim_type(pipeline->vs->topology);
uint8_t index_type = ffs(cmd_buffer->state.index_size) - 1;
uint32_t index_offset = firstIndex * cmd_buffer->state.index_size;
if (vertexOffset != 0 || firstInstance != 0) {
cl_emit(&job->bcl, BASE_VERTEX_BASE_INSTANCE, base) {
base.base_instance = firstInstance;
base.base_vertex = vertexOffset;
}
}
if (instanceCount == 1) {
cl_emit(&job->bcl, INDEXED_PRIM_LIST, prim) {
prim.index_type = index_type;
prim.length = indexCount;
prim.index_offset = index_offset;
prim.mode = hw_prim_type;
prim.enable_primitive_restarts = pipeline->primitive_restart;
}
} else if (instanceCount > 1) {
cl_emit(&job->bcl, INDEXED_INSTANCED_PRIM_LIST, prim) {
prim.index_type = index_type;
prim.index_offset = index_offset;
prim.mode = hw_prim_type;
prim.enable_primitive_restarts = pipeline->primitive_restart;
prim.number_of_instances = instanceCount;
prim.instance_length = indexCount;
}
}
}
void
v3dv_CmdDrawIndirect(VkCommandBuffer commandBuffer,
VkBuffer _buffer,
VkDeviceSize offset,
uint32_t drawCount,
uint32_t stride)
{
V3DV_FROM_HANDLE(v3dv_cmd_buffer, cmd_buffer, commandBuffer);
V3DV_FROM_HANDLE(v3dv_buffer, buffer, _buffer);
/* drawCount is the number of draws to execute, and can be zero. */
if (drawCount == 0)
return;
cmd_buffer_emit_pre_draw(cmd_buffer);
struct v3dv_job *job = cmd_buffer->state.job;
assert(job);
const struct v3dv_pipeline *pipeline = cmd_buffer->state.pipeline;
uint32_t hw_prim_type = v3d_hw_prim_type(pipeline->vs->topology);
cl_emit(&job->bcl, INDIRECT_VERTEX_ARRAY_INSTANCED_PRIMS, prim) {
prim.mode = hw_prim_type;
prim.number_of_draw_indirect_array_records = drawCount;
prim.stride_in_multiples_of_4_bytes = stride >> 2;
prim.address = v3dv_cl_address(buffer->mem->bo, offset);
}
}
void
v3dv_CmdDrawIndexedIndirect(VkCommandBuffer commandBuffer,
VkBuffer _buffer,
VkDeviceSize offset,
uint32_t drawCount,
uint32_t stride)
{
V3DV_FROM_HANDLE(v3dv_cmd_buffer, cmd_buffer, commandBuffer);
V3DV_FROM_HANDLE(v3dv_buffer, buffer, _buffer);
/* drawCount is the number of draws to execute, and can be zero. */
if (drawCount == 0)
return;
cmd_buffer_emit_pre_draw(cmd_buffer);
struct v3dv_job *job = cmd_buffer->state.job;
assert(job);
const struct v3dv_pipeline *pipeline = cmd_buffer->state.pipeline;
uint32_t hw_prim_type = v3d_hw_prim_type(pipeline->vs->topology);
uint8_t index_type = ffs(cmd_buffer->state.index_size) - 1;
cl_emit(&job->bcl, INDIRECT_INDEXED_INSTANCED_PRIM_LIST, prim) {
prim.index_type = index_type;
prim.mode = hw_prim_type;
prim.enable_primitive_restarts = pipeline->primitive_restart;
prim.number_of_draw_indirect_indexed_records = drawCount;
prim.stride_in_multiples_of_4_bytes = stride >> 2;
prim.address = v3dv_cl_address(buffer->mem->bo, offset);
}
}
void
v3dv_CmdPipelineBarrier(VkCommandBuffer commandBuffer,
VkPipelineStageFlags srcStageMask,
VkPipelineStageFlags dstStageMask,
VkDependencyFlags dependencyFlags,
uint32_t memoryBarrierCount,
const VkMemoryBarrier *pMemoryBarriers,
uint32_t bufferMemoryBarrierCount,
const VkBufferMemoryBarrier *pBufferMemoryBarriers,
uint32_t imageMemoryBarrierCount,
const VkImageMemoryBarrier *pImageMemoryBarriers)
{
V3DV_FROM_HANDLE(v3dv_cmd_buffer, cmd_buffer, commandBuffer);
struct v3dv_job *job = cmd_buffer->state.job;
if (!job)
return;
v3dv_cmd_buffer_finish_job(cmd_buffer);
}
void
v3dv_CmdBindVertexBuffers(VkCommandBuffer commandBuffer,
uint32_t firstBinding,
uint32_t bindingCount,
const VkBuffer *pBuffers,
const VkDeviceSize *pOffsets)
{
V3DV_FROM_HANDLE(v3dv_cmd_buffer, cmd_buffer, commandBuffer);
struct v3dv_vertex_binding *vb = cmd_buffer->state.vertex_bindings;
/* We have to defer setting up vertex buffer since we need the buffer
* stride from the pipeline.
