blob: b7f85906db0b1a3be7f4492e519483dcff511947 [file] [log] [blame]
/*
* Copyright 2010 Jerome Glisse <glisse@freedesktop.org>
* Copyright 2018 Advanced Micro Devices, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* on the rights to use, copy, modify, merge, publish, distribute, sub
* license, and/or sell copies of the Software, and to permit persons to whom
* the Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "drm-uapi/drm_fourcc.h"
#include "si_pipe.h"
#include "si_query.h"
#include "sid.h"
#include "frontend/drm_driver.h"
#include "util/format/u_format.h"
#include "util/os_time.h"
#include "util/u_log.h"
#include "util/u_memory.h"
#include "util/u_pack_color.h"
#include "util/u_resource.h"
#include "util/u_surface.h"
#include "util/u_transfer.h"
#include <errno.h>
#include <inttypes.h>
#include "amd/addrlib/inc/addrinterface.h"
static enum radeon_surf_mode si_choose_tiling(struct si_screen *sscreen,
const struct pipe_resource *templ,
bool tc_compatible_htile);
bool si_prepare_for_dma_blit(struct si_context *sctx, struct si_texture *dst, unsigned dst_level,
unsigned dstx, unsigned dsty, unsigned dstz, struct si_texture *src,
unsigned src_level, const struct pipe_box *src_box)
{
if (!sctx->sdma_cs)
return false;
if (dst->surface.bpe != src->surface.bpe)
return false;
/* MSAA: Blits don't exist in the real world. */
if (src->buffer.b.b.nr_samples > 1 || dst->buffer.b.b.nr_samples > 1)
return false;
/* Depth-stencil surfaces:
* When dst is linear, the DB->CB copy preserves HTILE.
* When dst is tiled, the 3D path must be used to update HTILE.
*/
if (src->is_depth || dst->is_depth)
return false;
/* DCC as:
* src: Use the 3D path. DCC decompression is expensive.
* dst: Use the 3D path to compress the pixels with DCC.
*/
if (vi_dcc_enabled(src, src_level) || vi_dcc_enabled(dst, dst_level))
return false;
/* TMZ: mixing encrypted and non-encrypted buffer in a single command
* doesn't seem supported.
*/
if ((src->buffer.flags & RADEON_FLAG_ENCRYPTED) !=
(dst->buffer.flags & RADEON_FLAG_ENCRYPTED))
return false;
/* CMASK as:
* src: Both texture and SDMA paths need decompression. Use SDMA.
* dst: If overwriting the whole texture, discard CMASK and use
* SDMA. Otherwise, use the 3D path.
*/
if (dst->cmask_buffer && dst->dirty_level_mask & (1 << dst_level)) {
/* The CMASK clear is only enabled for the first level. */
assert(dst_level == 0);
if (!util_texrange_covers_whole_level(&dst->buffer.b.b, dst_level, dstx, dsty, dstz,
src_box->width, src_box->height, src_box->depth))
return false;
si_texture_discard_cmask(sctx->screen, dst);
}
/* All requirements are met. Prepare textures for SDMA. */
if (src->cmask_buffer && src->dirty_level_mask & (1 << src_level))
sctx->b.flush_resource(&sctx->b, &src->buffer.b.b);
assert(!(src->dirty_level_mask & (1 << src_level)));
assert(!(dst->dirty_level_mask & (1 << dst_level)));
return true;
}
/* Same as resource_copy_region, except that both upsampling and downsampling are allowed. */
static void si_copy_region_with_blit(struct pipe_context *pipe, struct pipe_resource *dst,
unsigned dst_level, unsigned dstx, unsigned dsty,
unsigned dstz, struct pipe_resource *src, unsigned src_level,
const struct pipe_box *src_box)
{
struct pipe_blit_info blit;
memset(&blit, 0, sizeof(blit));
blit.src.resource = src;
blit.src.format = src->format;
blit.src.level = src_level;
blit.src.box = *src_box;
blit.dst.resource = dst;
blit.dst.format = dst->format;
blit.dst.level = dst_level;
blit.dst.box.x = dstx;
blit.dst.box.y = dsty;
blit.dst.box.z = dstz;
blit.dst.box.width = src_box->width;
blit.dst.box.height = src_box->height;
blit.dst.box.depth = src_box->depth;
blit.mask = util_format_get_mask(dst->format);
blit.filter = PIPE_TEX_FILTER_NEAREST;
if (blit.mask) {
pipe->blit(pipe, &blit);
}
}
/* Copy from a full GPU texture to a transfer's staging one. */
static void si_copy_to_staging_texture(struct pipe_context *ctx, struct si_transfer *stransfer)
{
struct si_context *sctx = (struct si_context *)ctx;
struct pipe_transfer *transfer = (struct pipe_transfer *)stransfer;
struct pipe_resource *dst = &stransfer->staging->b.b;
struct pipe_resource *src = transfer->resource;
if (src->nr_samples > 1 || ((struct si_texture *)src)->is_depth) {
si_copy_region_with_blit(ctx, dst, 0, 0, 0, 0, src, transfer->level, &transfer->box);
return;
}
sctx->dma_copy(ctx, dst, 0, 0, 0, 0, src, transfer->level, &transfer->box);
}
/* Copy from a transfer's staging texture to a full GPU one. */
static void si_copy_from_staging_texture(struct pipe_context *ctx, struct si_transfer *stransfer)
{
struct si_context *sctx = (struct si_context *)ctx;
struct pipe_transfer *transfer = (struct pipe_transfer *)stransfer;
struct pipe_resource *dst = transfer->resource;
struct pipe_resource *src = &stransfer->staging->b.b;
struct pipe_box sbox;
u_box_3d(0, 0, 0, transfer->box.width, transfer->box.height, transfer->box.depth, &sbox);
if (dst->nr_samples > 1 || ((struct si_texture *)dst)->is_depth) {
si_copy_region_with_blit(ctx, dst, transfer->level, transfer->box.x, transfer->box.y,
transfer->box.z, src, 0, &sbox);
return;
}
if (util_format_is_compressed(dst->format)) {
sbox.width = util_format_get_nblocksx(dst->format, sbox.width);
sbox.height = util_format_get_nblocksx(dst->format, sbox.height);
}
sctx->dma_copy(ctx, dst, transfer->level, transfer->box.x, transfer->box.y, transfer->box.z, src,
0, &sbox);
}
static unsigned si_texture_get_offset(struct si_screen *sscreen, struct si_texture *tex,
unsigned level, const struct pipe_box *box, unsigned *stride,
unsigned *layer_stride)
{
if (sscreen->info.chip_class >= GFX9) {
*stride = tex->surface.u.gfx9.surf_pitch * tex->surface.bpe;
*layer_stride = tex->surface.u.gfx9.surf_slice_size;
if (!box)
return 0;
/* Each texture is an array of slices. Each slice is an array
* of mipmap levels. */
return tex->surface.u.gfx9.surf_offset + box->z * tex->surface.u.gfx9.surf_slice_size +
tex->surface.u.gfx9.offset[level] +
(box->y / tex->surface.blk_h * tex->surface.u.gfx9.surf_pitch +
box->x / tex->surface.blk_w) *
tex->surface.bpe;
} else {
*stride = tex->surface.u.legacy.level[level].nblk_x * tex->surface.bpe;
assert((uint64_t)tex->surface.u.legacy.level[level].slice_size_dw * 4 <= UINT_MAX);
*layer_stride = (uint64_t)tex->surface.u.legacy.level[level].slice_size_dw * 4;
if (!box)
return tex->surface.u.legacy.level[level].offset;
/* Each texture is an array of mipmap levels. Each level is
* an array of slices. */
return tex->surface.u.legacy.level[level].offset +
box->z * (uint64_t)tex->surface.u.legacy.level[level].slice_size_dw * 4 +
(box->y / tex->surface.blk_h * tex->surface.u.legacy.level[level].nblk_x +
box->x / tex->surface.blk_w) *
tex->surface.bpe;
}
}
static int si_init_surface(struct si_screen *sscreen, struct radeon_surf *surface,
const struct pipe_resource *ptex, enum radeon_surf_mode array_mode,
bool is_imported, bool is_scanout, bool is_flushed_depth,
bool tc_compatible_htile)
{
const struct util_format_description *desc = util_format_description(ptex->format);
bool is_depth, is_stencil;
int r;
unsigned bpe, flags = 0;
is_depth = util_format_has_depth(desc);
is_stencil = util_format_has_stencil(desc);
if (!is_flushed_depth && ptex->format == PIPE_FORMAT_Z32_FLOAT_S8X24_UINT) {
bpe = 4; /* stencil is allocated separately */
} else {
bpe = util_format_get_blocksize(ptex->format);
assert(util_is_power_of_two_or_zero(bpe));
}
if (!is_flushed_depth && is_depth) {
flags |= RADEON_SURF_ZBUFFER;
if ((sscreen->debug_flags & DBG(NO_HYPERZ)) ||
(ptex->bind & PIPE_BIND_SHARED) || is_imported) {
flags |= RADEON_SURF_NO_HTILE;
} else if (tc_compatible_htile &&
(sscreen->info.chip_class >= GFX9 || array_mode == RADEON_SURF_MODE_2D)) {
/* TC-compatible HTILE only supports Z32_FLOAT.
* GFX9 also supports Z16_UNORM.
* On GFX8, promote Z16 to Z32. DB->CB copies will convert
* the format for transfers.
*/
if (sscreen->info.chip_class == GFX8)
bpe = 4;
flags |= RADEON_SURF_TC_COMPATIBLE_HTILE;
}
if (is_stencil)
flags |= RADEON_SURF_SBUFFER;
}
if (sscreen->info.chip_class >= GFX8 &&
(ptex->flags & SI_RESOURCE_FLAG_DISABLE_DCC ||
(sscreen->info.chip_class < GFX10_3 &&
ptex->format == PIPE_FORMAT_R9G9B9E5_FLOAT) ||
(ptex->nr_samples >= 2 && !sscreen->dcc_msaa_allowed)))
flags |= RADEON_SURF_DISABLE_DCC;
/* Stoney: 128bpp MSAA textures randomly fail piglit tests with DCC. */
if (sscreen->info.family == CHIP_STONEY && bpe == 16 && ptex->nr_samples >= 2)
flags |= RADEON_SURF_DISABLE_DCC;
/* GFX8: DCC clear for 4x and 8x MSAA array textures unimplemented. */
if (sscreen->info.chip_class == GFX8 && ptex->nr_storage_samples >= 4 && ptex->array_size > 1)
flags |= RADEON_SURF_DISABLE_DCC;
/* GFX9: DCC clear for 4x and 8x MSAA textures unimplemented. */
if (sscreen->info.chip_class == GFX9 &&
(ptex->nr_storage_samples >= 4 ||
(sscreen->info.family == CHIP_RAVEN && ptex->nr_storage_samples >= 2 && bpe < 4)))
flags |= RADEON_SURF_DISABLE_DCC;
/* TODO: GFX10: DCC causes corruption with MSAA. */
if (sscreen->info.chip_class >= GFX10 && ptex->nr_storage_samples >= 2)
flags |= RADEON_SURF_DISABLE_DCC;
/* Shared textures must always set up DCC.
* If it's not present, it will be disabled by
* si_get_opaque_metadata later.