*/
assert(firstBinding + bindingCount <= MAX_VBS);
for (uint32_t i = 0; i < bindingCount; i++) {
vb[firstBinding + i].buffer = v3dv_buffer_from_handle(pBuffers[i]);
vb[firstBinding + i].offset = pOffsets[i];
}
cmd_buffer->state.dirty |= V3DV_CMD_DIRTY_VERTEX_BUFFER;
}
void
v3dv_CmdBindIndexBuffer(VkCommandBuffer commandBuffer,
VkBuffer buffer,
VkDeviceSize offset,
VkIndexType indexType)
{
V3DV_FROM_HANDLE(v3dv_cmd_buffer, cmd_buffer, commandBuffer);
V3DV_FROM_HANDLE(v3dv_buffer, ibuffer, buffer);
struct v3dv_job *job = cmd_buffer->state.job;
assert(job);
cl_emit(&job->bcl, INDEX_BUFFER_SETUP, ib) {
ib.address = v3dv_cl_address(ibuffer->mem->bo, offset);
ib.size = ibuffer->mem->bo->size;
}
switch (indexType) {
case VK_INDEX_TYPE_UINT16:
cmd_buffer->state.index_size = 2;
break;
case VK_INDEX_TYPE_UINT32:
cmd_buffer->state.index_size = 4;
break;
default:
unreachable("Unsupported index type");
}
}
void
v3dv_CmdSetStencilCompareMask(VkCommandBuffer commandBuffer,
VkStencilFaceFlags faceMask,
uint32_t compareMask)
{
V3DV_FROM_HANDLE(v3dv_cmd_buffer, cmd_buffer, commandBuffer);
if (faceMask & VK_STENCIL_FACE_FRONT_BIT)
cmd_buffer->state.dynamic.stencil_compare_mask.front = compareMask & 0xff;
if (faceMask & VK_STENCIL_FACE_BACK_BIT)
cmd_buffer->state.dynamic.stencil_compare_mask.back = compareMask & 0xff;
cmd_buffer->state.dirty |= V3DV_CMD_DIRTY_STENCIL_COMPARE_MASK;
}
void
v3dv_CmdSetStencilWriteMask(VkCommandBuffer commandBuffer,
VkStencilFaceFlags faceMask,
uint32_t writeMask)
{
V3DV_FROM_HANDLE(v3dv_cmd_buffer, cmd_buffer, commandBuffer);
if (faceMask & VK_STENCIL_FACE_FRONT_BIT)
cmd_buffer->state.dynamic.stencil_write_mask.front = writeMask & 0xff;
if (faceMask & VK_STENCIL_FACE_BACK_BIT)
cmd_buffer->state.dynamic.stencil_write_mask.back = writeMask & 0xff;
cmd_buffer->state.dirty |= V3DV_CMD_DIRTY_STENCIL_WRITE_MASK;
}
void
v3dv_CmdSetStencilReference(VkCommandBuffer commandBuffer,
VkStencilFaceFlags faceMask,
uint32_t reference)
{
V3DV_FROM_HANDLE(v3dv_cmd_buffer, cmd_buffer, commandBuffer);
if (faceMask & VK_STENCIL_FACE_FRONT_BIT)
cmd_buffer->state.dynamic.stencil_reference.front = reference & 0xff;
if (faceMask & VK_STENCIL_FACE_BACK_BIT)
cmd_buffer->state.dynamic.stencil_reference.back = reference & 0xff;
cmd_buffer->state.dirty |= V3DV_CMD_DIRTY_STENCIL_REFERENCE;
}
void
v3dv_CmdBindDescriptorSets(VkCommandBuffer commandBuffer,
VkPipelineBindPoint pipelineBindPoint,
VkPipelineLayout _layout,
uint32_t firstSet,
uint32_t descriptorSetCount,
const VkDescriptorSet *pDescriptorSets,
uint32_t dynamicOffsetCount,
const uint32_t *pDynamicOffsets)
{
V3DV_FROM_HANDLE(v3dv_cmd_buffer, cmd_buffer, commandBuffer);
V3DV_FROM_HANDLE(v3dv_pipeline_layout, layout, _layout);
uint32_t dyn_index = 0;
assert(pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS);
assert(firstSet + descriptorSetCount <= MAX_SETS);
struct v3dv_descriptor_state *descriptor_state =
&cmd_buffer->state.descriptor_state;
for (uint32_t i = 0; i < descriptorSetCount; i++) {
V3DV_FROM_HANDLE(v3dv_descriptor_set, set, pDescriptorSets[i]);
uint32_t index = firstSet + i;
descriptor_state->descriptor_sets[index] = set;
descriptor_state->valid |= (1u << index);
for (uint32_t j = 0; j < set->layout->dynamic_offset_count; j++, dyn_index++) {
uint32_t idx = j + layout->set[i + firstSet].dynamic_offset_start;
descriptor_state->dynamic_offsets[idx] = pDynamicOffsets[dyn_index];
}
}
if (cmd_buffer->state.pipeline) {
update_pipeline_variants(cmd_buffer);
} else {
cmd_buffer->state.dirty |= V3DV_CMD_DIRTY_SHADER_VARIANTS;
}
cmd_buffer->state.dirty |= V3DV_CMD_DIRTY_DESCRIPTOR_SETS;
}
void
v3dv_CmdPushConstants(VkCommandBuffer commandBuffer,
VkPipelineLayout layout,
VkShaderStageFlags stageFlags,
uint32_t offset,
uint32_t size,
const void *pValues)
{
V3DV_FROM_HANDLE(v3dv_cmd_buffer, cmd_buffer, commandBuffer);
memcpy((void*) cmd_buffer->push_constants_data + offset, pValues, size);
cmd_buffer->state.dirty |= V3DV_CMD_DIRTY_PUSH_CONSTANTS;
}
void
v3dv_CmdSetBlendConstants(VkCommandBuffer commandBuffer,
const float blendConstants[4])
{
V3DV_FROM_HANDLE(v3dv_cmd_buffer, cmd_buffer, commandBuffer);
struct v3dv_cmd_buffer_state *state = &cmd_buffer->state;
if (!memcmp(state->dynamic.blend_constants, blendConstants,
sizeof(state->dynamic.blend_constants))) {
return;
}
memcpy(state->dynamic.blend_constants, blendConstants,
sizeof(state->dynamic.blend_constants));
cmd_buffer->state.dirty |= V3DV_CMD_DIRTY_BLEND_CONSTANTS;
}
void
v3dv_cmd_buffer_reset_queries(struct v3dv_cmd_buffer *cmd_buffer,
struct v3dv_query_pool *pool,
uint32_t first,
uint32_t count)
{
/* Resets can only happen outside a render pass instance so we should not
* be in the middle of job recording.
*/
assert(cmd_buffer->state.pass == NULL);
assert(cmd_buffer->state.job == NULL);
assert(first < pool->query_count);
assert(first + count <= pool->query_count);
struct v3dv_job *job =
cmd_buffer_create_cpu_job(cmd_buffer->device,
V3DV_JOB_TYPE_CPU_RESET_QUERIES,
cmd_buffer, -1);
job->cpu.query_reset.pool = pool;
job->cpu.query_reset.first = first;
job->cpu.query_reset.count = count;
list_addtail(&job->list_link, &cmd_buffer->submit_jobs);
}
static bool
ensure_query_state(const struct v3dv_device *device,
uint32_t slot_size,
uint32_t used_count,
uint32_t *alloc_count,
void **ptr)
{
if (used_count >= *alloc_count) {
const uint32_t prev_slot_count = *alloc_count;
void *old_buffer = *ptr;
const uint32_t new_slot_count = MAX2(*alloc_count * 2, 4);
const uint32_t bytes = new_slot_count * slot_size;
*ptr = vk_alloc(&device->alloc, bytes, 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (*ptr == NULL) {
fprintf(stderr, "Error: failed to allocate CPU buffer for query.\n");
return false;
}
memcpy(*ptr, old_buffer, prev_slot_count * slot_size);
*alloc_count = new_slot_count;
}
assert(used_count < *alloc_count);
return true;
}
void
v3dv_cmd_buffer_begin_query(struct v3dv_cmd_buffer *cmd_buffer,
struct v3dv_query_pool *pool,
uint32_t query,
VkQueryControlFlags flags)
{
/* FIXME: we only support one active query for now */
assert(cmd_buffer->state.query.active_query == NULL);
assert(query < pool->query_count);
cmd_buffer->state.query.active_query = pool->queries[query].bo;
cmd_buffer->state.dirty |= V3DV_CMD_DIRTY_OCCLUSION_QUERY;
}
void
v3dv_cmd_buffer_end_query(struct v3dv_cmd_buffer *cmd_buffer,
struct v3dv_query_pool *pool,
uint32_t query)
{
assert(query < pool->query_count);
assert(cmd_buffer->state.query.active_query != NULL);
if (cmd_buffer->state.pass) {
/* Queue the EndQuery in the command buffer state, we will create a CPU
* job to flag all of these queries as possibly available right after the
* render pass job in which they have been recorded.