*/
if (!is_imported && (sscreen->debug_flags & DBG(NO_DCC)))
flags |= RADEON_SURF_DISABLE_DCC;
if (is_scanout) {
/* This should catch bugs in gallium users setting incorrect flags. */
assert(ptex->nr_samples <= 1 && ptex->array_size == 1 && ptex->depth0 == 1 &&
ptex->last_level == 0 && !(flags & RADEON_SURF_Z_OR_SBUFFER));
flags |= RADEON_SURF_SCANOUT;
}
if (ptex->bind & PIPE_BIND_SHARED)
flags |= RADEON_SURF_SHAREABLE;
if (is_imported)
flags |= RADEON_SURF_IMPORTED | RADEON_SURF_SHAREABLE;
if (sscreen->debug_flags & DBG(NO_FMASK))
flags |= RADEON_SURF_NO_FMASK;
if (sscreen->info.chip_class == GFX9 && (ptex->flags & SI_RESOURCE_FLAG_FORCE_MICRO_TILE_MODE)) {
flags |= RADEON_SURF_FORCE_MICRO_TILE_MODE;
surface->micro_tile_mode = SI_RESOURCE_FLAG_MICRO_TILE_MODE_GET(ptex->flags);
}
if (ptex->flags & SI_RESOURCE_FLAG_FORCE_MSAA_TILING) {
flags |= RADEON_SURF_FORCE_SWIZZLE_MODE;
if (sscreen->info.chip_class >= GFX10)
surface->u.gfx9.surf.swizzle_mode = ADDR_SW_64KB_R_X;
}
r = sscreen->ws->surface_init(sscreen->ws, ptex, flags, bpe, array_mode, surface);
if (r) {
return r;
}
return 0;
}
void si_eliminate_fast_color_clear(struct si_context *sctx, struct si_texture *tex,
bool *ctx_flushed)
{
struct si_screen *sscreen = sctx->screen;
struct pipe_context *ctx = &sctx->b;
if (ctx == sscreen->aux_context)
simple_mtx_lock(&sscreen->aux_context_lock);
unsigned n = sctx->num_decompress_calls;
ctx->flush_resource(ctx, &tex->buffer.b.b);
/* Flush only if any fast clear elimination took place. */
bool flushed = false;
if (n != sctx->num_decompress_calls)
{
ctx->flush(ctx, NULL, 0);
flushed = true;
}
if (ctx_flushed)
*ctx_flushed = flushed;
if (ctx == sscreen->aux_context)
simple_mtx_unlock(&sscreen->aux_context_lock);
}
void si_texture_discard_cmask(struct si_screen *sscreen, struct si_texture *tex)
{
if (!tex->cmask_buffer)
return;
assert(tex->buffer.b.b.nr_samples <= 1);
/* Disable CMASK. */
tex->cmask_base_address_reg = tex->buffer.gpu_address >> 8;
tex->dirty_level_mask = 0;
tex->cb_color_info &= ~S_028C70_FAST_CLEAR(1);
if (tex->cmask_buffer != &tex->buffer)
si_resource_reference(&tex->cmask_buffer, NULL);
tex->cmask_buffer = NULL;
/* Notify all contexts about the change. */
p_atomic_inc(&sscreen->dirty_tex_counter);
p_atomic_inc(&sscreen->compressed_colortex_counter);
}
static bool si_can_disable_dcc(struct si_texture *tex)
{
/* We can't disable DCC if it can be written by another process. */
return tex->surface.dcc_offset &&
(!tex->buffer.b.is_shared ||
!(tex->buffer.external_usage & PIPE_HANDLE_USAGE_FRAMEBUFFER_WRITE));
}
static bool si_texture_discard_dcc(struct si_screen *sscreen, struct si_texture *tex)
{
if (!si_can_disable_dcc(tex))
return false;
assert(tex->dcc_separate_buffer == NULL);
/* Disable DCC. */
ac_surface_zero_dcc_fields(&tex->surface);
/* Notify all contexts about the change. */
p_atomic_inc(&sscreen->dirty_tex_counter);
return true;
}
/**
* Disable DCC for the texture. (first decompress, then discard metadata).
*
* There is unresolved multi-context synchronization issue between
* screen::aux_context and the current context. If applications do this with
* multiple contexts, it's already undefined behavior for them and we don't
* have to worry about that. The scenario is:
*
* If context 1 disables DCC and context 2 has queued commands that write
* to the texture via CB with DCC enabled, and the order of operations is
* as follows:
* context 2 queues draw calls rendering to the texture, but doesn't flush
* context 1 disables DCC and flushes
* context 1 & 2 reset descriptors and FB state
* context 2 flushes (new compressed tiles written by the draw calls)
* context 1 & 2 read garbage, because DCC is disabled, yet there are
* compressed tiled
*
* \param sctx the current context if you have one, or sscreen->aux_context
* if you don't.
*/
bool si_texture_disable_dcc(struct si_context *sctx, struct si_texture *tex)
{
struct si_screen *sscreen = sctx->screen;
if (!sctx->has_graphics)
return si_texture_discard_dcc(sscreen, tex);
if (!si_can_disable_dcc(tex))
return false;
if (&sctx->b == sscreen->aux_context)
simple_mtx_lock(&sscreen->aux_context_lock);
/* Decompress DCC. */
si_decompress_dcc(sctx, tex);
sctx->b.flush(&sctx->b, NULL, 0);
if (&sctx->b == sscreen->aux_context)
simple_mtx_unlock(&sscreen->aux_context_lock);
return si_texture_discard_dcc(sscreen, tex);
}
static void si_reallocate_texture_inplace(struct si_context *sctx, struct si_texture *tex,
unsigned new_bind_flag, bool invalidate_storage)
{
struct pipe_screen *screen = sctx->b.screen;
struct si_texture *new_tex;
struct pipe_resource templ = tex->buffer.b.b;
unsigned i;
templ.bind |= new_bind_flag;
if (tex->buffer.b.is_shared || tex->num_planes > 1)
return;
if (new_bind_flag == PIPE_BIND_LINEAR) {
if (tex->surface.is_linear)
return;
/* This fails with MSAA, depth, and compressed textures. */
if (si_choose_tiling(sctx->screen, &templ, false) != RADEON_SURF_MODE_LINEAR_ALIGNED)
return;
}
new_tex = (struct si_texture *)screen->resource_create(screen, &templ);
if (!new_tex)
return;
/* Copy the pixels to the new texture. */
if (!invalidate_storage) {
for (i = 0; i <= templ.last_level; i++) {
struct pipe_box box;
u_box_3d(0, 0, 0, u_minify(templ.width0, i), u_minify(templ.height0, i),
util_num_layers(&templ, i), &box);
sctx->dma_copy(&sctx->b, &new_tex->buffer.b.b, i, 0, 0, 0, &tex->buffer.b.b, i, &box);
}
}
if (new_bind_flag == PIPE_BIND_LINEAR) {
si_texture_discard_cmask(sctx->screen, tex);
si_texture_discard_dcc(sctx->screen, tex);
}
/* Replace the structure fields of tex. */
tex->buffer.b.b.bind = templ.bind;
pb_reference(&tex->buffer.buf, new_tex->buffer.buf);
tex->buffer.gpu_address = new_tex->buffer.gpu_address;
tex->buffer.vram_usage = new_tex->buffer.vram_usage;
tex->buffer.gart_usage = new_tex->buffer.gart_usage;
tex->buffer.bo_size = new_tex->buffer.bo_size;
tex->buffer.bo_alignment = new_tex->buffer.bo_alignment;
tex->buffer.domains = new_tex->buffer.domains;
tex->buffer.flags = new_tex->buffer.flags;
tex->surface = new_tex->surface;
si_texture_reference(&tex->flushed_depth_texture, new_tex->flushed_depth_texture);
tex->surface.fmask_offset = new_tex->surface.fmask_offset;
tex->surface.cmask_offset = new_tex->surface.cmask_offset;
tex->cmask_base_address_reg = new_tex->cmask_base_address_reg;
if (tex->cmask_buffer == &tex->buffer)
tex->cmask_buffer = NULL;
else
si_resource_reference(&tex->cmask_buffer, NULL);
if (new_tex->cmask_buffer == &new_tex->buffer)
tex->cmask_buffer = &tex->buffer;
else
si_resource_reference(&tex->cmask_buffer, new_tex->cmask_buffer);
tex->surface.dcc_offset = new_tex->surface.dcc_offset;
tex->cb_color_info = new_tex->cb_color_info;
memcpy(tex->color_clear_value, new_tex->color_clear_value, sizeof(tex->color_clear_value));
tex->last_msaa_resolve_target_micro_mode = new_tex->last_msaa_resolve_target_micro_mode;
tex->surface.htile_offset = new_tex->surface.htile_offset;
tex->depth_clear_value = new_tex->depth_clear_value;
tex->dirty_level_mask = new_tex->dirty_level_mask;
tex->stencil_dirty_level_mask = new_tex->stencil_dirty_level_mask;
tex->db_render_format = new_tex->db_render_format;
tex->stencil_clear_value = new_tex->stencil_clear_value;
tex->tc_compatible_htile = new_tex->tc_compatible_htile;
tex->depth_cleared = new_tex->depth_cleared;
tex->stencil_cleared = new_tex->stencil_cleared;
tex->upgraded_depth = new_tex->upgraded_depth;
tex->db_compatible = new_tex->db_compatible;
tex->can_sample_z = new_tex->can_sample_z;
tex->can_sample_s = new_tex->can_sample_s;
tex->separate_dcc_dirty = new_tex->separate_dcc_dirty;
tex->displayable_dcc_dirty = new_tex->displayable_dcc_dirty;
tex->dcc_gather_statistics = new_tex->dcc_gather_statistics;
si_resource_reference(&tex->dcc_separate_buffer, new_tex->dcc_separate_buffer);
si_resource_reference(&tex->last_dcc_separate_buffer, new_tex->last_dcc_separate_buffer);
si_resource_reference(&tex->dcc_retile_buffer, new_tex->dcc_retile_buffer);
if (new_bind_flag == PIPE_BIND_LINEAR) {
assert(!tex->surface.htile_offset);
assert(!tex->cmask_buffer);
assert(!tex->surface.fmask_size);
assert(!tex->surface.dcc_offset);
assert(!tex->is_depth);
}
si_texture_reference(&new_tex, NULL);
p_atomic_inc(&sctx->screen->dirty_tex_counter);
}
static void si_set_tex_bo_metadata(struct si_screen *sscreen, struct si_texture *tex)
{
struct pipe_resource *res = &tex->buffer.b.b;
struct radeon_bo_metadata md;
memset(&md, 0, sizeof(md));
assert(tex->dcc_separate_buffer == NULL);
assert(tex->surface.fmask_size == 0);
static const unsigned char swizzle[] = {PIPE_SWIZZLE_X, PIPE_SWIZZLE_Y, PIPE_SWIZZLE_Z,
PIPE_SWIZZLE_W};
bool is_array = util_texture_is_array(res->target);
uint32_t desc[8];
sscreen->make_texture_descriptor(sscreen, tex, true, res->target, res->format, swizzle, 0,
res->last_level, 0, is_array ? res->array_size - 1 : 0,
res->width0, res->height0, res->depth0, desc, NULL);
si_set_mutable_tex_desc_fields(sscreen, tex, &tex->surface.u.legacy.level[0], 0, 0,
tex->surface.blk_w, false, false, desc);
ac_surface_get_umd_metadata(&sscreen->info, &tex->surface,
tex->buffer.b.b.last_level + 1,
desc, &md.size_metadata, md.metadata);
sscreen->ws->buffer_set_metadata(tex->buffer.buf, &md, &tex->surface);
}
static bool si_has_displayable_dcc(struct si_texture *tex)
{
struct si_screen *sscreen = (struct si_screen *)tex->buffer.b.b.screen;
if (sscreen->info.chip_class <= GFX8)
return false;
return tex->surface.is_displayable && tex->surface.dcc_offset;
}
static bool si_resource_get_param(struct pipe_screen *screen, struct pipe_context *context,
struct pipe_resource *resource, unsigned plane, unsigned layer,
enum pipe_resource_param param, unsigned handle_usage,
uint64_t *value)
{
for (unsigned i = 0; i < plane; i++)
resource = resource->next;
struct si_screen *sscreen = (struct si_screen *)screen;
struct si_texture *tex = (struct si_texture *)resource;
struct winsys_handle whandle;
switch (param) {
case PIPE_RESOURCE_PARAM_NPLANES:
*value = resource->target == PIPE_BUFFER ? 1 : tex->num_planes;
return true;
case PIPE_RESOURCE_PARAM_STRIDE:
if (resource->target == PIPE_BUFFER)
*value = 0;
else if (sscreen->info.chip_class >= GFX9)
*value = tex->surface.u.gfx9.surf_pitch * tex->surface.bpe;
else
*value = tex->surface.u.legacy.level[0].nblk_x * tex->surface.bpe;
return true;
case PIPE_RESOURCE_PARAM_OFFSET:
if (resource->target == PIPE_BUFFER)
*value = 0;
else if (sscreen->info.chip_class >= GFX9)
*value = tex->surface.u.gfx9.surf_offset + layer * tex->surface.u.gfx9.surf_slice_size;
else
*value = tex->surface.u.legacy.level[0].offset +
layer * (uint64_t)tex->surface.u.legacy.level[0].slice_size_dw * 4;
return true;
case PIPE_RESOURCE_PARAM_MODIFIER:
*value = DRM_FORMAT_MOD_INVALID;
return true;
case PIPE_RESOURCE_PARAM_HANDLE_TYPE_SHARED:
case PIPE_RESOURCE_PARAM_HANDLE_TYPE_KMS:
case PIPE_RESOURCE_PARAM_HANDLE_TYPE_FD:
memset(&whandle, 0, sizeof(whandle));
if (param == PIPE_RESOURCE_PARAM_HANDLE_TYPE_SHARED)
whandle.type = WINSYS_HANDLE_TYPE_SHARED;
else if (param == PIPE_RESOURCE_PARAM_HANDLE_TYPE_KMS)
whandle.type = WINSYS_HANDLE_TYPE_KMS;
else if (param == PIPE_RESOURCE_PARAM_HANDLE_TYPE_FD)
whandle.type = WINSYS_HANDLE_TYPE_FD;
if (!screen->resource_get_handle(screen, context, resource, &whandle, handle_usage))
return false;
*value = whandle.handle;
return true;
}
return false;
}
static void si_texture_get_info(struct pipe_screen *screen, struct pipe_resource *resource,
unsigned *pstride, unsigned *poffset)
{
uint64_t value;
if (pstride) {
si_resource_get_param(screen, NULL, resource, 0, 0, PIPE_RESOURCE_PARAM_STRIDE, 0, &value);
*pstride = value;
}
if (poffset) {
si_resource_get_param(screen, NULL, resource, 0, 0, PIPE_RESOURCE_PARAM_OFFSET, 0, &value);
*poffset = value;
}
}
static bool si_texture_get_handle(struct pipe_screen *screen, struct pipe_context *ctx,
struct pipe_resource *resource, struct winsys_handle *whandle,
unsigned usage)
{
struct si_screen *sscreen = (struct si_screen *)screen;
struct si_context *sctx;
struct si_resource *res = si_resource(resource);
struct si_texture *tex = (struct si_texture *)resource;
bool update_metadata = false;
unsigned stride, offset, slice_size;
bool flush = false;
ctx = threaded_context_unwrap_sync(ctx);
sctx = (struct si_context *)(ctx ? ctx : sscreen->aux_context);
if (resource->target != PIPE_BUFFER) {
/* Individual planes are chained pipe_resource instances. */
for (unsigned i = 0; i < whandle->plane; i++) {
resource = resource->next;
res = si_resource(resource);
tex = (struct si_texture *)resource;
}
/* This is not supported now, but it might be required for OpenCL
* interop in the future.
*/
if (resource->nr_samples > 1 || tex->is_depth)
return false;
/* Move a suballocated texture into a non-suballocated allocation. */
if (sscreen->ws->buffer_is_suballocated(res->buf) || tex->surface.tile_swizzle ||
(tex->buffer.flags & RADEON_FLAG_NO_INTERPROCESS_SHARING &&
sscreen->info.has_local_buffers)) {
assert(!res->b.is_shared);
si_reallocate_texture_inplace(sctx, tex, PIPE_BIND_SHARED, false);
flush = true;
assert(res->b.b.bind & PIPE_BIND_SHARED);
assert(res->flags & RADEON_FLAG_NO_SUBALLOC);
assert(!(res->flags & RADEON_FLAG_NO_INTERPROCESS_SHARING));
assert(tex->surface.tile_swizzle == 0);
}
/* Since shader image stores don't support DCC on GFX8,
* disable it for external clients that want write
* access.
*/
if ((usage & PIPE_HANDLE_USAGE_SHADER_WRITE && tex->surface.dcc_offset) ||
/* Displayable DCC requires an explicit flush. */
(!(usage & PIPE_HANDLE_USAGE_EXPLICIT_FLUSH) && si_has_displayable_dcc(tex))) {
if (si_texture_disable_dcc(sctx, tex)) {
update_metadata = true;
/* si_texture_disable_dcc flushes the context */
flush = false;
}
}
if (!(usage & PIPE_HANDLE_USAGE_EXPLICIT_FLUSH) &&
(tex->cmask_buffer || tex->surface.dcc_offset)) {
/* Eliminate fast clear (both CMASK and DCC) */
bool flushed;
si_eliminate_fast_color_clear(sctx, tex, &flushed);
/* eliminate_fast_color_clear sometimes flushes the context */
if (flushed)
flush = false;
/* Disable CMASK if flush_resource isn't going
* to be called.
*/
if (tex->cmask_buffer)
si_texture_discard_cmask(sscreen, tex);
}
/* Set metadata. */
if ((!res->b.is_shared || update_metadata) && whandle->offset == 0)
si_set_tex_bo_metadata(sscreen, tex);
if (sscreen->info.chip_class >= GFX9) {
slice_size = tex->surface.u.gfx9.surf_slice_size;
} else {
slice_size = (uint64_t)tex->surface.u.legacy.level[0].slice_size_dw * 4;
}
} else {
/* Buffer exports are for the OpenCL interop. */
/* Move a suballocated buffer into a non-suballocated allocation. */
if (sscreen->ws->buffer_is_suballocated(res->buf) ||
/* A DMABUF export always fails if the BO is local. */
(tex->buffer.flags & RADEON_FLAG_NO_INTERPROCESS_SHARING &&
sscreen->info.has_local_buffers)) {
assert(!res->b.is_shared);
/* Allocate a new buffer with PIPE_BIND_SHARED. */
struct pipe_resource templ = res->b.b;
templ.bind |= PIPE_BIND_SHARED;
struct pipe_resource *newb = screen->resource_create(screen, &templ);
if (!newb)
return false;
/* Copy the old buffer contents to the new one. */
struct pipe_box box;
u_box_1d(0, newb->width0, &box);
sctx->b.resource_copy_region(&sctx->b, newb, 0, 0, 0, 0, &res->b.b, 0, &box);
flush = true;
/* Move the new buffer storage to the old pipe_resource. */
si_replace_buffer_storage(&sctx->b, &res->b.b, newb);
pipe_resource_reference(&newb, NULL);
assert(res->b.b.bind & PIPE_BIND_SHARED);
assert(res->flags & RADEON_FLAG_NO_SUBALLOC);
}
/* Buffers */
slice_size = 0;
}
si_texture_get_info(screen, resource, &stride, &offset);
if (flush)
sctx->b.flush(&sctx->b, NULL, 0);
if (res->b.is_shared) {
/* USAGE_EXPLICIT_FLUSH must be cleared if at least one user
* doesn't set it.
*/
res->external_usage |= usage & ~PIPE_HANDLE_USAGE_EXPLICIT_FLUSH;
if (!(usage & PIPE_HANDLE_USAGE_EXPLICIT_FLUSH))
res->external_usage &= ~PIPE_HANDLE_USAGE_EXPLICIT_FLUSH;
} else {
res->b.is_shared = true;
res->external_usage = usage;
}
whandle->stride = stride;
whandle->offset = offset + slice_size * whandle->layer;
return sscreen->ws->buffer_get_handle(sscreen->ws, res->buf, whandle);
}
static void si_texture_destroy(struct pipe_screen *screen, struct pipe_resource *ptex)
{
struct si_texture *tex = (struct si_texture *)ptex;
struct si_resource *resource = &tex->buffer;
si_texture_reference(&tex->flushed_depth_texture, NULL);
if (tex->cmask_buffer != &tex->buffer) {
si_resource_reference(&tex->cmask_buffer, NULL);
}
pb_reference(&resource->buf, NULL);
si_resource_reference(&tex->dcc_separate_buffer, NULL);
si_resource_reference(&tex->last_dcc_separate_buffer, NULL);
si_resource_reference(&tex->dcc_retile_buffer, NULL);
FREE(tex);
}
static const struct u_resource_vtbl si_texture_vtbl;
void si_print_texture_info(struct si_screen *sscreen, struct si_texture *tex,
struct u_log_context *log)
{
int i;
/* Common parameters. */
u_log_printf(log,
" Info: npix_x=%u, npix_y=%u, npix_z=%u, blk_w=%u, "
"blk_h=%u, array_size=%u, last_level=%u, "
"bpe=%u, nsamples=%u, flags=0x%x, %s\n",
tex->buffer.b.b.width0, tex->buffer.b.b.height0, tex->buffer.b.b.depth0,
tex->surface.blk_w, tex->surface.blk_h, tex->buffer.b.b.array_size,
tex->buffer.b.b.last_level, tex->surface.bpe, tex->buffer.b.b.nr_samples,
tex->surface.flags, util_format_short_name(tex->buffer.b.b.format));
if (sscreen->info.chip_class >= GFX9) {
u_log_printf(log,
" Surf: size=%" PRIu64 ", slice_size=%" PRIu64 ", "
"alignment=%u, swmode=%u, epitch=%u, pitch=%u\n",
tex->surface.surf_size, tex->surface.u.gfx9.surf_slice_size,
tex->surface.surf_alignment, tex->surface.u.gfx9.surf.swizzle_mode,
tex->surface.u.gfx9.surf.epitch, tex->surface.u.gfx9.surf_pitch);
if (tex->surface.fmask_offset) {
u_log_printf(log,
" FMASK: offset=%" PRIu64 ", size=%" PRIu64 ", "
"alignment=%u, swmode=%u, epitch=%u\n",
tex->surface.fmask_offset, tex->surface.fmask_size,
tex->surface.fmask_alignment, tex->surface.u.gfx9.fmask.swizzle_mode,
tex->surface.u.gfx9.fmask.epitch);
}
if (tex->cmask_buffer) {
u_log_printf(log,
" CMask: offset=%" PRIu64 ", size=%u, "
"alignment=%u\n",
tex->surface.cmask_offset, tex->surface.cmask_size,
tex->surface.cmask_alignment);
}
if (tex->surface.htile_offset) {
u_log_printf(log,
" HTile: offset=%" PRIu64 ", size=%u, alignment=%u\n",
tex->surface.htile_offset, tex->surface.htile_size,
tex->surface.htile_alignment);
}
if (tex->surface.dcc_offset) {
u_log_printf(log,
" DCC: offset=%" PRIu64 ", size=%u, "
"alignment=%u, pitch_max=%u, num_dcc_levels=%u\n",
tex->surface.dcc_offset, tex->surface.dcc_size, tex->surface.dcc_alignment,
tex->surface.u.gfx9.display_dcc_pitch_max, tex->surface.num_dcc_levels);
}
if (tex->surface.u.gfx9.stencil_offset) {
u_log_printf(log, " Stencil: offset=%" PRIu64 ", swmode=%u, epitch=%u\n",
tex->surface.u.gfx9.stencil_offset, tex->surface.u.gfx9.stencil.swizzle_mode,
tex->surface.u.gfx9.stencil.epitch);
}
return;
}
u_log_printf(log,
" Layout: size=%" PRIu64 ", alignment=%u, bankw=%u, "
"bankh=%u, nbanks=%u, mtilea=%u, tilesplit=%u, pipeconfig=%u, scanout=%u\n",
tex->surface.surf_size, tex->surface.surf_alignment, tex->surface.u.legacy.bankw,
tex->surface.u.legacy.bankh, tex->surface.u.legacy.num_banks,
tex->surface.u.legacy.mtilea, tex->surface.u.legacy.tile_split,