*/
struct v3dv_cmd_buffer_state *state = &cmd_buffer->state;
ensure_query_state(cmd_buffer->device,
sizeof(struct v3dv_end_query_cpu_job_info),
state->query.end.used_count,
&state->query.end.alloc_count,
(void **) &state->query.end.states);
struct v3dv_end_query_cpu_job_info *info =
&state->query.end.states[state->query.end.used_count++];
info->pool = pool;
info->query = query;
} else {
/* Otherwise, schedule the CPU job immediately */
struct v3dv_job *job =
cmd_buffer_create_cpu_job(cmd_buffer->device,
V3DV_JOB_TYPE_CPU_END_QUERY,
cmd_buffer, -1);
job->cpu.query_end.pool = pool;
job->cpu.query_end.query = query;
list_addtail(&job->list_link, &cmd_buffer->submit_jobs);
}
cmd_buffer->state.query.active_query = NULL;
cmd_buffer->state.dirty |= V3DV_CMD_DIRTY_OCCLUSION_QUERY;
}
void
v3dv_cmd_buffer_copy_query_results(struct v3dv_cmd_buffer *cmd_buffer,
struct v3dv_query_pool *pool,
uint32_t first,
uint32_t count,
struct v3dv_buffer *dst,
uint32_t offset,
uint32_t stride,
VkQueryResultFlags flags)
{
/* Copies can only happen outside a render pass instance so we should not
* be in the middle of job recording.
*/
assert(cmd_buffer->state.pass == NULL);
assert(cmd_buffer->state.job == NULL);
assert(first < pool->query_count);
assert(first + count <= pool->query_count);
struct v3dv_job *job =
cmd_buffer_create_cpu_job(cmd_buffer->device,
V3DV_JOB_TYPE_CPU_COPY_QUERY_RESULTS,
cmd_buffer, -1);
job->cpu.query_copy_results.pool = pool;
job->cpu.query_copy_results.first = first;
job->cpu.query_copy_results.count = count;
job->cpu.query_copy_results.dst = dst;
job->cpu.query_copy_results.offset = offset;
job->cpu.query_copy_results.stride = stride;
job->cpu.query_copy_results.flags = flags;
list_addtail(&job->list_link, &cmd_buffer->submit_jobs);
}
void
v3dv_cmd_buffer_add_tfu_job(struct v3dv_cmd_buffer *cmd_buffer,
struct drm_v3d_submit_tfu *tfu)
{
struct v3dv_device *device = cmd_buffer->device;
struct v3dv_job *job = vk_zalloc(&device->alloc,
sizeof(struct v3dv_job), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
v3dv_job_init(job, V3DV_JOB_TYPE_GPU_TFU, device, cmd_buffer, -1);
job->tfu = *tfu;
list_addtail(&job->list_link, &cmd_buffer->submit_jobs);
}
void
v3dv_CmdSetEvent(VkCommandBuffer commandBuffer,
VkEvent event,
VkPipelineStageFlags stageMask)
{
assert(!"vkCmdSetEvent not implemented yet");
}
void
v3dv_CmdResetEvent(VkCommandBuffer commandBuffer,
VkEvent event,
VkPipelineStageFlags stageMask)
{
assert(!"vkCmdResetEvent not implemented yet");
}
void
v3dv_CmdWaitEvents(VkCommandBuffer commandBuffer,
uint32_t eventCount,
const VkEvent *pEvents,
VkPipelineStageFlags srcStageMask,
VkPipelineStageFlags dstStageMask,
uint32_t memoryBarrierCount,
const VkMemoryBarrier *pMemoryBarriers,
uint32_t bufferMemoryBarrierCount,
const VkBufferMemoryBarrier *pBufferMemoryBarriers,
uint32_t imageMemoryBarrierCount,
const VkImageMemoryBarrier *pImageMemoryBarriers)
{
assert(!"vkCmdWaitEvents not implemented yet");
}