tex->surface.u.legacy.pipe_config, (tex->surface.flags & RADEON_SURF_SCANOUT) != 0);
if (tex->surface.fmask_offset)
u_log_printf(
log,
" FMask: offset=%" PRIu64 ", size=%" PRIu64 ", alignment=%u, pitch_in_pixels=%u, "
"bankh=%u, slice_tile_max=%u, tile_mode_index=%u\n",
tex->surface.fmask_offset, tex->surface.fmask_size, tex->surface.fmask_alignment,
tex->surface.u.legacy.fmask.pitch_in_pixels, tex->surface.u.legacy.fmask.bankh,
tex->surface.u.legacy.fmask.slice_tile_max, tex->surface.u.legacy.fmask.tiling_index);
if (tex->cmask_buffer)
u_log_printf(log,
" CMask: offset=%" PRIu64 ", size=%u, alignment=%u, "
"slice_tile_max=%u\n",
tex->surface.cmask_offset, tex->surface.cmask_size, tex->surface.cmask_alignment,
tex->surface.u.legacy.cmask_slice_tile_max);
if (tex->surface.htile_offset)
u_log_printf(log,
" HTile: offset=%" PRIu64 ", size=%u, "
"alignment=%u, TC_compatible = %u\n",
tex->surface.htile_offset, tex->surface.htile_size, tex->surface.htile_alignment,
tex->tc_compatible_htile);
if (tex->surface.dcc_offset) {
u_log_printf(log, " DCC: offset=%" PRIu64 ", size=%u, alignment=%u\n",
tex->surface.dcc_offset, tex->surface.dcc_size, tex->surface.dcc_alignment);
for (i = 0; i <= tex->buffer.b.b.last_level; i++)
u_log_printf(log,
" DCCLevel[%i]: enabled=%u, offset=%u, "
"fast_clear_size=%u\n",
i, i < tex->surface.num_dcc_levels, tex->surface.u.legacy.level[i].dcc_offset,
tex->surface.u.legacy.level[i].dcc_fast_clear_size);
}
for (i = 0; i <= tex->buffer.b.b.last_level; i++)
u_log_printf(log,
" Level[%i]: offset=%" PRIu64 ", slice_size=%" PRIu64 ", "
"npix_x=%u, npix_y=%u, npix_z=%u, nblk_x=%u, nblk_y=%u, "
"mode=%u, tiling_index = %u\n",
i, tex->surface.u.legacy.level[i].offset,
(uint64_t)tex->surface.u.legacy.level[i].slice_size_dw * 4,
u_minify(tex->buffer.b.b.width0, i), u_minify(tex->buffer.b.b.height0, i),
u_minify(tex->buffer.b.b.depth0, i), tex->surface.u.legacy.level[i].nblk_x,
tex->surface.u.legacy.level[i].nblk_y, tex->surface.u.legacy.level[i].mode,
tex->surface.u.legacy.tiling_index[i]);
if (tex->surface.has_stencil) {
u_log_printf(log, " StencilLayout: tilesplit=%u\n",
tex->surface.u.legacy.stencil_tile_split);
for (i = 0; i <= tex->buffer.b.b.last_level; i++) {
u_log_printf(log,
" StencilLevel[%i]: offset=%" PRIu64 ", "
"slice_size=%" PRIu64 ", npix_x=%u, "
"npix_y=%u, npix_z=%u, nblk_x=%u, nblk_y=%u, "
"mode=%u, tiling_index = %u\n",
i, tex->surface.u.legacy.stencil_level[i].offset,
(uint64_t)tex->surface.u.legacy.stencil_level[i].slice_size_dw * 4,
u_minify(tex->buffer.b.b.width0, i), u_minify(tex->buffer.b.b.height0, i),
u_minify(tex->buffer.b.b.depth0, i),
tex->surface.u.legacy.stencil_level[i].nblk_x,
tex->surface.u.legacy.stencil_level[i].nblk_y,
tex->surface.u.legacy.stencil_level[i].mode,
tex->surface.u.legacy.stencil_tiling_index[i]);
}
}
}
/**
* Common function for si_texture_create and si_texture_from_handle.
*
* \param screen screen
* \param base resource template
* \param surface radeon_surf
* \param plane0 if a non-zero plane is being created, this is the first plane
* \param imported_buf from si_texture_from_handle
* \param offset offset for non-zero planes or imported buffers
* \param alloc_size the size to allocate if plane0 != NULL
* \param alignment alignment for the allocation
*/
static struct si_texture *si_texture_create_object(struct pipe_screen *screen,
const struct pipe_resource *base,
const struct radeon_surf *surface,
const struct si_texture *plane0,
struct pb_buffer *imported_buf,
uint64_t offset, unsigned pitch_in_bytes,
uint64_t alloc_size, unsigned alignment)
{
struct si_texture *tex;
struct si_resource *resource;
struct si_screen *sscreen = (struct si_screen *)screen;
tex = CALLOC_STRUCT(si_texture);
if (!tex)
goto error;
resource = &tex->buffer;
resource->b.b = *base;
resource->b.vtbl = &si_texture_vtbl;
pipe_reference_init(&resource->b.b.reference, 1);
resource->b.b.screen = screen;
/* don't include stencil-only formats which we don't support for rendering */
tex->is_depth = util_format_has_depth(util_format_description(tex->buffer.b.b.format));
tex->surface = *surface;
/* On GFX8, HTILE uses different tiling depending on the TC_COMPATIBLE_HTILE
* setting, so we have to enable it if we enabled it at allocation.
*
* GFX9 and later use the same tiling for both, so TC-compatible HTILE can be
* enabled on demand.
*/
tex->tc_compatible_htile = sscreen->info.chip_class == GFX8 &&
tex->surface.flags & RADEON_SURF_TC_COMPATIBLE_HTILE;
/* TC-compatible HTILE:
* - GFX8 only supports Z32_FLOAT.
* - GFX9 only supports Z32_FLOAT and Z16_UNORM. */
if (tex->surface.flags & RADEON_SURF_TC_COMPATIBLE_HTILE) {
if (sscreen->info.chip_class >= GFX9 && base->format == PIPE_FORMAT_Z16_UNORM)
tex->db_render_format = base->format;
else {
tex->db_render_format = PIPE_FORMAT_Z32_FLOAT;
tex->upgraded_depth = base->format != PIPE_FORMAT_Z32_FLOAT &&
base->format != PIPE_FORMAT_Z32_FLOAT_S8X24_UINT;
}
} else {
tex->db_render_format = base->format;
}
/* Applies to GCN. */
tex->last_msaa_resolve_target_micro_mode = tex->surface.micro_tile_mode;
/* Disable separate DCC at the beginning. DRI2 doesn't reuse buffers
* between frames, so the only thing that can enable separate DCC
* with DRI2 is multiple slow clears within a frame.
*/
tex->ps_draw_ratio = 0;
ac_surface_override_offset_stride(&sscreen->info, &tex->surface,
tex->buffer.b.b.last_level + 1,
offset, pitch_in_bytes / tex->surface.bpe);
if (tex->is_depth) {
if (sscreen->info.chip_class >= GFX9) {
tex->can_sample_z = true;
tex->can_sample_s = true;
/* Stencil texturing with HTILE doesn't work
* with mipmapping on Navi10-14. */
if (sscreen->info.chip_class == GFX10 && base->last_level > 0)
tex->htile_stencil_disabled = true;
} else {
tex->can_sample_z = !tex->surface.u.legacy.depth_adjusted;
tex->can_sample_s = !tex->surface.u.legacy.stencil_adjusted;
}
tex->db_compatible = surface->flags & RADEON_SURF_ZBUFFER;
} else {
if (tex->surface.cmask_offset) {
tex->cb_color_info |= S_028C70_FAST_CLEAR(1);
tex->cmask_buffer = &tex->buffer;
}
}
if (plane0) {
/* The buffer is shared with the first plane. */
resource->bo_size = plane0->buffer.bo_size;
resource->bo_alignment = plane0->buffer.bo_alignment;
resource->flags = plane0->buffer.flags;
resource->domains = plane0->buffer.domains;
resource->vram_usage = plane0->buffer.vram_usage;
resource->gart_usage = plane0->buffer.gart_usage;
pb_reference(&resource->buf, plane0->buffer.buf);
resource->gpu_address = plane0->buffer.gpu_address;
} else if (!(surface->flags & RADEON_SURF_IMPORTED)) {
/* Create the backing buffer. */
si_init_resource_fields(sscreen, resource, alloc_size, alignment);
if (!si_alloc_resource(sscreen, resource))
goto error;
} else {
resource->buf = imported_buf;
resource->gpu_address = sscreen->ws->buffer_get_virtual_address(resource->buf);
resource->bo_size = imported_buf->size;
resource->bo_alignment = imported_buf->alignment;
resource->domains = sscreen->ws->buffer_get_initial_domain(resource->buf);
if (resource->domains & RADEON_DOMAIN_VRAM)
resource->vram_usage = resource->bo_size;
else if (resource->domains & RADEON_DOMAIN_GTT)
resource->gart_usage = resource->bo_size;
if (sscreen->ws->buffer_get_flags)
resource->flags = sscreen->ws->buffer_get_flags(resource->buf);
}
if (tex->cmask_buffer) {
/* Initialize the cmask to 0xCC (= compressed state). */
si_screen_clear_buffer(sscreen, &tex->cmask_buffer->b.b, tex->surface.cmask_offset,
tex->surface.cmask_size, 0xCCCCCCCC);
}
if (tex->surface.htile_offset) {
uint32_t clear_value = 0;
if (sscreen->info.chip_class >= GFX9 || tex->tc_compatible_htile)
clear_value = 0x0000030F;
si_screen_clear_buffer(sscreen, &tex->buffer.b.b, tex->surface.htile_offset,
tex->surface.htile_size, clear_value);
}
/* Initialize DCC only if the texture is not being imported. */
if (!(surface->flags & RADEON_SURF_IMPORTED) && tex->surface.dcc_offset) {
/* Clear DCC to black for all tiles with DCC enabled.
*
* This fixes corruption in 3DMark Slingshot Extreme, which
* uses uninitialized textures, causing corruption.
*/
if (tex->surface.num_dcc_levels == tex->buffer.b.b.last_level + 1 &&
tex->buffer.b.b.nr_samples <= 2) {
/* Simple case - all tiles have DCC enabled. */
si_screen_clear_buffer(sscreen, &tex->buffer.b.b, tex->surface.dcc_offset,
tex->surface.dcc_size, DCC_CLEAR_COLOR_0000);
} else if (sscreen->info.chip_class >= GFX9) {
/* Clear to uncompressed. Clearing this to black is complicated. */
si_screen_clear_buffer(sscreen, &tex->buffer.b.b, tex->surface.dcc_offset,
tex->surface.dcc_size, DCC_UNCOMPRESSED);
} else {
/* GFX8: Initialize mipmap levels and multisamples separately. */
if (tex->buffer.b.b.nr_samples >= 2) {
/* Clearing this to black is complicated. */
si_screen_clear_buffer(sscreen, &tex->buffer.b.b, tex->surface.dcc_offset,
tex->surface.dcc_size, DCC_UNCOMPRESSED);
} else {
/* Clear the enabled mipmap levels to black. */
unsigned size = 0;
for (unsigned i = 0; i < tex->surface.num_dcc_levels; i++) {
if (!tex->surface.u.legacy.level[i].dcc_fast_clear_size)
break;
size = tex->surface.u.legacy.level[i].dcc_offset +
tex->surface.u.legacy.level[i].dcc_fast_clear_size;
}
/* Mipmap levels with DCC. */
if (size) {
si_screen_clear_buffer(sscreen, &tex->buffer.b.b, tex->surface.dcc_offset, size,
DCC_CLEAR_COLOR_0000);
}
/* Mipmap levels without DCC. */
if (size != tex->surface.dcc_size) {
si_screen_clear_buffer(sscreen, &tex->buffer.b.b, tex->surface.dcc_offset + size,
tex->surface.dcc_size - size, DCC_UNCOMPRESSED);
}
}
}
}
/* Initialize displayable DCC that requires the retile blit. */
if (tex->surface.display_dcc_offset) {
/* Uninitialized DCC can hang the display hw.
* Clear to white to indicate that. */
si_screen_clear_buffer(sscreen, &tex->buffer.b.b, tex->surface.display_dcc_offset,
tex->surface.u.gfx9.display_dcc_size, DCC_CLEAR_COLOR_1111);
/* Upload the DCC retile map.
* Use a staging buffer for the upload, because
* the buffer backing the texture is unmappable.
*/
bool use_uint16 = tex->surface.u.gfx9.dcc_retile_use_uint16;
unsigned num_elements = tex->surface.u.gfx9.dcc_retile_num_elements;
unsigned dcc_retile_map_size = num_elements * (use_uint16 ? 2 : 4);
tex->dcc_retile_buffer = si_aligned_buffer_create(screen,
SI_RESOURCE_FLAG_DRIVER_INTERNAL, PIPE_USAGE_DEFAULT,
dcc_retile_map_size,
sscreen->info.tcc_cache_line_size);
struct si_resource *buf = si_aligned_buffer_create(screen,
SI_RESOURCE_FLAG_DRIVER_INTERNAL, PIPE_USAGE_STREAM,
dcc_retile_map_size,
sscreen->info.tcc_cache_line_size);
void *map = sscreen->ws->buffer_map(buf->buf, NULL, PIPE_MAP_WRITE);
/* Upload the retile map into the staging buffer. */
memcpy(map, tex->surface.u.gfx9.dcc_retile_map, dcc_retile_map_size);
/* Copy the staging buffer to the buffer backing the texture. */
struct si_context *sctx = (struct si_context *)sscreen->aux_context;
simple_mtx_lock(&sscreen->aux_context_lock);
si_sdma_copy_buffer(sctx, &tex->dcc_retile_buffer->b.b, &buf->b.b, 0,
0, buf->b.b.width0);
sscreen->aux_context->flush(sscreen->aux_context, NULL, 0);
simple_mtx_unlock(&sscreen->aux_context_lock);
si_resource_reference(&buf, NULL);
}
/* Initialize the CMASK base register value. */
tex->cmask_base_address_reg = (tex->buffer.gpu_address + tex->surface.cmask_offset) >> 8;
if (sscreen->debug_flags & DBG(VM)) {
fprintf(stderr,
"VM start=0x%" PRIX64 " end=0x%" PRIX64
" | Texture %ix%ix%i, %i levels, %i samples, %s\n",
tex->buffer.gpu_address, tex->buffer.gpu_address + tex->buffer.buf->size,
base->width0, base->height0, util_num_layers(base, 0), base->last_level + 1,
base->nr_samples ? base->nr_samples : 1, util_format_short_name(base->format));
}
if (sscreen->debug_flags & DBG(TEX)) {
puts("Texture:");
struct u_log_context log;
u_log_context_init(&log);
si_print_texture_info(sscreen, tex, &log);
u_log_new_page_print(&log, stdout);
fflush(stdout);
u_log_context_destroy(&log);
}
return tex;
error:
FREE(tex);
return NULL;
}
static enum radeon_surf_mode si_choose_tiling(struct si_screen *sscreen,
const struct pipe_resource *templ,
bool tc_compatible_htile)
{
const struct util_format_description *desc = util_format_description(templ->format);
bool force_tiling = templ->flags & SI_RESOURCE_FLAG_FORCE_MSAA_TILING;
bool is_depth_stencil = util_format_is_depth_or_stencil(templ->format) &&
!(templ->flags & SI_RESOURCE_FLAG_FLUSHED_DEPTH);
/* MSAA resources must be 2D tiled. */
if (templ->nr_samples > 1)
return RADEON_SURF_MODE_2D;
/* Transfer resources should be linear. */
if (templ->flags & SI_RESOURCE_FLAG_FORCE_LINEAR)
return RADEON_SURF_MODE_LINEAR_ALIGNED;
/* Avoid Z/S decompress blits by forcing TC-compatible HTILE on GFX8,
* which requires 2D tiling.
*/
if (sscreen->info.chip_class == GFX8 && tc_compatible_htile)
return RADEON_SURF_MODE_2D;
/* Handle common candidates for the linear mode.
* Compressed textures and DB surfaces must always be tiled.
*/
if (!force_tiling && !is_depth_stencil && !util_format_is_compressed(templ->format)) {
if (sscreen->debug_flags & DBG(NO_TILING))
return RADEON_SURF_MODE_LINEAR_ALIGNED;
/* Tiling doesn't work with the 422 (SUBSAMPLED) formats. */
if (desc->layout == UTIL_FORMAT_LAYOUT_SUBSAMPLED)
return RADEON_SURF_MODE_LINEAR_ALIGNED;
/* Cursors are linear on AMD GCN.
* (XXX double-check, maybe also use RADEON_SURF_SCANOUT) */
if (templ->bind & PIPE_BIND_CURSOR)
return RADEON_SURF_MODE_LINEAR_ALIGNED;
if (templ->bind & PIPE_BIND_LINEAR)
return RADEON_SURF_MODE_LINEAR_ALIGNED;
/* Textures with a very small height are recommended to be linear. */
if (templ->target == PIPE_TEXTURE_1D || templ->target == PIPE_TEXTURE_1D_ARRAY ||
/* Only very thin and long 2D textures should benefit from
* linear_aligned. */
templ->height0 <= 2)
return RADEON_SURF_MODE_LINEAR_ALIGNED;
/* Textures likely to be mapped often. */
if (templ->usage == PIPE_USAGE_STAGING || templ->usage == PIPE_USAGE_STREAM)
return RADEON_SURF_MODE_LINEAR_ALIGNED;
}
/* Make small textures 1D tiled. */
if (templ->width0 <= 16 || templ->height0 <= 16 || (sscreen->debug_flags & DBG(NO_2D_TILING)))
return RADEON_SURF_MODE_1D;
/* The allocator will switch to 1D if needed. */
return RADEON_SURF_MODE_2D;
}
struct pipe_resource *si_texture_create(struct pipe_screen *screen,
const struct pipe_resource *templ)
{
struct si_screen *sscreen = (struct si_screen *)screen;
bool is_zs = util_format_is_depth_or_stencil(templ->format);
if (templ->nr_samples >= 2) {
/* This is hackish (overwriting the const pipe_resource template),
* but should be harmless and gallium frontends can also see
* the overriden number of samples in the created pipe_resource.
*/
if (is_zs && sscreen->eqaa_force_z_samples) {
((struct pipe_resource *)templ)->nr_samples =
((struct pipe_resource *)templ)->nr_storage_samples = sscreen->eqaa_force_z_samples;
} else if (!is_zs && sscreen->eqaa_force_color_samples) {
((struct pipe_resource *)templ)->nr_samples = sscreen->eqaa_force_coverage_samples;
((struct pipe_resource *)templ)->nr_storage_samples = sscreen->eqaa_force_color_samples;
}
}
bool is_flushed_depth = templ->flags & SI_RESOURCE_FLAG_FLUSHED_DEPTH ||
templ->flags & SI_RESOURCE_FLAG_FORCE_LINEAR;
bool tc_compatible_htile =
sscreen->info.chip_class >= GFX8 &&
/* There are issues with TC-compatible HTILE on Tonga (and
* Iceland is the same design), and documented bug workarounds
* don't help. For example, this fails:
* piglit/bin/tex-miplevel-selection 'texture()' 2DShadow -auto
*/
sscreen->info.family != CHIP_TONGA && sscreen->info.family != CHIP_ICELAND &&
(templ->flags & PIPE_RESOURCE_FLAG_TEXTURING_MORE_LIKELY) &&
!(sscreen->debug_flags & DBG(NO_HYPERZ)) && !is_flushed_depth &&
templ->nr_samples <= 1 && /* TC-compat HTILE is less efficient with MSAA */
is_zs;
enum radeon_surf_mode tile_mode = si_choose_tiling(sscreen, templ, tc_compatible_htile);
/* This allocates textures with multiple planes like NV12 in 1 buffer. */
enum
{
SI_TEXTURE_MAX_PLANES = 3
};
struct radeon_surf surface[SI_TEXTURE_MAX_PLANES] = {};
struct pipe_resource plane_templ[SI_TEXTURE_MAX_PLANES];
uint64_t plane_offset[SI_TEXTURE_MAX_PLANES] = {};
uint64_t total_size = 0;
unsigned max_alignment = 0;
unsigned num_planes = util_format_get_num_planes(templ->format);
assert(num_planes <= SI_TEXTURE_MAX_PLANES);
/* Compute texture or plane layouts and offsets. */
for (unsigned i = 0; i < num_planes; i++) {
plane_templ[i] = *templ;
plane_templ[i].format = util_format_get_plane_format(templ->format, i);
plane_templ[i].width0 = util_format_get_plane_width(templ->format, i, templ->width0);
plane_templ[i].height0 = util_format_get_plane_height(templ->format, i, templ->height0);
/* Multi-plane allocations need PIPE_BIND_SHARED, because we can't
* reallocate the storage to add PIPE_BIND_SHARED, because it's
* shared by 3 pipe_resources.
*/
if (num_planes > 1)
plane_templ[i].bind |= PIPE_BIND_SHARED;
if (si_init_surface(sscreen, &surface[i], &plane_templ[i], tile_mode, false,
plane_templ[i].bind & PIPE_BIND_SCANOUT, is_flushed_depth,
tc_compatible_htile))
return NULL;
plane_offset[i] = align64(total_size, surface[i].surf_alignment);
total_size = plane_offset[i] + surface[i].total_size;
max_alignment = MAX2(max_alignment, surface[i].surf_alignment);
}
struct si_texture *plane0 = NULL, *last_plane = NULL;
for (unsigned i = 0; i < num_planes; i++) {
struct si_texture *tex =
si_texture_create_object(screen, &plane_templ[i], &surface[i], plane0, NULL,
plane_offset[i], 0, total_size, max_alignment);
if (!tex) {
si_texture_reference(&plane0, NULL);
return NULL;
}
tex->plane_index = i;
tex->num_planes = num_planes;
if (!plane0) {
plane0 = last_plane = tex;
} else {
last_plane->buffer.b.b.next = &tex->buffer.b.b;
last_plane = tex;
}
}
return (struct pipe_resource *)plane0;
}
static struct pipe_resource *si_texture_from_winsys_buffer(struct si_screen *sscreen,
const struct pipe_resource *templ,
struct pb_buffer *buf, unsigned stride,
uint64_t offset, unsigned usage,
bool dedicated)
{
struct radeon_surf surface = {};
struct radeon_bo_metadata metadata = {};
struct si_texture *tex;
int r;
/* Ignore metadata for non-zero planes. */
if (offset != 0)
dedicated = false;
if (dedicated) {
sscreen->ws->buffer_get_metadata(buf, &metadata, &surface);
} else {
/**
* The bo metadata is unset for un-dedicated images. So we fall
* back to linear. See answer to question 5 of the
* VK_KHX_external_memory spec for some details.
*
* It is possible that this case isn't going to work if the
* surface pitch isn't correctly aligned by default.
*
* In order to support it correctly we require multi-image
* metadata to be syncrhonized between radv and radeonsi. The
* semantics of associating multiple image metadata to a memory
* object on the vulkan export side are not concretely defined
* either.
*
* All the use cases we are aware of at the moment for memory
* objects use dedicated allocations. So lets keep the initial
* implementation simple.
*
* A possible alternative is to attempt to reconstruct the
* tiling information when the TexParameter TEXTURE_TILING_EXT
* is set.
*/
metadata.mode = RADEON_SURF_MODE_LINEAR_ALIGNED;
}
r = si_init_surface(sscreen, &surface, templ, metadata.mode, true,
surface.flags & RADEON_SURF_SCANOUT, false, false);
if (r)
return NULL;
tex = si_texture_create_object(&sscreen->b, templ, &surface, NULL, buf,
offset, stride, 0, 0);
if (!tex)
return NULL;
tex->buffer.b.is_shared = true;
tex->buffer.external_usage = usage;
tex->num_planes = 1;
/* Account for multiple planes with lowered yuv import. */
struct pipe_resource *next_plane = tex->buffer.b.b.next;
while(next_plane) {
struct si_texture *next_tex = (struct si_texture *)next_plane;
++next_tex->num_planes;
++tex->num_planes;
next_plane = next_plane->next;
}
if (!ac_surface_set_umd_metadata(&sscreen->info, &tex->surface,
tex->buffer.b.b.nr_storage_samples,
tex->buffer.b.b.last_level + 1,
metadata.size_metadata,
metadata.metadata)) {
si_texture_reference(&tex, NULL);
return NULL;
}
/* Displayable DCC requires an explicit flush. */
if (dedicated && offset == 0 && !(usage & PIPE_HANDLE_USAGE_EXPLICIT_FLUSH) &&
si_has_displayable_dcc(tex)) {
/* TODO: do we need to decompress DCC? */
if (si_texture_discard_dcc(sscreen, tex)) {
/* Update BO metadata after disabling DCC. */
si_set_tex_bo_metadata(sscreen, tex);
}
}
assert(tex->surface.tile_swizzle == 0);
return &tex->buffer.b.b;
}
static struct pipe_resource *si_texture_from_handle(struct pipe_screen *screen,
const struct pipe_resource *templ,
struct winsys_handle *whandle, unsigned usage)
{
struct si_screen *sscreen = (struct si_screen *)screen;
struct pb_buffer *buf = NULL;
/* Support only 2D textures without mipmaps */
if ((templ->target != PIPE_TEXTURE_2D && templ->target != PIPE_TEXTURE_RECT &&
templ->target != PIPE_TEXTURE_2D_ARRAY) ||
templ->last_level != 0)
return NULL;
buf = sscreen->ws->buffer_from_handle(sscreen->ws, whandle, sscreen->info.max_alignment);
if (!buf)
return NULL;
return si_texture_from_winsys_buffer(sscreen, templ, buf, whandle->stride, whandle->offset,
usage, true);
}
bool si_init_flushed_depth_texture(struct pipe_context *ctx, struct pipe_resource *texture)
{
struct si_texture *tex = (struct si_texture *)texture;
struct pipe_resource resource;
enum pipe_format pipe_format = texture->format;
assert(!tex->flushed_depth_texture);
if (!tex->can_sample_z && tex->can_sample_s) {
switch (pipe_format) {
case PIPE_FORMAT_Z32_FLOAT_S8X24_UINT:
/* Save memory by not allocating the S plane. */
pipe_format = PIPE_FORMAT_Z32_FLOAT;
break;
case PIPE_FORMAT_Z24_UNORM_S8_UINT:
case PIPE_FORMAT_S8_UINT_Z24_UNORM:
/* Save memory bandwidth by not copying the
* stencil part during flush.
*
* This potentially increases memory bandwidth
* if an application uses both Z and S texturing
* simultaneously (a flushed Z24S8 texture
* would be stored compactly), but how often
* does that really happen?
*/
pipe_format = PIPE_FORMAT_Z24X8_UNORM;
break;
default:;
}
} else if (!tex->can_sample_s && tex->can_sample_z) {
assert(util_format_has_stencil(util_format_description(pipe_format)));
/* DB->CB copies to an 8bpp surface don't work. */
pipe_format = PIPE_FORMAT_X24S8_UINT;
}
memset(&resource, 0, sizeof(resource));
resource.target = texture->target;
resource.format = pipe_format;
resource.width0 = texture->width0;
resource.height0 = texture->height0;
resource.depth0 = texture->depth0;
resource.array_size = texture->array_size;
resource.last_level = texture->last_level;
resource.nr_samples = texture->nr_samples;
resource.usage = PIPE_USAGE_DEFAULT;
resource.bind = texture->bind & ~PIPE_BIND_DEPTH_STENCIL;
resource.flags = texture->flags | SI_RESOURCE_FLAG_FLUSHED_DEPTH;
tex->flushed_depth_texture =
(struct si_texture *)ctx->screen->resource_create(ctx->screen, &resource);
if (!tex->flushed_depth_texture) {
PRINT_ERR("failed to create temporary texture to hold flushed depth\n");
return false;
}
return true;
}
/**
* Initialize the pipe_resource descriptor to be of the same size as the box,
* which is supposed to hold a subregion of the texture "orig" at the given
* mipmap level.
*/
static void si_init_temp_resource_from_box(struct pipe_resource *res, struct pipe_resource *orig,
const struct pipe_box *box, unsigned level,
unsigned usage, unsigned flags)
{
memset(res, 0, sizeof(*res));
res->format = orig->format;
res->width0 = box->width;
res->height0 = box->height;
res->depth0 = 1;
res->array_size = 1;
res->usage = usage;
res->flags = flags;
if (flags & SI_RESOURCE_FLAG_FORCE_LINEAR && util_format_is_compressed(orig->format)) {
/* Transfer resources are allocated with linear tiling, which is
* not supported for compressed formats.
*/
unsigned blocksize = util_format_get_blocksize(orig->format);
if (blocksize == 8) {
res->format = PIPE_FORMAT_R16G16B16A16_UINT;
} else {
assert(blocksize == 16);
res->format = PIPE_FORMAT_R32G32B32A32_UINT;
}
res->width0 = util_format_get_nblocksx(orig->format, box->width);
res->height0 = util_format_get_nblocksy(orig->format, box->height);
}
/* We must set the correct texture target and dimensions for a 3D box. */
if (box->depth > 1 && util_max_layer(orig, level) > 0) {
res->target = PIPE_TEXTURE_2D_ARRAY;
res->array_size = box->depth;
} else {
res->target = PIPE_TEXTURE_2D;
}
}
static bool si_can_invalidate_texture(struct si_screen *sscreen, struct si_texture *tex,
unsigned transfer_usage, const struct pipe_box *box)
{
return !tex->buffer.b.is_shared && !(tex->surface.flags & RADEON_SURF_IMPORTED) &&
!(transfer_usage & PIPE_MAP_READ) && tex->buffer.b.b.last_level == 0 &&
util_texrange_covers_whole_level(&tex->buffer.b.b, 0, box->x, box->y, box->z, box->width,
box->height, box->depth);
}
static void si_texture_invalidate_storage(struct si_context *sctx, struct si_texture *tex)
{
struct si_screen *sscreen = sctx->screen;
/* There is no point in discarding depth and tiled buffers. */
assert(!tex->is_depth);
assert(tex->surface.is_linear);
/* Reallocate the buffer in the same pipe_resource. */
si_alloc_resource(sscreen, &tex->buffer);
/* Initialize the CMASK base address (needed even without CMASK). */
tex->cmask_base_address_reg = (tex->buffer.gpu_address + tex->surface.cmask_offset) >> 8;
p_atomic_inc(&sscreen->dirty_tex_counter);
sctx->num_alloc_tex_transfer_bytes += tex->surface.total_size;
}
static void *si_texture_transfer_map(struct pipe_context *ctx, struct pipe_resource *texture,
unsigned level, unsigned usage, const struct pipe_box *box,
struct pipe_transfer **ptransfer)
{
struct si_context *sctx = (struct si_context *)ctx;
struct si_texture *tex = (struct si_texture *)texture;
struct si_transfer *trans;
struct si_resource *buf;
unsigned offset = 0;
char *map;
bool use_staging_texture = false;
assert(!(texture->flags & SI_RESOURCE_FLAG_FORCE_LINEAR));
assert(box->width && box->height && box->depth);
if (tex->is_depth) {
/* Depth textures use staging unconditionally. */
use_staging_texture = true;
} else {
/* Degrade the tile mode if we get too many transfers on APUs.
* On dGPUs, the staging texture is always faster.
* Only count uploads that are at least 4x4 pixels large.
*/
if (!sctx->screen->info.has_dedicated_vram && level == 0 && box->width >= 4 &&
box->height >= 4 && p_atomic_inc_return(&tex->num_level0_transfers) == 10) {
bool can_invalidate = si_can_invalidate_texture(sctx->screen, tex, usage, box);
si_reallocate_texture_inplace(sctx, tex, PIPE_BIND_LINEAR, can_invalidate);
}
/* Tiled textures need to be converted into a linear texture for CPU
* access. The staging texture is always linear and is placed in GART.
*
* Reading from VRAM or GTT WC is slow, always use the staging
* texture in this case.
*
* Use the staging texture for uploads if the underlying BO
* is busy.
*/
if (!tex->surface.is_linear || (tex->buffer.flags & RADEON_FLAG_ENCRYPTED))
use_staging_texture = true;
else if (usage & PIPE_MAP_READ)
use_staging_texture =
tex->buffer.domains & RADEON_DOMAIN_VRAM || tex->buffer.flags & RADEON_FLAG_GTT_WC;
/* Write & linear only: */
else if (si_rings_is_buffer_referenced(sctx, tex->buffer.buf, RADEON_USAGE_READWRITE) ||
!sctx->ws->buffer_wait(tex->buffer.buf, 0, RADEON_USAGE_READWRITE)) {
/* It's busy. */
if (si_can_invalidate_texture(sctx->screen, tex, usage, box))
si_texture_invalidate_storage(sctx, tex);
else
use_staging_texture = true;
}
}
trans = CALLOC_STRUCT(si_transfer);
if (!trans)
return NULL;
pipe_resource_reference(&trans->b.b.resource, texture);
trans->b.b.level = level;
trans->b.b.usage = usage;
trans->b.b.box = *box;
if (use_staging_texture) {
struct pipe_resource resource;
struct si_texture *staging;
unsigned bo_usage = usage & PIPE_MAP_READ ? PIPE_USAGE_STAGING : PIPE_USAGE_STREAM;
unsigned bo_flags = SI_RESOURCE_FLAG_FORCE_LINEAR | SI_RESOURCE_FLAG_DRIVER_INTERNAL;
/* The pixel shader has a bad access pattern for linear textures.
* If a pixel shader is used to blit to/from staging, don't disable caches.
*
* MSAA, depth/stencil textures, and compressed textures use the pixel shader
* to blit.
*/
if (texture->nr_samples <= 1 &&
!tex->is_depth &&
!util_format_is_compressed(texture->format) &&
/* Texture uploads with DCC use the pixel shader to blit */
(!(usage & PIPE_MAP_WRITE) || !vi_dcc_enabled(tex, level)))
bo_flags |= SI_RESOURCE_FLAG_UNCACHED;
si_init_temp_resource_from_box(&resource, texture, box, level, bo_usage,
bo_flags);
/* Since depth-stencil textures don't support linear tiling,
* blit from ZS to color and vice versa. u_blitter will do
* the packing for these formats.
*/
if (tex->is_depth)
resource.format = util_blitter_get_color_format_for_zs(resource.format);
/* Create the temporary texture. */
staging = (struct si_texture *)ctx->screen->resource_create(ctx->screen, &resource);
if (!staging) {
PRINT_ERR("failed to create temporary texture to hold untiled copy\n");
goto fail_trans;
}
trans->staging = &staging->buffer;
/* Just get the strides. */
si_texture_get_offset(sctx->screen, staging, 0, NULL, &trans->b.b.stride,
&trans->b.b.layer_stride);
if (usage & PIPE_MAP_READ)
si_copy_to_staging_texture(ctx, trans);
else
usage |= PIPE_MAP_UNSYNCHRONIZED;
buf = trans->staging;
} else {
/* the resource is mapped directly */
offset = si_texture_get_offset(sctx->screen, tex, level, box, &trans->b.b.stride,
&trans->b.b.layer_stride);
buf = &tex->buffer;
}
/* Always unmap texture CPU mappings on 32-bit architectures, so that
* we don't run out of the CPU address space.
*/
if (sizeof(void *) == 4)
usage |= RADEON_MAP_TEMPORARY;
if (!(map = si_buffer_map_sync_with_rings(sctx, buf, usage)))
goto fail_trans;
*ptransfer = &trans->b.b;
return map + offset;
fail_trans:
si_resource_reference(&trans->staging, NULL);
pipe_resource_reference(&trans->b.b.resource, NULL);
FREE(trans);
return NULL;
}
static void si_texture_transfer_unmap(struct pipe_context *ctx, struct pipe_transfer *transfer)
{
struct si_context *sctx = (struct si_context *)ctx;
struct si_transfer *stransfer = (struct si_transfer *)transfer;
struct pipe_resource *texture = transfer->resource;
struct si_texture *tex = (struct si_texture *)texture;
/* Always unmap texture CPU mappings on 32-bit architectures, so that
* we don't run out of the CPU address space.
*/
if (sizeof(void *) == 4) {
struct si_resource *buf = stransfer->staging ? stransfer->staging : &tex->buffer;
sctx->ws->buffer_unmap(buf->buf);
}
if ((transfer->usage & PIPE_MAP_WRITE) && stransfer->staging)
si_copy_from_staging_texture(ctx, stransfer);
if (stransfer->staging) {
sctx->num_alloc_tex_transfer_bytes += stransfer->staging->buf->size;
si_resource_reference(&stransfer->staging, NULL);
}
/* Heuristic for {upload, draw, upload, draw, ..}:
*
* Flush the gfx IB if we've allocated too much texture storage.
*
* The idea is that we don't want to build IBs that use too much
* memory and put pressure on the kernel memory manager and we also
* want to make temporary and invalidated buffers go idle ASAP to
* decrease the total memory usage or make them reusable. The memory
* usage will be slightly higher than given here because of the buffer
* cache in the winsys.
*
* The result is that the kernel memory manager is never a bottleneck.
*/
if (sctx->num_alloc_tex_transfer_bytes > sctx->screen->info.gart_size / 4) {
si_flush_gfx_cs(sctx, RADEON_FLUSH_ASYNC_START_NEXT_GFX_IB_NOW, NULL);
sctx->num_alloc_tex_transfer_bytes = 0;
}
pipe_resource_reference(&transfer->resource, NULL);
FREE(transfer);
}
static const struct u_resource_vtbl si_texture_vtbl = {
NULL, /* get_handle */
si_texture_destroy, /* resource_destroy */
si_texture_transfer_map, /* transfer_map */
u_default_transfer_flush_region, /* transfer_flush_region */
si_texture_transfer_unmap, /* transfer_unmap */
};
/* Return if it's allowed to reinterpret one format as another with DCC enabled.
*/
bool vi_dcc_formats_compatible(struct si_screen *sscreen, enum pipe_format format1,
enum pipe_format format2)
{
const struct util_format_description *desc1, *desc2;
/* No format change - exit early. */
if (format1 == format2)
return true;
format1 = si_simplify_cb_format(format1);
format2 = si_simplify_cb_format(format2);
/* Check again after format adjustments. */
if (format1 == format2)
return true;
desc1 = util_format_description(format1);
desc2 = util_format_description(format2);
if (desc1->layout != UTIL_FORMAT_LAYOUT_PLAIN || desc2->layout != UTIL_FORMAT_LAYOUT_PLAIN)
return false;
/* Float and non-float are totally incompatible. */
if ((desc1->channel[0].type == UTIL_FORMAT_TYPE_FLOAT) !=
(desc2->channel[0].type == UTIL_FORMAT_TYPE_FLOAT))
return false;
/* Channel sizes must match across DCC formats.
* Comparing just the first 2 channels should be enough.
*/
if (desc1->channel[0].size != desc2->channel[0].size ||
(desc1->nr_channels >= 2 && desc1->channel[1].size != desc2->channel[1].size))
return false;
/* Everything below is not needed if the driver never uses the DCC
* clear code with the value of 1.
*/
/* If the clear values are all 1 or all 0, this constraint can be
* ignored. */
if (vi_alpha_is_on_msb(sscreen, format1) != vi_alpha_is_on_msb(sscreen, format2))
return false;
/* Channel types must match if the clear value of 1 is used.
* The type categories are only float, signed, unsigned.
* NORM and INT are always compatible.
*/
if (desc1->channel[0].type != desc2->channel[0].type ||
(desc1->nr_channels >= 2 && desc1->channel[1].type != desc2->channel[1].type))
return false;
return true;
}
bool vi_dcc_formats_are_incompatible(struct pipe_resource *tex, unsigned level,
enum pipe_format view_format)
{
struct si_texture *stex = (struct si_texture *)tex;
return vi_dcc_enabled(stex, level) &&
!vi_dcc_formats_compatible((struct si_screen *)tex->screen, tex->format, view_format);
}
/* This can't be merged with the above function, because
* vi_dcc_formats_compatible should be called only when DCC is enabled. */
void vi_disable_dcc_if_incompatible_format(struct si_context *sctx, struct pipe_resource *tex,
unsigned level, enum pipe_format view_format)
{
struct si_texture *stex = (struct si_texture *)tex;
if (vi_dcc_formats_are_incompatible(tex, level, view_format))
if (!si_texture_disable_dcc(sctx, stex))
si_decompress_dcc(sctx, stex);
}
struct pipe_surface *si_create_surface_custom(struct pipe_context *pipe,
struct pipe_resource *texture,
const struct pipe_surface *templ, unsigned width0,
unsigned height0, unsigned width, unsigned height)
{
struct si_surface *surface = CALLOC_STRUCT(si_surface);
if (!surface)
return NULL;
assert(templ->u.tex.first_layer <= util_max_layer(texture, templ->u.tex.level));
assert(templ->u.tex.last_layer <= util_max_layer(texture, templ->u.tex.level));
pipe_reference_init(&surface->base.reference, 1);
pipe_resource_reference(&surface->base.texture, texture);
surface->base.context = pipe;
surface->base.format = templ->format;
surface->base.width = width;
surface->base.height = height;
surface->base.u = templ->u;
surface->width0 = width0;
surface->height0 = height0;
surface->dcc_incompatible =
texture->target != PIPE_BUFFER &&
vi_dcc_formats_are_incompatible(texture, templ->u.tex.level, templ->format);
return &surface->base;
}
static struct pipe_surface *si_create_surface(struct pipe_context *pipe, struct pipe_resource *tex,
const struct pipe_surface *templ)
{
unsigned level = templ->u.tex.level;
unsigned width = u_minify(tex->width0, level);
unsigned height = u_minify(tex->height0, level);
unsigned width0 = tex->width0;
unsigned height0 = tex->height0;
if (tex->target != PIPE_BUFFER && templ->format != tex->format) {
const struct util_format_description *tex_desc = util_format_description(tex->format);
const struct util_format_description *templ_desc = util_format_description(templ->format);
assert(tex_desc->block.bits == templ_desc->block.bits);
/* Adjust size of surface if and only if the block width or
* height is changed. */
if (tex_desc->block.width != templ_desc->block.width ||
tex_desc->block.height != templ_desc->block.height) {
unsigned nblks_x = util_format_get_nblocksx(tex->format, width);
unsigned nblks_y = util_format_get_nblocksy(tex->format, height);
width = nblks_x * templ_desc->block.width;
height = nblks_y * templ_desc->block.height;
width0 = util_format_get_nblocksx(tex->format, width0);
height0 = util_format_get_nblocksy(tex->format, height0);
}
}
return si_create_surface_custom(pipe, tex, templ, width0, height0, width, height);
}
static void si_surface_destroy(struct pipe_context *pipe, struct pipe_surface *surface)
{
pipe_resource_reference(&surface->texture, NULL);
FREE(surface);
}
unsigned si_translate_colorswap(enum pipe_format format, bool do_endian_swap)
{
const struct util_format_description *desc = util_format_description(format);
#define HAS_SWIZZLE(chan, swz) (desc->swizzle[chan] == PIPE_SWIZZLE_##swz)
if (format == PIPE_FORMAT_R11G11B10_FLOAT) /* isn't plain */
return V_028C70_SWAP_STD;
if (desc->layout != UTIL_FORMAT_LAYOUT_PLAIN)
return ~0U;
switch (desc->nr_channels) {
case 1:
if (HAS_SWIZZLE(0, X))
return V_028C70_SWAP_STD; /* X___ */
else if (HAS_SWIZZLE(3, X))
return V_028C70_SWAP_ALT_REV; /* ___X */
break;
case 2:
if ((HAS_SWIZZLE(0, X) && HAS_SWIZZLE(1, Y)) || (HAS_SWIZZLE(0, X) && HAS_SWIZZLE(1, NONE)) ||
(HAS_SWIZZLE(0, NONE) && HAS_SWIZZLE(1, Y)))
return V_028C70_SWAP_STD; /* XY__ */
else if ((HAS_SWIZZLE(0, Y) && HAS_SWIZZLE(1, X)) ||
(HAS_SWIZZLE(0, Y) && HAS_SWIZZLE(1, NONE)) ||
(HAS_SWIZZLE(0, NONE) && HAS_SWIZZLE(1, X)))
/* YX__ */
return (do_endian_swap ? V_028C70_SWAP_STD : V_028C70_SWAP_STD_REV);
else if (HAS_SWIZZLE(0, X) && HAS_SWIZZLE(3, Y))
return V_028C70_SWAP_ALT; /* X__Y */
else if (HAS_SWIZZLE(0, Y) && HAS_SWIZZLE(3, X))
return V_028C70_SWAP_ALT_REV; /* Y__X */
break;
case 3:
if (HAS_SWIZZLE(0, X))
return (do_endian_swap ? V_028C70_SWAP_STD_REV : V_028C70_SWAP_STD);
else if (HAS_SWIZZLE(0, Z))
return V_028C70_SWAP_STD_REV; /* ZYX */
break;
case 4:
/* check the middle channels, the 1st and 4th channel can be NONE */
if (HAS_SWIZZLE(1, Y) && HAS_SWIZZLE(2, Z)) {
return V_028C70_SWAP_STD; /* XYZW */
} else if (HAS_SWIZZLE(1, Z) && HAS_SWIZZLE(2, Y)) {
return V_028C70_SWAP_STD_REV; /* WZYX */
} else if (HAS_SWIZZLE(1, Y) && HAS_SWIZZLE(2, X)) {
return V_028C70_SWAP_ALT; /* ZYXW */
} else if (HAS_SWIZZLE(1, Z) && HAS_SWIZZLE(2, W)) {
/* YZWX */
if (desc->is_array)
return V_028C70_SWAP_ALT_REV;
else
return (do_endian_swap ? V_028C70_SWAP_ALT : V_028C70_SWAP_ALT_REV);
}
break;
}
return ~0U;
}
/* PIPELINE_STAT-BASED DCC ENABLEMENT FOR DISPLAYABLE SURFACES */
static void vi_dcc_clean_up_context_slot(struct si_context *sctx, int slot)
{
int i;
if (sctx->dcc_stats[slot].query_active)
vi_separate_dcc_stop_query(sctx, sctx->dcc_stats[slot].tex);
for (i = 0; i < ARRAY_SIZE(sctx->dcc_stats[slot].ps_stats); i++)
if (sctx->dcc_stats[slot].ps_stats[i]) {
sctx->b.destroy_query(&sctx->b, sctx->dcc_stats[slot].ps_stats[i]);
sctx->dcc_stats[slot].ps_stats[i] = NULL;
}
si_texture_reference(&sctx->dcc_stats[slot].tex, NULL);
}
/**
* Return the per-context slot where DCC statistics queries for the texture live.
*/
static unsigned vi_get_context_dcc_stats_index(struct si_context *sctx, struct si_texture *tex)
{
int i, empty_slot = -1;
/* Remove zombie textures (textures kept alive by this array only). */
for (i = 0; i < ARRAY_SIZE(sctx->dcc_stats); i++)
if (sctx->dcc_stats[i].tex && sctx->dcc_stats[i].tex->buffer.b.b.reference.count == 1)
vi_dcc_clean_up_context_slot(sctx, i);
/* Find the texture. */
for (i = 0; i < ARRAY_SIZE(sctx->dcc_stats); i++) {
/* Return if found. */
if (sctx->dcc_stats[i].tex == tex) {
sctx->dcc_stats[i].last_use_timestamp = os_time_get();
return i;
}
/* Record the first seen empty slot. */
if (empty_slot == -1 && !sctx->dcc_stats[i].tex)
empty_slot = i;
}
/* Not found. Remove the oldest member to make space in the array. */
if (empty_slot == -1) {
int oldest_slot = 0;
/* Find the oldest slot. */
for (i = 1; i < ARRAY_SIZE(sctx->dcc_stats); i++)
if (sctx->dcc_stats[oldest_slot].last_use_timestamp >
sctx->dcc_stats[i].last_use_timestamp)
oldest_slot = i;
/* Clean up the oldest slot. */
vi_dcc_clean_up_context_slot(sctx, oldest_slot);
empty_slot = oldest_slot;
}
/* Add the texture to the new slot. */
si_texture_reference(&sctx->dcc_stats[empty_slot].tex, tex);
sctx->dcc_stats[empty_slot].last_use_timestamp = os_time_get();
return empty_slot;
}
static struct pipe_query *vi_create_resuming_pipestats_query(struct si_context *sctx)
{
struct si_query_hw *query =
(struct si_query_hw *)sctx->b.create_query(&sctx->b, PIPE_QUERY_PIPELINE_STATISTICS, 0);
query->flags |= SI_QUERY_HW_FLAG_BEGIN_RESUMES;
return (struct pipe_query *)query;
}
/**
* Called when binding a color buffer.
*/
void vi_separate_dcc_start_query(struct si_context *sctx, struct si_texture *tex)
{
unsigned i = vi_get_context_dcc_stats_index(sctx, tex);
assert(!sctx->dcc_stats[i].query_active);
if (!sctx->dcc_stats[i].ps_stats[0])
sctx->dcc_stats[i].ps_stats[0] = vi_create_resuming_pipestats_query(sctx);
/* begin or resume the query */
sctx->b.begin_query(&sctx->b, sctx->dcc_stats[i].ps_stats[0]);
sctx->dcc_stats[i].query_active = true;
}
/**
* Called when unbinding a color buffer.
*/
void vi_separate_dcc_stop_query(struct si_context *sctx, struct si_texture *tex)
{
unsigned i = vi_get_context_dcc_stats_index(sctx, tex);
assert(sctx->dcc_stats[i].query_active);
assert(sctx->dcc_stats[i].ps_stats[0]);
/* pause or end the query */
sctx->b.end_query(&sctx->b, sctx->dcc_stats[i].ps_stats[0]);
sctx->dcc_stats[i].query_active = false;
}
static bool vi_should_enable_separate_dcc(struct si_texture *tex)
{
/* The minimum number of fullscreen draws per frame that is required
* to enable DCC. */
return tex->ps_draw_ratio + tex->num_slow_clears >= 5;
}
/* Called by fast clear. */
void vi_separate_dcc_try_enable(struct si_context *sctx, struct si_texture *tex)
{
/* The intent is to use this with shared displayable back buffers,
* but it's not strictly limited only to them.
*/
if (!tex->buffer.b.is_shared ||
!(tex->buffer.external_usage & PIPE_HANDLE_USAGE_EXPLICIT_FLUSH) ||
tex->buffer.b.b.target != PIPE_TEXTURE_2D || tex->buffer.b.b.last_level > 0 ||
!tex->surface.dcc_size || sctx->screen->debug_flags & DBG(NO_DCC) ||
sctx->screen->debug_flags & DBG(NO_DCC_FB))
return;
assert(sctx->chip_class >= GFX8);
if (tex->surface.dcc_offset)
return; /* already enabled */
/* Enable the DCC stat gathering. */
if (!tex->dcc_gather_statistics) {
tex->dcc_gather_statistics = true;
vi_separate_dcc_start_query(sctx, tex);
}
if (!vi_should_enable_separate_dcc(tex))
return; /* stats show that DCC decompression is too expensive */
assert(tex->surface.num_dcc_levels);
assert(!tex->dcc_separate_buffer);
si_texture_discard_cmask(sctx->screen, tex);
/* Get a DCC buffer. */
if (tex->last_dcc_separate_buffer) {
assert(tex->dcc_gather_statistics);
assert(!tex->dcc_separate_buffer);
tex->dcc_separate_buffer = tex->last_dcc_separate_buffer;
tex->last_dcc_separate_buffer = NULL;
} else {
tex->dcc_separate_buffer =
si_aligned_buffer_create(sctx->b.screen, SI_RESOURCE_FLAG_UNMAPPABLE, PIPE_USAGE_DEFAULT,
tex->surface.dcc_size, tex->surface.dcc_alignment);
if (!tex->dcc_separate_buffer)
return;
}
/* dcc_offset is the absolute GPUVM address. */
tex->surface.dcc_offset = tex->dcc_separate_buffer->gpu_address;
/* no need to flag anything since this is called by fast clear that
* flags framebuffer state
*/
}
/**
* Called by pipe_context::flush_resource, the place where DCC decompression
* takes place.
*/
void vi_separate_dcc_process_and_reset_stats(struct pipe_context *ctx, struct si_texture *tex)
{
struct si_context *sctx = (struct si_context *)ctx;
struct pipe_query *tmp;
unsigned i = vi_get_context_dcc_stats_index(sctx, tex);
bool query_active = sctx->dcc_stats[i].query_active;
bool disable = false;
if (sctx->dcc_stats[i].ps_stats[2]) {
union pipe_query_result result;
/* Read the results. */
struct pipe_query *query = sctx->dcc_stats[i].ps_stats[2];
ctx->get_query_result(ctx, query, true, &result);
si_query_buffer_reset(sctx, &((struct si_query_hw *)query)->buffer);
/* Compute the approximate number of fullscreen draws. */
tex->ps_draw_ratio = result.pipeline_statistics.ps_invocations /
(tex->buffer.b.b.width0 * tex->buffer.b.b.height0);
sctx->last_tex_ps_draw_ratio = tex->ps_draw_ratio;
disable = tex->dcc_separate_buffer && !vi_should_enable_separate_dcc(tex);
}
tex->num_slow_clears = 0;
/* stop the statistics query for ps_stats[0] */
if (query_active)
vi_separate_dcc_stop_query(sctx, tex);
/* Move the queries in the queue by one. */
tmp = sctx->dcc_stats[i].ps_stats[2];
sctx->dcc_stats[i].ps_stats[2] = sctx->dcc_stats[i].ps_stats[1];
sctx->dcc_stats[i].ps_stats[1] = sctx->dcc_stats[i].ps_stats[0];
sctx->dcc_stats[i].ps_stats[0] = tmp;
/* create and start a new query as ps_stats[0] */
if (query_active)
vi_separate_dcc_start_query(sctx, tex);
if (disable) {
assert(!tex->last_dcc_separate_buffer);
tex->last_dcc_separate_buffer = tex->dcc_separate_buffer;
tex->dcc_separate_buffer = NULL;
tex->surface.dcc_offset = 0;
/* no need to flag anything since this is called after
* decompression that re-sets framebuffer state
*/
}
}
static struct pipe_memory_object *
si_memobj_from_handle(struct pipe_screen *screen, struct winsys_handle *whandle, bool dedicated)
{
struct si_screen *sscreen = (struct si_screen *)screen;
struct si_memory_object *memobj = CALLOC_STRUCT(si_memory_object);
struct pb_buffer *buf = NULL;
if (!memobj)
return NULL;
buf = sscreen->ws->buffer_from_handle(sscreen->ws, whandle, sscreen->info.max_alignment);
if (!buf) {
free(memobj);
return NULL;
}
memobj->b.dedicated = dedicated;
memobj->buf = buf;
memobj->stride = whandle->stride;
return (struct pipe_memory_object *)memobj;
}
static void si_memobj_destroy(struct pipe_screen *screen, struct pipe_memory_object *_memobj)
{
struct si_memory_object *memobj = (struct si_memory_object *)_memobj;
pb_reference(&memobj->buf, NULL);
free(memobj);
}
static struct pipe_resource *si_texture_from_memobj(struct pipe_screen *screen,
const struct pipe_resource *templ,
struct pipe_memory_object *_memobj,
uint64_t offset)
{
struct si_screen *sscreen = (struct si_screen *)screen;
struct si_memory_object *memobj = (struct si_memory_object *)_memobj;
struct pipe_resource *tex = si_texture_from_winsys_buffer(
sscreen, templ, memobj->buf, memobj->stride, offset,
PIPE_HANDLE_USAGE_FRAMEBUFFER_WRITE | PIPE_HANDLE_USAGE_SHADER_WRITE, memobj->b.dedicated);
if (!tex)
return NULL;
/* si_texture_from_winsys_buffer doesn't increment refcount of
* memobj->buf, so increment it here.
*/
struct pb_buffer *buf = NULL;
pb_reference(&buf, memobj->buf);
return tex;
}
static bool si_check_resource_capability(struct pipe_screen *screen, struct pipe_resource *resource,
unsigned bind)
{
struct si_texture *tex = (struct si_texture *)resource;
/* Buffers only support the linear flag. */
if (resource->target == PIPE_BUFFER)
return (bind & ~PIPE_BIND_LINEAR) == 0;
if (bind & PIPE_BIND_LINEAR && !tex->surface.is_linear)
return false;
if (bind & PIPE_BIND_SCANOUT && !tex->surface.is_displayable)
return false;
/* TODO: PIPE_BIND_CURSOR - do we care? */
return true;
}
void si_init_screen_texture_functions(struct si_screen *sscreen)
{
sscreen->b.resource_from_handle = si_texture_from_handle;
sscreen->b.resource_get_handle = si_texture_get_handle;
sscreen->b.resource_get_param = si_resource_get_param;
sscreen->b.resource_get_info = si_texture_get_info;
sscreen->b.resource_from_memobj = si_texture_from_memobj;
sscreen->b.memobj_create_from_handle = si_memobj_from_handle;
sscreen->b.memobj_destroy = si_memobj_destroy;
sscreen->b.check_resource_capability = si_check_resource_capability;
}
void si_init_context_texture_functions(struct si_context *sctx)
{
sctx->b.create_surface = si_create_surface;
sctx->b.surface_destroy = si_surface_destroy;
}